Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation
Measurements of the evolution of organic aerosol extinction cross sections (σext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the σext value...
Saved in:
Published in | Journal of Geophysical Research Vol. 116; no. D15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
06.08.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Measurements of the evolution of organic aerosol extinction cross sections (σext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the σext values at 532 nm increase substantially as the particles undergo oxidation, exhibiting a logarithmic increase with OH exposure. The increase in σext correlates with both an increase in the particle oxygen to carbon (O:C) atomic ratio and density and a decrease in mean molecular weight. The measurements have been used to calculate the variation with oxidation of the mean polarizability, α, of the molecules comprising the particles. The absolute α values for the two systems are shown to be related through the variation in the particle chemical composition, specifically the relative abundances of C, O, and H atoms and the mean molecular weight. Unlike σext, it was found that the evolution of the particle hygroscopicity upon oxidation is quite different for the two model systems considered. Hygroscopicity was quantified by measuring γext, which is a single‐parameter representation of hygroscopicity that describes the increase in extinction upon exposure of the particles to a high–relative humidity environment (here, 75% and 85% RH). For unoxidized squalane, γext was zero and only increased slowly as the particles were oxidized by OH radicals. In contrast, γext for azelaic acid increased rapidly upon exposure to OH, eventually reaching a plateau at high OH exposures. In general, γext appears to vary sigmoidally with O:C, reaching a plateau at high O:C.
Key Points
Organic aerosol optical properties are not static
Organic aerosol optical properties are directly related to the mean composition
OA hygroscopicity depends on both atomic composition and molecular volume |
---|---|
AbstractList | Organic aerosol optical properties are not static Organic aerosol optical properties are directly related to the mean composition OA hygroscopicity depends on both atomic composition and molecular volume Measurements of the evolution of organic aerosol extinction cross sections (ext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the ext values at 532 nm increase substantially as the particles undergo oxidation, exhibiting a logarithmic increase with OH exposure. The increase in ext correlates with both an increase in the particle oxygen to carbon (O:C) atomic ratio and density and a decrease in mean molecular weight. The measurements have been used to calculate the variation with oxidation of the mean polarizability, , of the molecules comprising the particles. The absolute values for the two systems are shown to be related through the variation in the particle chemical composition, specifically the relative abundances of C, O, and H atoms and the mean molecular weight. Unlike ext, it was found that the evolution of the particle hygroscopicity upon oxidation is quite different for the two model systems considered. Hygroscopicity was quantified by measuring ext, which is a single-parameter representation of hygroscopicity that describes the increase in extinction upon exposure of the particles to a highrelative humidity environment (here, 75% and 85% RH). For unoxidized squalane, ext was zero and only increased slowly as the particles were oxidized by OH radicals. In contrast, ext for azelaic acid increased rapidly upon exposure to OH, eventually reaching a plateau at high OH exposures. In general, ext appears to vary sigmoidally with O:C, reaching a plateau at high O:C. Measurements of the evolution of organic aerosol extinction cross sections (σext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the σext values at 532 nm increase substantially as the particles undergo oxidation, exhibiting a logarithmic increase with OH exposure. The increase in σext correlates with both an increase in the particle oxygen to carbon (O:C) atomic ratio and density and a decrease in mean molecular weight. The measurements have been used to calculate the variation with oxidation of the mean polarizability, α, of the molecules comprising the particles. The absolute α values for the two systems are shown to be related through the variation in the particle chemical composition, specifically the relative abundances of C, O, and H atoms and the mean molecular weight. Unlike σext, it was found that the evolution of the particle hygroscopicity upon oxidation is quite different for the two model systems considered. Hygroscopicity was quantified by measuring γext, which is a single‐parameter representation of hygroscopicity that describes the increase in extinction upon exposure of the particles to a high–relative humidity environment (here, 75% and 85% RH). For unoxidized squalane, γext was zero and only increased slowly as the particles were oxidized by OH radicals. In contrast, γext for azelaic acid increased rapidly upon exposure to OH, eventually reaching a plateau at high OH exposures. In general, γext appears to vary sigmoidally with O:C, reaching a plateau at high O:C. Key Points Organic aerosol optical properties are not static Organic aerosol optical properties are directly related to the mean composition OA hygroscopicity depends on both atomic composition and molecular volume Organic aerosol optical properties are not static Organic aerosol optical properties are directly related to the mean composition OA hygroscopicity depends on both atomic composition and molecular volume Measurements of the evolution of organic aerosol extinction cross sections ( sigma ext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the sigma ext values at 532 nm increase substantially as the particles undergo oxidation, exhibiting a logarithmic increase with OH exposure. The increase in sigma ext correlates with both an increase in the particle oxygen to carbon (O:C) atomic ratio and density and a decrease in mean molecular weight. The measurements have been used to calculate the variation with oxidation of the mean polarizability, alpha , of the molecules comprising the particles. The absolute alpha values for the two systems are shown to be related through the variation in the particle chemical composition, specifically the relative abundances of C, O, and H atoms and the mean molecular weight. Unlike sigma ext, it was found that the evolution of the particle hygroscopicity upon oxidation is quite different for the two model systems considered. Hygroscopicity was quantified by measuring gamma ext, which is a single-parameter representation of hygroscopicity that describes the increase in extinction upon exposure of the particles to a high-relative humidity environment (here, 75% and 85% RH). For unoxidized squalane, gamma ext was zero and only increased slowly as the particles were oxidized by OH radicals. In contrast, gamma ext for azelaic acid increased rapidly upon exposure to OH, eventually reaching a plateau at high OH exposures. In general, gamma ext appears to vary sigmoidally with O:C, reaching a plateau at high O:C. |
ArticleNumber | D15204 |
Author | Kroll, Jesse H. Che, Daphne L. Wilson, Kevin R. Cappa, Christopher D. Kessler, Sean H. |
Author_xml | – sequence: 1 givenname: Christopher D. surname: Cappa fullname: Cappa, Christopher D. email: cdcappa@ucdavis.edu organization: Department of Civil and Environmental Engineering, University of California, California, Davis, USA – sequence: 2 givenname: Daphne L. surname: Che fullname: Che, Daphne L. organization: Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA – sequence: 3 givenname: Sean H. surname: Kessler fullname: Kessler, Sean H. organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA – sequence: 4 givenname: Jesse H. surname: Kroll fullname: Kroll, Jesse H. organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA – sequence: 5 givenname: Kevin R. surname: Wilson fullname: Wilson, Kevin R. organization: Chemical Sciences Division, Lawrence Berkeley National Laboratory, California, Berkeley, USA |
BookMark | eNp9kE9PFEEQxTsGE1fg5gfoePLgQPW_memjAVkgBKLRxXhpe3prlsahe-yeDey3p2GNMR6sSyVVv_fyql6TnRADEvKGwQEDrg85MHZ-DExp1r4gM85UXXEOfIfMgMm2As6bV2Q_51soJVUtgc3Ij4VN3k4-hkx9oDGtbPCOWkwxx4HGcfLODtSGJb3ZrMrQxbHsxxRHTJPHTNdjDPQGp6JYYcC4zvTqlMYHv3y23SMveztk3P_dd8nXk49fjk6ri6v52dGHi8rJlqlKAu9s3eNTwx5d10nJS2zRtrKruQAOCjSzGlQPopVOONAdKgu6FZ1ail3ybutbov1aY57Mnc8Oh8E-ZzLlR7KuRdOKgr79B72N6xRKOqOBN7yRuinQ-y3kytE5YW_G5O9s2hSnJzNt_n54wcUWv_cDbv7LmvP552PWcKGKqtqqfJ7w4Y_Kpp-mbkSjzPXl3CyuF-rTyeV38008AjcIkmM |
CitedBy_id | crossref_primary_10_1021_acs_jpca_6b05986 crossref_primary_10_1021_acs_est_0c07668 crossref_primary_10_1021_acs_est_7b01756 crossref_primary_10_1071_EN12052 crossref_primary_10_1039_C8CP02701C crossref_primary_10_1039_C9CS00766K crossref_primary_10_1002_2016JD026173 crossref_primary_10_1021_jp301772q crossref_primary_10_5194_acp_15_3339_2015 crossref_primary_10_1002_2013JD021213 crossref_primary_10_1002_2015JD023154 crossref_primary_10_1038_ncomms3122 crossref_primary_10_1007_s40726_020_00164_2 crossref_primary_10_1021_acsearthspacechem_8b00072 crossref_primary_10_1021_acs_jpca_9b00167 crossref_primary_10_1021_acs_analchem_8b01319 crossref_primary_10_1021_acsearthspacechem_8b00118 crossref_primary_10_3402_tellusb_v67_24634 crossref_primary_10_5194_acp_14_12195_2014 crossref_primary_10_1016_j_jes_2023_08_021 crossref_primary_10_5194_acp_18_467_2018 crossref_primary_10_1021_acs_jpca_3c03846 crossref_primary_10_5194_acp_13_11769_2013 crossref_primary_10_1021_acs_est_6b00625 crossref_primary_10_1039_c2cs35052a crossref_primary_10_1021_acsomega_1c05467 crossref_primary_10_5194_acp_21_2053_2021 crossref_primary_10_1080_02786826_2014_963498 crossref_primary_10_5194_acp_11_11069_2011 crossref_primary_10_1021_acs_estlett_7b00393 crossref_primary_10_5194_acp_22_5515_2022 crossref_primary_10_1039_D3EA00005B crossref_primary_10_1175_AMSMONOGRAPHS_D_18_0024_1 crossref_primary_10_5194_acp_16_9003_2016 crossref_primary_10_5194_acp_19_9581_2019 crossref_primary_10_1016_j_atmosenv_2017_03_008 crossref_primary_10_5194_acp_18_14585_2018 crossref_primary_10_1007_s40641_018_0092_3 crossref_primary_10_1029_2012JD018163 crossref_primary_10_5194_acp_14_5793_2014 crossref_primary_10_1080_02786826_2019_1599321 crossref_primary_10_1080_02786826_2014_893278 crossref_primary_10_1021_acs_est_5b04134 crossref_primary_10_1021_es401043j crossref_primary_10_5194_acp_17_14415_2017 crossref_primary_10_5194_acp_13_3931_2013 crossref_primary_10_5194_acp_15_883_2015 crossref_primary_10_1002_2013JD021186 crossref_primary_10_5194_acp_12_9629_2012 crossref_primary_10_1029_2021GL094427 crossref_primary_10_5194_acp_23_9765_2023 crossref_primary_10_1002_2015JD024498 crossref_primary_10_5194_acp_20_8123_2020 crossref_primary_10_1021_acs_est_8b06879 crossref_primary_10_5194_acp_19_941_2019 crossref_primary_10_1071_EN11162 crossref_primary_10_1029_2018JD028504 crossref_primary_10_5194_amt_14_7565_2021 crossref_primary_10_5194_gmd_9_111_2016 crossref_primary_10_5194_amt_8_1701_2015 crossref_primary_10_1021_acs_est_9b05546 crossref_primary_10_1080_02786826_2015_1022248 crossref_primary_10_5194_acp_16_4987_2016 crossref_primary_10_1002_2017GL072585 crossref_primary_10_1021_cr5006292 crossref_primary_10_1021_jp211429f crossref_primary_10_1021_acs_est_1c07328 crossref_primary_10_5194_acp_12_8377_2012 crossref_primary_10_5194_amt_14_4517_2021 crossref_primary_10_1021_jp212131m crossref_primary_10_1029_2011JD016823 crossref_primary_10_1021_acs_est_7b05742 crossref_primary_10_1021_es502147y crossref_primary_10_5194_acp_15_4045_2015 crossref_primary_10_1039_D2EA00013J crossref_primary_10_3390_environments5090104 crossref_primary_10_1021_acsearthspacechem_8b00163 crossref_primary_10_1021_cr5005259 crossref_primary_10_1016_S1001_0742_13_60402_7 crossref_primary_10_1021_acsearthspacechem_0c00159 crossref_primary_10_1080_02786826_2012_700141 crossref_primary_10_1002_2017JD026897 crossref_primary_10_1039_C5SC02326B crossref_primary_10_5194_acp_18_5235_2018 crossref_primary_10_1021_acs_jpca_6b11606 crossref_primary_10_1016_j_icarus_2021_114398 crossref_primary_10_1021_es405177d crossref_primary_10_5194_acp_22_4149_2022 crossref_primary_10_5194_acp_17_11779_2017 crossref_primary_10_1016_j_cplett_2014_04_033 crossref_primary_10_5194_acp_12_10989_2012 crossref_primary_10_5194_amt_9_3477_2016 crossref_primary_10_5194_acp_14_9201_2014 crossref_primary_10_1039_c3cp50347j crossref_primary_10_5194_acp_13_531_2013 crossref_primary_10_1088_2040_8986_aaa6ff crossref_primary_10_1039_D3CC03700B crossref_primary_10_5194_acp_19_3325_2019 crossref_primary_10_5194_acp_19_13383_2019 crossref_primary_10_1021_jp407991n crossref_primary_10_1029_2022GL099175 crossref_primary_10_5194_acp_22_3985_2022 crossref_primary_10_1021_jp504823j crossref_primary_10_1002_grl_50203 crossref_primary_10_1021_acs_jpca_5b06946 crossref_primary_10_1021_acs_jpca_6b05289 |
Cites_doi | 10.1021/es703009q 10.1016/j.jaerosci.2008.06.006 10.1080/027868290903907 10.1029/2007GL029979 10.1029/2008JD011604 10.1080/02786820600803917 10.1080/02786820701432640 10.1016/S0021-8502(03)00361-6 10.1021/ac071150w 10.1029/2006GL027249 10.1029/2010GL045258 10.5194/acp-9-3987-2009 10.1111/j.1600-0889.2004.00090.x 10.1029/2010JD014549 10.1029/2010GL042737 10.1029/2010JD014387 10.1029/2005GL024322 10.1126/science.278.5339.827 10.1039/b905289e 10.1021/es0209262 10.1029/2005GL024898 10.1021/es101465m 10.1021/ac60131a044 10.5194/acp-5-1053-2005 10.1016/j.atmosenv.2008.02.026 10.1029/2003GL018203 10.1175/1520-0469(2004)061<0485:UITRFD>2.0.CO;2 10.1088/1748-9326/3/4/045003 10.1029/2006JD008179 10.5194/acp-9-771-2009 10.1029/2009GL040131 10.1029/2006JD007963 10.1039/b904162a 10.5194/acp-7-1523-2007 10.1029/2007GL031075 10.5194/acp-10-7253-2010 10.1029/2006JD007340 10.1029/2001JD001253 10.5194/acp-9-3209-2009 10.5194/acpd-10-19309-2010 10.5194/acp-10-4625-2010 10.5194/acp-7-1961-2007 10.5194/acp-6-4321-2006 10.1080/02786820701222801 10.1021/es7023252 10.1029/1998JD100054 10.1038/nchem.948 10.1034/j.1600-0889.2000.00055.x 10.1126/science.1180353 10.1016/j.atmosenv.2005.09.076 10.5194/acp-8-6273-2008 |
ContentType | Journal Article |
Copyright | Copyright 2011 by the American Geophysical Union. Copyright 2011 by American Geophysical Union |
Copyright_xml | – notice: Copyright 2011 by the American Geophysical Union. – notice: Copyright 2011 by American Geophysical Union |
DBID | BSCLL AAYXX CITATION 3V. 7TG 7UA 7XB 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M7S MBDVC P5Z P62 PATMY PCBAR PQEST PQQKQ PQUKI PTHSS PYCSY Q9U 7TV |
DOI | 10.1029/2011JD015918 |
DatabaseName | Istex CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Pollution Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest Central Basic ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) Pollution Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-8996 |
EndPage | n/a |
ExternalDocumentID | 2506517491 10_1029_2011JD015918 JGRD17235 ark_67375_WNG_VWV5QFNZ_X |
Genre | article Feature |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAYXX CITATION 05W 0R~ 33P 3V. 50Y 52M 5VS 702 7TG 7UA 7XB 8-1 8FD 8FG 8FK A00 AAESR AAIHA AASGY AAZKR ABJCF ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AFKRA AFRAH AIURR ARAPS AZQEC AZVAB BFHJK BGLVJ BMXJE C1K CCPQU DPXWK F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ K6- KL. KR7 L.G L6V L7M LEEKS LK5 M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PQEST PQQKQ PQUKI PROAC PTHSS PYCSY Q9U R.K SUPJJ WBKPD WYJ 7TV |
ID | FETCH-LOGICAL-c4815-402ba6fe02baefecbb4421483884b6230205091a905f0384c3c09be5a0983b5d3 |
IEDL.DBID | 8FG |
ISSN | 0148-0227 2169-897X |
IngestDate | Fri Oct 25 02:44:34 EDT 2024 Sat Nov 09 06:10:04 EST 2024 Fri Aug 23 04:10:36 EDT 2024 Sat Aug 24 00:51:05 EDT 2024 Wed Oct 30 09:54:48 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | D15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4815-402ba6fe02baefecbb4421483884b6230205091a905f0384c3c09be5a0983b5d3 |
Notes | istex:4BEED412CC20DE1C28FE73335899B5B134A1583B ark:/67375/WNG-VWV5QFNZ-X ArticleID:2011JD015918 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://dspace.mit.edu/bitstream/1721.1/77943/1/Kroll_Variations%20in%20organic.pdf |
PQID | 902727497 |
PQPubID | 54657 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1024663783 proquest_journals_902727497 crossref_primary_10_1029_2011JD015918 wiley_primary_10_1029_2011JD015918_JGRD17235 istex_primary_ark_67375_WNG_VWV5QFNZ_X |
PublicationCentury | 2000 |
PublicationDate | 2011-08-06 |
PublicationDateYYYYMMDD | 2011-08-06 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of Geophysical Research |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Huff-Hartz, K. E., J. E. Tischuk, M. N. Chan, C. K. Chan, N. M. Donahue, and S. N. Pandis (2006), Cloud condensation nuclei activation of limited solubility organic aerosol, Atmos. Environ., 40(4), 605-617, doi:10.1016/j.atmosenv.2005.09.076. Kinne, S., et al. (2003), Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data, J. Geophys. Res., 108(D20), 4634, doi:10.1029/2001JD001253. Kroll, J. H., J. D. Smith, D. L. Che, S. H. Kessler, D. R. Worsnop, and K. R. Wilson (2009), Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol, Phys. Chem. Chem. Phys., 11(36), 8005-8014, doi:10.1039/b905289e. Kim, H., B. Barkey, and S. E. Paulson (2010), Real refractive indices of α- and β-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation, J. Geophys. Res., 115, D24212, doi:10.1029/2010JD014549. Jurányi, Z., et al. (2009), Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of alpha-pinene secondary organic aerosol, Phys. Chem. Chem. Phys., 11(36), 8091-8097, doi:10.1039/b904162a. Duplissy, J., et al. (2010), Relating hygroscopicity and composition of organic aerosol particulate matter, Atmos. Chem. Phys. Discuss., 10(8), 19,309-19,341, doi:10.5194/acpd-10-19309-2010. Broekhuizen, K., P. P. Kumar, and J. P. D. Abbatt (2004), Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species, Geophys. Res. Lett., 31, L01107, doi:10.1029/2003GL018203. DeCarlo, P. F., J. G. Slowik, D. Worsnop, P. Davidovits, and J. L. Jimenez (2004), Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory, Aerosol Sci. Technol., 38, 1185-1205, doi:10.1080/027868290903907. Wex, H., M. D. Petters, C. M. Carrico, E. Hallbauer, A. Massling, G. R. McMeeking, L. Poulain, Z. Wu, S. M. Kreidenweis, and F. Stratmann (2009), Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1-Evidence from measurements, Atmos. Chem. Phys., 9(12), 3987-3997, doi:10.5194/acp-9-3987-2009. Jacobson, M. Z. (1999), Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption, J. Geophys. Res., 104(D3), 3527-3542, doi:10.1029/1998JD100054. Bilde, M., and B. Svenningsson (2004), CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase, Tellus, Ser. B, 56(2), 128-134, doi:10.1111/j.1600-0889.2004.00090.x. Quinn, P. K., et al. (2005), Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization, Geophys. Res. Lett., 32, L22809, doi:10.1029/2005GL024322. Myhre, G., F. Stordal, T. F. Berglen, J. K. Sundet, and I. S. A. Isaksen (2004), Uncertainties in the radiative forcing due to sulfate aerosols, J. Atmos. Sci., 61(5), 485-498, doi:10.1175/1520-0469(2004)061<0485:UITRFD>2.0.CO;2. Prenni, A. J., M. D. Petters, S. M. Kreidenweis, P. J. DeMott, and P. J. Ziemann (2007), Cloud droplet activation of secondary organic aerosol, J. Geophys. Res., 112, D10223, doi:10.1029/2006JD007963. Gassó, S., et al. (2000), Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2, Tellus, Ser. B, 52(2), 546-567, doi:10.1034/j.1600-0889.2000.00055.x. Dickerson, R. R., S. Kondragunta, G. Stenchikov, K. L. Civerolo, B. G. Doddridge, and B. N. Holben (1997), The impact of aerosols on solar ultraviolet radiation and photochemical smog, Science, 278(5339), 827-830, doi:10.1126/science.278.5339.827. Baynard, T., R. M. Garland, A. R. Ravishankara, M. A. Tolbert, and E. R. Lovejoy (2006), Key factors influencing the relative humidity dependence of aerosol light scattering, Geophys. Res. Lett., 33, L06813, doi:10.1029/2005GL024898. Jimenez, J. L., et al. (2009), Evolution of organic aerosols in the atmosphere, Science, 326(5959), 1525-1529, doi:10.1126/science.1180353. Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara (2006), Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments, Aerosol Sci. Technol., 40, 697-708, doi:10.1080/02786820600803917. Petters, M. D., S. M. Kreidenweis, A. J. Prenni, R. C. Sullivan, C. M. Carrico, K. A. Koehler, and P. J. Ziemann (2009), Role of molecular size in cloud droplet activation, Geophys. Res. Lett., 36, L22801, doi:10.1029/2009GL040131. Abo Riziq, A., C. Erlick, E. Dinar, and Y. Rudich (2007), Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy, Atmos. Chem. Phys., 7(6), 1523-1536, doi:10.5194/acp-7-1523-2007. Aiken, A. C., et al. (2008), O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42(12), 4478-4485, doi:10.1021/es703009q. Dentener, F., et al. (2006), Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6(12), 4321-4344, doi:10.5194/acp-6-4321-2006. Massoli, P., T. S. Bates, P. K. Quinn, D. A. Lack, T. Baynard, B. M. Lerner, S. C. Tucker, J. Brioude, A. Stohl, and E. J. Williams (2009), Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing, J. Geophys. Res., 114, D00F07, doi:10.1029/2008JD011604. Ng, N. L., et al. (2010), Organic aerosol components observed in Northern Hemispheric datasets from aerosol mass spectrometry, Atmos. Chem. Phys., 10(10), 4625-4641, doi:10.5194/acp-10-4625-2010. Petters, M. D., and S. M. Kreidenweis (2008), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity-Part 2: Including solubility, Atmos. Chem. Phys., 8(20), 6273-6279, doi:10.5194/acp-8-6273-2008. Liu, Y. G., and P. H. Daum (2008), Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols, J. Aerosol Sci., 39(11), 974-986, doi:10.1016/j.jaerosci.2008.06.006. Heald, C. L., J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, and P. Artaxo (2010), A simplified description of the evolution of organic aerosol composition in the atmosphere, Geophys. Res. Lett., 37, L08803, doi:10.1029/2010GL042737. Schnaiter, M., H. Horvath, O. Mohler, K. H. Naumann, H. Saathoff, and O. W. Schock (2003), UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols, J. Aerosol Sci., 34(10), 1421-1444, doi:10.1016/S0021-8502(03)00361-6. Duplissy, J., et al. (2008), Cloud forming potential of secondary organic aerosol under near atmospheric conditions, Geophys. Res. Lett., 35, L03818, doi:10.1029/2007GL031075. Beaver, M. R., R. M. Garland, C. A. Hasenkopf, T. Baynard, A. R. Ravishankara, and M. A. Tolbert (2008), A laboratory investigation of the relative humidity dependence of light extinction by organic compounds from lignin combustion, Environ. Res. Lett., 3(4), 045003, doi:10.1088/1748-9326/3/4/045003. Petters, M. D., A. J. Prenni, S. M. Kreidenweis, P. J. DeMott, A. Matsunaga, Y. B. Lim, and P. J. Ziemann (2006), Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol, Geophys. Res. Lett., 33, L24806, doi:10.1029/2006GL027249. Smith, J. D., J. H. Kroll, C. D. Cappa, D. L. Che, M. Ahmed, S. R. Leone, D. Worsnop, and K. R. Wilson (2009), The heterogeneous OH oxidation of sub-micron squalane particle: A model system for probing the underlying chemical mechanisms that control ageing of ambient aerosols, Atmos. Chem. Phys., 9, 3209-3222, doi:10.5194/acp-9-3209-2009. Shilling, J. E., et al. (2009), Loading-dependent elemental composition of alpha-pinene SOA particles, Atmos. Chem. Phys., 9(3), 771-782, doi:10.5194/acp-9-771-2009. Yu, Y., M. J. Ezell, A. Zelenyuk, D. Imre, L. Alexander, J. Ortega, B. D'Anna, C. W. Harmon, S. N. Johnson, and B. J. Finlayson-Pitts (2008), Photooxidation of alpha-pinene at high relative humidity in the presence of increasing concentrations of NOx, Atmos. Environ., 42(20), 5044-5060, doi:10.1016/j.atmosenv.2008.02.026. Sax, K. J., and F. H. Stross (1957), Squalane: A standard, Anal. Chem., 29(11), 1700-1702, doi:10.1021/ac60131a044. Fraser, M. P., G. R. Cass, and B. R. T. Simoneit (2003), Air Quality model evaluation data for organics. 6. C3-C24 organic acids, Environ. Sci. Technol., 37(3), 446-453, doi:10.1021/es0209262. Barkey, B., S. E. Paulson, and A. Chung (2007), Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index, Aerosol Sci. Technol., 41(8), 751-760, doi:10.1080/02786820701432640. Feynman, R. P., R. B. Leighton, and M. L. Sands (1989), The Feynman Lectures on Physics, Addison-Wesley, Redwood City, Calif. Kessler, S. H., J. D. Smith, D. L. Che, D. R. Worsnop, K. R. Wilson, and J. H. Kroll (2010), Chemical sinks of organic aerosol: Kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan, Environ. Sci. Technol., 44(18), 7005-7010, doi:10.1021/es101465m. Lide, D. R. (2006), Properties of Organic Compounds, CRC Press, Boca Raton, Fla. Garland, R. M., A. R. Ravishankara, E. R. Lovejoy, M. A. Tolbert, and T. Baynard (2007), Parameterization for the relative humidity dependence of light extinction: Organic-ammonium sulfate aerosol, J. Geophys. Res., 112, D19303, doi:10.1029/2006JD008179. Bohren, C. F., and D. R. Huffman (1983), Absorption and Scattering of Light by Small Particles, 350 pp., John Wiley, New York. Petters, M. D., and S. M. Kreidenweis (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7(8), 1961-1971, doi:10.5194/acp-7-1961-2007. Murphy, D. M., D. J. Cziczo, 1997; 278 2010; 10 2004; 61 2010; 37 2006; 33 2008; 39 2003; 37 2007 2006; 6 2008; 35 2006 2008; 8 2008; 3 2011; 3 1999; 104 2007; 34 2007; 79 2009; 114 2006; 111 2003; 34 2009; 11 2010; 44 2007; 112 2009; 36 2004; 31 2003; 108 2006; 40 2004; 38 2010; 115 2004; 56 2000; 52 2005; 5 2009; 9 2007; 7 2005; 32 1983 2008; 42 2007; 41 1957; 29 1989 2009; 326 Myhre (10.1029/2011JD015918:myhr04) 2004; 61 Heald (10.1029/2011JD015918:heal10) 2010; 37 Wex (10.1029/2011JD015918:wex09) 2009; 9 Dentener (10.1029/2011JD015918:dent06) 2006; 6 Duplissy (10.1029/2011JD015918:dupl08) 2008; 35 Yu (10.1029/2011JD015918:yu08) 2008; 42 Intergovernmental Panel on Climate Change (10.1029/2011JD015918:inte07) 2007 Sax (10.1029/2011JD015918:sax57) 1957; 29 Bilde (10.1029/2011JD015918:bild04) 2004; 56 Fraser (10.1029/2011JD015918:fras03) 2003; 37 Kroll (10.1029/2011JD015918:krol09) 2009; 11 Feynman (10.1029/2011JD015918:feyn89) 1989 Massoli (10.1029/2011JD015918:mass10) 2010; 37 Petters (10.1029/2011JD015918:pett07) 2007; 7 DeCarlo (10.1029/2011JD015918:deca04) 2004; 38 Jimenez (10.1029/2011JD015918:jime09) 2009; 326 Shilling (10.1029/2011JD015918:shil09) 2009; 9 Lide (10.1029/2011JD015918:lide06) 2006 Kroll (10.1029/2011JD015918:krol11) 2011; 3 Massoli (10.1029/2011JD015918:mass09) 2009; 114 Gassó (10.1029/2011JD015918:gass00) 2000; 52 Schnaiter (10.1029/2011JD015918:schn03) 2003; 34 Aiken (10.1029/2011JD015918:aike08) 2008; 42 Broekhuizen (10.1029/2011JD015918:broe04) 2004; 31 Lack (10.1029/2011JD015918:lack06) 2006; 40 Chan (10.1029/2011JD015918:chan08) 2008; 42 Murphy (10.1029/2011JD015918:murp06) 2006; 111 Petters (10.1029/2011JD015918:pett09) 2009; 36 Barkey (10.1029/2011JD015918:bark07) 2007; 41 Zhang (10.1029/2011JD015918:zhan07) 2007; 34 Bohren (10.1029/2011JD015918:bohr83) 1983 Huff-Hartz (10.1029/2011JD015918:huff06) 2006; 40 Dickerson (10.1029/2011JD015918:dick97) 1997; 278 Baynard (10.1029/2011JD015918:bayn06) 2006; 33 Smith (10.1029/2011JD015918:smit09) 2009; 9 Petters (10.1029/2011JD015918:pett08) 2008; 8 Duplissy (10.1029/2011JD015918:dupl10) 2010; 10 Kessler (10.1029/2011JD015918:kess10) 2010; 44 Nakayama (10.1029/2011JD015918:naka10) 2010; 115 Baynard (10.1029/2011JD015918:bayn07) 2007; 41 Garland (10.1029/2011JD015918:garl07) 2007; 112 Jacobson (10.1029/2011JD015918:jaco99) 1999; 104 Kanakidou (10.1029/2011JD015918:kana05) 2005; 5 Quinn (10.1029/2011JD015918:quin05) 2005; 32 Kinne (10.1029/2011JD015918:kinn03) 2003; 108 Lang-Yona (10.1029/2011JD015918:lang10) 2010; 10 Liu (10.1029/2011JD015918:liu08) 2008; 39 Petters (10.1029/2011JD015918:pett06) 2006; 33 Abo Riziq (10.1029/2011JD015918:abor07) 2007; 7 Ng (10.1029/2011JD015918:ng10) 2010; 10 Kim (10.1029/2011JD015918:kim10) 2010; 115 Beaver (10.1029/2011JD015918:beav08) 2008; 3 Jurányi (10.1029/2011JD015918:jura09) 2009; 11 Prenni (10.1029/2011JD015918:pren07) 2007; 112 Aiken (10.1029/2011JD015918:aike07) 2007; 79 |
References_xml | – volume: 10 start-page: 19,309 issue: 8 year: 2010 end-page: 19,341 article-title: Relating hygroscopicity and composition of organic aerosol particulate matter publication-title: Atmos. Chem. Phys. Discuss. – volume: 34 start-page: 1421 issue: 10 year: 2003 end-page: 1444 article-title: UV‐VIS‐NIR spectral optical properties of soot and soot‐containing aerosols publication-title: J. Aerosol Sci. – year: 1989 – volume: 39 start-page: 974 issue: 11 year: 2008 end-page: 986 article-title: Relationship of refractive index to mass density and self‐consistency of mixing rules for multicomponent mixtures like ambient aerosols publication-title: J. Aerosol Sci. – volume: 37 year: 2010 article-title: A simplified description of the evolution of organic aerosol composition in the atmosphere publication-title: Geophys. Res. Lett. – volume: 29 start-page: 1700 issue: 11 year: 1957 end-page: 1702 article-title: Squalane: A standard publication-title: Anal. Chem. – volume: 52 start-page: 546 issue: 2 year: 2000 end-page: 567 article-title: Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE‐2 publication-title: Tellus, Ser. B – volume: 7 start-page: 1961 issue: 8 year: 2007 end-page: 1971 article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity publication-title: Atmos. Chem. Phys. – volume: 112 year: 2007 article-title: Cloud droplet activation of secondary organic aerosol publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of ‐pinene publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: Real refractive indices of ‐ and ‐pinene and toluene secondary organic aerosols generated from ozonolysis and photo‐oxidation publication-title: J. Geophys. Res. – volume: 11 start-page: 8005 issue: 36 year: 2009 end-page: 8014 article-title: Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol publication-title: Phys. Chem. Chem. Phys. – volume: 42 start-page: 4478 issue: 12 year: 2008 end-page: 4485 article-title: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high‐resolution time‐of‐flight aerosol mass spectrometry publication-title: Environ. Sci. Technol. – volume: 6 start-page: 4321 issue: 12 year: 2006 end-page: 4344 article-title: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data‐sets for AeroCom publication-title: Atmos. Chem. Phys. – volume: 278 start-page: 827 issue: 5339 year: 1997 end-page: 830 article-title: The impact of aerosols on solar ultraviolet radiation and photochemical smog publication-title: Science – volume: 35 year: 2008 article-title: Cloud forming potential of secondary organic aerosol under near atmospheric conditions publication-title: Geophys. Res. Lett. – volume: 44 start-page: 7005 issue: 18 year: 2010 end-page: 7010 article-title: Chemical sinks of organic aerosol: Kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan publication-title: Environ. Sci. Technol. – volume: 9 start-page: 3987 issue: 12 year: 2009 end-page: 3997 article-title: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1—Evidence from measurements publication-title: Atmos. Chem. Phys. – volume: 9 start-page: 3209 year: 2009 end-page: 3222 article-title: The heterogeneous OH oxidation of sub‐micron squalane particle: A model system for probing the underlying chemical mechanisms that control ageing of ambient aerosols publication-title: Atmos. Chem. Phys. – volume: 326 start-page: 1525 issue: 5959 year: 2009 end-page: 1529 article-title: Evolution of organic aerosols in the atmosphere publication-title: Science – year: 1983 – volume: 108 issue: D20 year: 2003 article-title: Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data publication-title: J. Geophys. Res. – volume: 42 start-page: 5044 issue: 20 year: 2008 end-page: 5060 article-title: Photooxidation of alpha‐pinene at high relative humidity in the presence of increasing concentrations of NO publication-title: Atmos. Environ. – volume: 41 start-page: 751 issue: 8 year: 2007 end-page: 760 article-title: Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index publication-title: Aerosol Sci. Technol. – volume: 41 start-page: 447 issue: 4 year: 2007 end-page: 462 article-title: Design and application of a pulsed cavity ring‐down aerosol extinction spectrometer for field measurements publication-title: Aerosol Sci. Technol. – volume: 104 start-page: 3527 issue: D3 year: 1999 end-page: 3542 article-title: Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption publication-title: J. Geophys. Res. – volume: 10 start-page: 7253 issue: 15 year: 2010 end-page: 7265 article-title: The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions publication-title: Atmos. Chem. Phys. – volume: 34 year: 2007 article-title: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced Northern Hemisphere midlatitudes publication-title: Geophys. Res. Lett. – year: 2007 – volume: 33 year: 2006 article-title: Chemical aging and the hydrophobic‐to‐hydrophilic conversion of carbonaceous aerosol publication-title: Geophys. Res. Lett. – volume: 5 start-page: 1053 year: 2005 end-page: 1123 article-title: Organic aerosol and global climate modelling: A review publication-title: Atmos. Chem. Phys. – volume: 111 year: 2006 article-title: Single‐particle mass spectrometry of tropospheric aerosol particles publication-title: J. Geophys. Res. – volume: 42 start-page: 3602 issue: 10 year: 2008 end-page: 3608 article-title: Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities publication-title: Environ. Sci. Technol. – volume: 9 start-page: 771 issue: 3 year: 2009 end-page: 782 article-title: Loading‐dependent elemental composition of alpha‐pinene SOA particles publication-title: Atmos. Chem. Phys. – volume: 61 start-page: 485 issue: 5 year: 2004 end-page: 498 article-title: Uncertainties in the radiative forcing due to sulfate aerosols publication-title: J. Atmos. Sci. – volume: 7 start-page: 1523 issue: 6 year: 2007 end-page: 1536 article-title: Optical properties of absorbing and non‐absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy publication-title: Atmos. Chem. Phys. – volume: 10 start-page: 4625 issue: 10 year: 2010 end-page: 4641 article-title: Organic aerosol components observed in Northern Hemispheric datasets from aerosol mass spectrometry publication-title: Atmos. Chem. Phys. – volume: 3 start-page: 133 issue: 2 year: 2011 end-page: 139 article-title: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol publication-title: Nat. Chem. – volume: 38 start-page: 1185 year: 2004 end-page: 1205 article-title: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory publication-title: Aerosol Sci. Technol. – volume: 31 year: 2004 article-title: Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species publication-title: Geophys. Res. Lett. – volume: 36 year: 2009 article-title: Role of molecular size in cloud droplet activation publication-title: Geophys. Res. Lett. – volume: 79 start-page: 8350 issue: 21 year: 2007 end-page: 8358 article-title: Elemental analysis of organic species with electron ionization high‐resolution mass spectrometry publication-title: Anal. Chem. – volume: 11 start-page: 8091 issue: 36 year: 2009 end-page: 8097 article-title: Influence of gas‐to‐particle partitioning on the hygroscopic and droplet activation behaviour of alpha‐pinene secondary organic aerosol publication-title: Phys. Chem. Chem. Phys. – volume: 37 start-page: 446 issue: 3 year: 2003 end-page: 453 article-title: Air Quality model evaluation data for organics. 6. C –C organic acids publication-title: Environ. Sci. Technol. – volume: 112 year: 2007 article-title: Parameterization for the relative humidity dependence of light extinction: Organic‐ammonium sulfate aerosol publication-title: J. Geophys. Res. – year: 2006 – volume: 114 year: 2009 article-title: Aerosol optical and hygroscopic properties during TexAQS‐GoMACCS 2006 and their impact on aerosol direct radiative forcing publication-title: J. Geophys. Res. – volume: 40 start-page: 605 issue: 4 year: 2006 end-page: 617 article-title: Cloud condensation nuclei activation of limited solubility organic aerosol publication-title: Atmos. Environ. – volume: 8 start-page: 6273 issue: 20 year: 2008 end-page: 6279 article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity—Part 2: Including solubility publication-title: Atmos. Chem. Phys. – volume: 33 year: 2006 article-title: Key factors influencing the relative humidity dependence of aerosol light scattering publication-title: Geophys. Res. Lett. – volume: 37 year: 2010 article-title: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles publication-title: Geophys. Res. Lett. – volume: 56 start-page: 128 issue: 2 year: 2004 end-page: 134 article-title: CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase publication-title: Tellus, Ser. B – volume: 3 issue: 4 year: 2008 article-title: A laboratory investigation of the relative humidity dependence of light extinction by organic compounds from lignin combustion publication-title: Environ. Res. Lett. – volume: 32 year: 2005 article-title: Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization publication-title: Geophys. Res. Lett. – volume: 40 start-page: 697 year: 2006 end-page: 708 article-title: Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments publication-title: Aerosol Sci. Technol. – volume: 42 start-page: 4478 issue: 12 year: 2008 ident: 10.1029/2011JD015918:aike08 article-title: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry publication-title: Environ. Sci. Technol. doi: 10.1021/es703009q contributor: fullname: Aiken – volume: 39 start-page: 974 issue: 11 year: 2008 ident: 10.1029/2011JD015918:liu08 article-title: Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2008.06.006 contributor: fullname: Liu – volume: 38 start-page: 1185 year: 2004 ident: 10.1029/2011JD015918:deca04 article-title: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory publication-title: Aerosol Sci. Technol. doi: 10.1080/027868290903907 contributor: fullname: DeCarlo – volume-title: The Feynman Lectures on Physics year: 1989 ident: 10.1029/2011JD015918:feyn89 contributor: fullname: Feynman – volume: 34 start-page: L13801 year: 2007 ident: 10.1029/2011JD015918:zhan07 article-title: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced Northern Hemisphere midlatitudes publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL029979 contributor: fullname: Zhang – volume: 114 start-page: D00F07 year: 2009 ident: 10.1029/2011JD015918:mass09 article-title: Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing publication-title: J. Geophys. Res. doi: 10.1029/2008JD011604 contributor: fullname: Massoli – volume: 40 start-page: 697 year: 2006 ident: 10.1029/2011JD015918:lack06 article-title: Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments publication-title: Aerosol Sci. Technol. doi: 10.1080/02786820600803917 contributor: fullname: Lack – volume: 41 start-page: 751 issue: 8 year: 2007 ident: 10.1029/2011JD015918:bark07 article-title: Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index publication-title: Aerosol Sci. Technol. doi: 10.1080/02786820701432640 contributor: fullname: Barkey – volume: 34 start-page: 1421 issue: 10 year: 2003 ident: 10.1029/2011JD015918:schn03 article-title: UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols publication-title: J. Aerosol Sci. doi: 10.1016/S0021-8502(03)00361-6 contributor: fullname: Schnaiter – volume: 79 start-page: 8350 issue: 21 year: 2007 ident: 10.1029/2011JD015918:aike07 article-title: Elemental analysis of organic species with electron ionization high-resolution mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac071150w contributor: fullname: Aiken – volume-title: Properties of Organic Compounds year: 2006 ident: 10.1029/2011JD015918:lide06 contributor: fullname: Lide – volume: 33 start-page: L24806 year: 2006 ident: 10.1029/2011JD015918:pett06 article-title: Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL027249 contributor: fullname: Petters – volume: 37 start-page: L24801 year: 2010 ident: 10.1029/2011JD015918:mass10 article-title: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL045258 contributor: fullname: Massoli – volume: 9 start-page: 3987 issue: 12 year: 2009 ident: 10.1029/2011JD015918:wex09 article-title: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1—Evidence from measurements publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-9-3987-2009 contributor: fullname: Wex – volume: 56 start-page: 128 issue: 2 year: 2004 ident: 10.1029/2011JD015918:bild04 article-title: CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase publication-title: Tellus, Ser. B doi: 10.1111/j.1600-0889.2004.00090.x contributor: fullname: Bilde – volume: 115 start-page: D24212 year: 2010 ident: 10.1029/2011JD015918:kim10 article-title: Real refractive indices of α- and β-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation publication-title: J. Geophys. Res. doi: 10.1029/2010JD014549 contributor: fullname: Kim – volume: 37 start-page: L08803 year: 2010 ident: 10.1029/2011JD015918:heal10 article-title: A simplified description of the evolution of organic aerosol composition in the atmosphere publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL042737 contributor: fullname: Heald – volume-title: Climate Change: The Physical Science Basis—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: 10.1029/2011JD015918:inte07 contributor: fullname: Intergovernmental Panel on Climate Change – volume: 115 start-page: D24204 year: 2010 ident: 10.1029/2011JD015918:naka10 article-title: Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α-pinene publication-title: J. Geophys. Res. doi: 10.1029/2010JD014387 contributor: fullname: Nakayama – volume: 32 start-page: L22809 year: 2005 ident: 10.1029/2011JD015918:quin05 article-title: Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL024322 contributor: fullname: Quinn – volume: 278 start-page: 827 issue: 5339 year: 1997 ident: 10.1029/2011JD015918:dick97 article-title: The impact of aerosols on solar ultraviolet radiation and photochemical smog publication-title: Science doi: 10.1126/science.278.5339.827 contributor: fullname: Dickerson – volume: 11 start-page: 8005 issue: 36 year: 2009 ident: 10.1029/2011JD015918:krol09 article-title: Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b905289e contributor: fullname: Kroll – volume: 37 start-page: 446 issue: 3 year: 2003 ident: 10.1029/2011JD015918:fras03 article-title: Air Quality model evaluation data for organics. 6. C3–C24 organic acids publication-title: Environ. Sci. Technol. doi: 10.1021/es0209262 contributor: fullname: Fraser – volume: 33 start-page: L06813 year: 2006 ident: 10.1029/2011JD015918:bayn06 article-title: Key factors influencing the relative humidity dependence of aerosol light scattering publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL024898 contributor: fullname: Baynard – volume: 44 start-page: 7005 issue: 18 year: 2010 ident: 10.1029/2011JD015918:kess10 article-title: Chemical sinks of organic aerosol: Kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan publication-title: Environ. Sci. Technol. doi: 10.1021/es101465m contributor: fullname: Kessler – volume: 29 start-page: 1700 issue: 11 year: 1957 ident: 10.1029/2011JD015918:sax57 article-title: Squalane: A standard publication-title: Anal. Chem. doi: 10.1021/ac60131a044 contributor: fullname: Sax – volume: 5 start-page: 1053 year: 2005 ident: 10.1029/2011JD015918:kana05 article-title: Organic aerosol and global climate modelling: A review publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-5-1053-2005 contributor: fullname: Kanakidou – volume: 42 start-page: 5044 issue: 20 year: 2008 ident: 10.1029/2011JD015918:yu08 article-title: Photooxidation of alpha-pinene at high relative humidity in the presence of increasing concentrations of NOx publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.02.026 contributor: fullname: Yu – volume: 31 start-page: L01107 year: 2004 ident: 10.1029/2011JD015918:broe04 article-title: Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species publication-title: Geophys. Res. Lett. doi: 10.1029/2003GL018203 contributor: fullname: Broekhuizen – volume: 61 start-page: 485 issue: 5 year: 2004 ident: 10.1029/2011JD015918:myhr04 article-title: Uncertainties in the radiative forcing due to sulfate aerosols publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2004)061<0485:UITRFD>2.0.CO;2 contributor: fullname: Myhre – volume: 3 start-page: 045003 issue: 4 year: 2008 ident: 10.1029/2011JD015918:beav08 article-title: A laboratory investigation of the relative humidity dependence of light extinction by organic compounds from lignin combustion publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/3/4/045003 contributor: fullname: Beaver – volume: 112 start-page: D19303 year: 2007 ident: 10.1029/2011JD015918:garl07 article-title: Parameterization for the relative humidity dependence of light extinction: Organic-ammonium sulfate aerosol publication-title: J. Geophys. Res. doi: 10.1029/2006JD008179 contributor: fullname: Garland – volume: 9 start-page: 771 issue: 3 year: 2009 ident: 10.1029/2011JD015918:shil09 article-title: Loading-dependent elemental composition of alpha-pinene SOA particles publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-9-771-2009 contributor: fullname: Shilling – volume: 36 start-page: L22801 year: 2009 ident: 10.1029/2011JD015918:pett09 article-title: Role of molecular size in cloud droplet activation publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL040131 contributor: fullname: Petters – volume-title: Absorption and Scattering of Light by Small Particles, year: 1983 ident: 10.1029/2011JD015918:bohr83 contributor: fullname: Bohren – volume: 112 start-page: D10223 year: 2007 ident: 10.1029/2011JD015918:pren07 article-title: Cloud droplet activation of secondary organic aerosol publication-title: J. Geophys. Res. doi: 10.1029/2006JD007963 contributor: fullname: Prenni – volume: 11 start-page: 8091 issue: 36 year: 2009 ident: 10.1029/2011JD015918:jura09 article-title: Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of alpha-pinene secondary organic aerosol publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b904162a contributor: fullname: Jurányi – volume: 7 start-page: 1523 issue: 6 year: 2007 ident: 10.1029/2011JD015918:abor07 article-title: Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-1523-2007 contributor: fullname: Abo Riziq – volume: 35 start-page: L03818 year: 2008 ident: 10.1029/2011JD015918:dupl08 article-title: Cloud forming potential of secondary organic aerosol under near atmospheric conditions publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL031075 contributor: fullname: Duplissy – volume: 10 start-page: 7253 issue: 15 year: 2010 ident: 10.1029/2011JD015918:lang10 article-title: The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-7253-2010 contributor: fullname: Lang-Yona – volume: 111 start-page: D23S32 year: 2006 ident: 10.1029/2011JD015918:murp06 article-title: Single-particle mass spectrometry of tropospheric aerosol particles publication-title: J. Geophys. Res. doi: 10.1029/2006JD007340 contributor: fullname: Murphy – volume: 108 start-page: 4634 issue: D20 year: 2003 ident: 10.1029/2011JD015918:kinn03 article-title: Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data publication-title: J. Geophys. Res. doi: 10.1029/2001JD001253 contributor: fullname: Kinne – volume: 9 start-page: 3209 year: 2009 ident: 10.1029/2011JD015918:smit09 article-title: The heterogeneous OH oxidation of sub-micron squalane particle: A model system for probing the underlying chemical mechanisms that control ageing of ambient aerosols publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-9-3209-2009 contributor: fullname: Smith – volume: 10 start-page: 19309 issue: 8 year: 2010 ident: 10.1029/2011JD015918:dupl10 article-title: Relating hygroscopicity and composition of organic aerosol particulate matter publication-title: Atmos. Chem. Phys. Discuss. doi: 10.5194/acpd-10-19309-2010 contributor: fullname: Duplissy – volume: 10 start-page: 4625 issue: 10 year: 2010 ident: 10.1029/2011JD015918:ng10 article-title: Organic aerosol components observed in Northern Hemispheric datasets from aerosol mass spectrometry publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-4625-2010 contributor: fullname: Ng – volume: 7 start-page: 1961 issue: 8 year: 2007 ident: 10.1029/2011JD015918:pett07 article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-7-1961-2007 contributor: fullname: Petters – volume: 6 start-page: 4321 issue: 12 year: 2006 ident: 10.1029/2011JD015918:dent06 article-title: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-6-4321-2006 contributor: fullname: Dentener – volume: 41 start-page: 447 issue: 4 year: 2007 ident: 10.1029/2011JD015918:bayn07 article-title: Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements publication-title: Aerosol Sci. Technol. doi: 10.1080/02786820701222801 contributor: fullname: Baynard – volume: 42 start-page: 3602 issue: 10 year: 2008 ident: 10.1029/2011JD015918:chan08 article-title: Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities publication-title: Environ. Sci. Technol. doi: 10.1021/es7023252 contributor: fullname: Chan – volume: 104 start-page: 3527 issue: D3 year: 1999 ident: 10.1029/2011JD015918:jaco99 article-title: Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption publication-title: J. Geophys. Res. doi: 10.1029/1998JD100054 contributor: fullname: Jacobson – volume: 3 start-page: 133 issue: 2 year: 2011 ident: 10.1029/2011JD015918:krol11 article-title: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol publication-title: Nat. Chem. doi: 10.1038/nchem.948 contributor: fullname: Kroll – volume: 52 start-page: 546 issue: 2 year: 2000 ident: 10.1029/2011JD015918:gass00 article-title: Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2 publication-title: Tellus, Ser. B doi: 10.1034/j.1600-0889.2000.00055.x contributor: fullname: Gassó – volume: 326 start-page: 1525 issue: 5959 year: 2009 ident: 10.1029/2011JD015918:jime09 article-title: Evolution of organic aerosols in the atmosphere publication-title: Science doi: 10.1126/science.1180353 contributor: fullname: Jimenez – volume: 40 start-page: 605 issue: 4 year: 2006 ident: 10.1029/2011JD015918:huff06 article-title: Cloud condensation nuclei activation of limited solubility organic aerosol publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2005.09.076 contributor: fullname: Huff-Hartz – volume: 8 start-page: 6273 issue: 20 year: 2008 ident: 10.1029/2011JD015918:pett08 article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity—Part 2: Including solubility publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-8-6273-2008 contributor: fullname: Petters |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000803454 |
Score | 2.4434025 |
Snippet | Measurements of the evolution of organic aerosol extinction cross sections (σext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported... Organic aerosol optical properties are not static Organic aerosol optical properties are directly related to the mean composition OA hygroscopicity depends on... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
SubjectTerms | Aerosols Atmospheric aerosols Atmospheric sciences Geophysics Hygroscopicity Optical Properties Organic Aerosol Oxidation Saturated hydrocarbons |
Title | Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation |
URI | https://api.istex.fr/ark:/67375/WNG-VWV5QFNZ-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JD015918 https://www.proquest.com/docview/902727497 https://search.proquest.com/docview/1024663783 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgvXBB_BTZYDLS2IloaZzE9gmNbW1VaQUm1lVcjO04rGKKQ7tK23_Pe05adZcdI0ey9fzjfe_z8_sIObCGg1uteOwg1IkzLfLYVK6Iy7TvktQUxlp8jXw-KUaX2XiWz7rcnGWXVrk-E8NBXXqLHPmRhPgJIijJvzT_YhSNwsvVTkHjKen1U84x9hKD4YZiATDEsqCDlvYLGQvJZ13qe5LKI_R841PwhhIFP7acUg_te_cAcW7j1uB4Bi_I8w4x0uN2il-SJ65-RaJzALt-EThxekhPbuaAPMPXa_J7CvFvS8TReU1b3SZLtYO-_Q31TaCvqa5Len3_B6tZ-gbaG6TlF1hfla4aX9NrTJTxsL6cXy3ptxH1d_NWgOkNuRyc_TwZxZ2QQmyxFgvGiEYXFRpfu8pZY7IshTiICZEZwD8AGRE3aJnkVcJEZplNpHG5TqRgJi_ZW7JT-9q9IzSxTgrTLyrG4IwtSqOrjJXO5JrzsshcRD6tLamatl6GCvfcqVTbFo_IYTDz5ie9-Is5ZjxXV5Ohml5N8x-DyS81i8jeeh5Ut72WarMYIvJx0wr7Ai87dDAL9gjjY1ywiHwO0_foeNR4eHEKYI7lu492uEeerVnlpHhPdm4XK_cBYMmt2Q-Lb5_0vp5Nvl_8B-cU4Ns |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagOcAF8RRLCxgJemLVzdr78AlB2zSEZoGqTaNejO310qjVekkaqfx7ZrybKFx6XHklW-PHfPN5PB8h743OwK1WWWgh1Am5ypNQVzYNy7hvo1in2hh8jTwu0uEZH02TaZebs-jSKldnoj-oS2eQI98TED9BBCWyT82fEEWj8HK1U9C4T3pYqQpir96Xw-LHyZpkATjEuFdCi_upCHORTbvk9ygWe-j7RgfgDwVKfmy4pR5a-PY_zLmJXL3rGTwmjzrMSD-3k_yE3LP1UxKMAe66uWfF6S7dv54B9vRfz8ivCUTALRVHZzVtlZsMVRb6dtfUNZ7Apqou6eXf31jP0jXQ3iAxP8cKq3TZuJpeYqqMgxVm3XJBvw-pu521EkzPydng8HR_GHZSCqHBaiwYJWqVVmh-ZStrtOY8hkiI5TnXgIAANCJyUCJKqojl3DATCW0TFYmc6aRkL8hW7Wr7ktDIWJHrfloxBqdsWmpVcVZanagsK1NuA_JhZUnZtBUzpL_pjoXctHhAdr2Z1z-p-RVmmWWJPC-O5OR8kvwcFBdyGpDt1TzIboMt5Ho5BOTduhV2Bl53KG8W7BHGx7KcBeSjn747xyNHRycHAOdY8urODt-SB8PT8bE8_lp82yYPVxxzlO6QrZv50r4GkHKj33RL8R9ZX-OS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELeglRAviE8RxoeRYE9ETWPHjp8QrOtKYWFMrKt4MbbjsIopDu0qjf-es5NW5WWPkSPZujv7fnc-3w-hN0ZzcKsVjy2EOjFVeRbryrK4TIc2STXTxvjXyMcFm5zR6Tybdy2FVl1Z5eZMDAd16YzPkQ8ExE8QQQk-qLqqiJPR-H3zJ_YEUv6itWPTuI36nDKS9FD_42FxcrpNuAA0IjSwoqVDJuJc8HlXCJ-kYuD94HQEvlF4-o8dF9X30r7-D3_uotjghsb30b0OP-IPrcIfoFu2foiiY4C-bhky5HgfH1wuAIeGr0fo5wyi4TYthxc1blmcDFYW5naX2DUhmY1VXeKLv798b0vXwHjjk_RL320VrxtX4wtfNuPA2qxbr_DXCXbXi5aO6TE6Gx9-P5jEHa1CbHxnFh8xasUqrwplK2u0pjSFqIjkOdWAhgBAehShRJJVCcmpISYR2mYqETnRWUmeoF7tavsU4cRYkeshqwiBE5eVWlWUlFZnivOSURuhtxtJyqbtniHDrXcq5K7EI7QfxLz9SS1_-4oznsnz4kjOzmfZt3HxQ84jtLfRg-w220puTSNCr7ejsEv81YcKYvEzwvoIz0mE3gX13bgeOT06HQG0I9mzGyd8he6AFcovn4rPe-juJt2csOeod7Vc2xeAV670y84S_wEDYefA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variations+in+organic+aerosol+optical+and+hygroscopic+properties+upon+heterogeneous+OH+oxidation&rft.jtitle=Journal+of+Geophysical+Research&rft.au=Cappa%2C+Christopher+D.&rft.au=Che%2C+Daphne+L.&rft.au=Kessler%2C+Sean+H.&rft.au=Kroll%2C+Jesse+H.&rft.date=2011-08-06&rft.issn=0148-0227&rft.volume=116&rft.issue=D15&rft_id=info:doi/10.1029%2F2011JD015918&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2011JD015918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |