Interaction of coronavirus nucleocapsid protein with the 5′‐ and 3′‐ends of the coronavirus genome is involved in genome circularization and negative‐strand RNA synthesis

Synthesis of the negative‐strand ((−)‐strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)‐defective interfering (DI) RNA, we showed that (a)...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 286; no. 16; pp. 3222 - 3239
Main Authors Lo, Chen‐Yu, Tsai, Tsung‐Lin, Lin, Chao‐Nan, Lin, Ching‐Hung, Wu, Hung‐Yi
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.08.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthesis of the negative‐strand ((−)‐strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)‐defective interfering (DI) RNA, we showed that (a) a poly(A) tail with a length of 15 nucleotides (nt) was sufficient to initiate efficient (−)‐strand RNA synthesis and (b) substitution of the poly(A) tail with poly(U), (C) or (G) only slightly decreased the efficiency of (−)‐strand synthesis. The findings indicate that in addition to the poly(A) tail, other factors acting in trans may also participate in (−)‐strand synthesis. The BCoV nucleocapsid (N) protein, an RNA‐binding protein, was therefore tested as a candidate. Based on dissociation constant (Kd) values, it was found that the binding affinity between N protein, but not poly(A)‐binding protein, and the 3′‐terminal 55 nt plus a poly(A), poly(U), poly(C) or poly(G) tail correlates with the efficiency of (−)‐strand synthesis. Such an association was also evidenced by the binding affinity between the N protein and 5′‐ and 3′‐terminal cis‐acting elements important for (−)‐strand synthesis. Further analysis demonstrated that N protein can act as a bridge to facilitate interaction between the 5′‐ and 3′‐ends of the CoV genome, leading to circularization of the genome. Together, the current study extends our understanding of the mechanism of CoV (−)‐strand RNA synthesis through involvement of N protein and genome circularization and thus may explain why the addition of N protein in trans is required for efficient CoV replication. In the initial stage of coronavirus (CoV) (−)‐strand RNA synthesis, binding of the CoV N protein to the 5′‐ and 3′‐terminal structures of (+)‐strand CoV genome leads to circularization of the genome, serving as a platform to recruit cellular proteins and viral replicase proteins including RNA‐dependent RNA polymerase. This then initiates (−)‐strand RNA synthesis.
AbstractList Synthesis of the negative‐strand ((−)‐strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)‐defective interfering (DI) RNA, we showed that (a) a poly(A) tail with a length of 15 nucleotides (nt) was sufficient to initiate efficient (−)‐strand RNA synthesis and (b) substitution of the poly(A) tail with poly(U), (C) or (G) only slightly decreased the efficiency of (−)‐strand synthesis. The findings indicate that in addition to the poly(A) tail, other factors acting in trans may also participate in (−)‐strand synthesis. The BCoV nucleocapsid (N) protein, an RNA‐binding protein, was therefore tested as a candidate. Based on dissociation constant (Kd) values, it was found that the binding affinity between N protein, but not poly(A)‐binding protein, and the 3′‐terminal 55 nt plus a poly(A), poly(U), poly(C) or poly(G) tail correlates with the efficiency of (−)‐strand synthesis. Such an association was also evidenced by the binding affinity between the N protein and 5′‐ and 3′‐terminal cis‐acting elements important for (−)‐strand synthesis. Further analysis demonstrated that N protein can act as a bridge to facilitate interaction between the 5′‐ and 3′‐ends of the CoV genome, leading to circularization of the genome. Together, the current study extends our understanding of the mechanism of CoV (−)‐strand RNA synthesis through involvement of N protein and genome circularization and thus may explain why the addition of N protein in trans is required for efficient CoV replication. In the initial stage of coronavirus (CoV) (−)‐strand RNA synthesis, binding of the CoV N protein to the 5′‐ and 3′‐terminal structures of (+)‐strand CoV genome leads to circularization of the genome, serving as a platform to recruit cellular proteins and viral replicase proteins including RNA‐dependent RNA polymerase. This then initiates (−)‐strand RNA synthesis.
Synthesis of the negative‐strand ((−)‐strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)‐defective interfering (DI) RNA, we showed that (a) a poly(A) tail with a length of 15 nucleotides (nt) was sufficient to initiate efficient (−)‐strand RNA synthesis and (b) substitution of the poly(A) tail with poly(U), (C) or (G) only slightly decreased the efficiency of (−)‐strand synthesis. The findings indicate that in addition to the poly(A) tail, other factors acting in trans may also participate in (−)‐strand synthesis. The BCoV nucleocapsid (N) protein, an RNA‐binding protein, was therefore tested as a candidate. Based on dissociation constant (K d ) values, it was found that the binding affinity between N protein, but not poly(A)‐binding protein, and the 3′‐terminal 55 nt plus a poly(A), poly(U), poly(C) or poly(G) tail correlates with the efficiency of (−)‐strand synthesis. Such an association was also evidenced by the binding affinity between the N protein and 5′‐ and 3′‐terminal cis ‐acting elements important for (−)‐strand synthesis. Further analysis demonstrated that N protein can act as a bridge to facilitate interaction between the 5′‐ and 3′‐ends of the CoV genome, leading to circularization of the genome. Together, the current study extends our understanding of the mechanism of CoV (−)‐strand RNA synthesis through involvement of N protein and genome circularization and thus may explain why the addition of N protein in trans is required for efficient CoV replication. In the initial stage of coronavirus (CoV) (−)‐strand RNA synthesis, binding of the CoV N protein to the 5′‐ and 3′‐terminal structures of (+)‐strand CoV genome leads to circularization of the genome, serving as a platform to recruit cellular proteins and viral replicase proteins including RNA‐dependent RNA polymerase. This then initiates (−)‐strand RNA synthesis.
Synthesis of the negative‐strand ((−)‐strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)‐defective interfering (DI) RNA, we showed that (a) a poly(A) tail with a length of 15 nucleotides (nt) was sufficient to initiate efficient (−)‐strand RNA synthesis and (b) substitution of the poly(A) tail with poly(U), (C) or (G) only slightly decreased the efficiency of (−)‐strand synthesis. The findings indicate that in addition to the poly(A) tail, other factors acting in trans may also participate in (−)‐strand synthesis. The BCoV nucleocapsid (N) protein, an RNA‐binding protein, was therefore tested as a candidate. Based on dissociation constant (Kd) values, it was found that the binding affinity between N protein, but not poly(A)‐binding protein, and the 3′‐terminal 55 nt plus a poly(A), poly(U), poly(C) or poly(G) tail correlates with the efficiency of (−)‐strand synthesis. Such an association was also evidenced by the binding affinity between the N protein and 5′‐ and 3′‐terminal cis‐acting elements important for (−)‐strand synthesis. Further analysis demonstrated that N protein can act as a bridge to facilitate interaction between the 5′‐ and 3′‐ends of the CoV genome, leading to circularization of the genome. Together, the current study extends our understanding of the mechanism of CoV (−)‐strand RNA synthesis through involvement of N protein and genome circularization and thus may explain why the addition of N protein in trans is required for efficient CoV replication.
Synthesis of the negative-strand ((-)-strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)-defective interfering (DI) RNA, we showed that (a) a poly(A) tail with a length of 15 nucleotides (nt) was sufficient to initiate efficient (-)-strand RNA synthesis and (b) substitution of the poly(A) tail with poly(U), (C) or (G) only slightly decreased the efficiency of (-)-strand synthesis. The findings indicate that in addition to the poly(A) tail, other factors acting in trans may also participate in (-)-strand synthesis. The BCoV nucleocapsid (N) protein, an RNA-binding protein, was therefore tested as a candidate. Based on dissociation constant (Kd ) values, it was found that the binding affinity between N protein, but not poly(A)-binding protein, and the 3'-terminal 55 nt plus a poly(A), poly(U), poly(C) or poly(G) tail correlates with the efficiency of (-)-strand synthesis. Such an association was also evidenced by the binding affinity between the N protein and 5'- and 3'-terminal cis-acting elements important for (-)-strand synthesis. Further analysis demonstrated that N protein can act as a bridge to facilitate interaction between the 5'- and 3'-ends of the CoV genome, leading to circularization of the genome. Together, the current study extends our understanding of the mechanism of CoV (-)-strand RNA synthesis through involvement of N protein and genome circularization and thus may explain why the addition of N protein in trans is required for efficient CoV replication.Synthesis of the negative-strand ((-)-strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)-defective interfering (DI) RNA, we showed that (a) a poly(A) tail with a length of 15 nucleotides (nt) was sufficient to initiate efficient (-)-strand RNA synthesis and (b) substitution of the poly(A) tail with poly(U), (C) or (G) only slightly decreased the efficiency of (-)-strand synthesis. The findings indicate that in addition to the poly(A) tail, other factors acting in trans may also participate in (-)-strand synthesis. The BCoV nucleocapsid (N) protein, an RNA-binding protein, was therefore tested as a candidate. Based on dissociation constant (Kd ) values, it was found that the binding affinity between N protein, but not poly(A)-binding protein, and the 3'-terminal 55 nt plus a poly(A), poly(U), poly(C) or poly(G) tail correlates with the efficiency of (-)-strand synthesis. Such an association was also evidenced by the binding affinity between the N protein and 5'- and 3'-terminal cis-acting elements important for (-)-strand synthesis. Further analysis demonstrated that N protein can act as a bridge to facilitate interaction between the 5'- and 3'-ends of the CoV genome, leading to circularization of the genome. Together, the current study extends our understanding of the mechanism of CoV (-)-strand RNA synthesis through involvement of N protein and genome circularization and thus may explain why the addition of N protein in trans is required for efficient CoV replication.
Synthesis of the negative‐strand ((−)‐strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)‐defective interfering (DI) RNA, we showed that (a) a poly(A) tail with a length of 15 nucleotides (nt) was sufficient to initiate efficient (−)‐strand RNA synthesis and (b) substitution of the poly(A) tail with poly(U), (C) or (G) only slightly decreased the efficiency of (−)‐strand synthesis. The findings indicate that in addition to the poly(A) tail, other factors acting in trans may also participate in (−)‐strand synthesis. The BCoV nucleocapsid (N) protein, an RNA‐binding protein, was therefore tested as a candidate. Based on dissociation constant (K d ) values, it was found that the binding affinity between N protein, but not poly(A)‐binding protein, and the 3′‐terminal 55 nt plus a poly(A), poly(U), poly(C) or poly(G) tail correlates with the efficiency of (−)‐strand synthesis. Such an association was also evidenced by the binding affinity between the N protein and 5′‐ and 3′‐terminal cis ‐acting elements important for (−)‐strand synthesis. Further analysis demonstrated that N protein can act as a bridge to facilitate interaction between the 5′‐ and 3′‐ends of the CoV genome, leading to circularization of the genome. Together, the current study extends our understanding of the mechanism of CoV (−)‐strand RNA synthesis through involvement of N protein and genome circularization and thus may explain why the addition of N protein in trans is required for efficient CoV replication.
Synthesis of the negative-strand ((-)-strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early event and the factors involved remain to be determined. Here, using bovine coronavirus (BCoV)-defective interfering (DI) RNA, we showed that (a) a poly(A) tail with a length of 15 nucleotides (nt) was sufficient to initiate efficient (-)-strand RNA synthesis and (b) substitution of the poly(A) tail with poly(U), (C) or (G) only slightly decreased the efficiency of (-)-strand synthesis. The findings indicate that in addition to the poly(A) tail, other factors acting in trans may also participate in (-)-strand synthesis. The BCoV nucleocapsid (N) protein, an RNA-binding protein, was therefore tested as a candidate. Based on dissociation constant (K ) values, it was found that the binding affinity between N protein, but not poly(A)-binding protein, and the 3'-terminal 55 nt plus a poly(A), poly(U), poly(C) or poly(G) tail correlates with the efficiency of (-)-strand synthesis. Such an association was also evidenced by the binding affinity between the N protein and 5'- and 3'-terminal cis-acting elements important for (-)-strand synthesis. Further analysis demonstrated that N protein can act as a bridge to facilitate interaction between the 5'- and 3'-ends of the CoV genome, leading to circularization of the genome. Together, the current study extends our understanding of the mechanism of CoV (-)-strand RNA synthesis through involvement of N protein and genome circularization and thus may explain why the addition of N protein in trans is required for efficient CoV replication.
Author Lin, Chao‐Nan
Lin, Ching‐Hung
Tsai, Tsung‐Lin
Wu, Hung‐Yi
Lo, Chen‐Yu
AuthorAffiliation 1 Graduate Institute of Veterinary Pathobiology College of Veterinary Medicine National Chung Hsing University Taichung Taiwan
2 Department of Veterinary Medicine National Pingtung University of Science and Technology Neipu Pingtung Taiwan
AuthorAffiliation_xml – name: 1 Graduate Institute of Veterinary Pathobiology College of Veterinary Medicine National Chung Hsing University Taichung Taiwan
– name: 2 Department of Veterinary Medicine National Pingtung University of Science and Technology Neipu Pingtung Taiwan
Author_xml – sequence: 1
  givenname: Chen‐Yu
  surname: Lo
  fullname: Lo, Chen‐Yu
  organization: National Chung Hsing University
– sequence: 2
  givenname: Tsung‐Lin
  surname: Tsai
  fullname: Tsai, Tsung‐Lin
  organization: National Chung Hsing University
– sequence: 3
  givenname: Chao‐Nan
  surname: Lin
  fullname: Lin, Chao‐Nan
  organization: National Pingtung University of Science and Technology
– sequence: 4
  givenname: Ching‐Hung
  surname: Lin
  fullname: Lin, Ching‐Hung
  organization: National Chung Hsing University
– sequence: 5
  givenname: Hung‐Yi
  orcidid: 0000-0002-1260-6259
  surname: Wu
  fullname: Wu, Hung‐Yi
  email: hwu2@dragon.nchu.edu.tw
  organization: National Chung Hsing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31034708$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAQgCNURH_gwgMgS1wQ0hb_xLFzQSpVC5UqkPiRuFmOM9l1lbUXO0m1nPoIPAviifokOJt2VSoEvnhif_Np4pn9bMd5B1n2lOBDktarBqp4SHJZsAfZHhE5neUFlzvbOP-6m-3HeIEx43lZPsp2GcEsF1juZb_OXAdBm856h3yDjA_e6cGGPiLXmxa80atoa7QKvgPr0KXtFqhbAOLXVz-vr34g7WrEphhcHUfJeH1XNAfnl4BsRNYNvh2gTsHtqbHB9K0O9rveFDH6HMzTxwDJGbswnnx8f4Ti2iVztPFx9rDRbYQnN_tB9uX05PPxu9n5h7dnx0fnM5NLwmalLNKbFCBKrWtZU0Fw1YjKVBIbWmgomamhoUUFVFSlNqLGnBe8oQ0ByqqCHWSvJ--qr5ZQG3CpmFatgl3qsFZeW_XnjbMLNfeDEqTICc2T4MWNIPhvPcROLW000Lbage-jokxKIWXJ8f9RmrpZ0lKwhD6_h174Prj0EolKEMec8EQ9u1v8turb3ifg5QSY4GMM0GwRgtU4WGocLLUZrATje7Cx3aZh6cdt-_cUMqVc2hbW_5Cr05M3n6ac36aN6aw
CitedBy_id crossref_primary_10_3390_ijms23158122
crossref_primary_10_1186_s12985_023_02189_7
crossref_primary_10_1007_s00253_021_11722_z
crossref_primary_10_1099_mgen_0_000848
crossref_primary_10_1186_s12985_023_01998_0
crossref_primary_10_1016_j_ijbiomac_2023_123191
crossref_primary_10_1128_jvi_00136_22
crossref_primary_10_1093_ve_veab021
crossref_primary_10_3390_cells9102322
crossref_primary_10_1038_s44318_023_00019_8
crossref_primary_10_1080_15476286_2024_2357857
crossref_primary_10_1074_jbc_REV120_013930
crossref_primary_10_1186_s12985_023_02201_0
crossref_primary_10_1186_s12985_024_02549_x
crossref_primary_10_1016_j_jbc_2024_107828
crossref_primary_10_1016_j_bpj_2021_06_003
crossref_primary_10_3390_v14010078
crossref_primary_10_1016_j_psj_2019_11_056
crossref_primary_10_3390_ijms25158012
crossref_primary_10_3390_ijms25063378
crossref_primary_10_2139_ssrn_4012175
crossref_primary_10_1016_j_jbc_2024_107834
crossref_primary_10_1093_molbev_msab292
Cites_doi 10.1128/JVI.00803-06
10.1101/gad.1444206
10.1016/j.virusres.2015.02.025
10.3390/v6082938
10.1016/bs.aivir.2016.08.007
10.1099/0022-1317-74-9-1975
10.1146/annurev.micro.60.080805.142157
10.1371/journal.pone.0165077
10.1128/JVI.01275-13
10.1128/JVI.79.11.6620-6630.2005
10.1128/JVI.74.11.5053-5065.2000
10.1261/rna.261807
10.1006/viro.2000.0611
10.1128/jvi.71.10.7567-7578.1997
10.1128/JVI.77.12.6720-6730.2003
10.1016/j.virol.2009.06.006
10.1128/JVI.01162-18
10.1128/genomeA.01191-14
10.1016/j.virol.2013.04.021
10.1128/JVI.78.22.12683-12688.2004
10.1093/emboj/20.6.1439
10.1128/JVI.00569-10
10.1128/JVI.79.8.4630-4639.2005
10.1006/viro.2001.0932
10.1074/jbc.M501015200
10.1128/JVI.79.11.6631-6643.2005
10.1371/journal.pone.0082176
10.1128/JVI.75.11.5009-5017.2001
10.1128/JVI.73.10.8349-8355.1999
10.1128/JVI.76.21.11065-11078.2002
10.1371/journal.pone.0098422
10.1016/j.virol.2005.10.019
10.1007/3-540-26765-4_1
10.1128/JVI.00915-09
10.4161/rna.8.2.14991
10.1128/JVI.02622-07
10.1371/journal.pone.0070548
10.1128/jvi.65.11.6331-6333.1991
10.1093/nar/gkm564
10.1128/jvi.42.2.700-707.1982
10.1073/pnas.1000378107
10.1261/rna.1680809
10.1128/JVI.79.19.12434-12446.2005
10.1016/S0065-3527(06)66005-3
10.1128/jvi.68.12.8131-8140.1994
10.1128/JVI.79.2.1164-1179.2005
10.1128/jvi.51.2.384-388.1984
10.1016/0042-6822(87)90312-6
10.1128/JVI.74.15.6911-6921.2000
10.1002/pro.225
10.1128/JVI.01287-10
10.1016/j.virusres.2008.07.016
10.1016/j.febslet.2012.11.016
10.1128/JVI.79.4.2506-2516.2005
10.1128/JVI.01690-07
10.1016/S1097-2765(01)00205-2
10.1093/jnci/52.4.1101
10.1128/JVI.78.2.980-994.2004
10.1016/j.jmb.2008.01.068
10.1016/j.virol.2008.01.014
10.1128/JVI.75.24.12105-12113.2001
10.1128/JVI.02011-09
10.1016/j.jmb.2009.09.040
ContentType Journal Article
Copyright 2019 Federation of European Biochemical Societies
2019 Federation of European Biochemical Societies.
Copyright © 2019 Federation of European Biochemical Societies
Copyright_xml – notice: 2019 Federation of European Biochemical Societies
– notice: 2019 Federation of European Biochemical Societies.
– notice: Copyright © 2019 Federation of European Biochemical Societies
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/febs.14863
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate C.‐Y. Lo et al
EISSN 1742-4658
EndPage 3239
ExternalDocumentID PMC7164124
31034708
10_1111_febs_14863
FEBS14863
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan (MOST)
  funderid: 105‐2320‐B‐005‐004‐; 106‐2313‐B‐005‐046‐MY3
– fundername: Ministry of Science and Technology, Taiwan (MOST)
  grantid: 106-2313-B-005-046-MY3
– fundername: Ministry of Science and Technology, Taiwan (MOST)
  grantid: 105-2320-B-005-004-
– fundername: ;
  grantid: 105‐2320‐B‐005‐004‐; 106‐2313‐B‐005‐046‐MY3
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4813-9868636e79aad8d2710bf7bcb80c26ae93cdef26be27b9ac7d05565f2f1e23b63
IEDL.DBID DR2
ISSN 1742-464X
1742-4658
IngestDate Thu Aug 21 13:37:28 EDT 2025
Fri Jul 11 18:34:56 EDT 2025
Fri Jul 11 02:18:30 EDT 2025
Fri Jul 25 19:39:18 EDT 2025
Thu Apr 03 07:06:59 EDT 2025
Tue Jul 01 03:06:50 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Wed Jan 22 16:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords genome circularization
replication
coronavirus
nucleocapsid protein
(−)-strand synthesis
cis-acting element
Language English
License 2019 Federation of European Biochemical Societies.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4813-9868636e79aad8d2710bf7bcb80c26ae93cdef26be27b9ac7d05565f2f1e23b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1260-6259
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7164124
PMID 31034708
PQID 2274950515
PQPubID 28478
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7164124
proquest_miscellaneous_2388788950
proquest_miscellaneous_2217492973
proquest_journals_2274950515
pubmed_primary_31034708
crossref_primary_10_1111_febs_14863
crossref_citationtrail_10_1111_febs_14863
wiley_primary_10_1111_febs_14863_FEBS14863
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2019
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2010; 107
1974; 52
2009; 83
1994; 68
2013; 443
2009; 394
2013; 8
2007; 35
1984; 51
2006; 60
2006; 20
1987; 157
2014; 2
2006; 66
2004; 78
1993; 74
2014; 9
2014; 6
2009; 15
2005; 79
2009; 18
2001; 285
2012
2013; 87
2002; 76
2016; 96
2013; 587
2015; 206
2000; 277
2011; 8
2007; 13
2010; 84
2001; 20
2003; 77
2009; 139
2016; 11
2005; 280
1997; 71
2001; 7
2005; 287
1991; 65
2009; 391
1982; 42
2000; 74
2018; 92
2007; 81
1999; 73
2008; 377
2008; 375
2008; 82
2001; 75
2006; 345
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
International Committee on Taxonomy of Viruses (e_1_2_9_2_1) 2012
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 13
  start-page: 763
  year: 2007
  end-page: 780
  article-title: A U‐turn motif‐containing stem‐loop in the coronavirus 5′ untranslated region plays a functional role in replication
  publication-title: RNA
– volume: 84
  start-page: 2169
  year: 2010
  end-page: 2175
  article-title: Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription
  publication-title: J Virol
– volume: 51
  start-page: 384
  year: 1984
  end-page: 388
  article-title: Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus‐Oc43, and mouse hepatitis coronavirus‐A59
  publication-title: J Virol
– volume: 287
  start-page: 1
  year: 2005
  end-page: 30
  article-title: Coronavirus genome structure and replication
  publication-title: Curr Top Microbiol Immunol
– volume: 280
  start-page: 23280
  year: 2005
  end-page: 23286
  article-title: Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C‐terminal domain
  publication-title: J Biol Chem
– volume: 587
  start-page: 120
  year: 2013
  end-page: 127
  article-title: Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein
  publication-title: FEBS Lett
– volume: 73
  start-page: 8349
  year: 1999
  end-page: 8355
  article-title: A phylogenetically conserved hairpin‐type 3′ untranslated region pseudoknot functions in coronavirus RNA replication
  publication-title: J Virol
– volume: 2
  start-page: e01191
  year: 2014
  article-title: Complete genome characterization of Korean Porcine deltacoronavirus strain KOR/KNU14‐04/2014
  publication-title: Genome Announc
– volume: 391
  start-page: 304
  year: 2009
  end-page: 314
  article-title: Host cell proteins interacting with the 3′ end of TGEV coronavirus genome influence virus replication
  publication-title: Virology
– volume: 84
  start-page: 10276
  year: 2010
  end-page: 10288
  article-title: An interaction between the nucleocapsid protein and a component of the replicase‐transcriptase complex is crucial for the infectivity of coronavirus genomic RNA
  publication-title: J Virol
– volume: 82
  start-page: 3882
  year: 2008
  end-page: 3893
  article-title: Identification of a coronavirus transcription enhancer
  publication-title: J Virol
– volume: 79
  start-page: 2506
  year: 2005
  end-page: 2516
  article-title: Role of nucleotides immediately flanking the transcription‐regulating sequence core in coronavirus subgenomic mRNA synthesis
  publication-title: J Virol
– volume: 157
  start-page: 47
  year: 1987
  end-page: 57
  article-title: Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes
  publication-title: Virology
– volume: 285
  start-page: 21
  year: 2001
  end-page: 29
  article-title: Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection
  publication-title: Virology
– volume: 92
  start-page: e01162
  year: 2018
  end-page: 18
  article-title: Interplay between the poly(A) tail, poly(A)‐binding protein and coronavirus nucleocapsid protein regulates gene expression of the coronavirus and host cell
  publication-title: J Virol
– volume: 11
  start-page: e0165077
  year: 2016
  article-title: Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation
  publication-title: PLoS ONE
– volume: 8
  start-page: e70548
  year: 2013
  article-title: Regulation of coronaviral Poly(A) tail length during infection
  publication-title: PLoS ONE
– volume: 9
  start-page: e98422
  year: 2014
  article-title: The 3′‐terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis‐acting elements required for both negative‐ and positive‐strand RNA synthesis
  publication-title: PLoS ONE
– volume: 8
  start-page: 237
  year: 2011
  end-page: 248
  article-title: RNA‐RNA and RNA‐protein interactions in coronavirus replication and transcription
  publication-title: RNA Biol
– volume: 71
  start-page: 7567
  year: 1997
  end-page: 7578
  article-title: A bulged stem‐loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication
  publication-title: J Virol
– volume: 78
  start-page: 12683
  year: 2004
  end-page: 12688
  article-title: The nucleoprotein is required for efficient coronavirus genome replication
  publication-title: J Virol
– volume: 96
  start-page: 127
  year: 2016
  end-page: 163
  article-title: Coronavirus cis‐acting RNA elements
  publication-title: Adv Virus Res
– volume: 375
  start-page: 223
  year: 2008
  end-page: 235
  article-title: Functional analysis of dengue virus cyclization sequences located at the 5′ and 3′UTRs
  publication-title: Virology
– volume: 7
  start-page: 581
  year: 2001
  end-page: 591
  article-title: Poliovirus RNA replication requires genome circularization through a protein‐protein bridge
  publication-title: Mol Cell
– volume: 74
  start-page: 6911
  year: 2000
  end-page: 6921
  article-title: Characterization of an essential RNA secondary structure in the 3′ untranslated region of the murine coronavirus genome
  publication-title: J Virol
– volume: 277
  start-page: 235
  year: 2000
  end-page: 249
  article-title: Identification of nucleocapsid binding sites within coronavirus‐defective genomes
  publication-title: Virology
– volume: 79
  start-page: 6631
  year: 2005
  end-page: 6643
  article-title: Long‐range RNA‐RNA interactions circularize the dengue virus genome
  publication-title: J Virol
– volume: 84
  start-page: 11575
  year: 2010
  end-page: 11579
  article-title: The coronavirus nucleocapsid protein is dynamically associated with the replication‐transcription complexes
  publication-title: J Virol
– volume: 52
  start-page: 1101
  year: 1974
  end-page: 1110
  article-title: Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum
  publication-title: J Natl Cancer Inst
– volume: 377
  start-page: 790
  year: 2008
  end-page: 803
  article-title: Structural lability in stem‐loop 1 drives a 5′ UTR‐3′ UTR interaction in coronavirus replication
  publication-title: J Mol Biol
– volume: 6
  start-page: 2938
  year: 2014
  end-page: 2959
  article-title: Identification of cis‐acting elements on positive‐strand subgenomic mRNA required for the synthesis of negative‐strand counterpart in bovine coronavirus
  publication-title: Viruses
– volume: 66
  start-page: 193
  year: 2006
  end-page: 292
  article-title: The molecular biology of coronaviruses
  publication-title: Adv Virus Res
– volume: 87
  start-page: 9159
  year: 2013
  end-page: 9172
  article-title: Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase‐transcriptase complex
  publication-title: J Virol
– volume: 79
  start-page: 6620
  year: 2005
  end-page: 6630
  article-title: Selective replication of coronavirus genomes that express nucleocapsid protein
  publication-title: J Virol
– volume: 394
  start-page: 544
  year: 2009
  end-page: 557
  article-title: Coronavirus N Protein N‐Terminal Domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS‐cTRS RNA duplexes
  publication-title: J Mol Biol
– volume: 68
  start-page: 8131
  year: 1994
  end-page: 8140
  article-title: Identification of the cis‐acting signal for minus‐strand RNA synthesis of a murine coronavirus: implications for the role of minus‐strand RNA in RNA replication and transcription
  publication-title: J Virol
– volume: 20
  start-page: 2238
  year: 2006
  end-page: 2249
  article-title: A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome
  publication-title: Genes Dev
– volume: 74
  start-page: 5053
  year: 2000
  end-page: 5065
  article-title: Host protein interactions with the 3′ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication
  publication-title: J Virol
– volume: 76
  start-page: 11065
  year: 2002
  end-page: 11078
  article-title: Systematic assembly of a full‐length infectious cDNA of mouse hepatitis virus strain A59
  publication-title: J Virol
– volume: 74
  start-page: 1975
  year: 1993
  end-page: 1979
  article-title: Localization of the RNA‐binding domain of mouse hepatitis virus nucleocapsid protein
  publication-title: J Gen Virol
– volume: 8
  start-page: e82176
  year: 2013
  article-title: A leaderless genome identified during persistent bovine coronavirus infection is associated with attenuation of gene expression
  publication-title: PLoS ONE
– volume: 81
  start-page: 1274
  year: 2007
  end-page: 1287
  article-title: A hypervariable region within the 3′ cis‐acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis
  publication-title: J Virol
– volume: 35
  start-page: 5253
  year: 2007
  end-page: 5261
  article-title: Circularization of the HIV‐1 RNA genome
  publication-title: Nucleic Acids Res
– volume: 75
  start-page: 12105
  year: 2001
  end-page: 12113
  article-title: Secondary structural elements within the 3′ untranslated region of mouse hepatitis virus strain JHM genomic RNA
  publication-title: J Virol
– volume: 83
  start-page: 12084
  year: 2009
  end-page: 12093
  article-title: Mouse hepatitis virus stem‐loop 2 adopts a uYNMG(U)a‐like tetraloop structure that is highly functionally tolerant of base substitutions
  publication-title: J Virol
– volume: 79
  start-page: 1164
  year: 2005
  end-page: 1179
  article-title: Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance
  publication-title: J Virol
– year: 2012
– volume: 443
  start-page: 40
  year: 2013
  end-page: 47
  article-title: Functional analysis of the stem loop S3 and S4 structures in the coronavirus 3′UTR
  publication-title: Virology
– volume: 18
  start-page: 2209
  year: 2009
  end-page: 2218
  article-title: Elucidation of the stability and functional regions of the human coronavirus OC43 nucleocapsid protein
  publication-title: Protein Sci
– volume: 42
  start-page: 700
  year: 1982
  end-page: 707
  article-title: Bovine coronavirus structural proteins
  publication-title: J Virol
– volume: 107
  start-page: 12257
  year: 2010
  end-page: 12262
  article-title: Subgenomic messenger RNA amplification in coronaviruses
  publication-title: Proc Natl Acad Sci USA
– volume: 79
  start-page: 4630
  year: 2005
  end-page: 4639
  article-title: Requirements at the 3′ end of the sindbis virus genome for efficient synthesis of minus‐strand RNA
  publication-title: J Virol
– volume: 65
  start-page: 6331
  year: 1991
  end-page: 6333
  article-title: The 5′ end of coronavirus minus‐strand RNAs contains a short poly(U) tract
  publication-title: J Virol
– volume: 75
  start-page: 5009
  year: 2001
  end-page: 5017
  article-title: Heterogeneous nuclear ribonucleoprotein a1 binds to the 3′‐untranslated region and mediates potential 5′‐3′‐end cross talks of mouse hepatitis virus RNA
  publication-title: J Virol
– volume: 206
  start-page: 120
  year: 2015
  end-page: 133
  article-title: The structure and functions of coronavirus genomic 3′ and 5′ ends
  publication-title: Virus Res
– volume: 79
  start-page: 12434
  year: 2005
  end-page: 12446
  article-title: Stem‐loop IV in the 5′ untranslated region is a cis‐acting element in bovine coronavirus defective interfering RNA replication
  publication-title: J Virol
– volume: 345
  start-page: 509
  year: 2006
  end-page: 519
  article-title: Relationship between poliovirus negative‐strand RNA synthesis and the length of the 3′ poly(A) tail
  publication-title: Virology
– volume: 82
  start-page: 1214
  year: 2008
  end-page: 1228
  article-title: Genetic interactions between an essential 3′ cis‐acting RNA pseudoknot, replicase gene products, and the extreme 3′ end of the mouse coronavirus genome
  publication-title: J Virol
– volume: 60
  start-page: 211
  year: 2006
  end-page: 230
  article-title: Biochemical aspects of coronavirus replication and virus‐host interaction
  publication-title: Annu Rev Microbiol
– volume: 15
  start-page: 1740
  year: 2009
  end-page: 1752
  article-title: A long‐range RNA‐RNA interaction between the 5′ and 3′ ends of the HCV genome
  publication-title: RNA
– volume: 139
  start-page: 230
  year: 2009
  end-page: 239
  article-title: Genome cyclization as strategy for flavivirus RNA replication
  publication-title: Virus Res
– volume: 78
  start-page: 980
  year: 2004
  end-page: 994
  article-title: Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis
  publication-title: J Virol
– volume: 77
  start-page: 6720
  year: 2003
  end-page: 6730
  article-title: Stem‐loop III in the 5′ untranslated region is a cis‐acting element in bovine coronavirus defective interfering RNA replication
  publication-title: J Virol
– volume: 20
  start-page: 1439
  year: 2001
  end-page: 1448
  article-title: 5 ‘cloverleaf in poliovirus RNA is a cis‐acting replication element required for negative‐strand synthesis
  publication-title: EMBO J
– ident: e_1_2_9_15_1
  doi: 10.1128/JVI.00803-06
– ident: e_1_2_9_54_1
  doi: 10.1101/gad.1444206
– ident: e_1_2_9_8_1
  doi: 10.1016/j.virusres.2015.02.025
– ident: e_1_2_9_11_1
  doi: 10.3390/v6082938
– ident: e_1_2_9_6_1
  doi: 10.1016/bs.aivir.2016.08.007
– ident: e_1_2_9_23_1
  doi: 10.1099/0022-1317-74-9-1975
– ident: e_1_2_9_58_1
  doi: 10.1146/annurev.micro.60.080805.142157
– ident: e_1_2_9_63_1
  doi: 10.1371/journal.pone.0165077
– ident: e_1_2_9_29_1
  doi: 10.1128/JVI.01275-13
– ident: e_1_2_9_32_1
  doi: 10.1128/JVI.79.11.6620-6630.2005
– volume-title: Virus Taxonomy: Classification and Nomenclature of Viruses : Ninth Report of the International Committee on Taxonomy of Viruses
  year: 2012
  ident: e_1_2_9_2_1
– ident: e_1_2_9_19_1
  doi: 10.1128/JVI.74.11.5053-5065.2000
– ident: e_1_2_9_51_1
  doi: 10.1261/rna.261807
– ident: e_1_2_9_24_1
  doi: 10.1006/viro.2000.0611
– ident: e_1_2_9_13_1
  doi: 10.1128/jvi.71.10.7567-7578.1997
– ident: e_1_2_9_64_1
  doi: 10.1128/JVI.77.12.6720-6730.2003
– ident: e_1_2_9_49_1
  doi: 10.1016/j.virol.2009.06.006
– ident: e_1_2_9_26_1
  doi: 10.1128/JVI.01162-18
– ident: e_1_2_9_4_1
  doi: 10.1128/genomeA.01191-14
– ident: e_1_2_9_21_1
  doi: 10.1016/j.virol.2013.04.021
– ident: e_1_2_9_31_1
  doi: 10.1128/JVI.78.22.12683-12688.2004
– ident: e_1_2_9_47_1
  doi: 10.1093/emboj/20.6.1439
– ident: e_1_2_9_28_1
  doi: 10.1128/JVI.00569-10
– ident: e_1_2_9_45_1
  doi: 10.1128/JVI.79.8.4630-4639.2005
– ident: e_1_2_9_27_1
  doi: 10.1006/viro.2001.0932
– ident: e_1_2_9_42_1
  doi: 10.1074/jbc.M501015200
– ident: e_1_2_9_53_1
  doi: 10.1128/JVI.79.11.6631-6643.2005
– ident: e_1_2_9_9_1
  doi: 10.1371/journal.pone.0082176
– ident: e_1_2_9_37_1
  doi: 10.1128/JVI.75.11.5009-5017.2001
– ident: e_1_2_9_14_1
  doi: 10.1128/JVI.73.10.8349-8355.1999
– ident: e_1_2_9_48_1
  doi: 10.1128/JVI.76.21.11065-11078.2002
– ident: e_1_2_9_17_1
  doi: 10.1371/journal.pone.0098422
– ident: e_1_2_9_46_1
  doi: 10.1016/j.virol.2005.10.019
– ident: e_1_2_9_3_1
  doi: 10.1007/3-540-26765-4_1
– ident: e_1_2_9_50_1
  doi: 10.1128/JVI.00915-09
– ident: e_1_2_9_7_1
  doi: 10.4161/rna.8.2.14991
– ident: e_1_2_9_59_1
  doi: 10.1128/JVI.02622-07
– ident: e_1_2_9_39_1
  doi: 10.1371/journal.pone.0070548
– ident: e_1_2_9_38_1
  doi: 10.1128/jvi.65.11.6331-6333.1991
– ident: e_1_2_9_55_1
  doi: 10.1093/nar/gkm564
– ident: e_1_2_9_60_1
  doi: 10.1128/jvi.42.2.700-707.1982
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.1000378107
– ident: e_1_2_9_35_1
  doi: 10.1261/rna.1680809
– ident: e_1_2_9_65_1
  doi: 10.1128/JVI.79.19.12434-12446.2005
– ident: e_1_2_9_5_1
  doi: 10.1016/S0065-3527(06)66005-3
– ident: e_1_2_9_18_1
  doi: 10.1128/jvi.68.12.8131-8140.1994
– ident: e_1_2_9_22_1
  doi: 10.1128/JVI.79.2.1164-1179.2005
– ident: e_1_2_9_44_1
  doi: 10.1128/jvi.51.2.384-388.1984
– ident: e_1_2_9_61_1
  doi: 10.1016/0042-6822(87)90312-6
– ident: e_1_2_9_12_1
  doi: 10.1128/JVI.74.15.6911-6921.2000
– ident: e_1_2_9_43_1
  doi: 10.1002/pro.225
– ident: e_1_2_9_30_1
  doi: 10.1128/JVI.01287-10
– ident: e_1_2_9_34_1
  doi: 10.1016/j.virusres.2008.07.016
– ident: e_1_2_9_41_1
  doi: 10.1016/j.febslet.2012.11.016
– ident: e_1_2_9_56_1
  doi: 10.1128/JVI.79.4.2506-2516.2005
– ident: e_1_2_9_20_1
  doi: 10.1128/JVI.01690-07
– ident: e_1_2_9_36_1
  doi: 10.1016/S1097-2765(01)00205-2
– ident: e_1_2_9_62_1
  doi: 10.1093/jnci/52.4.1101
– ident: e_1_2_9_57_1
  doi: 10.1128/JVI.78.2.980-994.2004
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jmb.2008.01.068
– ident: e_1_2_9_52_1
  doi: 10.1016/j.virol.2008.01.014
– ident: e_1_2_9_16_1
  doi: 10.1128/JVI.75.24.12105-12113.2001
– ident: e_1_2_9_33_1
  doi: 10.1128/JVI.02011-09
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jmb.2009.09.040
SSID ssj0035499
Score 2.4238908
Snippet Synthesis of the negative‐strand ((−)‐strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early...
Synthesis of the negative-strand ((-)-strand) counterpart is the first step of coronavirus (CoV) replication; however, the detailed mechanism of the early...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3222
SubjectTerms (−)‐strand synthesis
Affinity
Animals
binding capacity
Bovine coronavirus
Cattle
Circularity
cis‐acting element
Coronaviridae
coronavirus
Coronavirus, Bovine - genetics
Coronavirus, Bovine - growth & development
Coronaviruses
dissociation
genome
genome circularization
Genome, Viral - genetics
Genomes
N protein
nucleocapsid
nucleocapsid protein
nucleocapsid proteins
Nucleocapsid Proteins - genetics
Nucleocapsids
Nucleotides
Original
Poly A - genetics
Polyadenine
Polyadenylation
Polynucleotides
Proteins
regulatory sequences
Replication
RNA
RNA - biosynthesis
RNA - genetics
RNA, Messenger - genetics
RNA, Viral - genetics
RNA-binding protein
RNA-binding proteins
RNA-Binding Proteins - genetics
Synthesis
Transcription
Virus Replication - genetics
Title Interaction of coronavirus nucleocapsid protein with the 5′‐ and 3′‐ends of the coronavirus genome is involved in genome circularization and negative‐strand RNA synthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.14863
https://www.ncbi.nlm.nih.gov/pubmed/31034708
https://www.proquest.com/docview/2274950515
https://www.proquest.com/docview/2217492973
https://www.proquest.com/docview/2388788950
https://pubmed.ncbi.nlm.nih.gov/PMC7164124
Volume 286
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V5VAu_LT8BEplBEICKVXXyTqOxGW3dFUh0UOh0l5QZDtOiaDearNbqZz6CDwL4on6JMw4P92lqBLcrHgySuIZ-xtn_A3Ay9giSi1sL8QQOQrjvuyFsidydDylc4smEPlswg8HYv8ofj_uj1fgbXsWpuaH6DbcyDP8fE0OrnS14OSF1RX6uRRE9UnJWoSIDjvuqIgCn_o0JA9jEY8bblJK47m6dXk1ugYxr2dKLiJYvwSN7sLn9uHrzJOv2_OZ3jbf_-B1_N-3uwd3GmzKBrUx3YcV69ZhY-AwLj85Z6-Yzxb12_DrsLbbVorbgF9-W7E-IcEmBTPEiqDOyum8Yo74knG9PEWrZ54UonSMNn8ZIk_Wv7z4eXnxgymXs6huU4ouKaHuRUVEJntiWVmx0uGUemZzbLRXTTn1-bTNoVKvz9ljT2qOOmk7B68cHgxYde5Qc1VWD-BotPdpdz9sqkGEJpZoR6kU-DWETVKlcplzhEa6SLTRcsdwoWwamdwWXGjLE50qk-TEE9QveNGzPNIiegirbuLsY2BGcInQx6C0RYSSq8QgTNYmTyPLbRoH8Lq1isw0VOlUseNb1oZMNDyZH54AXnSypzVByF-lNlvjyppJoso4TzA8pSI7ATzvunHs6J-NcnYyJxk04JQKjN0gE-FKISWqCuBRba_do1AZuTjZkQEkS5bcCRC9-HKPK794mnGKpBH9BfDGG-oNb5eN9oYffevJvwg_hdsIP9M6nXITVmfTuX2GEG-mt-DWYPhuONryLv0bUl5YtQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXflp-AgWM-JFAStV1solz4LC0XW1pu4fSSr2lseNABPVWm92i5dRH4EW4IJ6Dh-iTMOP8sEtRJQ49cLPi2ZHX8WfPTMbfADzzNVqpmW656CJ7rt8WLVe0ghSBl8hU4xLwbDbhTj_o7ftvD9oHc_CtvgtT8kM0ATdCht2vCeAUkJ5CeaZlgUAXQV27ektPPqPHVrzeXMfX-5zz7sbeWs-tigq4yhc4nEgE-ItAh1GSpCLleMLKLJRKilXFg0RHnkp1xgOpeSijRIUp0c20M561NPdk4KHeK3CVSogTVf_6bsNW5ZGrVd6_5K4f-AcVGyolDv0e6-z5d86oPZ-bOW0z20OvewN-1tNV5rp8XBmP5Ir68geT5H8znzfhemV-s06Jl1swp80iLHVMMhocTdgLZhNi7ZeGRVhYq4vhLcEPGzktL4GwQcYUET8kJ_lwXDBDlNBoEhwjsJnlvcgNo_g2Q-Oatc9Ov5-dfmWJSZlXtikLmZRQ97Qi4ss90iwvWG7w1DjRKTbqpyof2pTh6t6s1Wf0e8vbjjopYoVPdvsdVkwMai7y4jbsX8pc3oF5MzD6HjAVcIHWnUJpjUZYmoQKPQGp0sjTXEe-Ay_rZRirig2eipJ8imuvkJZDbJeDA08b2eOSA-WvUsv1ao6rfbCIOQ_RA6c6Qg48abrx3dFnqcTowZhkEDER1VC7QMbDw1AIVOXA3RIgzVCoUp4frgoHwhnoNALEoD7bY_IPlkmdggVo4DrwyiLjgn8XdzfevLOt-_8i_BgWens72_H2Zn_rAVxDazsqs0eXYX40HOuHaNGO5CO7jzA4vGyg_QJlY7Zd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIgEXflp-AgWM-JGKtFXi3Xi9Bw6hadRSiFChUm7LrtcLK6gTZZOicOoj8CCcEK_BS_RJmPH-kFBUiUMP3Kz1ZOR4_dkzs-NvAB55Gq3UVLccdJFdx2vLliNbIkHgRXGicQm4NpvwVV9s73svBu3BEnyr7sIU_BB1wI2QYfdrAvgoSedAnuo4R5xLUZWu3tWzz-iw5c92uvh2H3Pe23q7ue2UNQUc5UkcTSAF_kJoP4iiRCYcD9g49WMVy6biItKBqxKdchFr7sdBpPyE2GbaKU9bmruxcFHvOTjviWZAhSK6ezVZlUueVnH9kjue8AYlGSrlDf0e6-Lxd8KmPZmaOW8y2zOvdwV-VrNVpLp83JhO4g315Q8iyf9lOq_C5dL4Zp0CLddgSZsVWO2YaDI8mLEnzKbD2u8MK3BxsyqFtwo_bNy0uALChilTRPsQHWbjac4MEUKjQTBCWDPLepEZRtFthqY1ax8ffT8--soikzC3aFMOMimh7nlFxJZ7oFmWs8zgmXGoE2xUT1U2tgnD5a1Zq8_o95a1HXVSvAqf7PU7LJ8Z1Jxn-XXYP5O5vAHLZmj0LWBKcIm2nUJpjSZYEvkK_YBYJYGruQ68BqxXqzBUJRc8lST5FFY-IS2H0C6HBjysZUcFA8pfpdaqxRyWu2Aecu6j_01VhBrwoO7Gd0cfpSKjh1OSQcAEVEHtFBkXj0IpUVUDbhb4qIdCdfI8vykb4C8gpxYg_vTFHpN9sDzqFCpA87YBTy0wTvl3YW_r-Rvbuv0vwvfhwutuL3y509-9A5fQ1A6K1NE1WJ6Mp_oumrOT-J7dRRi8O2uc_QKmy7UM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+of+coronavirus+nucleocapsid+protein+with+the+5%E2%80%B2%E2%80%90+and+3%E2%80%B2%E2%80%90ends+of+the+coronavirus+genome+is+involved+in+genome+circularization+and+negative%E2%80%90strand+RNA+synthesis&rft.jtitle=The+FEBS+journal&rft.au=Lo%2C+Chen%E2%80%90Yu&rft.au=Tsai%2C+Tsung%E2%80%90Lin&rft.au=Lin%2C+Chao%E2%80%90Nan&rft.au=Lin%2C+Ching%E2%80%90Hung&rft.date=2019-08-01&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=286&rft.issue=16&rft.spage=3222&rft.epage=3239&rft_id=info:doi/10.1111%2Ffebs.14863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_febs_14863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon