Single-Atom Gold Catalysis in the Context of Developments in Parahydrogen-Induced Polarization

A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen to maximize the polarization level and the contributio...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 21; no. 19; pp. 7012 - 7015
Main Authors Corma, Avelino, Salnikov, Oleg G., Barskiy, Danila A., Kovtunov, Kirill V., Koptyug, Igor V.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 04.05.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3‐butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed. The hydrogens went in 2 by 2: Hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen is carried out by using a highly isolated heterogeneous monoatomic gold catalyst supported on multiwalled carbon nanotubes. The percentage of pairwise hydrogen addition is found to be approximately 10 % for this catalyst in which the catalytically active center is a single atom.
AbstractList A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3-butadiene and 1-butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3-butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed. The hydrogens went in 2 by 2: Hydrogenation of 1,3-butadiene and 1-butyne with parahydrogen is carried out by using a highly isolated heterogeneous monoatomic gold catalyst supported on multiwalled carbon nanotubes. The percentage of pairwise hydrogen addition is found to be approximately 10% for this catalyst in which the catalytically active center is a single atom.
A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3‐butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed. The hydrogens went in 2 by 2: Hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen is carried out by using a highly isolated heterogeneous monoatomic gold catalyst supported on multiwalled carbon nanotubes. The percentage of pairwise hydrogen addition is found to be approximately 10 % for this catalyst in which the catalytically active center is a single atom.
A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3-butadiene and 1-butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3-butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed.
Abstract A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3‐butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed.
Author Koptyug, Igor V.
Barskiy, Danila A.
Corma, Avelino
Salnikov, Oleg G.
Kovtunov, Kirill V.
Author_xml – sequence: 1
  givenname: Avelino
  surname: Corma
  fullname: Corma, Avelino
  organization: Instituto de Tecnologia Quimica UPV-CSIC, Avda. de los Naranjos, s/n, 46022 Valencia (Spain)
– sequence: 2
  givenname: Oleg G.
  surname: Salnikov
  fullname: Salnikov, Oleg G.
  organization: Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Insitutskaya Street, 3 A, 630090, Novosibirsk (Russia) and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia), Fax: (+7) 383-3331399
– sequence: 3
  givenname: Danila A.
  surname: Barskiy
  fullname: Barskiy, Danila A.
  organization: Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Insitutskaya Street, 3 A, 630090, Novosibirsk (Russia) and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia), Fax: (+7) 383-3331399
– sequence: 4
  givenname: Kirill V.
  surname: Kovtunov
  fullname: Kovtunov, Kirill V.
  email: kovtunov@tomo.nsc.ru
  organization: Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Insitutskaya Street, 3 A, 630090, Novosibirsk (Russia) and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia), Fax: (+7) 383-3331399
– sequence: 5
  givenname: Igor V.
  surname: Koptyug
  fullname: Koptyug, Igor V.
  organization: Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Insitutskaya Street, 3 A, 630090, Novosibirsk (Russia) and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia), Fax: (+7) 383-3331399
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25754067$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v0zAchi00xLrBlSOKxIVLij_ijxxHGO2kDSY-xA3LTX5ZPRy72AlQ_npcOirEZZIlW3qf95Gs9wQd-eABoacEzwnG9GW7hmFOMamwEKJ6gGaEU1IyKfgRmuG6kqXgrD5GJyndYoxrwdgjdEy55LkhZ-jLB-tvHJRnYxiKRXBd0ZjRuG2yqbC-GNdQNMGP8HMsQl-8hu_gwmYAP_6Jr000620Xww348sJ3UwtdcR2cifaXGW3wj9HD3rgET-7uU_TpzfnHZllevltcNGeXZVspUpWEEGUMiL4VlOaXErXqSU4YFysQQvYSWtExhQ2Wsue1ojwnplWdoSvK2Cl6sfduYvg2QRr1YFMLzhkPYUqaSCUolqzC96NCcpVPpTL6_D_0NkzR54_sqEoQyrDI1HxPtTGkFKHXm2gHE7eaYL0bSe9G0oeRcuHZnXZaDdAd8L-rZKDeAz-sg-09Ot0sz6_-lZf7rk15tUPXxK86myXXn98utHhVU_p-eaUx-w3uIa0-
CODEN CEUJED
CitedBy_id crossref_primary_10_1039_C9EE04040D
crossref_primary_10_1021_acscatal_7b00520
crossref_primary_10_1016_S1872_2067_20_63743_3
crossref_primary_10_1002_ange_201506045
crossref_primary_10_1016_j_mattod_2023_05_022
crossref_primary_10_1016_j_mcat_2021_111761
crossref_primary_10_1039_D2CS00806H
crossref_primary_10_1007_s12274_023_5616_z
crossref_primary_10_1039_C9CP02913C
crossref_primary_10_1002_ange_201711842
crossref_primary_10_1039_C9FD00138G
crossref_primary_10_1039_C5CP04223B
crossref_primary_10_1007_s40820_019_0349_y
crossref_primary_10_1002_ange_201602801
crossref_primary_10_1039_D2CY00615D
crossref_primary_10_1021_acscatal_5b02632
crossref_primary_10_1002_advs_201801471
crossref_primary_10_1002_asia_201800125
crossref_primary_10_31857_S2686953522600933
crossref_primary_10_1002_chem_201603884
crossref_primary_10_1021_acscatal_3c00513
crossref_primary_10_1002_cphc_201800690
crossref_primary_10_1016_j_jcat_2018_07_004
crossref_primary_10_1021_acscatal_3c05968
crossref_primary_10_1021_acs_chemrev_7b00776
crossref_primary_10_1021_acscatal_1c01200
crossref_primary_10_1016_j_chempr_2018_12_011
crossref_primary_10_1002_cctc_201801174
crossref_primary_10_1039_C7SC00686A
crossref_primary_10_1038_s41929_022_00874_4
crossref_primary_10_1002_anie_201602801
crossref_primary_10_1002_cphc_202200072
crossref_primary_10_1002_aenm_201701343
crossref_primary_10_1002_cctc_201701431
crossref_primary_10_1007_s10311_017_0679_2
crossref_primary_10_1021_acs_chemrev_2c00534
crossref_primary_10_1002_anie_201711842
crossref_primary_10_1039_C8TA11528A
crossref_primary_10_1039_C7CP00352H
crossref_primary_10_1515_pac_2020_0203
crossref_primary_10_1016_S1872_2067_17_62872_9
crossref_primary_10_1134_S0012501623600237
crossref_primary_10_1021_acs_jpcc_8b06281
crossref_primary_10_1002_cctc_202101266
crossref_primary_10_1021_acs_jpcc_4c00651
crossref_primary_10_1016_j_pmatsci_2022_101044
crossref_primary_10_1039_C8CP07625A
crossref_primary_10_1021_acs_organomet_6b00869
crossref_primary_10_1038_s41570_024_00578_2
crossref_primary_10_1021_acscatal_6b01534
crossref_primary_10_1002_anie_201506045
crossref_primary_10_1021_acscatal_2c05659
crossref_primary_10_1039_C7CY01136A
crossref_primary_10_1021_acscatal_9b01425
crossref_primary_10_1002_cey2_382
crossref_primary_10_1007_s11244_016_0688_6
crossref_primary_10_1021_acs_jpcc_3c05059
crossref_primary_10_1039_D3CC01803B
crossref_primary_10_1002_chem_201705644
crossref_primary_10_1016_j_ijhydene_2023_01_213
crossref_primary_10_1021_acs_chemrev_0c00818
crossref_primary_10_1002_chem_201603974
crossref_primary_10_1039_D1EE00247C
crossref_primary_10_1002_cctc_201701653
crossref_primary_10_1002_cphc_202100153
crossref_primary_10_1016_j_fuel_2019_115845
Cites_doi 10.1021/jp510572d
10.1126/science.1215864
10.1021/jz100391j
10.1021/ja039037k
10.1002/chem.201405063
10.1007/128_2012_371
10.1002/cphc.201000407
10.1021/ar2003094
10.1039/b906449d
10.1021/ja00252a049
10.1021/cs500426a
10.1038/nchem.1095
10.1002/ange.200462473
10.1016/S0079-6565(97)00007-1
10.1039/c2cp40690j
10.1038/srep00277
10.1039/c2cp40272f
10.1038/nchem.1721
10.1002/ange.200502101
10.1039/b409606a
10.1002/cctc.201200414
10.1002/ange.200704881
10.1002/chem.201403604
10.1039/C3CC44939D
10.1021/ja984353y
10.1038/nmat2384
10.1021/ja00260a026
10.1016/0009-2614(88)80002-2
10.1126/science.1159639
10.1021/om000391q
10.1126/science.1185200
10.1002/anie.200704881
10.1002/anie.200502101
10.1016/j.pnmrs.2012.03.001
10.1002/anie.200462473
10.1039/c0cc01411g
10.1021/jp203398j
10.1002/chem.201303020
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201406664
DatabaseName Istex
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
Materials Research Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 7015
ExternalDocumentID 3661234941
10_1002_chem_201406664
25754067
CHEM201406664
ark_67375_WNG_6B922RHM_0
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Russian Science Foundation
  funderid: 14–13–00445
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABHUG
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4814-1118aae6fc6228aa8698f1814356be667f7ec6d380a077f5982556bac8da2b233
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Fri Aug 16 08:45:15 EDT 2024
Fri Aug 16 07:35:21 EDT 2024
Thu Oct 10 15:47:43 EDT 2024
Fri Aug 23 03:32:07 EDT 2024
Sat Sep 28 08:05:55 EDT 2024
Sat Aug 24 00:52:39 EDT 2024
Wed Jan 17 05:02:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords gold
heterogeneous catalysis
NMR spectroscopy
hydrogenation
signal enhancement
Language English
License 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4814-1118aae6fc6228aa8698f1814356be667f7ec6d380a077f5982556bac8da2b233
Notes ArticleID:CHEM201406664
istex:C5DE265C855240F8FB0BBFF7369CE231EAF309DE
ark:/67375/WNG-6B922RHM-0
Russian Science Foundation - No. 14-13-00445
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25754067
PQID 1674612306
PQPubID 986340
PageCount 4
ParticipantIDs proquest_miscellaneous_1786207340
proquest_miscellaneous_1675875848
proquest_journals_1674612306
crossref_primary_10_1002_chem_201406664
pubmed_primary_25754067
wiley_primary_10_1002_chem_201406664_CHEM201406664
istex_primary_ark_67375_WNG_6B922RHM_0
PublicationCentury 2000
PublicationDate May 4, 2015
PublicationDateYYYYMMDD 2015-05-04
PublicationDate_xml – month: 05
  year: 2015
  text: May 4, 2015
  day: 04
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References C. R. Bowers, D. P. Weitekamp, J. Am. Chem. Soc. 1987, 109, 5541-5542
Angew. Chem. 2005, 117, 7294-7297.
G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Science 2012, 335, 1209-1212.
K. V. Kovtunov, V. V. Zhivonitko, I. V. Skovpin, D. A. Barskiy, I. V. Koptyug, Top. Curr. Chem. 2013, 338, 123-180.
K. Judai, S. Abbet, A. S. Worz, U. Heiz, C. R. Henry, J. Am. Chem. Soc. 2004, 126, 2732-2737
I. Koptyug, V. Zhivonitko, K. Kovtunov, ChemPhysChem 2010, 11, 3086-3088
D. Barskiy, O. Salnikov, K. Kovtunov, I. Koptyug, J. Phys. Chem. A 2015, 119, 996-1006.
V. Zhivonitko, K. Kovtunov, I. Beck, A. Ayupov, V. Bukhtiyarov, I. Koptyug, J. Phys. Chem.C 2011, 115, 13386-13391
D. Blazina, S. B. Duckett, J. P. Dunne, C. Godard, Dalton Trans. 2004, 2601-2609
R. Sharma, L.-S. Bouchard, Sci. Rep. 2012, 2, 277.
K. V. Kovtunov, D. A. Barskiy, A. M. Coffey, M. L. Truong, O. G. Salnikov, A. K. Khudorozhkov, E. A. Inozemceva, I. P. Prosvirin, V. I. Bukhtiyarov, K. W. Waddell, E. Y. Chekmenev, I. V. Koptyug, Chem. Eur. J. 2014, 20, 11636-11639
K. Kovtunov, V. Zhivonitko, A. Corma, I. Koptyug, J. Phys. Chem. Lett. 2010, 1, 1705-1708.
S. Vajda, M. J. Pellin, J. P. Greeley, C. L. Marshall, L. A. Curtiss, G. A. Ballentine, J. W. Elam, S. Catillon-Mucherie, P. C. Redfern, F. Mehmood, P. Zapol, Nat. Mater. 2009, 8, 213-216
A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings, Science 2008, 321, 1331-1335
X. Zhang, H. Shi, B.-Q. Xu, Angew. Chem. Int. Ed. 2005, 44, 7132-7135
T. C. Eisenschmid, R. U. Kirss, P. P. Deutsch, S. I. Hommeltoft, R. Eisenberg, J. Bargon, R. G. Lawler, A. L. Balch, J. Am. Chem. Soc. 1987, 109, 8089-8091.
T. Trantzschel, J. Bernarding, M. Plaumann, D. Lego, T. Gutmann, T. Ratajczyk, S. Dillenberger, G. Buntkowsky, J. Bargon, U. Bommerich, Phys. Chem. Chem. Phys. 2012, 14, 5601-5604.
K. V. Kovtunov, I. V. Koptyug in Magnetic Resonance Microscopy. Spatially Resolved NMR Techniques and Applications (Eds.: S. Codd, J. Seymour), Wiley-VCH, Weinheim, 2008, pp. 101-115.
J. M. Thomas, R. Raja, D. W. Lewis, Angew. Chem. Int. Ed. 2005, 44, 6456-6482
K. V. Kovtunov, I. E. Beck, V. I. Bukhtiyarov, I. V. Koptyug, Angew. Chem. Int. Ed. 2008, 47, 1492-1495
J. Natterer, J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 293-315
K. Kovtunov, D. Barskiy, O. Salnikov, A. Khudorozhkov, V. Bukhtiyarov, I. Prosvirin, I. Koptyug, Chem. Commun. 2014, 50, 875-878
Y. Lei, F. Mehmood, S. Lee, J. Greeley, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, R. J. Meyer, P. C. Redfern, D. Teschner, R. Schlögl, M. J. Pellin, L. A. Curtiss, S. Vajda, Science 2010, 328, 224-228.
S. Abdulhussain, H. Breitzke, T. Ratajczyk, A. Grünberg, M. Srour, D. Arnaut, H. Weidler, U. Kunz, H. J. Kleebe, U. Bommerich, J. Bernarding, T. Gutmann, G. Buntkowsky, Chem. Eur. J. 2014, 20, 1159-1166.
M. G. Pravica, D. P. Weitekamp, Chem. Phys. Lett. 1988, 145, 255-258
K. V. Kovtunov, V. V. Zhivonitko, L. Kiwi-Minsker, I. V. Koptyug, Chem. Commun. 2010, 46, 5764-5766.
A. Corma, P. Concepcion, M. Boronat, M. Sabater, J. Navas, M. Yacaman, E. Larios, A. Posadas, M. Lopez-Quintela, D. Buceta, E. Mendoza, G. Guilera, A. Mayoral, Nat. Chem. 2013, 5, 775-778.
D. A. Barskiy, K. V. Kovtunov, A. Primo, A. Corma, R. Kaptein, I. V. Koptyug, ChemCatChem 2012, 4, 2031-2035.
B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634-641.
P. Hübler, R. Giernoth, G. Kümmerle, J. Bargon, J. Am. Chem. Soc. 1999, 121, 5311-5318
Angew. Chem. 2005, 117, 6614-6641.
S. M. Oldham, J. F. Houlis, C. Sleigh, S. B. Duckett, R. Eisenberg, Organometallics 2000, 19, 2985-2993
O. Salnikov, K. Kovtunov, D. Barskiy, A. Khudorozhkov, E. Inozemtseva, I. Prosvirin, V. Bukhtiyarov, I. Koptyug, ACS Catal. 2014, 4, 2022-2028
Angew. Chem. 2008, 120, 1514-1517
K. Kovtunov, I. Beck, V. Zhivonitko, D. Barskiy, V. Bukhtiyarov, I. Koptyug, Phys. Chem. Chem. Phys. 2012, 14, 11008-11014
R. A. Green, R. W. Adams, S. B. Duckett, R. E. Mewis, D. C. Williamson, G. G. R. Green, Prog. Nucl. Magn. Reson. Spectrosc. 2012, 67, 1-48.
S. B. Duckett, R. E. Mewis, Acc. Chem. Res. 2012, 45, 1247-1257
A. M. Balu, S. B. Duckett, R. Luque, Dalton Trans. 2009, 5074-5076
K. Kovtunov, M. Truong, D. Barskiy, I. Koptyug, K. Waddell, E. Chekmenev, Chem. Eur. J. 2014, 20, 14629-14632.
2010; 11
2011; 115
2004; 126
2010; 328
1987; 109
2009
1999; 121
2008
1988; 145
2004
2008 2008; 47 120
2008; 321
2012; 14
2011; 3
2013; 5
2014; 20
2012; 2
2000; 19
2014; 4
2010; 1
2010; 46
1997; 31
2013; 338
2009; 8
2005 2005; 44 117
2015; 119
2012; 335
2012; 45
2012; 67
2014; 50
2012; 4
e_1_2_4_40_2
e_1_2_4_20_2
e_1_2_4_22_2
e_1_2_4_41_2
e_1_2_4_21_2
e_1_2_4_42_2
e_1_2_4_24_2
e_1_2_4_23_2
e_1_2_4_26_2
e_1_2_4_24_3
e_1_2_4_25_2
e_1_2_4_28_2
e_1_2_4_27_2
e_1_2_4_29_2
Kovtunov K. V. (e_1_2_4_39_2) 2008
e_1_2_4_2_2
e_1_2_4_1_2
e_1_2_4_4_2
e_1_2_4_3_2
e_1_2_4_6_2
e_1_2_4_5_2
e_1_2_4_8_2
e_1_2_4_7_2
e_1_2_4_9_3
e_1_2_4_8_3
e_1_2_4_9_2
e_1_2_4_31_2
e_1_2_4_30_2
e_1_2_4_10_2
e_1_2_4_33_2
e_1_2_4_11_2
e_1_2_4_32_2
e_1_2_4_12_2
e_1_2_4_35_2
e_1_2_4_13_2
e_1_2_4_34_2
e_1_2_4_14_2
e_1_2_4_37_2
e_1_2_4_15_2
e_1_2_4_36_2
e_1_2_4_17_2
e_1_2_4_16_2
e_1_2_4_38_2
e_1_2_4_19_2
e_1_2_4_18_2
References_xml – volume: 121
  start-page: 5311
  year: 1999
  end-page: 5318
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2031
  year: 2012
  end-page: 2035
  publication-title: ChemCatChem
– start-page: 2601
  year: 2004
  end-page: 2609
  publication-title: Dalton Trans.
– volume: 19
  start-page: 2985
  year: 2000
  end-page: 2993
  publication-title: Organometallics
– volume: 145
  start-page: 255
  year: 1988
  end-page: 258
  publication-title: Chem. Phys. Lett.
– volume: 119
  start-page: 996
  year: 2015
  end-page: 1006
  publication-title: J. Phys. Chem. A
– volume: 321
  start-page: 1331
  year: 2008
  end-page: 1335
  publication-title: Science
– volume: 8
  start-page: 213
  year: 2009
  end-page: 216
  publication-title: Nat. Mater.
– volume: 109
  start-page: 8089
  year: 1987
  end-page: 8091
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 1247
  year: 2012
  end-page: 1257
  publication-title: Acc. Chem. Res.
– volume: 20
  start-page: 14629
  year: 2014
  end-page: 14632
  publication-title: Chem. Eur. J.
– volume: 50
  start-page: 875
  year: 2014
  end-page: 878
  publication-title: Chem. Commun.
– start-page: 5074
  year: 2009
  end-page: 5076
  publication-title: Dalton Trans.
– volume: 44 117
  start-page: 6456 6614
  year: 2005 2005
  end-page: 6482 6641
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 3086
  year: 2010
  end-page: 3088
  publication-title: ChemPhysChem
– start-page: 101
  year: 2008
  end-page: 115
– volume: 2
  start-page: 277
  year: 2012
  publication-title: Sci. Rep.
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  publication-title: Nat. Chem.
– volume: 5
  start-page: 775
  year: 2013
  end-page: 778
  publication-title: Nat. Chem.
– volume: 115
  start-page: 13386
  year: 2011
  end-page: 13391
  publication-title: J. Phys. Chem.C
– volume: 109
  start-page: 5541
  year: 1987
  end-page: 5542
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 293
  year: 1997
  end-page: 315
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 47 120
  start-page: 1492 1514
  year: 2008 2008
  end-page: 1495 1517
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 5764
  year: 2010
  end-page: 5766
  publication-title: Chem. Commun.
– volume: 328
  start-page: 224
  year: 2010
  end-page: 228
  publication-title: Science
– volume: 20
  start-page: 11636
  year: 2014
  end-page: 11639
  publication-title: Chem. Eur. J.
– volume: 20
  start-page: 1159
  year: 2014
  end-page: 1166
  publication-title: Chem. Eur. J.
– volume: 67
  start-page: 1
  year: 2012
  end-page: 48
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 14
  start-page: 11008
  year: 2012
  end-page: 11014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 1705
  year: 2010
  end-page: 1708
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 2022
  year: 2014
  end-page: 2028
  publication-title: ACS Catal.
– volume: 44 117
  start-page: 7132 7294
  year: 2005 2005
  end-page: 7135 7297
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 338
  start-page: 123
  year: 2013
  end-page: 180
  publication-title: Top. Curr. Chem.
– volume: 126
  start-page: 2732
  year: 2004
  end-page: 2737
  publication-title: J. Am. Chem. Soc.
– volume: 335
  start-page: 1209
  year: 2012
  end-page: 1212
  publication-title: Science
– volume: 14
  start-page: 5601
  year: 2012
  end-page: 5604
  publication-title: Phys. Chem. Chem. Phys.
– ident: e_1_2_4_34_2
  doi: 10.1021/jp510572d
– ident: e_1_2_4_7_2
  doi: 10.1126/science.1215864
– ident: e_1_2_4_37_2
  doi: 10.1021/jz100391j
– ident: e_1_2_4_4_2
  doi: 10.1021/ja039037k
– ident: e_1_2_4_10_2
– ident: e_1_2_4_28_2
  doi: 10.1002/chem.201405063
– ident: e_1_2_4_41_2
  doi: 10.1007/128_2012_371
– ident: e_1_2_4_26_2
  doi: 10.1002/cphc.201000407
– ident: e_1_2_4_21_2
  doi: 10.1021/ar2003094
– ident: e_1_2_4_25_2
  doi: 10.1039/b906449d
– ident: e_1_2_4_11_2
  doi: 10.1021/ja00252a049
– ident: e_1_2_4_32_2
  doi: 10.1021/cs500426a
– ident: e_1_2_4_6_2
  doi: 10.1038/nchem.1095
– ident: e_1_2_4_9_3
  doi: 10.1002/ange.200462473
– ident: e_1_2_4_15_2
  doi: 10.1016/S0079-6565(97)00007-1
– ident: e_1_2_4_31_2
  doi: 10.1039/c2cp40690j
– ident: e_1_2_4_40_2
  doi: 10.1038/srep00277
– ident: e_1_2_4_19_2
  doi: 10.1039/c2cp40272f
– ident: e_1_2_4_38_2
  doi: 10.1038/nchem.1721
– ident: e_1_2_4_8_3
  doi: 10.1002/ange.200502101
– ident: e_1_2_4_18_2
  doi: 10.1039/b409606a
– ident: e_1_2_4_36_2
  doi: 10.1002/cctc.201200414
– ident: e_1_2_4_24_3
  doi: 10.1002/ange.200704881
– ident: e_1_2_4_27_2
  doi: 10.1002/chem.201403604
– ident: e_1_2_4_29_2
– ident: e_1_2_4_33_2
  doi: 10.1039/C3CC44939D
– ident: e_1_2_4_1_2
– ident: e_1_2_4_17_2
  doi: 10.1021/ja984353y
– ident: e_1_2_4_2_2
  doi: 10.1038/nmat2384
– ident: e_1_2_4_13_2
  doi: 10.1021/ja00260a026
– ident: e_1_2_4_20_2
– ident: e_1_2_4_12_2
  doi: 10.1016/0009-2614(88)80002-2
– ident: e_1_2_4_3_2
  doi: 10.1126/science.1159639
– ident: e_1_2_4_23_2
– ident: e_1_2_4_14_2
– ident: e_1_2_4_16_2
  doi: 10.1021/om000391q
– ident: e_1_2_4_5_2
  doi: 10.1126/science.1185200
– ident: e_1_2_4_24_2
  doi: 10.1002/anie.200704881
– start-page: 101
  volume-title: Magnetic Resonance Microscopy. Spatially Resolved NMR Techniques and Applications
  year: 2008
  ident: e_1_2_4_39_2
  contributor:
    fullname: Kovtunov K. V.
– ident: e_1_2_4_8_2
  doi: 10.1002/anie.200502101
– ident: e_1_2_4_22_2
  doi: 10.1016/j.pnmrs.2012.03.001
– ident: e_1_2_4_9_2
  doi: 10.1002/anie.200462473
– ident: e_1_2_4_35_2
  doi: 10.1039/c0cc01411g
– ident: e_1_2_4_30_2
  doi: 10.1021/jp203398j
– ident: e_1_2_4_42_2
  doi: 10.1002/chem.201303020
SSID ssj0009633
Score 2.461037
Snippet A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and...
Abstract A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized,...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 7012
SubjectTerms Catalysis
Catalysts
Chemistry
Fluid dynamics
Gold
heterogeneous catalysis
Hydrogen storage
Hydrogenation
Multi wall carbon nanotubes
Nanotechnology
Nanotubes
NMR spectroscopy
Polarization
signal enhancement
Title Single-Atom Gold Catalysis in the Context of Developments in Parahydrogen-Induced Polarization
URI https://api.istex.fr/ark:/67375/WNG-6B922RHM-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201406664
https://www.ncbi.nlm.nih.gov/pubmed/25754067
https://www.proquest.com/docview/1674612306
https://search.proquest.com/docview/1675875848
https://search.proquest.com/docview/1786207340
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4AL5c2WgoyE4JQ26zi2cywL7QqpVVWo6M3yU0Jtk2qblQqn_gR-I7-EGWeTdhECCW6JbMev8fgbZ_wNIa9YBBVo8jKzylcZD2Cn2MKLjFeOq6gcMylKxN6-mB7xD8fl8Y1b_B0_xHDghisj6Wtc4MZebF2ThkKf8CY5GAiAwJEQdFxI9Ol6d3jNHwXS1cWS5zJDDtaetTFnW8vFl3alVRzgy99BzmUEm7agnTVi-sZ3nicnm_PWbrpvv_A6_k_v7pG7C3xKtzuBuk9uhfoBuT3pw8I9JPYjbHan4cfV9-22OaO7zamnEzwDQmoT-qWmgChp4ry6bGkT6Q2vpJR8gEfQX_2sAcmFj2DoEBc8PUATe3En9BE52nn_aTLNFoEaMpjQMc9AXypjgohOMAZPSlQqAnQAKCZsEEJGGZzwhcpNLmVEzsASUoxT3jDLiuIxWambOjwlVDjjxqW33IwrbkO0gE-Nj6UIKgbASiPypp8ofd7xceiOeZlpHDM9jNmIvE7zOGQzsxP0YpOl_ry_q8XbirHD6Z7OR2Sjn2i9WMAXGi9nIDNNDjW-HJJhqPF_iqlDM095SjD3FFd_yCPBZAQ1yqGaJ50QDQ0CbQl4WcgRYUkU_tIhjSQZw9v6vxR6Ru7Ac5kcNvkGWWln8_AcQFVrX6SF8xP8xRm5
link.rule.ids 315,783,787,1378,27938,27939,46310,46734
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZRLedOlBYyE4JQ26ziOcywL7QLdVVVawc3yU0ItCVqyUumJn8Bv5Jcw42xSFiGQ4JbEzsP2zPgbZ_wNIU9YABOo0zwx0pUJ9-CnmMyJhJeWyyAt0zFLxGQqxif89fu8iybEvTAtP0S_4IaaEe01KjguSO9csoZCo3ArOXgIAMH5VbIKOp8hff6Lo0sGKZCvNps8LxJkYe14G1O2s3z_0ry0il18_jvQuYxh4yS0d52Y7vPb2JPT7Xljtu3FL8yO_9W-G2R9AVHpbitTN8kVX90ia6MuM9xtYt7CfHfmv3_9ttvUH-l-feboCJeBkN2EfqgogEoaaa_OG1oH-lNgUiw-xFXoL25Wg_DCQzB7iPWOHqKXvdgWeoec7L08Ho2TRa6GBMZ0yBMwmVJrL4IVjMGRFKUMgB4AjQnjhShC4a1wmUx1WhQBaQNzKNFWOs0My7K7ZKWqK79BqLDaDnNnuB6W3PhgAKJqF3LhZfAAlwbkWTdS6lNLyaFa8mWmsM9U32cD8jQOZF9Nz04xkK3I1bvpvhLPS8aOxhOVDshWN9JqocOfFe7PQHKaFN74uC-GrsZfKrry9TzWycHjk1z-oU4BXiNYUg6vuddKUf9BYDABMotiQFiUhb80SCFPRn92_19uekTWxseTA3Xwavpmk1yD63mM3-RbZKWZzf0DwFiNeRi16AeNQR3V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVgIuvAsLBYyE4JQ263Uc51iWbpdHV6tCRW-WnxJqSaolKxVO_Qn9jfwSxs4m7SIEEtyS2Ilf4_E3zvgbgOfUowpUaZZoYYuEObRT9MDyhBWGCS8MVTFKxN6Ejw_Y28Ps8NIp_oYfottwCzMj6uswwU-s37ogDcU2hZPkaCAgAmdXYI1xhCoBFu1fEEiheDXB5FmeBBLWlrYxpVvL7y8tS2uhh09_hzmXIWxcg0Y3QbW1b1xPjjbntd40338hdvyf5t2CGwuASrYbiboNK668A9eGbVy4u6A_4Gp37H6cnW_X1ReyWx1bMgybQIHbhHwuCUJKEkmvTmtSeXLJLSkmT8Me9Dc7q1B08SMhdohxlkyDjb04FHoPDkY7H4fjZBGpIcER7bMEFaZQynFvOKV4JXghPGIHxGJcO85znzvD7UCkKs1zH0gDM0xRRlhFNR0M1mG1rEr3AAg3yvQzq5nqF0w7rxGgKusz7oR3CJZ68LIdKHnSEHLIhnqZytBnsuuzHryI49hlU7Oj4MaWZ_LTZFfyVwWl--M9mfZgox1ouZjBX2U4nRGoaVIs8VmXjF0dfqio0lXzmCdDe08w8Yc8OdqMqEcZFnO_EaKuQqguETDzvAc0isJfGiQDS0Z39_BfXnoKV6evR_L9m8m7R3AdH2fReZNtwGo9m7vHCLBq_STOoZ_8KBx7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Atom+Gold+Catalysis+in+the+Context+of+Developments+in+Parahydrogen-Induced+Polarization&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Corma%2C+Avelino&rft.au=Salnikov%2C+Oleg+G&rft.au=Barskiy%2C+Danila+A&rft.au=Kovtunov%2C+Kirill+V&rft.date=2015-05-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=19&rft.spage=7012&rft_id=info:doi/10.1002%2Fchem.201406664&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3661234941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon