Single-Atom Gold Catalysis in the Context of Developments in Parahydrogen-Induced Polarization
A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen to maximize the polarization level and the contributio...
Saved in:
Published in | Chemistry : a European journal Vol. 21; no. 19; pp. 7012 - 7015 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
04.05.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3‐butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed.
The hydrogens went in 2 by 2: Hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen is carried out by using a highly isolated heterogeneous monoatomic gold catalyst supported on multiwalled carbon nanotubes. The percentage of pairwise hydrogen addition is found to be approximately 10 % for this catalyst in which the catalytically active center is a single atom. |
---|---|
AbstractList | A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3-butadiene and 1-butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3-butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed. The hydrogens went in 2 by 2: Hydrogenation of 1,3-butadiene and 1-butyne with parahydrogen is carried out by using a highly isolated heterogeneous monoatomic gold catalyst supported on multiwalled carbon nanotubes. The percentage of pairwise hydrogen addition is found to be approximately 10% for this catalyst in which the catalytically active center is a single atom. A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3‐butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed. The hydrogens went in 2 by 2: Hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen is carried out by using a highly isolated heterogeneous monoatomic gold catalyst supported on multiwalled carbon nanotubes. The percentage of pairwise hydrogen addition is found to be approximately 10 % for this catalyst in which the catalytically active center is a single atom. A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3-butadiene and 1-butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3-butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed. Abstract A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3‐butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed. |
Author | Koptyug, Igor V. Barskiy, Danila A. Corma, Avelino Salnikov, Oleg G. Kovtunov, Kirill V. |
Author_xml | – sequence: 1 givenname: Avelino surname: Corma fullname: Corma, Avelino organization: Instituto de Tecnologia Quimica UPV-CSIC, Avda. de los Naranjos, s/n, 46022 Valencia (Spain) – sequence: 2 givenname: Oleg G. surname: Salnikov fullname: Salnikov, Oleg G. organization: Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Insitutskaya Street, 3 A, 630090, Novosibirsk (Russia) and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia), Fax: (+7) 383-3331399 – sequence: 3 givenname: Danila A. surname: Barskiy fullname: Barskiy, Danila A. organization: Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Insitutskaya Street, 3 A, 630090, Novosibirsk (Russia) and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia), Fax: (+7) 383-3331399 – sequence: 4 givenname: Kirill V. surname: Kovtunov fullname: Kovtunov, Kirill V. email: kovtunov@tomo.nsc.ru organization: Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Insitutskaya Street, 3 A, 630090, Novosibirsk (Russia) and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia), Fax: (+7) 383-3331399 – sequence: 5 givenname: Igor V. surname: Koptyug fullname: Koptyug, Igor V. organization: Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Insitutskaya Street, 3 A, 630090, Novosibirsk (Russia) and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia), Fax: (+7) 383-3331399 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25754067$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v0zAchi00xLrBlSOKxIVLij_ijxxHGO2kDSY-xA3LTX5ZPRy72AlQ_npcOirEZZIlW3qf95Gs9wQd-eABoacEzwnG9GW7hmFOMamwEKJ6gGaEU1IyKfgRmuG6kqXgrD5GJyndYoxrwdgjdEy55LkhZ-jLB-tvHJRnYxiKRXBd0ZjRuG2yqbC-GNdQNMGP8HMsQl-8hu_gwmYAP_6Jr000620Xww348sJ3UwtdcR2cifaXGW3wj9HD3rgET-7uU_TpzfnHZllevltcNGeXZVspUpWEEGUMiL4VlOaXErXqSU4YFysQQvYSWtExhQ2Wsue1ojwnplWdoSvK2Cl6sfduYvg2QRr1YFMLzhkPYUqaSCUolqzC96NCcpVPpTL6_D_0NkzR54_sqEoQyrDI1HxPtTGkFKHXm2gHE7eaYL0bSe9G0oeRcuHZnXZaDdAd8L-rZKDeAz-sg-09Ot0sz6_-lZf7rk15tUPXxK86myXXn98utHhVU_p-eaUx-w3uIa0- |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1039_C9EE04040D crossref_primary_10_1021_acscatal_7b00520 crossref_primary_10_1016_S1872_2067_20_63743_3 crossref_primary_10_1002_ange_201506045 crossref_primary_10_1016_j_mattod_2023_05_022 crossref_primary_10_1016_j_mcat_2021_111761 crossref_primary_10_1039_D2CS00806H crossref_primary_10_1007_s12274_023_5616_z crossref_primary_10_1039_C9CP02913C crossref_primary_10_1002_ange_201711842 crossref_primary_10_1039_C9FD00138G crossref_primary_10_1039_C5CP04223B crossref_primary_10_1007_s40820_019_0349_y crossref_primary_10_1002_ange_201602801 crossref_primary_10_1039_D2CY00615D crossref_primary_10_1021_acscatal_5b02632 crossref_primary_10_1002_advs_201801471 crossref_primary_10_1002_asia_201800125 crossref_primary_10_31857_S2686953522600933 crossref_primary_10_1002_chem_201603884 crossref_primary_10_1021_acscatal_3c00513 crossref_primary_10_1002_cphc_201800690 crossref_primary_10_1016_j_jcat_2018_07_004 crossref_primary_10_1021_acscatal_3c05968 crossref_primary_10_1021_acs_chemrev_7b00776 crossref_primary_10_1021_acscatal_1c01200 crossref_primary_10_1016_j_chempr_2018_12_011 crossref_primary_10_1002_cctc_201801174 crossref_primary_10_1039_C7SC00686A crossref_primary_10_1038_s41929_022_00874_4 crossref_primary_10_1002_anie_201602801 crossref_primary_10_1002_cphc_202200072 crossref_primary_10_1002_aenm_201701343 crossref_primary_10_1002_cctc_201701431 crossref_primary_10_1007_s10311_017_0679_2 crossref_primary_10_1021_acs_chemrev_2c00534 crossref_primary_10_1002_anie_201711842 crossref_primary_10_1039_C8TA11528A crossref_primary_10_1039_C7CP00352H crossref_primary_10_1515_pac_2020_0203 crossref_primary_10_1016_S1872_2067_17_62872_9 crossref_primary_10_1134_S0012501623600237 crossref_primary_10_1021_acs_jpcc_8b06281 crossref_primary_10_1002_cctc_202101266 crossref_primary_10_1021_acs_jpcc_4c00651 crossref_primary_10_1016_j_pmatsci_2022_101044 crossref_primary_10_1039_C8CP07625A crossref_primary_10_1021_acs_organomet_6b00869 crossref_primary_10_1038_s41570_024_00578_2 crossref_primary_10_1021_acscatal_6b01534 crossref_primary_10_1002_anie_201506045 crossref_primary_10_1021_acscatal_2c05659 crossref_primary_10_1039_C7CY01136A crossref_primary_10_1021_acscatal_9b01425 crossref_primary_10_1002_cey2_382 crossref_primary_10_1007_s11244_016_0688_6 crossref_primary_10_1021_acs_jpcc_3c05059 crossref_primary_10_1039_D3CC01803B crossref_primary_10_1002_chem_201705644 crossref_primary_10_1016_j_ijhydene_2023_01_213 crossref_primary_10_1021_acs_chemrev_0c00818 crossref_primary_10_1002_chem_201603974 crossref_primary_10_1039_D1EE00247C crossref_primary_10_1002_cctc_201701653 crossref_primary_10_1002_cphc_202100153 crossref_primary_10_1016_j_fuel_2019_115845 |
Cites_doi | 10.1021/jp510572d 10.1126/science.1215864 10.1021/jz100391j 10.1021/ja039037k 10.1002/chem.201405063 10.1007/128_2012_371 10.1002/cphc.201000407 10.1021/ar2003094 10.1039/b906449d 10.1021/ja00252a049 10.1021/cs500426a 10.1038/nchem.1095 10.1002/ange.200462473 10.1016/S0079-6565(97)00007-1 10.1039/c2cp40690j 10.1038/srep00277 10.1039/c2cp40272f 10.1038/nchem.1721 10.1002/ange.200502101 10.1039/b409606a 10.1002/cctc.201200414 10.1002/ange.200704881 10.1002/chem.201403604 10.1039/C3CC44939D 10.1021/ja984353y 10.1038/nmat2384 10.1021/ja00260a026 10.1016/0009-2614(88)80002-2 10.1126/science.1159639 10.1021/om000391q 10.1126/science.1185200 10.1002/anie.200704881 10.1002/anie.200502101 10.1016/j.pnmrs.2012.03.001 10.1002/anie.200462473 10.1039/c0cc01411g 10.1021/jp203398j 10.1002/chem.201303020 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201406664 |
DatabaseName | Istex PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 7015 |
ExternalDocumentID | 3661234941 10_1002_chem_201406664 25754067 CHEM201406664 ark_67375_WNG_6B922RHM_0 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Russian Science Foundation funderid: 14–13–00445 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABDBF ABHUG ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHBTC AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AITYG HGLYW OIG NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4814-1118aae6fc6228aa8698f1814356be667f7ec6d380a077f5982556bac8da2b233 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Fri Aug 16 08:45:15 EDT 2024 Fri Aug 16 07:35:21 EDT 2024 Thu Oct 10 15:47:43 EDT 2024 Fri Aug 23 03:32:07 EDT 2024 Sat Sep 28 08:05:55 EDT 2024 Sat Aug 24 00:52:39 EDT 2024 Wed Jan 17 05:02:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | gold heterogeneous catalysis NMR spectroscopy hydrogenation signal enhancement |
Language | English |
License | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4814-1118aae6fc6228aa8698f1814356be667f7ec6d380a077f5982556bac8da2b233 |
Notes | ArticleID:CHEM201406664 istex:C5DE265C855240F8FB0BBFF7369CE231EAF309DE ark:/67375/WNG-6B922RHM-0 Russian Science Foundation - No. 14-13-00445 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25754067 |
PQID | 1674612306 |
PQPubID | 986340 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1786207340 proquest_miscellaneous_1675875848 proquest_journals_1674612306 crossref_primary_10_1002_chem_201406664 pubmed_primary_25754067 wiley_primary_10_1002_chem_201406664_CHEM201406664 istex_primary_ark_67375_WNG_6B922RHM_0 |
PublicationCentury | 2000 |
PublicationDate | May 4, 2015 |
PublicationDateYYYYMMDD | 2015-05-04 |
PublicationDate_xml | – month: 05 year: 2015 text: May 4, 2015 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | C. R. Bowers, D. P. Weitekamp, J. Am. Chem. Soc. 1987, 109, 5541-5542 Angew. Chem. 2005, 117, 7294-7297. G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos, E. C. H. Sykes, Science 2012, 335, 1209-1212. K. V. Kovtunov, V. V. Zhivonitko, I. V. Skovpin, D. A. Barskiy, I. V. Koptyug, Top. Curr. Chem. 2013, 338, 123-180. K. Judai, S. Abbet, A. S. Worz, U. Heiz, C. R. Henry, J. Am. Chem. Soc. 2004, 126, 2732-2737 I. Koptyug, V. Zhivonitko, K. Kovtunov, ChemPhysChem 2010, 11, 3086-3088 D. Barskiy, O. Salnikov, K. Kovtunov, I. Koptyug, J. Phys. Chem. A 2015, 119, 996-1006. V. Zhivonitko, K. Kovtunov, I. Beck, A. Ayupov, V. Bukhtiyarov, I. Koptyug, J. Phys. Chem.C 2011, 115, 13386-13391 D. Blazina, S. B. Duckett, J. P. Dunne, C. Godard, Dalton Trans. 2004, 2601-2609 R. Sharma, L.-S. Bouchard, Sci. Rep. 2012, 2, 277. K. V. Kovtunov, D. A. Barskiy, A. M. Coffey, M. L. Truong, O. G. Salnikov, A. K. Khudorozhkov, E. A. Inozemceva, I. P. Prosvirin, V. I. Bukhtiyarov, K. W. Waddell, E. Y. Chekmenev, I. V. Koptyug, Chem. Eur. J. 2014, 20, 11636-11639 K. Kovtunov, V. Zhivonitko, A. Corma, I. Koptyug, J. Phys. Chem. Lett. 2010, 1, 1705-1708. S. Vajda, M. J. Pellin, J. P. Greeley, C. L. Marshall, L. A. Curtiss, G. A. Ballentine, J. W. Elam, S. Catillon-Mucherie, P. C. Redfern, F. Mehmood, P. Zapol, Nat. Mater. 2009, 8, 213-216 A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon, G. J. Hutchings, Science 2008, 321, 1331-1335 X. Zhang, H. Shi, B.-Q. Xu, Angew. Chem. Int. Ed. 2005, 44, 7132-7135 T. C. Eisenschmid, R. U. Kirss, P. P. Deutsch, S. I. Hommeltoft, R. Eisenberg, J. Bargon, R. G. Lawler, A. L. Balch, J. Am. Chem. Soc. 1987, 109, 8089-8091. T. Trantzschel, J. Bernarding, M. Plaumann, D. Lego, T. Gutmann, T. Ratajczyk, S. Dillenberger, G. Buntkowsky, J. Bargon, U. Bommerich, Phys. Chem. Chem. Phys. 2012, 14, 5601-5604. K. V. Kovtunov, I. V. Koptyug in Magnetic Resonance Microscopy. Spatially Resolved NMR Techniques and Applications (Eds.: S. Codd, J. Seymour), Wiley-VCH, Weinheim, 2008, pp. 101-115. J. M. Thomas, R. Raja, D. W. Lewis, Angew. Chem. Int. Ed. 2005, 44, 6456-6482 K. V. Kovtunov, I. E. Beck, V. I. Bukhtiyarov, I. V. Koptyug, Angew. Chem. Int. Ed. 2008, 47, 1492-1495 J. Natterer, J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 293-315 K. Kovtunov, D. Barskiy, O. Salnikov, A. Khudorozhkov, V. Bukhtiyarov, I. Prosvirin, I. Koptyug, Chem. Commun. 2014, 50, 875-878 Y. Lei, F. Mehmood, S. Lee, J. Greeley, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, R. J. Meyer, P. C. Redfern, D. Teschner, R. Schlögl, M. J. Pellin, L. A. Curtiss, S. Vajda, Science 2010, 328, 224-228. S. Abdulhussain, H. Breitzke, T. Ratajczyk, A. Grünberg, M. Srour, D. Arnaut, H. Weidler, U. Kunz, H. J. Kleebe, U. Bommerich, J. Bernarding, T. Gutmann, G. Buntkowsky, Chem. Eur. J. 2014, 20, 1159-1166. M. G. Pravica, D. P. Weitekamp, Chem. Phys. Lett. 1988, 145, 255-258 K. V. Kovtunov, V. V. Zhivonitko, L. Kiwi-Minsker, I. V. Koptyug, Chem. Commun. 2010, 46, 5764-5766. A. Corma, P. Concepcion, M. Boronat, M. Sabater, J. Navas, M. Yacaman, E. Larios, A. Posadas, M. Lopez-Quintela, D. Buceta, E. Mendoza, G. Guilera, A. Mayoral, Nat. Chem. 2013, 5, 775-778. D. A. Barskiy, K. V. Kovtunov, A. Primo, A. Corma, R. Kaptein, I. V. Koptyug, ChemCatChem 2012, 4, 2031-2035. B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634-641. P. Hübler, R. Giernoth, G. Kümmerle, J. Bargon, J. Am. Chem. Soc. 1999, 121, 5311-5318 Angew. Chem. 2005, 117, 6614-6641. S. M. Oldham, J. F. Houlis, C. Sleigh, S. B. Duckett, R. Eisenberg, Organometallics 2000, 19, 2985-2993 O. Salnikov, K. Kovtunov, D. Barskiy, A. Khudorozhkov, E. Inozemtseva, I. Prosvirin, V. Bukhtiyarov, I. Koptyug, ACS Catal. 2014, 4, 2022-2028 Angew. Chem. 2008, 120, 1514-1517 K. Kovtunov, I. Beck, V. Zhivonitko, D. Barskiy, V. Bukhtiyarov, I. Koptyug, Phys. Chem. Chem. Phys. 2012, 14, 11008-11014 R. A. Green, R. W. Adams, S. B. Duckett, R. E. Mewis, D. C. Williamson, G. G. R. Green, Prog. Nucl. Magn. Reson. Spectrosc. 2012, 67, 1-48. S. B. Duckett, R. E. Mewis, Acc. Chem. Res. 2012, 45, 1247-1257 A. M. Balu, S. B. Duckett, R. Luque, Dalton Trans. 2009, 5074-5076 K. Kovtunov, M. Truong, D. Barskiy, I. Koptyug, K. Waddell, E. Chekmenev, Chem. Eur. J. 2014, 20, 14629-14632. 2010; 11 2011; 115 2004; 126 2010; 328 1987; 109 2009 1999; 121 2008 1988; 145 2004 2008 2008; 47 120 2008; 321 2012; 14 2011; 3 2013; 5 2014; 20 2012; 2 2000; 19 2014; 4 2010; 1 2010; 46 1997; 31 2013; 338 2009; 8 2005 2005; 44 117 2015; 119 2012; 335 2012; 45 2012; 67 2014; 50 2012; 4 e_1_2_4_40_2 e_1_2_4_20_2 e_1_2_4_22_2 e_1_2_4_41_2 e_1_2_4_21_2 e_1_2_4_42_2 e_1_2_4_24_2 e_1_2_4_23_2 e_1_2_4_26_2 e_1_2_4_24_3 e_1_2_4_25_2 e_1_2_4_28_2 e_1_2_4_27_2 e_1_2_4_29_2 Kovtunov K. V. (e_1_2_4_39_2) 2008 e_1_2_4_2_2 e_1_2_4_1_2 e_1_2_4_4_2 e_1_2_4_3_2 e_1_2_4_6_2 e_1_2_4_5_2 e_1_2_4_8_2 e_1_2_4_7_2 e_1_2_4_9_3 e_1_2_4_8_3 e_1_2_4_9_2 e_1_2_4_31_2 e_1_2_4_30_2 e_1_2_4_10_2 e_1_2_4_33_2 e_1_2_4_11_2 e_1_2_4_32_2 e_1_2_4_12_2 e_1_2_4_35_2 e_1_2_4_13_2 e_1_2_4_34_2 e_1_2_4_14_2 e_1_2_4_37_2 e_1_2_4_15_2 e_1_2_4_36_2 e_1_2_4_17_2 e_1_2_4_16_2 e_1_2_4_38_2 e_1_2_4_19_2 e_1_2_4_18_2 |
References_xml | – volume: 121 start-page: 5311 year: 1999 end-page: 5318 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2031 year: 2012 end-page: 2035 publication-title: ChemCatChem – start-page: 2601 year: 2004 end-page: 2609 publication-title: Dalton Trans. – volume: 19 start-page: 2985 year: 2000 end-page: 2993 publication-title: Organometallics – volume: 145 start-page: 255 year: 1988 end-page: 258 publication-title: Chem. Phys. Lett. – volume: 119 start-page: 996 year: 2015 end-page: 1006 publication-title: J. Phys. Chem. A – volume: 321 start-page: 1331 year: 2008 end-page: 1335 publication-title: Science – volume: 8 start-page: 213 year: 2009 end-page: 216 publication-title: Nat. Mater. – volume: 109 start-page: 8089 year: 1987 end-page: 8091 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 1247 year: 2012 end-page: 1257 publication-title: Acc. Chem. Res. – volume: 20 start-page: 14629 year: 2014 end-page: 14632 publication-title: Chem. Eur. J. – volume: 50 start-page: 875 year: 2014 end-page: 878 publication-title: Chem. Commun. – start-page: 5074 year: 2009 end-page: 5076 publication-title: Dalton Trans. – volume: 44 117 start-page: 6456 6614 year: 2005 2005 end-page: 6482 6641 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 3086 year: 2010 end-page: 3088 publication-title: ChemPhysChem – start-page: 101 year: 2008 end-page: 115 – volume: 2 start-page: 277 year: 2012 publication-title: Sci. Rep. – volume: 3 start-page: 634 year: 2011 end-page: 641 publication-title: Nat. Chem. – volume: 5 start-page: 775 year: 2013 end-page: 778 publication-title: Nat. Chem. – volume: 115 start-page: 13386 year: 2011 end-page: 13391 publication-title: J. Phys. Chem.C – volume: 109 start-page: 5541 year: 1987 end-page: 5542 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 293 year: 1997 end-page: 315 publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 47 120 start-page: 1492 1514 year: 2008 2008 end-page: 1495 1517 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 5764 year: 2010 end-page: 5766 publication-title: Chem. Commun. – volume: 328 start-page: 224 year: 2010 end-page: 228 publication-title: Science – volume: 20 start-page: 11636 year: 2014 end-page: 11639 publication-title: Chem. Eur. J. – volume: 20 start-page: 1159 year: 2014 end-page: 1166 publication-title: Chem. Eur. J. – volume: 67 start-page: 1 year: 2012 end-page: 48 publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 14 start-page: 11008 year: 2012 end-page: 11014 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 1705 year: 2010 end-page: 1708 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 2022 year: 2014 end-page: 2028 publication-title: ACS Catal. – volume: 44 117 start-page: 7132 7294 year: 2005 2005 end-page: 7135 7297 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 338 start-page: 123 year: 2013 end-page: 180 publication-title: Top. Curr. Chem. – volume: 126 start-page: 2732 year: 2004 end-page: 2737 publication-title: J. Am. Chem. Soc. – volume: 335 start-page: 1209 year: 2012 end-page: 1212 publication-title: Science – volume: 14 start-page: 5601 year: 2012 end-page: 5604 publication-title: Phys. Chem. Chem. Phys. – ident: e_1_2_4_34_2 doi: 10.1021/jp510572d – ident: e_1_2_4_7_2 doi: 10.1126/science.1215864 – ident: e_1_2_4_37_2 doi: 10.1021/jz100391j – ident: e_1_2_4_4_2 doi: 10.1021/ja039037k – ident: e_1_2_4_10_2 – ident: e_1_2_4_28_2 doi: 10.1002/chem.201405063 – ident: e_1_2_4_41_2 doi: 10.1007/128_2012_371 – ident: e_1_2_4_26_2 doi: 10.1002/cphc.201000407 – ident: e_1_2_4_21_2 doi: 10.1021/ar2003094 – ident: e_1_2_4_25_2 doi: 10.1039/b906449d – ident: e_1_2_4_11_2 doi: 10.1021/ja00252a049 – ident: e_1_2_4_32_2 doi: 10.1021/cs500426a – ident: e_1_2_4_6_2 doi: 10.1038/nchem.1095 – ident: e_1_2_4_9_3 doi: 10.1002/ange.200462473 – ident: e_1_2_4_15_2 doi: 10.1016/S0079-6565(97)00007-1 – ident: e_1_2_4_31_2 doi: 10.1039/c2cp40690j – ident: e_1_2_4_40_2 doi: 10.1038/srep00277 – ident: e_1_2_4_19_2 doi: 10.1039/c2cp40272f – ident: e_1_2_4_38_2 doi: 10.1038/nchem.1721 – ident: e_1_2_4_8_3 doi: 10.1002/ange.200502101 – ident: e_1_2_4_18_2 doi: 10.1039/b409606a – ident: e_1_2_4_36_2 doi: 10.1002/cctc.201200414 – ident: e_1_2_4_24_3 doi: 10.1002/ange.200704881 – ident: e_1_2_4_27_2 doi: 10.1002/chem.201403604 – ident: e_1_2_4_29_2 – ident: e_1_2_4_33_2 doi: 10.1039/C3CC44939D – ident: e_1_2_4_1_2 – ident: e_1_2_4_17_2 doi: 10.1021/ja984353y – ident: e_1_2_4_2_2 doi: 10.1038/nmat2384 – ident: e_1_2_4_13_2 doi: 10.1021/ja00260a026 – ident: e_1_2_4_20_2 – ident: e_1_2_4_12_2 doi: 10.1016/0009-2614(88)80002-2 – ident: e_1_2_4_3_2 doi: 10.1126/science.1159639 – ident: e_1_2_4_23_2 – ident: e_1_2_4_14_2 – ident: e_1_2_4_16_2 doi: 10.1021/om000391q – ident: e_1_2_4_5_2 doi: 10.1126/science.1185200 – ident: e_1_2_4_24_2 doi: 10.1002/anie.200704881 – start-page: 101 volume-title: Magnetic Resonance Microscopy. Spatially Resolved NMR Techniques and Applications year: 2008 ident: e_1_2_4_39_2 contributor: fullname: Kovtunov K. V. – ident: e_1_2_4_8_2 doi: 10.1002/anie.200502101 – ident: e_1_2_4_22_2 doi: 10.1016/j.pnmrs.2012.03.001 – ident: e_1_2_4_9_2 doi: 10.1002/anie.200462473 – ident: e_1_2_4_35_2 doi: 10.1039/c0cc01411g – ident: e_1_2_4_30_2 doi: 10.1021/jp203398j – ident: e_1_2_4_42_2 doi: 10.1002/chem.201303020 |
SSID | ssj0009633 |
Score | 2.461037 |
Snippet | A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and... Abstract A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized,... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7012 |
SubjectTerms | Catalysis Catalysts Chemistry Fluid dynamics Gold heterogeneous catalysis Hydrogen storage Hydrogenation Multi wall carbon nanotubes Nanotechnology Nanotubes NMR spectroscopy Polarization signal enhancement |
Title | Single-Atom Gold Catalysis in the Context of Developments in Parahydrogen-Induced Polarization |
URI | https://api.istex.fr/ark:/67375/WNG-6B922RHM-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201406664 https://www.ncbi.nlm.nih.gov/pubmed/25754067 https://www.proquest.com/docview/1674612306 https://search.proquest.com/docview/1675875848 https://search.proquest.com/docview/1786207340 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4AL5c2WgoyE4JQ26zi2cywL7QqpVVWo6M3yU0Jtk2qblQqn_gR-I7-EGWeTdhECCW6JbMev8fgbZ_wNIa9YBBVo8jKzylcZD2Cn2MKLjFeOq6gcMylKxN6-mB7xD8fl8Y1b_B0_xHDghisj6Wtc4MZebF2ThkKf8CY5GAiAwJEQdFxI9Ol6d3jNHwXS1cWS5zJDDtaetTFnW8vFl3alVRzgy99BzmUEm7agnTVi-sZ3nicnm_PWbrpvv_A6_k_v7pG7C3xKtzuBuk9uhfoBuT3pw8I9JPYjbHan4cfV9-22OaO7zamnEzwDQmoT-qWmgChp4ry6bGkT6Q2vpJR8gEfQX_2sAcmFj2DoEBc8PUATe3En9BE52nn_aTLNFoEaMpjQMc9AXypjgohOMAZPSlQqAnQAKCZsEEJGGZzwhcpNLmVEzsASUoxT3jDLiuIxWambOjwlVDjjxqW33IwrbkO0gE-Nj6UIKgbASiPypp8ofd7xceiOeZlpHDM9jNmIvE7zOGQzsxP0YpOl_ry_q8XbirHD6Z7OR2Sjn2i9WMAXGi9nIDNNDjW-HJJhqPF_iqlDM095SjD3FFd_yCPBZAQ1yqGaJ50QDQ0CbQl4WcgRYUkU_tIhjSQZw9v6vxR6Ru7Ac5kcNvkGWWln8_AcQFVrX6SF8xP8xRm5 |
link.rule.ids | 315,783,787,1378,27938,27939,46310,46734 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZRLedOlBYyE4JQ26ziOcywL7QLdVVVawc3yU0ItCVqyUumJn8Bv5Jcw42xSFiGQ4JbEzsP2zPgbZ_wNIU9YABOo0zwx0pUJ9-CnmMyJhJeWyyAt0zFLxGQqxif89fu8iybEvTAtP0S_4IaaEe01KjguSO9csoZCo3ArOXgIAMH5VbIKOp8hff6Lo0sGKZCvNps8LxJkYe14G1O2s3z_0ry0il18_jvQuYxh4yS0d52Y7vPb2JPT7Xljtu3FL8yO_9W-G2R9AVHpbitTN8kVX90ia6MuM9xtYt7CfHfmv3_9ttvUH-l-feboCJeBkN2EfqgogEoaaa_OG1oH-lNgUiw-xFXoL25Wg_DCQzB7iPWOHqKXvdgWeoec7L08Ho2TRa6GBMZ0yBMwmVJrL4IVjMGRFKUMgB4AjQnjhShC4a1wmUx1WhQBaQNzKNFWOs0My7K7ZKWqK79BqLDaDnNnuB6W3PhgAKJqF3LhZfAAlwbkWTdS6lNLyaFa8mWmsM9U32cD8jQOZF9Nz04xkK3I1bvpvhLPS8aOxhOVDshWN9JqocOfFe7PQHKaFN74uC-GrsZfKrry9TzWycHjk1z-oU4BXiNYUg6vuddKUf9BYDABMotiQFiUhb80SCFPRn92_19uekTWxseTA3Xwavpmk1yD63mM3-RbZKWZzf0DwFiNeRi16AeNQR3V |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVgIuvAsLBYyE4JQ263Uc51iWbpdHV6tCRW-WnxJqSaolKxVO_Qn9jfwSxs4m7SIEEtyS2Ilf4_E3zvgbgOfUowpUaZZoYYuEObRT9MDyhBWGCS8MVTFKxN6Ejw_Y28Ps8NIp_oYfottwCzMj6uswwU-s37ogDcU2hZPkaCAgAmdXYI1xhCoBFu1fEEiheDXB5FmeBBLWlrYxpVvL7y8tS2uhh09_hzmXIWxcg0Y3QbW1b1xPjjbntd40338hdvyf5t2CGwuASrYbiboNK668A9eGbVy4u6A_4Gp37H6cnW_X1ReyWx1bMgybQIHbhHwuCUJKEkmvTmtSeXLJLSkmT8Me9Dc7q1B08SMhdohxlkyDjb04FHoPDkY7H4fjZBGpIcER7bMEFaZQynFvOKV4JXghPGIHxGJcO85znzvD7UCkKs1zH0gDM0xRRlhFNR0M1mG1rEr3AAg3yvQzq5nqF0w7rxGgKusz7oR3CJZ68LIdKHnSEHLIhnqZytBnsuuzHryI49hlU7Oj4MaWZ_LTZFfyVwWl--M9mfZgox1ouZjBX2U4nRGoaVIs8VmXjF0dfqio0lXzmCdDe08w8Yc8OdqMqEcZFnO_EaKuQqguETDzvAc0isJfGiQDS0Z39_BfXnoKV6evR_L9m8m7R3AdH2fReZNtwGo9m7vHCLBq_STOoZ_8KBx7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Atom+Gold+Catalysis+in+the+Context+of+Developments+in+Parahydrogen-Induced+Polarization&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Corma%2C+Avelino&rft.au=Salnikov%2C+Oleg+G&rft.au=Barskiy%2C+Danila+A&rft.au=Kovtunov%2C+Kirill+V&rft.date=2015-05-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=21&rft.issue=19&rft.spage=7012&rft_id=info:doi/10.1002%2Fchem.201406664&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3661234941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |