Mapping legal authority for terrestrial conservation corridors along streams
Wildlife corridors aim to promote species’ persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns of land ownership and complicated by differences in the jurisdictional and regulatory authorities under which lands are managed. Terrestrial...
Saved in:
Published in | Conservation biology Vol. 34; no. 4; pp. 943 - 955 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.08.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wildlife corridors aim to promote species’ persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns of land ownership and complicated by differences in the jurisdictional and regulatory authorities under which lands are managed. Terrestrial corridor conservation requires coordination across jurisdictions and sectors subject to site‐specific overlapping sources of legal authority. Mapping spatial patterns of legal authority concurrent with habitat condition can illustrate opportunities to build or leverage capacity for connectivity conservation. Streamside areas provide pragmatic opportunities to leverage existing policy mechanisms for riverine and terrestrial habitat connectivity across boundaries. Conservation planners and practitioners can make use of these opportunities by harmonizing actions for multiple conservation outcomes. We formulated an integrative, data‐driven method for mapping multiple sources of legal authority weighted by capacity for coordinating terrestrial habitat conservation along streams. We generated a map of capacity to coordinate streamside corridor protections across a wildlife habitat gap to demonstrate this approach. We combined values representing coordination capacity and naturalness to generate an integrated legal‐ecological resistance map for connectivity modeling. We then computed least‐cost corridors across the integrated map, masking the terrestrial landscape to focus on streamside areas. Streamside least‐cost corridors in the integrated, local‐scale model diverged (∼25 km) from national‐scale least‐cost corridors based on naturalness. Spatial categories comparing legal‐ and naturalness‐based resistance values by stream reach highlighted potential locations for building or leveraging existing capacity through spatial coordination of policy mechanisms or restoration actions. Agencies or nongovernmental organizations intending to restore or maintain habitat connectivity across fragmented landscapes can use this approach to inform spatial prioritization and build coordination capacity.
Article impact statement: Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife.
Mapeo de la Autoridad Legal para los Corredores Terrestres de Conservación a lo Largo de Ríos Stahl et al.
Resumen
Los corredores de fauna buscan promover la persistencia de las especies al conectar los fragmentos de hábitat a lo largo de paisajes fragmentados. Su implementación está limitada por los patrones de propiedad de tierras y se complica con las diferencias entre las autoridades jurisdiccionales y regulatorias que las administran. La conservación por corredores terrestres requiere de coordinación entre las jurisdicciones y los sectores sujetos a fuentes de autoridad legal que se traslapan y que son específicas del sitio. El mapeo de los patrones espaciales de la autoridad legal simultánea a la condición del hábitat puede ilustrar oportunidades para construir o hacer uso de la capacidad para la conservación por conectividad. Las áreas adyacentes a los cauces fluviales proporcionan oportunidades prácticas para hacer uso de los mecanismos políticos existentes para la conectividad de hábitats ribereño y terrestre a través de las fronteras. Los planificadores y practicantes de la conservación pueden usar estas oportunidades al armonizar las acciones para múltiples resultados de conservación. Formulamos un método integrativo orientado por los datos para mapear las múltiples fuentes de autoridad legal ponderadas por la capacidad para coordinar la conservación de hábitats terrestres a lo largo de ríos. Generamos un mapa de la capacidad para coordinar los corredores de protección a lo largo de los vacíos en los hábitats de fauna para demostrar esta estrategia. Combinamos los valores por medio de la representación de la capacidad de coordinación y la naturalidad para generar un mapa de resistencia legal y ecológica para el modelado de la conectividad. Después, computamos los corredores de menor costo en todo el mapa integrado, enmascarando el paisaje terrestre para enfocarnos en las áreas adyacentes al cauce fluvial. Los corredores de menor costo adyacentes a los cauces dentro del modelo integrado de escala local difirieron (∼25 km) de los corredores de menor costo basados en la naturalidad a escala nacional. Las categorías espaciales que compararon los valores de resistencia basada en la legalidad y en la naturalidad por alcance del río resaltaron las localidades potenciales para la construcción o el uso de la capacidad existente por medio de la coordinación espacial de los mecanismos de política o de las acciones de restauración. Las agencias y organizaciones no gubernamentales con la intención de restaurar o mantener la conectividad del hábitat en un paisaje fragmentado pueden utilizar esta estrategia para informar la priorización espacial y construir la capacidad de coordinación.
摘要
野生动物廊道旨在通过连接破碎景观中的栖息地斑块来提高物种的续存, 但其建设受限于土地所有制模式, 还会因管理土地的管辖及监管机构不同而更加复杂。陆地廊道保护需要多个司法管辖区和各地受到多种法定权威管制的部门之间的协调。将法定权威的空间格局与栖息地条件的分布地图相叠加, 将有利于开展廊道连接度保护的能力建设及利用。河流沿岸地区为现有的跨境河流及陆地栖息地连接度的相关政策机制的应用提供了实践机会。保护规划者和实施者可以利用这些机会协调多方行动以取得各方面的保护成效。我们制定了一个综合的、基于数据驱动的方法, 可以将协调河流沿岸陆地栖息地保护的能力作为权重来绘制多个法定权威来源的地图。为了演示这个方法, 我们绘制了一张协调跨越野生动物栖息地空缺地带的河流沿岸廊道保护力地图。我们将代表协调能力和自然特性的数值相结合, 生成了一张用于连接度建模的法律‐生态抵抗力综合地图。随后, 我们忽略陆地景观, 将重点放在河流沿岸地区, 计算了整个综合地图的最低成本廊道。结果显示, 由局部尺度的综合模型得到的河流沿岸最低成本廊道与基于自然特性的国家尺度最低成本廊道偏离约 25 公里。河流沿岸基于法律和自然特性抵抗力比较的空间分类进一步展示了可以通过政策机制或恢复行动的空间协调来建设和利用现有能力的潜在地点。计划恢复或维持破碎景观之间的栖息地连接度的机构或非政府组织可以应用这种方法确定优先保护的空间并建立协调力。【翻译: 胡怡思; 审校: 聂永刚】 |
---|---|
AbstractList | Wildlife corridors aim to promote species’ persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns of land ownership and complicated by differences in the jurisdictional and regulatory authorities under which lands are managed. Terrestrial corridor conservation requires coordination across jurisdictions and sectors subject to site‐specific overlapping sources of legal authority. Mapping spatial patterns of legal authority concurrent with habitat condition can illustrate opportunities to build or leverage capacity for connectivity conservation. Streamside areas provide pragmatic opportunities to leverage existing policy mechanisms for riverine and terrestrial habitat connectivity across boundaries. Conservation planners and practitioners can make use of these opportunities by harmonizing actions for multiple conservation outcomes. We formulated an integrative, data‐driven method for mapping multiple sources of legal authority weighted by capacity for coordinating terrestrial habitat conservation along streams. We generated a map of capacity to coordinate streamside corridor protections across a wildlife habitat gap to demonstrate this approach. We combined values representing coordination capacity and naturalness to generate an integrated legal‐ecological resistance map for connectivity modeling. We then computed least‐cost corridors across the integrated map, masking the terrestrial landscape to focus on streamside areas. Streamside least‐cost corridors in the integrated, local‐scale model diverged (∼25 km) from national‐scale least‐cost corridors based on naturalness. Spatial categories comparing legal‐ and naturalness‐based resistance values by stream reach highlighted potential locations for building or leveraging existing capacity through spatial coordination of policy mechanisms or restoration actions. Agencies or nongovernmental organizations intending to restore or maintain habitat connectivity across fragmented landscapes can use this approach to inform spatial prioritization and build coordination capacity. Article impact statement: Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife. Wildlife corridors aim to promote species’ persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns of land ownership and complicated by differences in the jurisdictional and regulatory authorities under which lands are managed. Terrestrial corridor conservation requires coordination across jurisdictions and sectors subject to site‐specific overlapping sources of legal authority. Mapping spatial patterns of legal authority concurrent with habitat condition can illustrate opportunities to build or leverage capacity for connectivity conservation. Streamside areas provide pragmatic opportunities to leverage existing policy mechanisms for riverine and terrestrial habitat connectivity across boundaries. Conservation planners and practitioners can make use of these opportunities by harmonizing actions for multiple conservation outcomes. We formulated an integrative, data‐driven method for mapping multiple sources of legal authority weighted by capacity for coordinating terrestrial habitat conservation along streams. We generated a map of capacity to coordinate streamside corridor protections across a wildlife habitat gap to demonstrate this approach. We combined values representing coordination capacity and naturalness to generate an integrated legal‐ecological resistance map for connectivity modeling. We then computed least‐cost corridors across the integrated map, masking the terrestrial landscape to focus on streamside areas. Streamside least‐cost corridors in the integrated, local‐scale model diverged (∼25 km) from national‐scale least‐cost corridors based on naturalness. Spatial categories comparing legal‐ and naturalness‐based resistance values by stream reach highlighted potential locations for building or leveraging existing capacity through spatial coordination of policy mechanisms or restoration actions. Agencies or nongovernmental organizations intending to restore or maintain habitat connectivity across fragmented landscapes can use this approach to inform spatial prioritization and build coordination capacity. Article impact statement : Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife. 野生动物廊道旨在通过连接破碎景观中的栖息地斑块来提高物种的续存, 但其建设受限于土地所有制模式, 还会因管理土地的管辖及监管机构不同而更加复杂。陆地廊道保护需要多个司法管辖区和各地受到多种法定权威管制的部门之间的协调。将法定权威的空间格局与栖息地条件的分布地图相叠加, 将有利于开展廊道连接度保护的能力建设及利用。河流沿岸地区为现有的跨境河流及陆地栖息地连接度的相关政策机制的应用提供了实践机会。保护规划者和实施者可以利用这些机会协调多方行动以取得各方面的保护成效。我们制定了一个综合的、基于数据驱动的方法, 可以将协调河流沿岸陆地栖息地保护的能力作为权重来绘制多个法定权威来源的地图。为了演示这个方法, 我们绘制了一张协调跨越野生动物栖息地空缺地带的河流沿岸廊道保护力地图。我们将代表协调能力和自然特性的数值相结合, 生成了一张用于连接度建模的法律‐生态抵抗力综合地图。随后, 我们忽略陆地景观, 将重点放在河流沿岸地区, 计算了整个综合地图的最低成本廊道。结果显示, 由局部尺度的综合模型得到的河流沿岸最低成本廊道与基于自然特性的国家尺度最低成本廊道偏离约 25 公里。河流沿岸基于法律和自然特性抵抗力比较的空间分类进一步展示了可以通过政策机制或恢复行动的空间协调来建设和利用现有能力的潜在地点。计划恢复或维持破碎景观之间的栖息地连接度的机构或非政府组织可以应用这种方法确定优先保护的空间并建立协调力。 【翻译: 胡怡思; 审校: 聂永刚】 Wildlife corridors aim to promote species’ persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns of land ownership and complicated by differences in the jurisdictional and regulatory authorities under which lands are managed. Terrestrial corridor conservation requires coordination across jurisdictions and sectors subject to site‐specific overlapping sources of legal authority. Mapping spatial patterns of legal authority concurrent with habitat condition can illustrate opportunities to build or leverage capacity for connectivity conservation. Streamside areas provide pragmatic opportunities to leverage existing policy mechanisms for riverine and terrestrial habitat connectivity across boundaries. Conservation planners and practitioners can make use of these opportunities by harmonizing actions for multiple conservation outcomes. We formulated an integrative, data‐driven method for mapping multiple sources of legal authority weighted by capacity for coordinating terrestrial habitat conservation along streams. We generated a map of capacity to coordinate streamside corridor protections across a wildlife habitat gap to demonstrate this approach. We combined values representing coordination capacity and naturalness to generate an integrated legal‐ecological resistance map for connectivity modeling. We then computed least‐cost corridors across the integrated map, masking the terrestrial landscape to focus on streamside areas. Streamside least‐cost corridors in the integrated, local‐scale model diverged (∼25 km) from national‐scale least‐cost corridors based on naturalness. Spatial categories comparing legal‐ and naturalness‐based resistance values by stream reach highlighted potential locations for building or leveraging existing capacity through spatial coordination of policy mechanisms or restoration actions. Agencies or nongovernmental organizations intending to restore or maintain habitat connectivity across fragmented landscapes can use this approach to inform spatial prioritization and build coordination capacity. Article impact statement : Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife. Wildlife corridors aim to promote species' persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns of land ownership and complicated by differences in the jurisdictional and regulatory authorities under which lands are managed. Terrestrial corridor conservation requires coordination across jurisdictions and sectors subject to site-specific overlapping sources of legal authority. Mapping spatial patterns of legal authority concurrent with habitat condition can illustrate opportunities to build or leverage capacity for connectivity conservation. Streamside areas provide pragmatic opportunities to leverage existing policy mechanisms for riverine and terrestrial habitat connectivity across boundaries. Conservation planners and practitioners can make use of these opportunities by harmonizing actions for multiple conservation outcomes. We formulated an integrative, data-driven method for mapping multiple sources of legal authority weighted by capacity for coordinating terrestrial habitat conservation along streams. We generated a map of capacity to coordinate streamside corridor protections across a wildlife habitat gap to demonstrate this approach. We combined values representing coordination capacity and naturalness to generate an integrated legal-ecological resistance map for connectivity modeling. We then computed least-cost corridors across the integrated map, masking the terrestrial landscape to focus on streamside areas. Streamside least-cost corridors in the integrated, local-scale model diverged (∼25 km) from national-scale least-cost corridors based on naturalness. Spatial categories comparing legal- and naturalness-based resistance values by stream reach highlighted potential locations for building or leveraging existing capacity through spatial coordination of policy mechanisms or restoration actions. Agencies or nongovernmental organizations intending to restore or maintain habitat connectivity across fragmented landscapes can use this approach to inform spatial prioritization and build coordination capacity. Article impact statement: Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife.Wildlife corridors aim to promote species' persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns of land ownership and complicated by differences in the jurisdictional and regulatory authorities under which lands are managed. Terrestrial corridor conservation requires coordination across jurisdictions and sectors subject to site-specific overlapping sources of legal authority. Mapping spatial patterns of legal authority concurrent with habitat condition can illustrate opportunities to build or leverage capacity for connectivity conservation. Streamside areas provide pragmatic opportunities to leverage existing policy mechanisms for riverine and terrestrial habitat connectivity across boundaries. Conservation planners and practitioners can make use of these opportunities by harmonizing actions for multiple conservation outcomes. We formulated an integrative, data-driven method for mapping multiple sources of legal authority weighted by capacity for coordinating terrestrial habitat conservation along streams. We generated a map of capacity to coordinate streamside corridor protections across a wildlife habitat gap to demonstrate this approach. We combined values representing coordination capacity and naturalness to generate an integrated legal-ecological resistance map for connectivity modeling. We then computed least-cost corridors across the integrated map, masking the terrestrial landscape to focus on streamside areas. Streamside least-cost corridors in the integrated, local-scale model diverged (∼25 km) from national-scale least-cost corridors based on naturalness. Spatial categories comparing legal- and naturalness-based resistance values by stream reach highlighted potential locations for building or leveraging existing capacity through spatial coordination of policy mechanisms or restoration actions. Agencies or nongovernmental organizations intending to restore or maintain habitat connectivity across fragmented landscapes can use this approach to inform spatial prioritization and build coordination capacity. Article impact statement: Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife. Wildlife corridors aim to promote species’ persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns of land ownership and complicated by differences in the jurisdictional and regulatory authorities under which lands are managed. Terrestrial corridor conservation requires coordination across jurisdictions and sectors subject to site‐specific overlapping sources of legal authority. Mapping spatial patterns of legal authority concurrent with habitat condition can illustrate opportunities to build or leverage capacity for connectivity conservation. Streamside areas provide pragmatic opportunities to leverage existing policy mechanisms for riverine and terrestrial habitat connectivity across boundaries. Conservation planners and practitioners can make use of these opportunities by harmonizing actions for multiple conservation outcomes. We formulated an integrative, data‐driven method for mapping multiple sources of legal authority weighted by capacity for coordinating terrestrial habitat conservation along streams. We generated a map of capacity to coordinate streamside corridor protections across a wildlife habitat gap to demonstrate this approach. We combined values representing coordination capacity and naturalness to generate an integrated legal‐ecological resistance map for connectivity modeling. We then computed least‐cost corridors across the integrated map, masking the terrestrial landscape to focus on streamside areas. Streamside least‐cost corridors in the integrated, local‐scale model diverged (∼25 km) from national‐scale least‐cost corridors based on naturalness. Spatial categories comparing legal‐ and naturalness‐based resistance values by stream reach highlighted potential locations for building or leveraging existing capacity through spatial coordination of policy mechanisms or restoration actions. Agencies or nongovernmental organizations intending to restore or maintain habitat connectivity across fragmented landscapes can use this approach to inform spatial prioritization and build coordination capacity. Article impact statement: Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife. Mapeo de la Autoridad Legal para los Corredores Terrestres de Conservación a lo Largo de Ríos Stahl et al. Resumen Los corredores de fauna buscan promover la persistencia de las especies al conectar los fragmentos de hábitat a lo largo de paisajes fragmentados. Su implementación está limitada por los patrones de propiedad de tierras y se complica con las diferencias entre las autoridades jurisdiccionales y regulatorias que las administran. La conservación por corredores terrestres requiere de coordinación entre las jurisdicciones y los sectores sujetos a fuentes de autoridad legal que se traslapan y que son específicas del sitio. El mapeo de los patrones espaciales de la autoridad legal simultánea a la condición del hábitat puede ilustrar oportunidades para construir o hacer uso de la capacidad para la conservación por conectividad. Las áreas adyacentes a los cauces fluviales proporcionan oportunidades prácticas para hacer uso de los mecanismos políticos existentes para la conectividad de hábitats ribereño y terrestre a través de las fronteras. Los planificadores y practicantes de la conservación pueden usar estas oportunidades al armonizar las acciones para múltiples resultados de conservación. Formulamos un método integrativo orientado por los datos para mapear las múltiples fuentes de autoridad legal ponderadas por la capacidad para coordinar la conservación de hábitats terrestres a lo largo de ríos. Generamos un mapa de la capacidad para coordinar los corredores de protección a lo largo de los vacíos en los hábitats de fauna para demostrar esta estrategia. Combinamos los valores por medio de la representación de la capacidad de coordinación y la naturalidad para generar un mapa de resistencia legal y ecológica para el modelado de la conectividad. Después, computamos los corredores de menor costo en todo el mapa integrado, enmascarando el paisaje terrestre para enfocarnos en las áreas adyacentes al cauce fluvial. Los corredores de menor costo adyacentes a los cauces dentro del modelo integrado de escala local difirieron (∼25 km) de los corredores de menor costo basados en la naturalidad a escala nacional. Las categorías espaciales que compararon los valores de resistencia basada en la legalidad y en la naturalidad por alcance del río resaltaron las localidades potenciales para la construcción o el uso de la capacidad existente por medio de la coordinación espacial de los mecanismos de política o de las acciones de restauración. Las agencias y organizaciones no gubernamentales con la intención de restaurar o mantener la conectividad del hábitat en un paisaje fragmentado pueden utilizar esta estrategia para informar la priorización espacial y construir la capacidad de coordinación. 摘要 野生动物廊道旨在通过连接破碎景观中的栖息地斑块来提高物种的续存, 但其建设受限于土地所有制模式, 还会因管理土地的管辖及监管机构不同而更加复杂。陆地廊道保护需要多个司法管辖区和各地受到多种法定权威管制的部门之间的协调。将法定权威的空间格局与栖息地条件的分布地图相叠加, 将有利于开展廊道连接度保护的能力建设及利用。河流沿岸地区为现有的跨境河流及陆地栖息地连接度的相关政策机制的应用提供了实践机会。保护规划者和实施者可以利用这些机会协调多方行动以取得各方面的保护成效。我们制定了一个综合的、基于数据驱动的方法, 可以将协调河流沿岸陆地栖息地保护的能力作为权重来绘制多个法定权威来源的地图。为了演示这个方法, 我们绘制了一张协调跨越野生动物栖息地空缺地带的河流沿岸廊道保护力地图。我们将代表协调能力和自然特性的数值相结合, 生成了一张用于连接度建模的法律‐生态抵抗力综合地图。随后, 我们忽略陆地景观, 将重点放在河流沿岸地区, 计算了整个综合地图的最低成本廊道。结果显示, 由局部尺度的综合模型得到的河流沿岸最低成本廊道与基于自然特性的国家尺度最低成本廊道偏离约 25 公里。河流沿岸基于法律和自然特性抵抗力比较的空间分类进一步展示了可以通过政策机制或恢复行动的空间协调来建设和利用现有能力的潜在地点。计划恢复或维持破碎景观之间的栖息地连接度的机构或非政府组织可以应用这种方法确定优先保护的空间并建立协调力。【翻译: 胡怡思; 审校: 聂永刚】 |
Author | Fremier, Alexander K. Cosens, Barbara A. Stahl, Amanda T. |
AuthorAffiliation | 2 College of Law University of Idaho 875 Perimeter Dr. MS 2321 Moscow ID 83844‐2321 U.S.A 1 School of the Environment Washington State University P.O. Box 642812 Pullman WA 99164‐2812 U.S.A |
AuthorAffiliation_xml | – name: 2 College of Law University of Idaho 875 Perimeter Dr. MS 2321 Moscow ID 83844‐2321 U.S.A – name: 1 School of the Environment Washington State University P.O. Box 642812 Pullman WA 99164‐2812 U.S.A |
Author_xml | – sequence: 1 givenname: Amanda T. orcidid: 0000-0002-5813-1332 surname: Stahl fullname: Stahl, Amanda T. email: atstahl@wsu.edu organization: Washington State University – sequence: 2 givenname: Alexander K. orcidid: 0000-0002-4104-6633 surname: Fremier fullname: Fremier, Alexander K. organization: Washington State University – sequence: 3 givenname: Barbara A. orcidid: 0000-0002-5188-7081 surname: Cosens fullname: Cosens, Barbara A. organization: University of Idaho |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32056252$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LYzEUhoMoWj82_oDhwmxk4NZ8NslG0OKoUHGj65Cbm9ZImtTkXqX_3mirqAxONodwnvflnPPugs0QgwXgEMEhKu_YxMYNEaGCboABYpjUiBO5CQZQCFELIfEO2M35AUIoGaLbYIdgyEaY4QGYXOvFwoVZ5e1M-0r33X1MrltW05iqzqZkc5dc6ZgYsk1PunMxlE9Kro0pV9rHIi6M1fO8D7am2md7sK574O7v-e34sp7cXFyNTye1oQLRuoFlVIGY4AaxRlKjmZW41agZNUS0xhqpRTsiFHEuNG5ag6ZmRASlDBLBGrIHTla-i76Z2yIIXdJeLZKb67RUUTv1tRPcvZrFJ8Wp5JCjYnC0NkjxsS8rqrnLxnqvg419VphxSjjHiPwfJYxJCglkBf39DX2IfQrlEgpTgonkXPJC_fo8_MfU75kUAK4Ak2LOyU6Vcd3b3csuzisE1Wvs6jV29RZ7kfz5Jnl3_SeMVvCz83b5A6nGN2dXK80LaXy90g |
CitedBy_id | crossref_primary_10_1007_s10980_023_01672_4 crossref_primary_10_1038_s41598_021_87162_6 crossref_primary_10_3390_land13101552 crossref_primary_10_1002_pan3_10525 crossref_primary_10_1007_s11356_023_29154_9 crossref_primary_10_1111_rec_13986 crossref_primary_10_3389_fmars_2024_1306386 crossref_primary_10_1093_biosci_biab100 crossref_primary_10_1093_biosci_biab140 crossref_primary_10_1016_j_oneear_2020_12_003 crossref_primary_10_1111_1752_1688_13034 crossref_primary_10_1002_ece3_10340 |
Cites_doi | 10.1146/annurev.energy.30.050504.144511 10.1073/pnas.1906247116 10.1016/j.jglr.2016.09.010 10.1126/science.1172133 10.1126/sciadv.1500052 10.5751/ES-02930-140216 10.1007/s10980-017-0489-8 10.1007/s10980-016-0428-0 10.5751/ES-08731-220130 10.1080/08941920802178214 10.1126/science.1129706 10.1007/s10980-013-9941-6 10.5751/ES-06880-190423 10.1046/j.1523-1739.2003.01467.x 10.1007/s10531-018-1571-5 10.1111/conl.12249 10.5751/ES-01759-110208 10.5751/ES-02827-140126 10.1371/journal.pone.0154223 10.1016/j.biocon.2013.06.023 10.1126/science.aan1114 10.5751/ES-02064-120130 10.1016/j.biocon.2015.09.013 10.1016/j.landurbplan.2014.12.011 10.5751/ES-10676-240122 10.5751/ES-01976-120128 10.1016/j.biocon.2015.06.029 10.1016/j.biocon.2009.02.039 10.1016/j.biocon.2017.12.020 10.1146/annurev.environ.020708.100707 10.1126/science.1091015 10.1890/07-1861.1 10.5751/ES-04821-170302 10.3200/ENVT.49.4.20-33 10.1126/science.1109769 10.1016/j.biocon.2019.01.024 10.1068/b130099p 10.1046/j.1442-8903.4.s.5.x 10.5751/ES-01606-110119 10.1016/j.gloenvcha.2009.06.001 10.3368/le.84.2.225 10.1111/cobi.12667 10.1073/pnas.1604405114 10.1007/s10980-015-0153-0 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology. 2020 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology. 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology. – notice: 2020 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 5PM |
DOI | 10.1111/cobi.13484 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed CrossRef MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Law |
DocumentTitleAlternate | Stahl et al |
EISSN | 1523-1739 |
EndPage | 955 |
ExternalDocumentID | PMC7497071 32056252 10_1111_cobi_13484 COBI13484 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: U.S. Geological Survey funderid: Section 104b State Water Resources Research – fundername: U.S. Geological Survey grantid: Section 104b State Water Resources Research – fundername: ; grantid: Section 104b State Water Resources Research |
GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AAONW AASGY AAUTI AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACHIC ACNCT ACPOU ACPRK ACPVT ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADUKH ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AI. AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SAMSI SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW ADXHL AEYWJ AGHNM AGQPQ AGUYK AGYGG CITATION NPM 7QG 7SN 7SS 7ST 7U6 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4814-b048481587c15b94ca5e92da1b6b38dcec9a8d6341778a2bdc1fc6384450385b3 |
IEDL.DBID | DR2 |
ISSN | 0888-8892 1523-1739 |
IngestDate | Thu Aug 21 13:53:49 EDT 2025 Fri Jul 11 18:23:18 EDT 2025 Fri Jul 11 08:05:34 EDT 2025 Fri Jul 25 10:44:34 EDT 2025 Thu Apr 03 07:01:40 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 02:25:31 EDT 2025 Wed Jan 22 16:34:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | tierras privadas landscape fragmentation ley law 景观破碎化 corredores de fauna áreas protegidas hábitat ribereño 野生动物廊道 planeación del uso de suelo fragmentación del paisaje conectividad 保护地 connectivity protected areas wildlife corridors private lands 连接度 土地利用规划 land-use planning 法律 riparian habitat 河岸生境 私有土地 |
Language | English |
License | Attribution-NonCommercial 2020 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4814-b048481587c15b94ca5e92da1b6b38dcec9a8d6341778a2bdc1fc6384450385b3 |
Notes | Article impact statement Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Article impact statement: Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife. |
ORCID | 0000-0002-4104-6633 0000-0002-5813-1332 0000-0002-5188-7081 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.13484 |
PMID | 32056252 |
PQID | 2432397797 |
PQPubID | 36794 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497071 proquest_miscellaneous_2574377213 proquest_miscellaneous_2355940305 proquest_journals_2432397797 pubmed_primary_32056252 crossref_citationtrail_10_1111_cobi_13484 crossref_primary_10_1111_cobi_13484 wiley_primary_10_1111_cobi_13484_COBI13484 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: Hoboken |
PublicationTitle | Conservation biology |
PublicationTitleAlternate | Conserv Biol |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2013; 28 2015; 30 2013; 166 2016; 30 2003; 17 2012; 17 2017; 114 2017; 357 2010; 23 2009; 14 2015; 137 2019; 24 2015; 42 2017; 32 2016; 42 2005; 30 2019; 116 2003; 4 2005; 308 2014; 19 2018; 219 2009; 19 2019; 232 2009; 325 2015; 1 2012 2006; 11 2017; 22 2007 2006 2002 2006; 313 2007; 12 2018; 27 2016; 11 2009; 34 2015; 191 2015; 192 2017; 10 2019 2018 2008; 89 2016 2015 2014 2008; 41 2009; 142 2013 2003; 302 2008; 84 2007; 49 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 USGS (U.S. Geological Survey) Gap Analysis Program (e_1_2_6_52_1) 2016 Chester CC. (e_1_2_6_15_1) 2012 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Armitage DR (e_1_2_6_3_1) 2007 GNLCC (Great Northern Conservation Cooperative) (e_1_2_6_29_1) 2016 e_1_2_6_5_1 Gray M (e_1_2_6_28_1) 2018 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_50_1 Jennings M (e_1_2_6_34_1) 2019 Hilty JA (e_1_2_6_31_1) 2006 USGS (U.S. Geological Survey) (e_1_2_6_53_1) 2013 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_33_1 Salamon LM. (e_1_2_6_48_1) 2002 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Burris S (e_1_2_6_12_1) 2008; 41 e_1_2_6_8_1 Ament R (e_1_2_6_2_1) 2014 e_1_2_6_4_1 e_1_2_6_6_1 Brinson MM (e_1_2_6_9_1) 2002 e_1_2_6_25_1 Washington Department of Fish and Wildlife (WDFW) (e_1_2_6_55_1) 2015 e_1_2_6_23_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 30 start-page: 699 year: 2015 end-page: 713 article-title: Modeling the impact of future development and public conservation orientation on landscape connectivity for conservation planning publication-title: Landscape Ecology – volume: 11 year: 2016 article-title: Identifying corridors among large protected areas in the United States publication-title: PLoS ONE – volume: 19 start-page: 354 year: 2009 end-page: 365 article-title: A conceptual framework for analysing adaptive capacity and multi‐level learning processes in resource governance regimes publication-title: Global Environmental Change – volume: 1 start-page: 1 year: 2015 end-page: 9 article-title: Habitat fragmentation and its lasting impact on Earth ecosystems publication-title: Science Advances – volume: 357 start-page: 1 year: 2017 end-page: 8 article-title: Collaborative environmental governance: Achieving collective action in social‐ecological systems publication-title: Science – volume: 27 start-page: 2815 year: 2018 end-page: 2836 article-title: Thresholds of riparian forest use by terrestrial mammals in a fragmented Amazonian deforestation frontier publication-title: Biodiversity and Conservation – volume: 17 start-page: 116 year: 2003 end-page: 131 article-title: Mapping the conservation landscape publication-title: Conservation Biology – volume: 32 start-page: 835 year: 2017 end-page: 855 article-title: Sensitivity of resource selection and connectivity models to landscape definition publication-title: Landscape Ecology – volume: 219 start-page: 53 year: 2018 end-page: 67 article-title: Protected area connectivity: shortfalls in global targets and country‐level priorities publication-title: Biological Conservation – volume: 232 start-page: 83 year: 2019 end-page: 96 article-title: Quantifying the contribution of conservation easements to large‐landscape conservation publication-title: Biological Conservation – volume: 41 start-page: 66 year: 2008 article-title: Changes in governance: a cross‐disciplinary review of current scholarship publication-title: Akron Law Review – year: 2018 – volume: 42 start-page: 1372 year: 2016 end-page: 1385 article-title: Making the leap from science to implementation: strategic agricultural conservation in Michigan's Saginaw Bay watershed publication-title: Journal of Great Lakes Research – year: 2014 – volume: 14 year: 2009 article-title: Adaptive water governance: assessing the institutional prescriptions of adaptive (co‐) management from a governance perspective and defining a research agenda publication-title: Ecology and Society – volume: 12 year: 2007 article-title: The problem of fit between ecosystems and institutions: ten years later publication-title: Ecology and Society – volume: 313 start-page: 617 year: 2006 end-page: 618 article-title: Resolving mismatches in U.S. ocean governance publication-title: Science – volume: 23 start-page: 986 year: 2010 end-page: 1001 article-title: Governance principles for natural resource management publication-title: Society and Natural Resources – volume: 191 start-page: 29 year: 2015 end-page: 37 article-title: A riparian conservation network for ecological resilience publication-title: Biological Conservation – volume: 11 year: 2006 article-title: Governance and the capacity to manage resilience in regional social‐ecological systems publication-title: Ecology and Society – volume: 11 start-page: art8 year: 2006 article-title: Scale and cross‐scale dynamics: governance and information in a multilevel world publication-title: Ecology and Society – volume: 325 start-page: 419 year: 2009 end-page: 422 article-title: A general framework for analyzing sustainability of social‐ecological systems publication-title: Science – volume: 142 start-page: 1628 year: 2009 end-page: 1638 article-title: Assessing threats to pool‐breeding amphibian habitat in an urbanizing landscape publication-title: Biological Conservation – year: 2019 – volume: 84 start-page: 225 year: 2008 end-page: 240 article-title: Public benefits, private benefits, and policy mechanism choice for land‐use change for environmental benefits publication-title: Land Economics – year: 2015 – volume: 89 start-page: 2712 year: 2008 end-page: 2724 article-title: Using circuit theory to model connectivity in ecology, evolution, and conservation publication-title: Ecology – volume: 308 start-page: 636 year: 2005 end-page: 637 article-title: Synthesizing U.S. river restoration efforts publication-title: Science – volume: 4 start-page: S39 year: 2003 end-page: S45 article-title: Triage: How do we prioritize health care for landscapes? publication-title: Ecological Management & Restoration – volume: 19 year: 2014 article-title: Network structure and institutional complexity in an ecology of water management games publication-title: Ecology and Society – volume: 137 start-page: 64 year: 2015 end-page: 75 article-title: Fragmented water quality governance: constraints to spatial targeting for nutrient reduction in a Midwestern USA watershed publication-title: Landscape and Urban Planning – volume: 42 start-page: 1020 year: 2015 end-page: 1039 article-title: Mapping policies and programmes: the use of GIS to communicate spatial relationships in England publication-title: Environment and Planning B: Planning and Design – volume: 302 start-page: 1907 year: 2003 end-page: 1912 article-title: The struggle to govern the commons publication-title: Science – year: 2007 – volume: 12 year: 2007 article-title: Enhancing the fit through adaptive co‐management: Creating and maintaining bridging functions for matching scales in the Kristianstads Vattenrike Biosphere Reserve, Sweden publication-title: Ecology and Society – volume: 10 start-page: 77 year: 2017 end-page: 85 article-title: Missing the boat on freshwater fish conservation in California publication-title: Conservation Letters – volume: 30 start-page: 441 year: 2005 end-page: 473 article-title: Adaptive governance of social‐ecological systems publication-title: Annual Review of Environment and Resources – volume: 14 year: 2009 article-title: Evaluating functional fit between a set of institutions and an ecosystem publication-title: Ecology and Society – volume: 17 start-page: art2 year: 2012 article-title: Spatial fit, from panacea to practice: Implementing the EU water framework directive publication-title: Ecology and Society – volume: 32 start-page: 59 year: 2017 end-page: 75 article-title: Spatial fit between water quality policies and hydrologic ecosystem services in an urbanizing agricultural landscape publication-title: Landscape Ecology – year: 2016 – volume: 192 start-page: 135 year: 2015 end-page: 144 article-title: An evaluation of environmental, institutional and socio‐economic factors explaining successful conservation plan implementation in the north‐central United States publication-title: Biological Conservation – year: 2012 – volume: 166 start-page: 144 year: 2013 end-page: 154 article-title: Fostering synergies between ecosystem services and biodiversity in conservation planning: a review publication-title: Biological Conservation – volume: 22 year: 2017 article-title: The role of law in adaptive governance publication-title: Ecology and Society – volume: 34 start-page: 253 year: 2009 end-page: 278 article-title: Connectivity and the governance of multilevel social‐ecological systems: the role of social capital publication-title: Annual Review of Environment and Resources – volume: 24 year: 2019 article-title: Patterns of riparian policy standards in riverscapes of the Oregon Coast Range publication-title: Ecology and Society – volume: 28 start-page: 1859 year: 2013 end-page: 1874 article-title: A general model to quantify ecological integrity for landscape assessments and US application publication-title: Landscape Ecology – volume: 114 start-page: E1776 year: 2017 end-page: E1785 article-title: Social‐ecological network analysis of scale mismatches in estuary watershed restoration publication-title: Proceedings of the National Academy of Sciences – year: 2002 – volume: 30 start-page: 950 year: 2016 end-page: 961 article-title: Connecting science, policy, and implementation for landscape‐scale habitat connectivity publication-title: Conservation Biology – year: 2006 – volume: 49 start-page: 20 year: 2007 end-page: 32 article-title: Solving the crisis in ocean governance place‐based management of marine ecosystems publication-title: Environment – volume: 116 start-page: 19899 year: 2019 end-page: 19904 article-title: Untapped capacity for resilience in environmental law publication-title: Proceedings of the National Academy of Sciences – year: 2013 – ident: e_1_2_6_22_1 doi: 10.1146/annurev.energy.30.050504.144511 – volume-title: Building landscape connectivity for climate adaptation: Mayacamas to Berryessa year: 2018 ident: e_1_2_6_28_1 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.1906247116 – ident: e_1_2_6_21_1 doi: 10.1016/j.jglr.2016.09.010 – ident: e_1_2_6_42_1 doi: 10.1126/science.1172133 – volume-title: Wildlife connectivity: Fundamentals for conservation action year: 2014 ident: e_1_2_6_2_1 – ident: e_1_2_6_30_1 doi: 10.1126/sciadv.1500052 – ident: e_1_2_6_20_1 doi: 10.5751/ES-02930-140216 – ident: e_1_2_6_58_1 doi: 10.1007/s10980-017-0489-8 – volume-title: Adaptive co‐management: Collaboration, learning and multi‐level governance year: 2007 ident: e_1_2_6_3_1 – volume-title: Riparian areas: Functions and strategies for management year: 2002 ident: e_1_2_6_9_1 – ident: e_1_2_6_45_1 doi: 10.1007/s10980-016-0428-0 – ident: e_1_2_6_17_1 doi: 10.5751/ES-08731-220130 – ident: e_1_2_6_37_1 doi: 10.1080/08941920802178214 – ident: e_1_2_6_18_1 doi: 10.1126/science.1129706 – ident: e_1_2_6_51_1 doi: 10.1007/s10980-013-9941-6 – ident: e_1_2_6_38_1 doi: 10.5751/ES-06880-190423 – volume-title: Providing a regional connectivity perspective to local connectivity conservation decisions in the British Columbia–Washington transboundary region year: 2016 ident: e_1_2_6_29_1 – ident: e_1_2_6_46_1 doi: 10.1046/j.1523-1739.2003.01467.x – ident: e_1_2_6_47_1 – volume-title: Conservation across borders: Biodiversity in an interdependent world year: 2012 ident: e_1_2_6_15_1 – ident: e_1_2_6_59_1 doi: 10.1007/s10531-018-1571-5 – ident: e_1_2_6_26_1 doi: 10.1111/conl.12249 – volume-title: Climate resilient connectivity for the South Coast ecoregion of California year: 2019 ident: e_1_2_6_34_1 – volume-title: Protected areas database of the United States (PAD‐US) year: 2016 ident: e_1_2_6_52_1 – volume-title: Corridor ecology: the science and practice of linking landscapes for biodiversity conservation year: 2006 ident: e_1_2_6_31_1 – ident: e_1_2_6_14_1 doi: 10.5751/ES-01759-110208 – ident: e_1_2_6_33_1 doi: 10.5751/ES-02827-140126 – volume-title: National hydrography geodatabase year: 2013 ident: e_1_2_6_53_1 – ident: e_1_2_6_5_1 doi: 10.1371/journal.pone.0154223 – ident: e_1_2_6_16_1 doi: 10.1016/j.biocon.2013.06.023 – ident: e_1_2_6_7_1 doi: 10.1126/science.aan1114 – ident: e_1_2_6_23_1 doi: 10.5751/ES-02064-120130 – volume: 41 start-page: 66 year: 2008 ident: e_1_2_6_12_1 article-title: Changes in governance: a cross‐disciplinary review of current scholarship publication-title: Akron Law Review – ident: e_1_2_6_13_1 doi: 10.1016/j.biocon.2015.09.013 – ident: e_1_2_6_54_1 doi: 10.1016/j.landurbplan.2014.12.011 – ident: e_1_2_6_8_1 doi: 10.5751/ES-10676-240122 – ident: e_1_2_6_41_1 doi: 10.5751/ES-01976-120128 – ident: e_1_2_6_24_1 doi: 10.1016/j.biocon.2015.06.029 – ident: e_1_2_6_4_1 doi: 10.1016/j.biocon.2009.02.039 – volume-title: The tools of government: a guide to the new governance year: 2002 ident: e_1_2_6_48_1 – ident: e_1_2_6_49_1 doi: 10.1016/j.biocon.2017.12.020 – ident: e_1_2_6_11_1 doi: 10.1146/annurev.environ.020708.100707 – ident: e_1_2_6_19_1 doi: 10.1126/science.1091015 – ident: e_1_2_6_39_1 doi: 10.1890/07-1861.1 – ident: e_1_2_6_40_1 doi: 10.5751/ES-04821-170302 – ident: e_1_2_6_57_1 doi: 10.3200/ENVT.49.4.20-33 – ident: e_1_2_6_6_1 doi: 10.1126/science.1109769 – ident: e_1_2_6_27_1 doi: 10.1016/j.biocon.2019.01.024 – ident: e_1_2_6_56_1 doi: 10.1068/b130099p – ident: e_1_2_6_32_1 doi: 10.1046/j.1442-8903.4.s.5.x – ident: e_1_2_6_35_1 doi: 10.5751/ES-01606-110119 – ident: e_1_2_6_43_1 doi: 10.1016/j.gloenvcha.2009.06.001 – ident: e_1_2_6_44_1 doi: 10.3368/le.84.2.225 – ident: e_1_2_6_10_1 doi: 10.1111/cobi.12667 – ident: e_1_2_6_50_1 doi: 10.1073/pnas.1604405114 – volume-title: Washington's state wildlife action plan: 2015 update year: 2015 ident: e_1_2_6_55_1 – ident: e_1_2_6_36_1 doi: 10.1007/s10980-015-0153-0 |
SSID | ssj0009514 |
Score | 2.4097087 |
Snippet | Wildlife corridors aim to promote species’ persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns... Wildlife corridors aim to promote species' persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 943 |
SubjectTerms | Capacity conectividad Connecting connectivity Conservation Contributed Paper Contributed Papers Coordination corredores de fauna Corridors Environmental protection Fauna fragmentación del paisaje Habitat connectivity habitat conservation Habitat corridors Habitats hábitat ribereño issues and policy Jurisdiction Land ownership Landscape landscape fragmentation landscapes land‐use planning law ley Mapping Masking NGOs Nongovernmental organizations planeación del uso de suelo Policies prioritization private lands protected areas Restoration riparian areas riparian habitat Rivers Scale models Streams Terrestrial environments tierras privadas wildlife Wildlife conservation wildlife corridors Wildlife habitats Wildlife management áreas protegidas 保护地 土地利用规划 景观破碎化 河岸生境 法律 私有土地 连接度 野生动物廊道 |
Title | Mapping legal authority for terrestrial conservation corridors along streams |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.13484 https://www.ncbi.nlm.nih.gov/pubmed/32056252 https://www.proquest.com/docview/2432397797 https://www.proquest.com/docview/2355940305 https://www.proquest.com/docview/2574377213 https://pubmed.ncbi.nlm.nih.gov/PMC7497071 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEB7aguCL98tqLSv6orCHzW13A75oaanSqoiFvsiSZLP24HFXzgXRX-9M9uI5Vgr6liUTyGUm8yU7-QbgaaVYnUlfJxWvs0SaTCQmq10iUqeYFZ6J8Ejs5G12dCrfnKmzLXgxvIXp-CHGCzeyjLBfk4Ebu1gzctfa6YQJWRAZKAVrESL6wNcYdztibzziJUWhec9NSmE8v5tueqMLEPNipOQ6gg0u6PA6fBo630WefJmslnbifv7B6_i_o7sB13psGr_slOkmbPnmFlzpslX-wNKB60vbx-b7bTg-MUTu8DmeeXQzsVktz1tKhRcjDo5xuSjrB6l37Chiu7_7xY_5fFq180VsZi02pscq5uviDpweHnzcP0r65AyJkwWTiUXTJ6KXIndMWS2dUV7zyjCbWVHghDltiipDJ5nnheG2cqx2aOxSEgGNsuIu7DRt4-9DrFBPclQLrlMpHUu18amunbCpcL7SOoJnwyKVrmcupwQas3I4wdBslWG2Ingyyn7r-Dr-KrU7rHXZ2-yi5FJwgsM6j-DxWI3WRr9QTOPbFcogPNOSNslLZBSiMjy0MBHBvU59xq4IToBT8QjyDcUaBYjte7OmmZ4H1u9c6hzxYATPg95cMrpy_92r16H04F-EH8JVTpcJIbpxF3aW85V_hIhrafdgm8v3e8G-fgFy5Sib |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgQXyrOEFgiCC0hZxY88fISq1RZ2i4RaqbfIdhy66pKgfQjBr2fGyYZdiirBzZHHUmLPeD5Pxt8AvC4TVqXSVVHJqzSSOhWRTisbidgmzAjHhL8kNj5Jh2fyw3ly3uXm0F2Ylh-iD7iRZfj9mgycAtJrVm4bMxkwIXO5BTeppLc_UX3ma5y7LbU3HvKiPFe8YyelRJ7fYzf90RWQeTVXch3Deid0tNNWWp177kLKPbkcLBdmYH_-wez43993D-528DR81-rTfbjh6gdwqy1Y-QNbh7ZrbY3094cwGmvid_gSTh16mlAvFxcNVcMLEQqHuGJU-IM0PLSUtN2Ff_FhNpuUzWwe6mmDg-m-iv46fwRnR4enB8Ooq88QWZkzGRm0fuJ6yTPLEqOk1YlTvNTMpEbkOGNW6bxM0U9mWa65KS2rLNq7lMRBkxjxGLbrpnZPIExQVTLUDK5iKS2LlXaxqqwwsbCuVCqAN6tVKmxHXk41NKbF6hBDs1X42QrgVS_7raXs-KvU_mqxi85s5wWXghMiVlkAL_tuNDj6i6Jr1yxRBhGakrRPXiOTIDDDcwsTAey2-tO_iuCEORMeQLahWb0AEX5v9tSTC0_8nUmVISQM4K1XnGu-rjj49P7Yt57-i_ALuD08HY-K0fHJxz24wym24JMd92F7MVu6ZwjAFua5N7Nf3Yor3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB61RaC-cFNCCwTBC0hZxUcOS7xA21UL24IQlfqCIttx6IolqfYQor-emVzsUlQJ3hx5LPmY8Xx2xt8AvMgjVsTSFUHOiziQOhaBjgsbiNBGzAjHRP1I7Og4PjiR706j0zV43b2Fafgh-gs3sox6vyYDP8-LJSO3lRkPmJCpXIdrMg5T0um9T3yJcrdh9sYzXpCmirfkpBTH87vtqju6hDEvh0ouQ9jaBw1vwZeu903oybfBYm4G9uIPYsf_Hd5tuNmCU_9No013YM2Vd-F6k67yJ5b2bVtaH-kf92B0pInd4as_cehnfL2Yn1WUC89HIOzjelHaD9Jv31LIdnv5ix_T6TivpjNfTypsTK9V9PfZfTgZ7n_ePQja7AyBlSmTgUHbJ6aXNLEsMkpaHTnFc81MbESKE2aVTvMYvWSSpJqb3LLCorVLSQw0kREPYKOsSvcQ_AgVJUG94CqU0rJQaReqwgoTCutypTx42S1SZlvqcsqgMcm6IwzNVlbPlgfPe9nzhrDjr1I73VpnrdHOMi4FJzysEg-e9dVobvQPRZeuWqAM4jMlaZe8QiZCWIanFiY82GrUp--K4IQ4I-5BsqJYvQDRfa_WlOOzmvY7kSpBQOjBq1pvrhhdtvvh7WFdevQvwk_hxse9YTY6PH6_DZucLhbqSMcd2JhPF-4xoq-5eVIb2S9c8SqX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+legal+authority+for+terrestrial+conservation+corridors+along+streams&rft.jtitle=Conservation+biology&rft.au=Stahl%2C+Amanda+T&rft.au=Fremier%2C+Alexander+K&rft.au=Cosens%2C+Barbara+A&rft.date=2020-08-01&rft.issn=1523-1739&rft.eissn=1523-1739&rft.volume=34&rft.issue=4&rft.spage=943&rft_id=info:doi/10.1111%2Fcobi.13484&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |