Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation

Measurements of the evolution of organic aerosol extinction cross sections (σext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the σext value...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research Vol. 116; no. D15
Main Authors Cappa, Christopher D., Che, Daphne L., Kessler, Sean H., Kroll, Jesse H., Wilson, Kevin R.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 06.08.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Measurements of the evolution of organic aerosol extinction cross sections (σext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the σext values at 532 nm increase substantially as the particles undergo oxidation, exhibiting a logarithmic increase with OH exposure. The increase in σext correlates with both an increase in the particle oxygen to carbon (O:C) atomic ratio and density and a decrease in mean molecular weight. The measurements have been used to calculate the variation with oxidation of the mean polarizability, α, of the molecules comprising the particles. The absolute α values for the two systems are shown to be related through the variation in the particle chemical composition, specifically the relative abundances of C, O, and H atoms and the mean molecular weight. Unlike σext, it was found that the evolution of the particle hygroscopicity upon oxidation is quite different for the two model systems considered. Hygroscopicity was quantified by measuring γext, which is a single‐parameter representation of hygroscopicity that describes the increase in extinction upon exposure of the particles to a high–relative humidity environment (here, 75% and 85% RH). For unoxidized squalane, γext was zero and only increased slowly as the particles were oxidized by OH radicals. In contrast, γext for azelaic acid increased rapidly upon exposure to OH, eventually reaching a plateau at high OH exposures. In general, γext appears to vary sigmoidally with O:C, reaching a plateau at high O:C. Key Points Organic aerosol optical properties are not static Organic aerosol optical properties are directly related to the mean composition OA hygroscopicity depends on both atomic composition and molecular volume
AbstractList Organic aerosol optical properties are not static Organic aerosol optical properties are directly related to the mean composition OA hygroscopicity depends on both atomic composition and molecular volume Measurements of the evolution of organic aerosol extinction cross sections (ext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the ext values at 532 nm increase substantially as the particles undergo oxidation, exhibiting a logarithmic increase with OH exposure. The increase in ext correlates with both an increase in the particle oxygen to carbon (O:C) atomic ratio and density and a decrease in mean molecular weight. The measurements have been used to calculate the variation with oxidation of the mean polarizability, , of the molecules comprising the particles. The absolute values for the two systems are shown to be related through the variation in the particle chemical composition, specifically the relative abundances of C, O, and H atoms and the mean molecular weight. Unlike ext, it was found that the evolution of the particle hygroscopicity upon oxidation is quite different for the two model systems considered. Hygroscopicity was quantified by measuring ext, which is a single-parameter representation of hygroscopicity that describes the increase in extinction upon exposure of the particles to a highrelative humidity environment (here, 75% and 85% RH). For unoxidized squalane, ext was zero and only increased slowly as the particles were oxidized by OH radicals. In contrast, ext for azelaic acid increased rapidly upon exposure to OH, eventually reaching a plateau at high OH exposures. In general, ext appears to vary sigmoidally with O:C, reaching a plateau at high O:C.
Measurements of the evolution of organic aerosol extinction cross sections (σext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the σext values at 532 nm increase substantially as the particles undergo oxidation, exhibiting a logarithmic increase with OH exposure. The increase in σext correlates with both an increase in the particle oxygen to carbon (O:C) atomic ratio and density and a decrease in mean molecular weight. The measurements have been used to calculate the variation with oxidation of the mean polarizability, α, of the molecules comprising the particles. The absolute α values for the two systems are shown to be related through the variation in the particle chemical composition, specifically the relative abundances of C, O, and H atoms and the mean molecular weight. Unlike σext, it was found that the evolution of the particle hygroscopicity upon oxidation is quite different for the two model systems considered. Hygroscopicity was quantified by measuring γext, which is a single‐parameter representation of hygroscopicity that describes the increase in extinction upon exposure of the particles to a high–relative humidity environment (here, 75% and 85% RH). For unoxidized squalane, γext was zero and only increased slowly as the particles were oxidized by OH radicals. In contrast, γext for azelaic acid increased rapidly upon exposure to OH, eventually reaching a plateau at high OH exposures. In general, γext appears to vary sigmoidally with O:C, reaching a plateau at high O:C. Key Points Organic aerosol optical properties are not static Organic aerosol optical properties are directly related to the mean composition OA hygroscopicity depends on both atomic composition and molecular volume
Organic aerosol optical properties are not static Organic aerosol optical properties are directly related to the mean composition OA hygroscopicity depends on both atomic composition and molecular volume Measurements of the evolution of organic aerosol extinction cross sections ( sigma ext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated hydrocarbon) and azelaic acid (a C9 dicarboxylic acid). For both compounds, the sigma ext values at 532 nm increase substantially as the particles undergo oxidation, exhibiting a logarithmic increase with OH exposure. The increase in sigma ext correlates with both an increase in the particle oxygen to carbon (O:C) atomic ratio and density and a decrease in mean molecular weight. The measurements have been used to calculate the variation with oxidation of the mean polarizability, alpha , of the molecules comprising the particles. The absolute alpha values for the two systems are shown to be related through the variation in the particle chemical composition, specifically the relative abundances of C, O, and H atoms and the mean molecular weight. Unlike sigma ext, it was found that the evolution of the particle hygroscopicity upon oxidation is quite different for the two model systems considered. Hygroscopicity was quantified by measuring gamma ext, which is a single-parameter representation of hygroscopicity that describes the increase in extinction upon exposure of the particles to a high-relative humidity environment (here, 75% and 85% RH). For unoxidized squalane, gamma ext was zero and only increased slowly as the particles were oxidized by OH radicals. In contrast, gamma ext for azelaic acid increased rapidly upon exposure to OH, eventually reaching a plateau at high OH exposures. In general, gamma ext appears to vary sigmoidally with O:C, reaching a plateau at high O:C.
ArticleNumber D15204
Author Kroll, Jesse H.
Che, Daphne L.
Wilson, Kevin R.
Cappa, Christopher D.
Kessler, Sean H.
Author_xml – sequence: 1
  givenname: Christopher D.
  surname: Cappa
  fullname: Cappa, Christopher D.
  email: cdcappa@ucdavis.edu
  organization: Department of Civil and Environmental Engineering, University of California, California, Davis, USA
– sequence: 2
  givenname: Daphne L.
  surname: Che
  fullname: Che, Daphne L.
  organization: Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
– sequence: 3
  givenname: Sean H.
  surname: Kessler
  fullname: Kessler, Sean H.
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, USA
– sequence: 4
  givenname: Jesse H.
  surname: Kroll
  fullname: Kroll, Jesse H.
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
– sequence: 5
  givenname: Kevin R.
  surname: Wilson
  fullname: Wilson, Kevin R.
  organization: Chemical Sciences Division, Lawrence Berkeley National Laboratory, California, Berkeley, USA
BookMark eNp9kE9PFEEQxTsGE1fg5gfoePLgQPW_memjAVkgBKLRxXhpe3prlsahe-yeDey3p2GNMR6sSyVVv_fyql6TnRADEvKGwQEDrg85MHZ-DExp1r4gM85UXXEOfIfMgMm2As6bV2Q_51soJVUtgc3Ij4VN3k4-hkx9oDGtbPCOWkwxx4HGcfLODtSGJb3ZrMrQxbHsxxRHTJPHTNdjDPQGp6JYYcC4zvTqlMYHv3y23SMveztk3P_dd8nXk49fjk6ri6v52dGHi8rJlqlKAu9s3eNTwx5d10nJS2zRtrKruQAOCjSzGlQPopVOONAdKgu6FZ1ail3ybutbov1aY57Mnc8Oh8E-ZzLlR7KuRdOKgr79B72N6xRKOqOBN7yRuinQ-y3kytE5YW_G5O9s2hSnJzNt_n54wcUWv_cDbv7LmvP552PWcKGKqtqqfJ7w4Y_Kpp-mbkSjzPXl3CyuF-rTyeV38008AjcIkmM
CitedBy_id crossref_primary_10_1021_acs_jpca_6b05986
crossref_primary_10_1021_acs_est_0c07668
crossref_primary_10_1021_acs_est_7b01756
crossref_primary_10_1071_EN12052
crossref_primary_10_1039_C8CP02701C
crossref_primary_10_1039_C9CS00766K
crossref_primary_10_1002_2016JD026173
crossref_primary_10_1021_jp301772q
crossref_primary_10_5194_acp_15_3339_2015
crossref_primary_10_1002_2013JD021213
crossref_primary_10_1002_2015JD023154
crossref_primary_10_1038_ncomms3122
crossref_primary_10_1007_s40726_020_00164_2
crossref_primary_10_1021_acsearthspacechem_8b00072
crossref_primary_10_1021_acs_jpca_9b00167
crossref_primary_10_1021_acs_analchem_8b01319
crossref_primary_10_1021_acsearthspacechem_8b00118
crossref_primary_10_3402_tellusb_v67_24634
crossref_primary_10_5194_acp_14_12195_2014
crossref_primary_10_1016_j_jes_2023_08_021
crossref_primary_10_5194_acp_18_467_2018
crossref_primary_10_1021_acs_jpca_3c03846
crossref_primary_10_5194_acp_13_11769_2013
crossref_primary_10_1021_acs_est_6b00625
crossref_primary_10_1039_c2cs35052a
crossref_primary_10_1021_acsomega_1c05467
crossref_primary_10_5194_acp_21_2053_2021
crossref_primary_10_1080_02786826_2014_963498
crossref_primary_10_5194_acp_11_11069_2011
crossref_primary_10_1021_acs_estlett_7b00393
crossref_primary_10_5194_acp_22_5515_2022
crossref_primary_10_1039_D3EA00005B
crossref_primary_10_1175_AMSMONOGRAPHS_D_18_0024_1
crossref_primary_10_5194_acp_16_9003_2016
crossref_primary_10_5194_acp_19_9581_2019
crossref_primary_10_1016_j_atmosenv_2017_03_008
crossref_primary_10_5194_acp_18_14585_2018
crossref_primary_10_1007_s40641_018_0092_3
crossref_primary_10_1029_2012JD018163
crossref_primary_10_5194_acp_14_5793_2014
crossref_primary_10_1080_02786826_2019_1599321
crossref_primary_10_1080_02786826_2014_893278
crossref_primary_10_1021_acs_est_5b04134
crossref_primary_10_1021_es401043j
crossref_primary_10_5194_acp_17_14415_2017
crossref_primary_10_5194_acp_13_3931_2013
crossref_primary_10_5194_acp_15_883_2015
crossref_primary_10_1002_2013JD021186
crossref_primary_10_5194_acp_12_9629_2012
crossref_primary_10_1029_2021GL094427
crossref_primary_10_5194_acp_23_9765_2023
crossref_primary_10_1002_2015JD024498
crossref_primary_10_5194_acp_20_8123_2020
crossref_primary_10_1021_acs_est_8b06879
crossref_primary_10_5194_acp_19_941_2019
crossref_primary_10_1071_EN11162
crossref_primary_10_1029_2018JD028504
crossref_primary_10_5194_amt_14_7565_2021
crossref_primary_10_5194_gmd_9_111_2016
crossref_primary_10_5194_amt_8_1701_2015
crossref_primary_10_1021_acs_est_9b05546
crossref_primary_10_1080_02786826_2015_1022248
crossref_primary_10_5194_acp_16_4987_2016
crossref_primary_10_1002_2017GL072585
crossref_primary_10_1021_cr5006292
crossref_primary_10_1021_jp211429f
crossref_primary_10_1021_acs_est_1c07328
crossref_primary_10_5194_acp_12_8377_2012
crossref_primary_10_5194_amt_14_4517_2021
crossref_primary_10_1021_jp212131m
crossref_primary_10_1029_2011JD016823
crossref_primary_10_1021_acs_est_7b05742
crossref_primary_10_1021_es502147y
crossref_primary_10_5194_acp_15_4045_2015
crossref_primary_10_1039_D2EA00013J
crossref_primary_10_3390_environments5090104
crossref_primary_10_1021_acsearthspacechem_8b00163
crossref_primary_10_1021_cr5005259
crossref_primary_10_1016_S1001_0742_13_60402_7
crossref_primary_10_1021_acsearthspacechem_0c00159
crossref_primary_10_1080_02786826_2012_700141
crossref_primary_10_1002_2017JD026897
crossref_primary_10_1039_C5SC02326B
crossref_primary_10_5194_acp_18_5235_2018
crossref_primary_10_1021_acs_jpca_6b11606
crossref_primary_10_1016_j_icarus_2021_114398
crossref_primary_10_1021_es405177d
crossref_primary_10_5194_acp_22_4149_2022
crossref_primary_10_5194_acp_17_11779_2017
crossref_primary_10_1016_j_cplett_2014_04_033
crossref_primary_10_5194_acp_12_10989_2012
crossref_primary_10_5194_amt_9_3477_2016
crossref_primary_10_5194_acp_14_9201_2014
crossref_primary_10_1039_c3cp50347j
crossref_primary_10_5194_acp_13_531_2013
crossref_primary_10_1088_2040_8986_aaa6ff
crossref_primary_10_1039_D3CC03700B
crossref_primary_10_5194_acp_19_3325_2019
crossref_primary_10_5194_acp_19_13383_2019
crossref_primary_10_1021_jp407991n
crossref_primary_10_1029_2022GL099175
crossref_primary_10_5194_acp_22_3985_2022
crossref_primary_10_1021_jp504823j
crossref_primary_10_1002_grl_50203
crossref_primary_10_1021_acs_jpca_5b06946
crossref_primary_10_1021_acs_jpca_6b05289
Cites_doi 10.1021/es703009q
10.1016/j.jaerosci.2008.06.006
10.1080/027868290903907
10.1029/2007GL029979
10.1029/2008JD011604
10.1080/02786820600803917
10.1080/02786820701432640
10.1016/S0021-8502(03)00361-6
10.1021/ac071150w
10.1029/2006GL027249
10.1029/2010GL045258
10.5194/acp-9-3987-2009
10.1111/j.1600-0889.2004.00090.x
10.1029/2010JD014549
10.1029/2010GL042737
10.1029/2010JD014387
10.1029/2005GL024322
10.1126/science.278.5339.827
10.1039/b905289e
10.1021/es0209262
10.1029/2005GL024898
10.1021/es101465m
10.1021/ac60131a044
10.5194/acp-5-1053-2005
10.1016/j.atmosenv.2008.02.026
10.1029/2003GL018203
10.1175/1520-0469(2004)061<0485:UITRFD>2.0.CO;2
10.1088/1748-9326/3/4/045003
10.1029/2006JD008179
10.5194/acp-9-771-2009
10.1029/2009GL040131
10.1029/2006JD007963
10.1039/b904162a
10.5194/acp-7-1523-2007
10.1029/2007GL031075
10.5194/acp-10-7253-2010
10.1029/2006JD007340
10.1029/2001JD001253
10.5194/acp-9-3209-2009
10.5194/acpd-10-19309-2010
10.5194/acp-10-4625-2010
10.5194/acp-7-1961-2007
10.5194/acp-6-4321-2006
10.1080/02786820701222801
10.1021/es7023252
10.1029/1998JD100054
10.1038/nchem.948
10.1034/j.1600-0889.2000.00055.x
10.1126/science.1180353
10.1016/j.atmosenv.2005.09.076
10.5194/acp-8-6273-2008
ContentType Journal Article
Copyright Copyright 2011 by the American Geophysical Union.
Copyright 2011 by American Geophysical Union
Copyright_xml – notice: Copyright 2011 by the American Geophysical Union.
– notice: Copyright 2011 by American Geophysical Union
DBID BSCLL
AAYXX
CITATION
3V.
7TG
7UA
7XB
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
7TV
DOI 10.1029/2011JD015918
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Pollution Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
Pollution Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Meteorological & Geoastrophysical Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-8996
EndPage n/a
ExternalDocumentID 2506517491
10_1029_2011JD015918
JGRD17235
ark_67375_WNG_VWV5QFNZ_X
Genre article
Feature
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAYXX
CITATION
05W
0R~
33P
3V.
50Y
52M
5VS
702
7TG
7UA
7XB
8-1
8FD
8FG
8FK
A00
AAESR
AAIHA
AASGY
AAZKR
ABJCF
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AFKRA
AFRAH
AIURR
ARAPS
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
C1K
CCPQU
DPXWK
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
K6-
KL.
KR7
L.G
L6V
L7M
LEEKS
LK5
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
PYCSY
Q9U
R.K
SUPJJ
WBKPD
WYJ
7TV
ID FETCH-LOGICAL-c4815-402ba6fe02baefecbb4421483884b6230205091a905f0384c3c09be5a0983b5d3
IEDL.DBID 8FG
ISSN 0148-0227
2169-897X
IngestDate Fri Oct 25 02:44:34 EDT 2024
Sat Nov 09 06:10:04 EST 2024
Fri Aug 23 04:10:36 EDT 2024
Sat Aug 24 00:51:05 EDT 2024
Wed Oct 30 09:54:48 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4815-402ba6fe02baefecbb4421483884b6230205091a905f0384c3c09be5a0983b5d3
Notes istex:4BEED412CC20DE1C28FE73335899B5B134A1583B
ark:/67375/WNG-VWV5QFNZ-X
ArticleID:2011JD015918
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dspace.mit.edu/bitstream/1721.1/77943/1/Kroll_Variations%20in%20organic.pdf
PQID 902727497
PQPubID 54657
PageCount 12
ParticipantIDs proquest_miscellaneous_1024663783
proquest_journals_902727497
crossref_primary_10_1029_2011JD015918
wiley_primary_10_1029_2011JD015918_JGRD17235
istex_primary_ark_67375_WNG_VWV5QFNZ_X
PublicationCentury 2000
PublicationDate 2011-08-06
PublicationDateYYYYMMDD 2011-08-06
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-06
  day: 06
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of Geophysical Research
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Huff-Hartz, K. E., J. E. Tischuk, M. N. Chan, C. K. Chan, N. M. Donahue, and S. N. Pandis (2006), Cloud condensation nuclei activation of limited solubility organic aerosol, Atmos. Environ., 40(4), 605-617, doi:10.1016/j.atmosenv.2005.09.076.
Kinne, S., et al. (2003), Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data, J. Geophys. Res., 108(D20), 4634, doi:10.1029/2001JD001253.
Kroll, J. H., J. D. Smith, D. L. Che, S. H. Kessler, D. R. Worsnop, and K. R. Wilson (2009), Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol, Phys. Chem. Chem. Phys., 11(36), 8005-8014, doi:10.1039/b905289e.
Kim, H., B. Barkey, and S. E. Paulson (2010), Real refractive indices of α- and β-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation, J. Geophys. Res., 115, D24212, doi:10.1029/2010JD014549.
Jurányi, Z., et al. (2009), Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of alpha-pinene secondary organic aerosol, Phys. Chem. Chem. Phys., 11(36), 8091-8097, doi:10.1039/b904162a.
Duplissy, J., et al. (2010), Relating hygroscopicity and composition of organic aerosol particulate matter, Atmos. Chem. Phys. Discuss., 10(8), 19,309-19,341, doi:10.5194/acpd-10-19309-2010.
Broekhuizen, K., P. P. Kumar, and J. P. D. Abbatt (2004), Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species, Geophys. Res. Lett., 31, L01107, doi:10.1029/2003GL018203.
DeCarlo, P. F., J. G. Slowik, D. Worsnop, P. Davidovits, and J. L. Jimenez (2004), Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory, Aerosol Sci. Technol., 38, 1185-1205, doi:10.1080/027868290903907.
Wex, H., M. D. Petters, C. M. Carrico, E. Hallbauer, A. Massling, G. R. McMeeking, L. Poulain, Z. Wu, S. M. Kreidenweis, and F. Stratmann (2009), Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1-Evidence from measurements, Atmos. Chem. Phys., 9(12), 3987-3997, doi:10.5194/acp-9-3987-2009.
Jacobson, M. Z. (1999), Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption, J. Geophys. Res., 104(D3), 3527-3542, doi:10.1029/1998JD100054.
Bilde, M., and B. Svenningsson (2004), CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase, Tellus, Ser. B, 56(2), 128-134, doi:10.1111/j.1600-0889.2004.00090.x.
Quinn, P. K., et al. (2005), Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization, Geophys. Res. Lett., 32, L22809, doi:10.1029/2005GL024322.
Myhre, G., F. Stordal, T. F. Berglen, J. K. Sundet, and I. S. A. Isaksen (2004), Uncertainties in the radiative forcing due to sulfate aerosols, J. Atmos. Sci., 61(5), 485-498, doi:10.1175/1520-0469(2004)061<0485:UITRFD>2.0.CO;2.
Prenni, A. J., M. D. Petters, S. M. Kreidenweis, P. J. DeMott, and P. J. Ziemann (2007), Cloud droplet activation of secondary organic aerosol, J. Geophys. Res., 112, D10223, doi:10.1029/2006JD007963.
Gassó, S., et al. (2000), Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2, Tellus, Ser. B, 52(2), 546-567, doi:10.1034/j.1600-0889.2000.00055.x.
Dickerson, R. R., S. Kondragunta, G. Stenchikov, K. L. Civerolo, B. G. Doddridge, and B. N. Holben (1997), The impact of aerosols on solar ultraviolet radiation and photochemical smog, Science, 278(5339), 827-830, doi:10.1126/science.278.5339.827.
Baynard, T., R. M. Garland, A. R. Ravishankara, M. A. Tolbert, and E. R. Lovejoy (2006), Key factors influencing the relative humidity dependence of aerosol light scattering, Geophys. Res. Lett., 33, L06813, doi:10.1029/2005GL024898.
Jimenez, J. L., et al. (2009), Evolution of organic aerosols in the atmosphere, Science, 326(5959), 1525-1529, doi:10.1126/science.1180353.
Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara (2006), Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments, Aerosol Sci. Technol., 40, 697-708, doi:10.1080/02786820600803917.
Petters, M. D., S. M. Kreidenweis, A. J. Prenni, R. C. Sullivan, C. M. Carrico, K. A. Koehler, and P. J. Ziemann (2009), Role of molecular size in cloud droplet activation, Geophys. Res. Lett., 36, L22801, doi:10.1029/2009GL040131.
Abo Riziq, A., C. Erlick, E. Dinar, and Y. Rudich (2007), Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy, Atmos. Chem. Phys., 7(6), 1523-1536, doi:10.5194/acp-7-1523-2007.
Aiken, A. C., et al. (2008), O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42(12), 4478-4485, doi:10.1021/es703009q.
Dentener, F., et al. (2006), Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6(12), 4321-4344, doi:10.5194/acp-6-4321-2006.
Massoli, P., T. S. Bates, P. K. Quinn, D. A. Lack, T. Baynard, B. M. Lerner, S. C. Tucker, J. Brioude, A. Stohl, and E. J. Williams (2009), Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing, J. Geophys. Res., 114, D00F07, doi:10.1029/2008JD011604.
Ng, N. L., et al. (2010), Organic aerosol components observed in Northern Hemispheric datasets from aerosol mass spectrometry, Atmos. Chem. Phys., 10(10), 4625-4641, doi:10.5194/acp-10-4625-2010.
Petters, M. D., and S. M. Kreidenweis (2008), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity-Part 2: Including solubility, Atmos. Chem. Phys., 8(20), 6273-6279, doi:10.5194/acp-8-6273-2008.
Liu, Y. G., and P. H. Daum (2008), Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols, J. Aerosol Sci., 39(11), 974-986, doi:10.1016/j.jaerosci.2008.06.006.
Heald, C. L., J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, and P. Artaxo (2010), A simplified description of the evolution of organic aerosol composition in the atmosphere, Geophys. Res. Lett., 37, L08803, doi:10.1029/2010GL042737.
Schnaiter, M., H. Horvath, O. Mohler, K. H. Naumann, H. Saathoff, and O. W. Schock (2003), UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols, J. Aerosol Sci., 34(10), 1421-1444, doi:10.1016/S0021-8502(03)00361-6.
Duplissy, J., et al. (2008), Cloud forming potential of secondary organic aerosol under near atmospheric conditions, Geophys. Res. Lett., 35, L03818, doi:10.1029/2007GL031075.
Beaver, M. R., R. M. Garland, C. A. Hasenkopf, T. Baynard, A. R. Ravishankara, and M. A. Tolbert (2008), A laboratory investigation of the relative humidity dependence of light extinction by organic compounds from lignin combustion, Environ. Res. Lett., 3(4), 045003, doi:10.1088/1748-9326/3/4/045003.
Petters, M. D., A. J. Prenni, S. M. Kreidenweis, P. J. DeMott, A. Matsunaga, Y. B. Lim, and P. J. Ziemann (2006), Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol, Geophys. Res. Lett., 33, L24806, doi:10.1029/2006GL027249.
Smith, J. D., J. H. Kroll, C. D. Cappa, D. L. Che, M. Ahmed, S. R. Leone, D. Worsnop, and K. R. Wilson (2009), The heterogeneous OH oxidation of sub-micron squalane particle: A model system for probing the underlying chemical mechanisms that control ageing of ambient aerosols, Atmos. Chem. Phys., 9, 3209-3222, doi:10.5194/acp-9-3209-2009.
Shilling, J. E., et al. (2009), Loading-dependent elemental composition of alpha-pinene SOA particles, Atmos. Chem. Phys., 9(3), 771-782, doi:10.5194/acp-9-771-2009.
Yu, Y., M. J. Ezell, A. Zelenyuk, D. Imre, L. Alexander, J. Ortega, B. D'Anna, C. W. Harmon, S. N. Johnson, and B. J. Finlayson-Pitts (2008), Photooxidation of alpha-pinene at high relative humidity in the presence of increasing concentrations of NOx, Atmos. Environ., 42(20), 5044-5060, doi:10.1016/j.atmosenv.2008.02.026.
Sax, K. J., and F. H. Stross (1957), Squalane: A standard, Anal. Chem., 29(11), 1700-1702, doi:10.1021/ac60131a044.
Fraser, M. P., G. R. Cass, and B. R. T. Simoneit (2003), Air Quality model evaluation data for organics. 6. C3-C24 organic acids, Environ. Sci. Technol., 37(3), 446-453, doi:10.1021/es0209262.
Barkey, B., S. E. Paulson, and A. Chung (2007), Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index, Aerosol Sci. Technol., 41(8), 751-760, doi:10.1080/02786820701432640.
Feynman, R. P., R. B. Leighton, and M. L. Sands (1989), The Feynman Lectures on Physics, Addison-Wesley, Redwood City, Calif.
Kessler, S. H., J. D. Smith, D. L. Che, D. R. Worsnop, K. R. Wilson, and J. H. Kroll (2010), Chemical sinks of organic aerosol: Kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan, Environ. Sci. Technol., 44(18), 7005-7010, doi:10.1021/es101465m.
Lide, D. R. (2006), Properties of Organic Compounds, CRC Press, Boca Raton, Fla.
Garland, R. M., A. R. Ravishankara, E. R. Lovejoy, M. A. Tolbert, and T. Baynard (2007), Parameterization for the relative humidity dependence of light extinction: Organic-ammonium sulfate aerosol, J. Geophys. Res., 112, D19303, doi:10.1029/2006JD008179.
Bohren, C. F., and D. R. Huffman (1983), Absorption and Scattering of Light by Small Particles, 350 pp., John Wiley, New York.
Petters, M. D., and S. M. Kreidenweis (2007), A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7(8), 1961-1971, doi:10.5194/acp-7-1961-2007.
Murphy, D. M., D. J. Cziczo,
1997; 278
2010; 10
2004; 61
2010; 37
2006; 33
2008; 39
2003; 37
2007
2006; 6
2008; 35
2006
2008; 8
2008; 3
2011; 3
1999; 104
2007; 34
2007; 79
2009; 114
2006; 111
2003; 34
2009; 11
2010; 44
2007; 112
2009; 36
2004; 31
2003; 108
2006; 40
2004; 38
2010; 115
2004; 56
2000; 52
2005; 5
2009; 9
2007; 7
2005; 32
1983
2008; 42
2007; 41
1957; 29
1989
2009; 326
Myhre (10.1029/2011JD015918:myhr04) 2004; 61
Heald (10.1029/2011JD015918:heal10) 2010; 37
Wex (10.1029/2011JD015918:wex09) 2009; 9
Dentener (10.1029/2011JD015918:dent06) 2006; 6
Duplissy (10.1029/2011JD015918:dupl08) 2008; 35
Yu (10.1029/2011JD015918:yu08) 2008; 42
Intergovernmental Panel on Climate Change (10.1029/2011JD015918:inte07) 2007
Sax (10.1029/2011JD015918:sax57) 1957; 29
Bilde (10.1029/2011JD015918:bild04) 2004; 56
Fraser (10.1029/2011JD015918:fras03) 2003; 37
Kroll (10.1029/2011JD015918:krol09) 2009; 11
Feynman (10.1029/2011JD015918:feyn89) 1989
Massoli (10.1029/2011JD015918:mass10) 2010; 37
Petters (10.1029/2011JD015918:pett07) 2007; 7
DeCarlo (10.1029/2011JD015918:deca04) 2004; 38
Jimenez (10.1029/2011JD015918:jime09) 2009; 326
Shilling (10.1029/2011JD015918:shil09) 2009; 9
Lide (10.1029/2011JD015918:lide06) 2006
Kroll (10.1029/2011JD015918:krol11) 2011; 3
Massoli (10.1029/2011JD015918:mass09) 2009; 114
Gassó (10.1029/2011JD015918:gass00) 2000; 52
Schnaiter (10.1029/2011JD015918:schn03) 2003; 34
Aiken (10.1029/2011JD015918:aike08) 2008; 42
Broekhuizen (10.1029/2011JD015918:broe04) 2004; 31
Lack (10.1029/2011JD015918:lack06) 2006; 40
Chan (10.1029/2011JD015918:chan08) 2008; 42
Murphy (10.1029/2011JD015918:murp06) 2006; 111
Petters (10.1029/2011JD015918:pett09) 2009; 36
Barkey (10.1029/2011JD015918:bark07) 2007; 41
Zhang (10.1029/2011JD015918:zhan07) 2007; 34
Bohren (10.1029/2011JD015918:bohr83) 1983
Huff-Hartz (10.1029/2011JD015918:huff06) 2006; 40
Dickerson (10.1029/2011JD015918:dick97) 1997; 278
Baynard (10.1029/2011JD015918:bayn06) 2006; 33
Smith (10.1029/2011JD015918:smit09) 2009; 9
Petters (10.1029/2011JD015918:pett08) 2008; 8
Duplissy (10.1029/2011JD015918:dupl10) 2010; 10
Kessler (10.1029/2011JD015918:kess10) 2010; 44
Nakayama (10.1029/2011JD015918:naka10) 2010; 115
Baynard (10.1029/2011JD015918:bayn07) 2007; 41
Garland (10.1029/2011JD015918:garl07) 2007; 112
Jacobson (10.1029/2011JD015918:jaco99) 1999; 104
Kanakidou (10.1029/2011JD015918:kana05) 2005; 5
Quinn (10.1029/2011JD015918:quin05) 2005; 32
Kinne (10.1029/2011JD015918:kinn03) 2003; 108
Lang-Yona (10.1029/2011JD015918:lang10) 2010; 10
Liu (10.1029/2011JD015918:liu08) 2008; 39
Petters (10.1029/2011JD015918:pett06) 2006; 33
Abo Riziq (10.1029/2011JD015918:abor07) 2007; 7
Ng (10.1029/2011JD015918:ng10) 2010; 10
Kim (10.1029/2011JD015918:kim10) 2010; 115
Beaver (10.1029/2011JD015918:beav08) 2008; 3
Jurányi (10.1029/2011JD015918:jura09) 2009; 11
Prenni (10.1029/2011JD015918:pren07) 2007; 112
Aiken (10.1029/2011JD015918:aike07) 2007; 79
References_xml – volume: 10
  start-page: 19,309
  issue: 8
  year: 2010
  end-page: 19,341
  article-title: Relating hygroscopicity and composition of organic aerosol particulate matter
  publication-title: Atmos. Chem. Phys. Discuss.
– volume: 34
  start-page: 1421
  issue: 10
  year: 2003
  end-page: 1444
  article-title: UV‐VIS‐NIR spectral optical properties of soot and soot‐containing aerosols
  publication-title: J. Aerosol Sci.
– year: 1989
– volume: 39
  start-page: 974
  issue: 11
  year: 2008
  end-page: 986
  article-title: Relationship of refractive index to mass density and self‐consistency of mixing rules for multicomponent mixtures like ambient aerosols
  publication-title: J. Aerosol Sci.
– volume: 37
  year: 2010
  article-title: A simplified description of the evolution of organic aerosol composition in the atmosphere
  publication-title: Geophys. Res. Lett.
– volume: 29
  start-page: 1700
  issue: 11
  year: 1957
  end-page: 1702
  article-title: Squalane: A standard
  publication-title: Anal. Chem.
– volume: 52
  start-page: 546
  issue: 2
  year: 2000
  end-page: 567
  article-title: Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE‐2
  publication-title: Tellus, Ser. B
– volume: 7
  start-page: 1961
  issue: 8
  year: 2007
  end-page: 1971
  article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
  publication-title: Atmos. Chem. Phys.
– volume: 112
  year: 2007
  article-title: Cloud droplet activation of secondary organic aerosol
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of ‐pinene
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: Real refractive indices of ‐ and ‐pinene and toluene secondary organic aerosols generated from ozonolysis and photo‐oxidation
  publication-title: J. Geophys. Res.
– volume: 11
  start-page: 8005
  issue: 36
  year: 2009
  end-page: 8014
  article-title: Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol
  publication-title: Phys. Chem. Chem. Phys.
– volume: 42
  start-page: 4478
  issue: 12
  year: 2008
  end-page: 4485
  article-title: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high‐resolution time‐of‐flight aerosol mass spectrometry
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 4321
  issue: 12
  year: 2006
  end-page: 4344
  article-title: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data‐sets for AeroCom
  publication-title: Atmos. Chem. Phys.
– volume: 278
  start-page: 827
  issue: 5339
  year: 1997
  end-page: 830
  article-title: The impact of aerosols on solar ultraviolet radiation and photochemical smog
  publication-title: Science
– volume: 35
  year: 2008
  article-title: Cloud forming potential of secondary organic aerosol under near atmospheric conditions
  publication-title: Geophys. Res. Lett.
– volume: 44
  start-page: 7005
  issue: 18
  year: 2010
  end-page: 7010
  article-title: Chemical sinks of organic aerosol: Kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 3987
  issue: 12
  year: 2009
  end-page: 3997
  article-title: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1—Evidence from measurements
  publication-title: Atmos. Chem. Phys.
– volume: 9
  start-page: 3209
  year: 2009
  end-page: 3222
  article-title: The heterogeneous OH oxidation of sub‐micron squalane particle: A model system for probing the underlying chemical mechanisms that control ageing of ambient aerosols
  publication-title: Atmos. Chem. Phys.
– volume: 326
  start-page: 1525
  issue: 5959
  year: 2009
  end-page: 1529
  article-title: Evolution of organic aerosols in the atmosphere
  publication-title: Science
– year: 1983
– volume: 108
  issue: D20
  year: 2003
  article-title: Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data
  publication-title: J. Geophys. Res.
– volume: 42
  start-page: 5044
  issue: 20
  year: 2008
  end-page: 5060
  article-title: Photooxidation of alpha‐pinene at high relative humidity in the presence of increasing concentrations of NO
  publication-title: Atmos. Environ.
– volume: 41
  start-page: 751
  issue: 8
  year: 2007
  end-page: 760
  article-title: Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index
  publication-title: Aerosol Sci. Technol.
– volume: 41
  start-page: 447
  issue: 4
  year: 2007
  end-page: 462
  article-title: Design and application of a pulsed cavity ring‐down aerosol extinction spectrometer for field measurements
  publication-title: Aerosol Sci. Technol.
– volume: 104
  start-page: 3527
  issue: D3
  year: 1999
  end-page: 3542
  article-title: Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption
  publication-title: J. Geophys. Res.
– volume: 10
  start-page: 7253
  issue: 15
  year: 2010
  end-page: 7265
  article-title: The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions
  publication-title: Atmos. Chem. Phys.
– volume: 34
  year: 2007
  article-title: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced Northern Hemisphere midlatitudes
  publication-title: Geophys. Res. Lett.
– year: 2007
– volume: 33
  year: 2006
  article-title: Chemical aging and the hydrophobic‐to‐hydrophilic conversion of carbonaceous aerosol
  publication-title: Geophys. Res. Lett.
– volume: 5
  start-page: 1053
  year: 2005
  end-page: 1123
  article-title: Organic aerosol and global climate modelling: A review
  publication-title: Atmos. Chem. Phys.
– volume: 111
  year: 2006
  article-title: Single‐particle mass spectrometry of tropospheric aerosol particles
  publication-title: J. Geophys. Res.
– volume: 42
  start-page: 3602
  issue: 10
  year: 2008
  end-page: 3608
  article-title: Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 771
  issue: 3
  year: 2009
  end-page: 782
  article-title: Loading‐dependent elemental composition of alpha‐pinene SOA particles
  publication-title: Atmos. Chem. Phys.
– volume: 61
  start-page: 485
  issue: 5
  year: 2004
  end-page: 498
  article-title: Uncertainties in the radiative forcing due to sulfate aerosols
  publication-title: J. Atmos. Sci.
– volume: 7
  start-page: 1523
  issue: 6
  year: 2007
  end-page: 1536
  article-title: Optical properties of absorbing and non‐absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy
  publication-title: Atmos. Chem. Phys.
– volume: 10
  start-page: 4625
  issue: 10
  year: 2010
  end-page: 4641
  article-title: Organic aerosol components observed in Northern Hemispheric datasets from aerosol mass spectrometry
  publication-title: Atmos. Chem. Phys.
– volume: 3
  start-page: 133
  issue: 2
  year: 2011
  end-page: 139
  article-title: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol
  publication-title: Nat. Chem.
– volume: 38
  start-page: 1185
  year: 2004
  end-page: 1205
  article-title: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory
  publication-title: Aerosol Sci. Technol.
– volume: 31
  year: 2004
  article-title: Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species
  publication-title: Geophys. Res. Lett.
– volume: 36
  year: 2009
  article-title: Role of molecular size in cloud droplet activation
  publication-title: Geophys. Res. Lett.
– volume: 79
  start-page: 8350
  issue: 21
  year: 2007
  end-page: 8358
  article-title: Elemental analysis of organic species with electron ionization high‐resolution mass spectrometry
  publication-title: Anal. Chem.
– volume: 11
  start-page: 8091
  issue: 36
  year: 2009
  end-page: 8097
  article-title: Influence of gas‐to‐particle partitioning on the hygroscopic and droplet activation behaviour of alpha‐pinene secondary organic aerosol
  publication-title: Phys. Chem. Chem. Phys.
– volume: 37
  start-page: 446
  issue: 3
  year: 2003
  end-page: 453
  article-title: Air Quality model evaluation data for organics. 6. C –C organic acids
  publication-title: Environ. Sci. Technol.
– volume: 112
  year: 2007
  article-title: Parameterization for the relative humidity dependence of light extinction: Organic‐ammonium sulfate aerosol
  publication-title: J. Geophys. Res.
– year: 2006
– volume: 114
  year: 2009
  article-title: Aerosol optical and hygroscopic properties during TexAQS‐GoMACCS 2006 and their impact on aerosol direct radiative forcing
  publication-title: J. Geophys. Res.
– volume: 40
  start-page: 605
  issue: 4
  year: 2006
  end-page: 617
  article-title: Cloud condensation nuclei activation of limited solubility organic aerosol
  publication-title: Atmos. Environ.
– volume: 8
  start-page: 6273
  issue: 20
  year: 2008
  end-page: 6279
  article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity—Part 2: Including solubility
  publication-title: Atmos. Chem. Phys.
– volume: 33
  year: 2006
  article-title: Key factors influencing the relative humidity dependence of aerosol light scattering
  publication-title: Geophys. Res. Lett.
– volume: 37
  year: 2010
  article-title: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles
  publication-title: Geophys. Res. Lett.
– volume: 56
  start-page: 128
  issue: 2
  year: 2004
  end-page: 134
  article-title: CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase
  publication-title: Tellus, Ser. B
– volume: 3
  issue: 4
  year: 2008
  article-title: A laboratory investigation of the relative humidity dependence of light extinction by organic compounds from lignin combustion
  publication-title: Environ. Res. Lett.
– volume: 32
  year: 2005
  article-title: Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization
  publication-title: Geophys. Res. Lett.
– volume: 40
  start-page: 697
  year: 2006
  end-page: 708
  article-title: Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments
  publication-title: Aerosol Sci. Technol.
– volume: 42
  start-page: 4478
  issue: 12
  year: 2008
  ident: 10.1029/2011JD015918:aike08
  article-title: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es703009q
  contributor:
    fullname: Aiken
– volume: 39
  start-page: 974
  issue: 11
  year: 2008
  ident: 10.1029/2011JD015918:liu08
  article-title: Relationship of refractive index to mass density and self-consistency of mixing rules for multicomponent mixtures like ambient aerosols
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2008.06.006
  contributor:
    fullname: Liu
– volume: 38
  start-page: 1185
  year: 2004
  ident: 10.1029/2011JD015918:deca04
  article-title: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/027868290903907
  contributor:
    fullname: DeCarlo
– volume-title: The Feynman Lectures on Physics
  year: 1989
  ident: 10.1029/2011JD015918:feyn89
  contributor:
    fullname: Feynman
– volume: 34
  start-page: L13801
  year: 2007
  ident: 10.1029/2011JD015918:zhan07
  article-title: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced Northern Hemisphere midlatitudes
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL029979
  contributor:
    fullname: Zhang
– volume: 114
  start-page: D00F07
  year: 2009
  ident: 10.1029/2011JD015918:mass09
  article-title: Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JD011604
  contributor:
    fullname: Massoli
– volume: 40
  start-page: 697
  year: 2006
  ident: 10.1029/2011JD015918:lack06
  article-title: Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786820600803917
  contributor:
    fullname: Lack
– volume: 41
  start-page: 751
  issue: 8
  year: 2007
  ident: 10.1029/2011JD015918:bark07
  article-title: Genetic algorithm inversion of dual polarization polar nephelometer data to determine aerosol refractive index
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786820701432640
  contributor:
    fullname: Barkey
– volume: 34
  start-page: 1421
  issue: 10
  year: 2003
  ident: 10.1029/2011JD015918:schn03
  article-title: UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols
  publication-title: J. Aerosol Sci.
  doi: 10.1016/S0021-8502(03)00361-6
  contributor:
    fullname: Schnaiter
– volume: 79
  start-page: 8350
  issue: 21
  year: 2007
  ident: 10.1029/2011JD015918:aike07
  article-title: Elemental analysis of organic species with electron ionization high-resolution mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac071150w
  contributor:
    fullname: Aiken
– volume-title: Properties of Organic Compounds
  year: 2006
  ident: 10.1029/2011JD015918:lide06
  contributor:
    fullname: Lide
– volume: 33
  start-page: L24806
  year: 2006
  ident: 10.1029/2011JD015918:pett06
  article-title: Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL027249
  contributor:
    fullname: Petters
– volume: 37
  start-page: L24801
  year: 2010
  ident: 10.1029/2011JD015918:mass10
  article-title: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL045258
  contributor:
    fullname: Massoli
– volume: 9
  start-page: 3987
  issue: 12
  year: 2009
  ident: 10.1029/2011JD015918:wex09
  article-title: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1—Evidence from measurements
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-9-3987-2009
  contributor:
    fullname: Wex
– volume: 56
  start-page: 128
  issue: 2
  year: 2004
  ident: 10.1029/2011JD015918:bild04
  article-title: CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase
  publication-title: Tellus, Ser. B
  doi: 10.1111/j.1600-0889.2004.00090.x
  contributor:
    fullname: Bilde
– volume: 115
  start-page: D24212
  year: 2010
  ident: 10.1029/2011JD015918:kim10
  article-title: Real refractive indices of α- and β-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JD014549
  contributor:
    fullname: Kim
– volume: 37
  start-page: L08803
  year: 2010
  ident: 10.1029/2011JD015918:heal10
  article-title: A simplified description of the evolution of organic aerosol composition in the atmosphere
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL042737
  contributor:
    fullname: Heald
– volume-title: Climate Change: The Physical Science Basis—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: 10.1029/2011JD015918:inte07
  contributor:
    fullname: Intergovernmental Panel on Climate Change
– volume: 115
  start-page: D24204
  year: 2010
  ident: 10.1029/2011JD015918:naka10
  article-title: Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α-pinene
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JD014387
  contributor:
    fullname: Nakayama
– volume: 32
  start-page: L22809
  year: 2005
  ident: 10.1029/2011JD015918:quin05
  article-title: Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL024322
  contributor:
    fullname: Quinn
– volume: 278
  start-page: 827
  issue: 5339
  year: 1997
  ident: 10.1029/2011JD015918:dick97
  article-title: The impact of aerosols on solar ultraviolet radiation and photochemical smog
  publication-title: Science
  doi: 10.1126/science.278.5339.827
  contributor:
    fullname: Dickerson
– volume: 11
  start-page: 8005
  issue: 36
  year: 2009
  ident: 10.1029/2011JD015918:krol09
  article-title: Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b905289e
  contributor:
    fullname: Kroll
– volume: 37
  start-page: 446
  issue: 3
  year: 2003
  ident: 10.1029/2011JD015918:fras03
  article-title: Air Quality model evaluation data for organics. 6. C3–C24 organic acids
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0209262
  contributor:
    fullname: Fraser
– volume: 33
  start-page: L06813
  year: 2006
  ident: 10.1029/2011JD015918:bayn06
  article-title: Key factors influencing the relative humidity dependence of aerosol light scattering
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL024898
  contributor:
    fullname: Baynard
– volume: 44
  start-page: 7005
  issue: 18
  year: 2010
  ident: 10.1029/2011JD015918:kess10
  article-title: Chemical sinks of organic aerosol: Kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101465m
  contributor:
    fullname: Kessler
– volume: 29
  start-page: 1700
  issue: 11
  year: 1957
  ident: 10.1029/2011JD015918:sax57
  article-title: Squalane: A standard
  publication-title: Anal. Chem.
  doi: 10.1021/ac60131a044
  contributor:
    fullname: Sax
– volume: 5
  start-page: 1053
  year: 2005
  ident: 10.1029/2011JD015918:kana05
  article-title: Organic aerosol and global climate modelling: A review
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-5-1053-2005
  contributor:
    fullname: Kanakidou
– volume: 42
  start-page: 5044
  issue: 20
  year: 2008
  ident: 10.1029/2011JD015918:yu08
  article-title: Photooxidation of alpha-pinene at high relative humidity in the presence of increasing concentrations of NOx
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.02.026
  contributor:
    fullname: Yu
– volume: 31
  start-page: L01107
  year: 2004
  ident: 10.1029/2011JD015918:broe04
  article-title: Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2003GL018203
  contributor:
    fullname: Broekhuizen
– volume: 61
  start-page: 485
  issue: 5
  year: 2004
  ident: 10.1029/2011JD015918:myhr04
  article-title: Uncertainties in the radiative forcing due to sulfate aerosols
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(2004)061<0485:UITRFD>2.0.CO;2
  contributor:
    fullname: Myhre
– volume: 3
  start-page: 045003
  issue: 4
  year: 2008
  ident: 10.1029/2011JD015918:beav08
  article-title: A laboratory investigation of the relative humidity dependence of light extinction by organic compounds from lignin combustion
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/3/4/045003
  contributor:
    fullname: Beaver
– volume: 112
  start-page: D19303
  year: 2007
  ident: 10.1029/2011JD015918:garl07
  article-title: Parameterization for the relative humidity dependence of light extinction: Organic-ammonium sulfate aerosol
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JD008179
  contributor:
    fullname: Garland
– volume: 9
  start-page: 771
  issue: 3
  year: 2009
  ident: 10.1029/2011JD015918:shil09
  article-title: Loading-dependent elemental composition of alpha-pinene SOA particles
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-9-771-2009
  contributor:
    fullname: Shilling
– volume: 36
  start-page: L22801
  year: 2009
  ident: 10.1029/2011JD015918:pett09
  article-title: Role of molecular size in cloud droplet activation
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL040131
  contributor:
    fullname: Petters
– volume-title: Absorption and Scattering of Light by Small Particles,
  year: 1983
  ident: 10.1029/2011JD015918:bohr83
  contributor:
    fullname: Bohren
– volume: 112
  start-page: D10223
  year: 2007
  ident: 10.1029/2011JD015918:pren07
  article-title: Cloud droplet activation of secondary organic aerosol
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JD007963
  contributor:
    fullname: Prenni
– volume: 11
  start-page: 8091
  issue: 36
  year: 2009
  ident: 10.1029/2011JD015918:jura09
  article-title: Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of alpha-pinene secondary organic aerosol
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b904162a
  contributor:
    fullname: Jurányi
– volume: 7
  start-page: 1523
  issue: 6
  year: 2007
  ident: 10.1029/2011JD015918:abor07
  article-title: Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-7-1523-2007
  contributor:
    fullname: Abo Riziq
– volume: 35
  start-page: L03818
  year: 2008
  ident: 10.1029/2011JD015918:dupl08
  article-title: Cloud forming potential of secondary organic aerosol under near atmospheric conditions
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL031075
  contributor:
    fullname: Duplissy
– volume: 10
  start-page: 7253
  issue: 15
  year: 2010
  ident: 10.1029/2011JD015918:lang10
  article-title: The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-7253-2010
  contributor:
    fullname: Lang-Yona
– volume: 111
  start-page: D23S32
  year: 2006
  ident: 10.1029/2011JD015918:murp06
  article-title: Single-particle mass spectrometry of tropospheric aerosol particles
  publication-title: J. Geophys. Res.
  doi: 10.1029/2006JD007340
  contributor:
    fullname: Murphy
– volume: 108
  start-page: 4634
  issue: D20
  year: 2003
  ident: 10.1029/2011JD015918:kinn03
  article-title: Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JD001253
  contributor:
    fullname: Kinne
– volume: 9
  start-page: 3209
  year: 2009
  ident: 10.1029/2011JD015918:smit09
  article-title: The heterogeneous OH oxidation of sub-micron squalane particle: A model system for probing the underlying chemical mechanisms that control ageing of ambient aerosols
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-9-3209-2009
  contributor:
    fullname: Smith
– volume: 10
  start-page: 19309
  issue: 8
  year: 2010
  ident: 10.1029/2011JD015918:dupl10
  article-title: Relating hygroscopicity and composition of organic aerosol particulate matter
  publication-title: Atmos. Chem. Phys. Discuss.
  doi: 10.5194/acpd-10-19309-2010
  contributor:
    fullname: Duplissy
– volume: 10
  start-page: 4625
  issue: 10
  year: 2010
  ident: 10.1029/2011JD015918:ng10
  article-title: Organic aerosol components observed in Northern Hemispheric datasets from aerosol mass spectrometry
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-4625-2010
  contributor:
    fullname: Ng
– volume: 7
  start-page: 1961
  issue: 8
  year: 2007
  ident: 10.1029/2011JD015918:pett07
  article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-7-1961-2007
  contributor:
    fullname: Petters
– volume: 6
  start-page: 4321
  issue: 12
  year: 2006
  ident: 10.1029/2011JD015918:dent06
  article-title: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-6-4321-2006
  contributor:
    fullname: Dentener
– volume: 41
  start-page: 447
  issue: 4
  year: 2007
  ident: 10.1029/2011JD015918:bayn07
  article-title: Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786820701222801
  contributor:
    fullname: Baynard
– volume: 42
  start-page: 3602
  issue: 10
  year: 2008
  ident: 10.1029/2011JD015918:chan08
  article-title: Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es7023252
  contributor:
    fullname: Chan
– volume: 104
  start-page: 3527
  issue: D3
  year: 1999
  ident: 10.1029/2011JD015918:jaco99
  article-title: Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption
  publication-title: J. Geophys. Res.
  doi: 10.1029/1998JD100054
  contributor:
    fullname: Jacobson
– volume: 3
  start-page: 133
  issue: 2
  year: 2011
  ident: 10.1029/2011JD015918:krol11
  article-title: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.948
  contributor:
    fullname: Kroll
– volume: 52
  start-page: 546
  issue: 2
  year: 2000
  ident: 10.1029/2011JD015918:gass00
  article-title: Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2
  publication-title: Tellus, Ser. B
  doi: 10.1034/j.1600-0889.2000.00055.x
  contributor:
    fullname: Gassó
– volume: 326
  start-page: 1525
  issue: 5959
  year: 2009
  ident: 10.1029/2011JD015918:jime09
  article-title: Evolution of organic aerosols in the atmosphere
  publication-title: Science
  doi: 10.1126/science.1180353
  contributor:
    fullname: Jimenez
– volume: 40
  start-page: 605
  issue: 4
  year: 2006
  ident: 10.1029/2011JD015918:huff06
  article-title: Cloud condensation nuclei activation of limited solubility organic aerosol
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.09.076
  contributor:
    fullname: Huff-Hartz
– volume: 8
  start-page: 6273
  issue: 20
  year: 2008
  ident: 10.1029/2011JD015918:pett08
  article-title: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity—Part 2: Including solubility
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-8-6273-2008
  contributor:
    fullname: Petters
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000803454
Score 2.4434025
Snippet Measurements of the evolution of organic aerosol extinction cross sections (σext) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported...
Organic aerosol optical properties are not static Organic aerosol optical properties are directly related to the mean composition OA hygroscopicity depends on...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
SubjectTerms Aerosols
Atmospheric aerosols
Atmospheric sciences
Geophysics
Hygroscopicity
Optical Properties
Organic Aerosol
Oxidation
Saturated hydrocarbons
Title Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation
URI https://api.istex.fr/ark:/67375/WNG-VWV5QFNZ-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011JD015918
https://www.proquest.com/docview/902727497
https://search.proquest.com/docview/1024663783
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgvXBB_BTZYDLS2IloaZzE9gmNbW1VaQUm1lVcjO04rGKKQ7tK23_Pe05adZcdI0ey9fzjfe_z8_sIObCGg1uteOwg1IkzLfLYVK6Iy7TvktQUxlp8jXw-KUaX2XiWz7rcnGWXVrk-E8NBXXqLHPmRhPgJIijJvzT_YhSNwsvVTkHjKen1U84x9hKD4YZiATDEsqCDlvYLGQvJZ13qe5LKI_R841PwhhIFP7acUg_te_cAcW7j1uB4Bi_I8w4x0uN2il-SJ65-RaJzALt-EThxekhPbuaAPMPXa_J7CvFvS8TReU1b3SZLtYO-_Q31TaCvqa5Len3_B6tZ-gbaG6TlF1hfla4aX9NrTJTxsL6cXy3ptxH1d_NWgOkNuRyc_TwZxZ2QQmyxFgvGiEYXFRpfu8pZY7IshTiICZEZwD8AGRE3aJnkVcJEZplNpHG5TqRgJi_ZW7JT-9q9IzSxTgrTLyrG4IwtSqOrjJXO5JrzsshcRD6tLamatl6GCvfcqVTbFo_IYTDz5ie9-Is5ZjxXV5Ohml5N8x-DyS81i8jeeh5Ut72WarMYIvJx0wr7Ai87dDAL9gjjY1ywiHwO0_foeNR4eHEKYI7lu492uEeerVnlpHhPdm4XK_cBYMmt2Q-Lb5_0vp5Nvl_8B-cU4Ns
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagOcAF8RRLCxgJemLVzdr78AlB2zSEZoGqTaNejO310qjVekkaqfx7ZrybKFx6XHklW-PHfPN5PB8h743OwK1WWWgh1Am5ypNQVzYNy7hvo1in2hh8jTwu0uEZH02TaZebs-jSKldnoj-oS2eQI98TED9BBCWyT82fEEWj8HK1U9C4T3pYqQpir96Xw-LHyZpkATjEuFdCi_upCHORTbvk9ygWe-j7RgfgDwVKfmy4pR5a-PY_zLmJXL3rGTwmjzrMSD-3k_yE3LP1UxKMAe66uWfF6S7dv54B9vRfz8ivCUTALRVHZzVtlZsMVRb6dtfUNZ7Apqou6eXf31jP0jXQ3iAxP8cKq3TZuJpeYqqMgxVm3XJBvw-pu521EkzPydng8HR_GHZSCqHBaiwYJWqVVmh-ZStrtOY8hkiI5TnXgIAANCJyUCJKqojl3DATCW0TFYmc6aRkL8hW7Wr7ktDIWJHrfloxBqdsWmpVcVZanagsK1NuA_JhZUnZtBUzpL_pjoXctHhAdr2Z1z-p-RVmmWWJPC-O5OR8kvwcFBdyGpDt1TzIboMt5Ho5BOTduhV2Bl53KG8W7BHGx7KcBeSjn747xyNHRycHAOdY8urODt-SB8PT8bE8_lp82yYPVxxzlO6QrZv50r4GkHKj33RL8R9ZX-OS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELeglRAviE8RxoeRYE9ETWPHjp8QrOtKYWFMrKt4MbbjsIopDu0qjf-es5NW5WWPkSPZujv7fnc-3w-hN0ZzcKsVjy2EOjFVeRbryrK4TIc2STXTxvjXyMcFm5zR6Tybdy2FVl1Z5eZMDAd16YzPkQ8ExE8QQQk-qLqqiJPR-H3zJ_YEUv6itWPTuI36nDKS9FD_42FxcrpNuAA0IjSwoqVDJuJc8HlXCJ-kYuD94HQEvlF4-o8dF9X30r7-D3_uotjghsb30b0OP-IPrcIfoFu2foiiY4C-bhky5HgfH1wuAIeGr0fo5wyi4TYthxc1blmcDFYW5naX2DUhmY1VXeKLv798b0vXwHjjk_RL320VrxtX4wtfNuPA2qxbr_DXCXbXi5aO6TE6Gx9-P5jEHa1CbHxnFh8xasUqrwplK2u0pjSFqIjkOdWAhgBAehShRJJVCcmpISYR2mYqETnRWUmeoF7tavsU4cRYkeshqwiBE5eVWlWUlFZnivOSURuhtxtJyqbtniHDrXcq5K7EI7QfxLz9SS1_-4oznsnz4kjOzmfZt3HxQ84jtLfRg-w220puTSNCr7ejsEv81YcKYvEzwvoIz0mE3gX13bgeOT06HQG0I9mzGyd8he6AFcovn4rPe-juJt2csOeod7Vc2xeAV670y84S_wEDYefA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variations+in+organic+aerosol+optical+and+hygroscopic+properties+upon+heterogeneous+OH+oxidation&rft.jtitle=Journal+of+Geophysical+Research&rft.au=Cappa%2C+Christopher+D.&rft.au=Che%2C+Daphne+L.&rft.au=Kessler%2C+Sean+H.&rft.au=Kroll%2C+Jesse+H.&rft.date=2011-08-06&rft.issn=0148-0227&rft.volume=116&rft.issue=D15&rft_id=info:doi/10.1029%2F2011JD015918&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2011JD015918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon