Strongly Veined Carbon Nanoleaves as a Highly Efficient Metal-Free Electrocatalyst
Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐do...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 53; no. 27; pp. 6905 - 6909 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.07.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐doped graphene (NG) was prepared through a simple thermal condensation of urea and bacterial cellulose. During the formation of the 3D complex CNF@NG, the graphene species was tethered to CNF via carbon–carbon bonds. Such an interconnected 3D network facilitates both the electron transfer and mass diffusion for electrochemical reactions.
“Green” leaves: A novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐doped graphene (CNF@NG) was prepared through thermolysis of biomass materials. The interconnected 3D network of CNF@NG facilitates both the electron transfer and mass diffusion for electrochemical reactions. As a result, the CNF@NG complexes demonstrate remarkable electrocatalytic activities toward the oxygen reduction reaction (ORR). |
---|---|
AbstractList | Abstract
Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐doped graphene (NG) was prepared through a simple thermal condensation of urea and bacterial cellulose. During the formation of the 3D complex CNF@NG, the graphene species was tethered to CNF via carbon–carbon bonds. Such an interconnected 3D network facilitates both the electron transfer and mass diffusion for electrochemical reactions. Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐doped graphene (NG) was prepared through a simple thermal condensation of urea and bacterial cellulose. During the formation of the 3D complex CNF@NG, the graphene species was tethered to CNF via carbon–carbon bonds. Such an interconnected 3D network facilitates both the electron transfer and mass diffusion for electrochemical reactions. “Green” leaves: A novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐doped graphene (CNF@NG) was prepared through thermolysis of biomass materials. The interconnected 3D network of CNF@NG facilitates both the electron transfer and mass diffusion for electrochemical reactions. As a result, the CNF@NG complexes demonstrate remarkable electrocatalytic activities toward the oxygen reduction reaction (ORR). Effective integration of one-dimensional carbon nanofibers (CNF) and two-dimensional carbon sheets into three-dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel "vein-leaf"-type 3D complex of carbon nanofibers with nitrogen-doped graphene (NG) was prepared through a simple thermal condensation of urea and bacterial cellulose. During the formation of the 3D complex CNF[at]NG, the graphene species was tethered to CNF via carbon-carbon bonds. Such an interconnected 3D network facilitates both the electron transfer and mass diffusion for electrochemical reactions. "Green" leaves: A novel "vein-leaf"-type 3D complex of carbon nanofibers with nitrogen-doped graphene (CNF[at]NG) was prepared through thermolysis of biomass materials. The interconnected 3D network of CNF[at]NG facilitates both the electron transfer and mass diffusion for electrochemical reactions. As a result, the CNF[at]NG complexes demonstrate remarkable electrocatalytic activities toward the oxygen reduction reaction (ORR). Effective integration of one-dimensional carbon nanofibers (CNF) and two-dimensional carbon sheets into three-dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel "vein-leaf"-type 3D complex of carbon nanofibers with nitrogen-doped graphene (NG) was prepared through a simple thermal condensation of urea and bacterial cellulose. During the formation of the 3D complex CNF@NG, the graphene species was tethered to CNF via carbon-carbon bonds. Such an interconnected 3D network facilitates both the electron transfer and mass diffusion for electrochemical reactions. |
Author | Lv, Li-Bing Ye, Tian-Nan Xu, Miao Li, Xin-Hao Chen, Jie-Sheng |
Author_xml | – sequence: 1 givenname: Tian-Nan surname: Ye fullname: Ye, Tian-Nan organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P. R. China) – sequence: 2 givenname: Li-Bing surname: Lv fullname: Lv, Li-Bing organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P. R. China) – sequence: 3 givenname: Xin-Hao surname: Li fullname: Li, Xin-Hao email: xinhaoli@sjtu.edu.cn organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P. R. China) – sequence: 4 givenname: Miao surname: Xu fullname: Xu, Miao organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P. R. China) – sequence: 5 givenname: Jie-Sheng surname: Chen fullname: Chen, Jie-Sheng email: chemcj@sjtu.edu.cn organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P. R. China) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24854797$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1v1DAQhi1URD_gyhFF4sIly0zGiZ1jtdp-SNtFggWOluNMSkrWae0ssP8eV1tWiAuSrbGs5300ek_FkR89C_EaYYYAxXvre54VgBKIKnomTrAsMCel6Ci9JVGudInH4jTGu8RrDdULcVxIXUpVqxPx8dMURn877LIv3Htus7kNzeizlfXjwPYHx8ymk131t98StOi63vXsp-yGJzvkF4E5WwzsksXZ9LOL00vxvLND5FdP80x8vlis51f58sPl9fx8mTupkXKtFdi2lYUk1g05RxZsmqQ7V6EDqqCyDVunARA6qKixdcey1a1DXSCdiXd7730YH7YcJ7Ppo-NhsJ7HbTSoABHTVQl9-w96N26DT9sZLKnWUFdUJGq2p1wYYwzcmfvQb2zYGQTz2LZ5bNsc2k6BN0_abbPh9oD_qTcB9R742Q-8-4_OnK-uF3_L8322jxP_OmRt-G4qRao0X1eXBpewXkt5Y1b0G5dWm3A |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1002_celc_201800141 crossref_primary_10_1039_C6TA00615A crossref_primary_10_1002_anie_201504830 crossref_primary_10_1002_adma_201703691 crossref_primary_10_1016_j_ijhydene_2016_10_043 crossref_primary_10_1039_C4TA04450A crossref_primary_10_1002_celc_201900662 crossref_primary_10_1016_j_aca_2014_07_031 crossref_primary_10_1021_acsami_5b03845 crossref_primary_10_1039_C5CC02028J crossref_primary_10_1016_j_electacta_2018_06_058 crossref_primary_10_1039_C7NR06801H crossref_primary_10_1002_celc_202001593 crossref_primary_10_1016_j_jcat_2018_03_021 crossref_primary_10_1039_C9CC00791A crossref_primary_10_1039_C6TA02143C crossref_primary_10_1002_asia_202100858 crossref_primary_10_1016_j_procbio_2020_09_003 crossref_primary_10_1016_j_scib_2017_08_011 crossref_primary_10_1038_srep28049 crossref_primary_10_1039_C6NR07268B crossref_primary_10_1039_D0TA06368A crossref_primary_10_1039_D1TA01417J crossref_primary_10_1016_j_jechem_2020_08_030 crossref_primary_10_1039_D0SE00671H crossref_primary_10_1016_j_ceramint_2015_12_071 crossref_primary_10_1016_j_apsusc_2016_11_073 crossref_primary_10_1016_j_apsusc_2019_05_185 crossref_primary_10_1002_aenm_201702476 crossref_primary_10_1002_ange_201905729 crossref_primary_10_1016_j_ijhydene_2018_11_096 crossref_primary_10_1016_j_jpowsour_2016_01_005 crossref_primary_10_1021_acscentsci_5b00191 crossref_primary_10_1038_s41427_022_00446_9 crossref_primary_10_1007_s12274_021_3827_8 crossref_primary_10_1016_j_jechem_2017_03_016 crossref_primary_10_1039_C5NR05998D crossref_primary_10_1002_anie_201713429 crossref_primary_10_1016_j_flatc_2021_100248 crossref_primary_10_1039_C6TA05607E crossref_primary_10_1021_acs_accounts_5b00380 crossref_primary_10_1002_adma_201500863 crossref_primary_10_1016_j_carbon_2017_10_083 crossref_primary_10_1039_D1QM00285F crossref_primary_10_1002_advs_201800959 crossref_primary_10_1016_j_jechem_2020_06_033 crossref_primary_10_1002_cctc_201601284 crossref_primary_10_1016_j_carbon_2015_07_063 crossref_primary_10_1021_acsami_5b02467 crossref_primary_10_1016_j_est_2023_108073 crossref_primary_10_1039_C7TA04952H crossref_primary_10_1016_j_electacta_2019_06_078 crossref_primary_10_1002_smll_201600336 crossref_primary_10_1016_j_carbon_2016_05_007 crossref_primary_10_1021_acsami_7b08115 crossref_primary_10_1039_C9TA12536A crossref_primary_10_1016_j_jallcom_2021_158940 crossref_primary_10_1039_C7TA10094A crossref_primary_10_1039_D2EE03642H crossref_primary_10_1021_acsami_6b04189 crossref_primary_10_1016_j_carbpol_2016_09_008 crossref_primary_10_1016_j_cej_2018_11_043 crossref_primary_10_1016_S1872_2067_17_62801_8 crossref_primary_10_1039_C6RA28381K crossref_primary_10_1016_j_jallcom_2018_01_144 crossref_primary_10_1016_j_jallcom_2017_01_082 crossref_primary_10_1039_C8EE01642A crossref_primary_10_2139_ssrn_4197809 crossref_primary_10_1007_s40242_021_1386_x crossref_primary_10_1016_j_electacta_2015_04_094 crossref_primary_10_1016_j_energy_2017_11_083 crossref_primary_10_1016_j_jpowsour_2016_01_026 crossref_primary_10_1016_j_ijhydene_2017_11_173 crossref_primary_10_1039_D0TC05433J crossref_primary_10_1002_adfm_202005779 crossref_primary_10_1021_acsami_1c10925 crossref_primary_10_1016_j_apsusc_2018_02_279 crossref_primary_10_1016_j_ijhydene_2016_10_081 crossref_primary_10_1002_ange_201802663 crossref_primary_10_1002_adma_201805718 crossref_primary_10_1021_acsenergylett_6b00602 crossref_primary_10_1002_cssc_201403334 crossref_primary_10_1002_cssc_201501561 crossref_primary_10_1039_C7TA07608H crossref_primary_10_1016_j_nanoen_2015_04_033 crossref_primary_10_1039_C5NR02346G crossref_primary_10_1002_smll_201903760 crossref_primary_10_1002_adma_201907500 crossref_primary_10_1007_s11051_016_3457_3 crossref_primary_10_1016_j_nanoen_2015_02_025 crossref_primary_10_1002_aenm_201703539 crossref_primary_10_2139_ssrn_4059825 crossref_primary_10_2139_ssrn_4143248 crossref_primary_10_1002_cctc_201500368 crossref_primary_10_1016_j_microc_2019_04_051 crossref_primary_10_1088_2053_1591_aa6df6 crossref_primary_10_1016_j_jpowsour_2018_02_078 crossref_primary_10_1039_D2TA09353G crossref_primary_10_1002_ange_201713429 crossref_primary_10_1016_j_carbon_2019_02_061 crossref_primary_10_1016_j_nanoen_2017_07_008 crossref_primary_10_1039_C9CC00196D crossref_primary_10_1002_cssc_201700779 crossref_primary_10_1039_C8QI00356D crossref_primary_10_1039_D0CC03039B crossref_primary_10_1002_chem_201704266 crossref_primary_10_1021_acsaem_0c02234 crossref_primary_10_1039_C6RA08815E crossref_primary_10_1021_acssuschemeng_1c07601 crossref_primary_10_1002_cssc_201800826 crossref_primary_10_1039_C5CC01759A crossref_primary_10_1039_C8CC00846A crossref_primary_10_1002_ange_202111920 crossref_primary_10_1016_j_apcatb_2024_123947 crossref_primary_10_1016_S1872_5805_22_60590_0 crossref_primary_10_1021_cm503988n crossref_primary_10_3390_catal5031034 crossref_primary_10_1039_C7RA04127F crossref_primary_10_1039_C5CS00670H crossref_primary_10_1007_s12274_016_1136_4 crossref_primary_10_1039_C4TA06764A crossref_primary_10_1039_C5TA04632G crossref_primary_10_1002_smll_201906057 crossref_primary_10_1007_s40242_022_2030_0 crossref_primary_10_1016_j_jpowsour_2015_10_055 crossref_primary_10_1007_s12274_015_0911_y crossref_primary_10_1021_acsami_7b10227 crossref_primary_10_1039_C6TA01657J crossref_primary_10_1039_C6TA00136J crossref_primary_10_1002_anie_201905729 crossref_primary_10_1016_j_carbon_2016_04_018 crossref_primary_10_1016_j_apsusc_2019_143643 crossref_primary_10_1002_er_6722 crossref_primary_10_1002_ange_201504830 crossref_primary_10_1002_anie_201802663 crossref_primary_10_1016_j_nanoen_2015_05_017 crossref_primary_10_1016_j_ijhydene_2022_11_210 crossref_primary_10_1002_smll_201502297 crossref_primary_10_1007_s12274_016_1147_1 crossref_primary_10_1016_j_ijhydene_2021_08_215 crossref_primary_10_1016_j_electacta_2015_06_054 crossref_primary_10_1039_C6EE02169G crossref_primary_10_1002_anie_202111920 crossref_primary_10_1016_S1872_2067_15_60912_3 crossref_primary_10_1039_C5TA03485J crossref_primary_10_1038_srep17396 crossref_primary_10_1021_acscatal_5b02325 crossref_primary_10_1016_j_jiec_2021_05_037 crossref_primary_10_1039_C9TA07466J crossref_primary_10_1039_D0NR02763D crossref_primary_10_1016_j_nanoen_2017_07_039 |
Cites_doi | 10.1021/cr040110e 10.1002/ange.201206554 10.1126/science.1200770 10.1002/ange.201203207 10.1039/c0ee00326c 10.1021/ja407552k 10.1002/anie.201109257 10.1002/adma.201302753 10.1002/ange.201206720 10.1002/cssc.200900182 10.1038/nature07719 10.1002/anie.201209320 10.1002/ange.201209320 10.1021/ja402450a 10.1038/nmat3001 10.1002/adma.201302569 10.1002/adma.201300515 10.1002/ange.200907289 10.1038/nature11115 10.1002/anie.201106166 10.1038/nnano.2012.72 10.1021/nn203393d 10.1002/ange.201106166 10.1002/ange.201109257 10.1002/anie.200907289 10.1002/anie.201206720 10.1002/adma.201200197 10.1038/ncomms3076 10.1002/adma.201202424 10.1039/c2sc20289a 10.1126/science.1200832 10.1021/cs200652y 10.1016/j.apcatb.2004.06.021 10.1021/ja306376s 10.1021/jp044442z 10.1021/nn901850u 10.1126/science.1170335 10.1038/nmat3087 10.1038/35104620 10.1021/nn302674k 10.1002/anie.201203207 10.1002/adma.201100984 10.1126/science.1168049 10.1002/anie.201206554 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL NPM AAYXX CITATION 7TM K9. 7SR 8BQ 8FD JG9 |
DOI | 10.1002/anie.201403363 |
DatabaseName | Istex PubMed CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 6909 |
ExternalDocumentID | 3348467011 10_1002_anie_201403363 24854797 ANIE201403363 ark_67375_WNG_1L0TT44M_N |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program of China funderid: 2013CB934102; 2011CB808703 – fundername: National Natural Science Foundation of China |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AETEA NPM .GJ .HR 0ZS 186 31~ 9M8 AAYJJ AAYOK AAYXX ABEFU ABTAH AGCDD AI. ASPBG AVWKF AZFZN CITATION FEDTE G8K HF~ HVGLF H~9 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI UQL VH1 WHG WSR XOL YCJ YYP ZCG ZE2 ZGI ZXP ZY4 7TM K9. 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c4813-8870add4243e8b3cc3a0ab3c38fc61c03606abeac80010f063ba9fe4d8dc18213 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Fri Oct 25 03:36:03 EDT 2024 Thu Oct 10 16:07:18 EDT 2024 Thu Sep 26 19:02:07 EDT 2024 Sat Sep 28 07:53:49 EDT 2024 Sat Aug 24 01:02:00 EDT 2024 Wed Oct 30 09:53:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | biomass electrocatalysts carbon nanofibers graphene leaf nanostructures |
Language | English |
License | 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4813-8870add4243e8b3cc3a0ab3c38fc61c03606abeac80010f063ba9fe4d8dc18213 |
Notes | istex:49D351F436889D08A37520B111DD7DD150BC2F2E National Natural Science Foundation of China ArticleID:ANIE201403363 This work was financially supported by the National Basic Research Program of China (2013CB934102, 2011CB808703) and the National Natural Science Foundation of China. ark:/67375/WNG-1L0TT44M-N National Basic Research Program of China - No. 2013CB934102; No. 2011CB808703 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24854797 |
PQID | 1539809632 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1701110117 proquest_journals_1539809632 crossref_primary_10_1002_anie_201403363 pubmed_primary_24854797 wiley_primary_10_1002_anie_201403363_ANIE201403363 istex_primary_ark_67375_WNG_1L0TT44M_N |
PublicationCentury | 2000 |
PublicationDate | July 1, 2014 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: July 1, 2014 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li, S. H. Yu, Adv. Mater. 2013, 25, 3192-3196 Angew. Chem. Int. Ed. 2012, 51, 11496-11500 K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760-764 Angew. Chem. Int. Ed. 2012, 51, 11371-11375. H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B 2005, 56, 9-35 G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443-447 D. S. Su, R. Schlögl, ChemSusChem 2010, 3, 136-168. M. K. Debe, Nature 2012, 486, 43-51. L. Qu, Y. Liu, J. B. Baek, L. Dai, ACS Nano 2010, 4, 1321-1326 I. Y. Jeon, S. Zhang, L. Zhang, H. J. Choi, J. M. Seo, Z. Xia, L. Dai, J. B. Baek, Adv. Mater. 2013, 25, 6138-6145. D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127-16130 Z. Niu, J. Chen, H. H. Hng, J. Ma, X. Chen, Adv. Mater. 2012, 24, 4144-4150. D. S. Su, G. Sun, Angew. Chem. 2011, 123, 11774-11777 X. H. Li, S. Kurasch, U. Kaiser, M. Antonietti, Angew. Chem. 2012, 124, 9827-9830 Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. M. Cheng, Nat. Mater. 2011, 10, 424-428 S. Wang, L. Zhang, Z. Xia, A. Roy, D. W. Chang, J. B. Baek, L. Dai, Angew. Chem. 2012, 124, 4285-4288 R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823-7826 X. H. Li, M. Antonietti, Angew. Chem. 2013, 125, 4670-4674 Angew. Chem. Int. Ed. 2012, 51, 9689-9692 K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, K. Müllen, ACS Nano 2012, 6, 9541-9550 R. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem. 2010, 122, 2619-2623 Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, Science 2011, 332, 1537-1541 Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai, Adv. Mater. 2011, 23, 4828-4850 Angew. Chem. Int. Ed. 2012, 51, 4209-4212. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. a. Chen, S. Huang, ACS Nano 2011, 6, 205-211. S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2012, 24, 5593-5597 Angew. Chem. Int. Ed. 2010, 49, 2565-2569 M. Winter, R. J. Brodd, Chem. Rev. 2005, 105, 1021-1021. Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, Angew. Chem. 2012, 124, 11533-11537 H. W. Liang, W. Wei, Z.-S. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 2013, 135, 16002-16005. S. Maldonado, K. J. Stevenson, J. Phys. Chem. B 2005, 109, 4707-4716 J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. 2012, 124, 11664-11668 Angew. Chem. Int. Ed. 2011, 50, 11570-11572. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706-710. X. H. Li, X. Wang, M. Antonietti, Chem. Sci. 2012, 3, 2170-2174. B. C. Steele, A. Heinzel, Nature 2001, 414, 345-352 R. Cao, R. Thapa, H. Kim, X. Xu, M. G. Kim, Q. Li, N. Park, M. Liu, J. Cho, Nat. Commun. 2013, 4, 2076 X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, H. Dai, Science 2009, 324, 768-771 J. Liang, X. Du, C. Gibson, X. W. Du, S. Z. Qiao, Adv. Mater. 2013, 25, 6226-6231. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780-786 D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, Energy Environ. Sci. 2011, 4, 760-764 Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394-400. Angew. Chem. Int. Ed. 2013, 52, 4572-4576 H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2012, 2, 781-794. 2013; 25 2013; 4 2012; 486 2010 2010; 122 49 2013 2013; 125 52 2011; 10 2011 2011; 123 50 2011; 4 2011; 6 2011; 332 2009; 457 2012; 2 2012; 3 2012; 134 2005; 105 2005; 109 2013; 135 2011; 23 2012 2012; 124 51 2010; 3 2012; 6 2012; 24 2012; 7 2010; 4 2009; 323 2005; 56 2009; 324 2001; 414 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_26_3 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_24_3 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_19_3 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_30_3 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_3_2 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_2 e_1_2_2_40_2 e_1_2_2_29_3 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_9_3 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_18_3 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – volume: 4 start-page: 2076 year: 2013 publication-title: Nat. Commun. – volume: 124 51 start-page: 11664 11496 year: 2012 2012 end-page: 11668 11500 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 124 51 start-page: 4285 4209 year: 2012 2012 end-page: 4288 4212 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 135 start-page: 7823 year: 2013 end-page: 7826 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 4144 year: 2012 end-page: 4150 publication-title: Adv. Mater. – volume: 486 start-page: 43 year: 2012 end-page: 51 publication-title: Nature – volume: 6 start-page: 205 year: 2011 end-page: 211 publication-title: ACS Nano – volume: 10 start-page: 780 year: 2011 end-page: 786 publication-title: Nat. Mater. – volume: 56 start-page: 9 year: 2005 end-page: 35 publication-title: Appl. Catal. B – volume: 109 start-page: 4707 year: 2005 end-page: 4716 publication-title: J. Phys. Chem. B – volume: 135 start-page: 16002 year: 2013 end-page: 16005 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 424 year: 2011 end-page: 428 publication-title: Nat. Mater. – volume: 332 start-page: 1537 year: 2011 end-page: 1541 publication-title: Science – volume: 6 start-page: 9541 year: 2012 end-page: 9550 publication-title: ACS Nano – volume: 105 start-page: 1021 year: 2005 end-page: 1021 publication-title: Chem. Rev. – volume: 323 start-page: 760 year: 2009 end-page: 764 publication-title: Science – volume: 134 start-page: 16127 year: 2012 end-page: 16130 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 4828 year: 2011 end-page: 4850 publication-title: Adv. Mater. – volume: 324 start-page: 768 year: 2009 end-page: 771 publication-title: Science – volume: 124 51 start-page: 11533 11371 year: 2012 2012 end-page: 11537 11375 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 24 start-page: 5593 year: 2012 end-page: 5597 publication-title: Adv. Mater. – volume: 457 start-page: 706 year: 2009 end-page: 710 publication-title: Nature – volume: 4 start-page: 760 year: 2011 end-page: 764 publication-title: Energy Environ. Sci. – volume: 25 start-page: 6226 year: 2013 end-page: 6231 publication-title: Adv. Mater. – volume: 3 start-page: 2170 year: 2012 end-page: 2174 publication-title: Chem. Sci. – volume: 122 49 start-page: 2619 2565 year: 2010 2010 end-page: 2623 2569 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 3 start-page: 136 year: 2010 end-page: 168 publication-title: ChemSusChem – volume: 123 50 start-page: 11774 11570 year: 2011 2011 end-page: 11777 11572 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 414 start-page: 345 year: 2001 end-page: 352 publication-title: Nature – volume: 7 start-page: 394 year: 2012 end-page: 400 publication-title: Nat. Nanotechnol. – volume: 332 start-page: 443 year: 2011 end-page: 447 publication-title: Science – volume: 4 start-page: 1321 year: 2010 end-page: 1326 publication-title: ACS Nano – volume: 125 52 start-page: 4670 4572 year: 2013 2013 end-page: 4674 4576 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 25 start-page: 3192 year: 2013 end-page: 3196 publication-title: Adv. Mater. – volume: 25 start-page: 6138 year: 2013 end-page: 6145 publication-title: Adv. Mater. – volume: 124 51 start-page: 9827 9689 year: 2012 2012 end-page: 9830 9692 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 2 start-page: 781 year: 2012 end-page: 794 publication-title: ACS Catal. – ident: e_1_2_2_5_2 doi: 10.1021/cr040110e – ident: e_1_2_2_30_2 doi: 10.1002/ange.201206554 – ident: e_1_2_2_37_2 doi: 10.1126/science.1200770 – ident: e_1_2_2_19_2 doi: 10.1002/ange.201203207 – ident: e_1_2_2_36_2 – ident: e_1_2_2_40_2 doi: 10.1039/c0ee00326c – ident: e_1_2_2_44_2 doi: 10.1021/ja407552k – ident: e_1_2_2_26_3 doi: 10.1002/anie.201109257 – ident: e_1_2_2_20_2 doi: 10.1002/adma.201302753 – ident: e_1_2_2_24_2 doi: 10.1002/ange.201206720 – ident: e_1_2_2_14_2 – ident: e_1_2_2_13_2 doi: 10.1002/cssc.200900182 – ident: e_1_2_2_33_2 doi: 10.1038/nature07719 – ident: e_1_2_2_2_2 – ident: e_1_2_2_29_3 doi: 10.1002/anie.201209320 – ident: e_1_2_2_29_2 doi: 10.1002/ange.201209320 – ident: e_1_2_2_21_2 – ident: e_1_2_2_16_2 doi: 10.1021/ja402450a – ident: e_1_2_2_32_2 doi: 10.1038/nmat3001 – ident: e_1_2_2_34_2 doi: 10.1002/adma.201302569 – ident: e_1_2_2_27_2 – ident: e_1_2_2_17_2 doi: 10.1002/adma.201300515 – ident: e_1_2_2_18_2 doi: 10.1002/ange.200907289 – ident: e_1_2_2_1_2 doi: 10.1038/nature11115 – ident: e_1_2_2_9_3 doi: 10.1002/anie.201106166 – ident: e_1_2_2_35_2 doi: 10.1038/nnano.2012.72 – ident: e_1_2_2_47_2 doi: 10.1021/nn203393d – ident: e_1_2_2_9_2 doi: 10.1002/ange.201106166 – ident: e_1_2_2_26_2 doi: 10.1002/ange.201109257 – ident: e_1_2_2_18_3 doi: 10.1002/anie.200907289 – ident: e_1_2_2_24_3 doi: 10.1002/anie.201206720 – ident: e_1_2_2_38_2 doi: 10.1002/adma.201200197 – ident: e_1_2_2_43_2 doi: 10.1038/ncomms3076 – ident: e_1_2_2_23_2 doi: 10.1002/adma.201202424 – ident: e_1_2_2_48_2 doi: 10.1039/c2sc20289a – ident: e_1_2_2_8_2 doi: 10.1126/science.1200832 – ident: e_1_2_2_41_2 doi: 10.1021/cs200652y – ident: e_1_2_2_3_2 doi: 10.1016/j.apcatb.2004.06.021 – ident: e_1_2_2_6_2 – ident: e_1_2_2_25_2 doi: 10.1021/ja306376s – ident: e_1_2_2_22_2 doi: 10.1021/jp044442z – ident: e_1_2_2_39_2 – ident: e_1_2_2_10_2 – ident: e_1_2_2_15_2 doi: 10.1021/nn901850u – ident: e_1_2_2_28_2 doi: 10.1126/science.1170335 – ident: e_1_2_2_7_2 doi: 10.1038/nmat3087 – ident: e_1_2_2_4_2 doi: 10.1038/35104620 – ident: e_1_2_2_46_2 doi: 10.1021/nn302674k – ident: e_1_2_2_19_3 doi: 10.1002/anie.201203207 – ident: e_1_2_2_12_2 doi: 10.1002/adma.201100984 – ident: e_1_2_2_31_2 – ident: e_1_2_2_11_2 doi: 10.1126/science.1168049 – ident: e_1_2_2_45_2 – ident: e_1_2_2_30_3 doi: 10.1002/anie.201206554 – ident: e_1_2_2_42_2 |
SSID | ssj0028806 |
Score | 2.5579884 |
Snippet | Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks is... Effective integration of one-dimensional carbon nanofibers (CNF) and two-dimensional carbon sheets into three-dimensional (3D) conductive frameworks is... Abstract Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6905 |
SubjectTerms | Bacteria biomass Carbon Carbon fibers carbon nanofibers Diffusion electrocatalysts Electron transfer Graphene leaf nanostructures Nanofibers Networks Three dimensional |
Title | Strongly Veined Carbon Nanoleaves as a Highly Efficient Metal-Free Electrocatalyst |
URI | https://api.istex.fr/ark:/67375/WNG-1L0TT44M-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201403363 https://www.ncbi.nlm.nih.gov/pubmed/24854797 https://www.proquest.com/docview/1539809632 https://search.proquest.com/docview/1701110117 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoAL70egICMhOKV1Yuexx2rZpSB2D7CF3izbmfTQKov2UbWc-An8Rn4JM_EmsAgJCaRISWRbdmbseTjjbwCeV0WOpHZk7KTHWKscY-dqYgjHK-rMl3WLeDOZ5odH-u1xdvzLKf6AD9FvuPHKaOU1L3Drlvs_QUP5BDaHZmmpVM5wn4kqOKbr1fsePyqlyRmOFykVcxb6DrVRpvvbzbe00lUm8MWfTM5tC7ZVQeObYLvBh8iT0731yu35L7_hOv7P192CGxv7VByECXUbrmBzB64Nu7Rwd2H2gTfPT84uxUekXioxtAs3bwSJ6fkZ2nNcCkuX4AASqjRqISpIs4kJkp3__eu38QJRjEL2nXbz6HK5ugdH49FseBhvUjPEXpeJikk0SZKMOtUKS6e8V1Zauquy9nniSS3K3DoS6iU7nTXZQc4OatRVWXnyaBJ1H3aaeYMPQeRY6yorkRwXpauCZraTxYCRCJPcykxG8LJjjfkcEDhMwFpODVPJ9FSK4EXLub6aXZxy3FqRmU_T1yZ5J2czrSdmGsFux1qzWbJLQ6J_UJJDp9IInvXFRFz-g2IbnK-pTkHiMGEYvQgehCnRd8bYcLoYUEnaMvYvgzUH0zej_u3RvzR6DNf5OQQP78LOarHGJ2QirdzTdhn8AGyLBnU |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygX3o-UAkZCcErrxM5jj9WyyxZ2c4AUuFm243Bola32gSgnfgK_kV_CTLwJWoSEBFKkKLEtOx7Pyxl_A_CsylKHaoeHhlsXSpG60JgaCULxijKxed0i3syKdHIqX39MumhCOgvj8SH6DTfijFZeE4PThvTRL9RQOoJNsVmSC5GKq7CLPC8oe8PLtz2CVIzL0x8wEiKkPPQdbiOPj7bbb-mlXZriL38yOrdt2FYJjW-A6YbvY0_ODtcrc2i__obs-F_fdxOub0xUduzX1C244prbsDfsMsPdgfId7Z9_Or9k7x12U7GhXph5w1BSz8-d_uyWTOPFKIYEK41alApUbmzm0NT_8e37eOEcG_kEPO3-0eVydRdOx6NyOAk32RlCK_NIhCidOApHGUvhciOsFZprvIu8tmlkUTPyVBuU6zn5nTWaQkYPaiervLLo1ETiHuw088Y9AJa6WlZJ7tB3EbLKcHEbng0IjDBKNU94AC862qgLD8KhPNxyrGiWVD9LATxvSddX04szCl3LEvWheKWiKS9LKWeqCOCgo63acO1SofQf5OjTiTiAp30xTi79RNGNm6-xToYSMSIkvQDu-zXRd0bwcDIbYEncUvYvg1XHxcmof9r_l0ZPYG9SzqZqelK8eQjX6L2PJT6AndVi7R6hxbQyj1ue-AnNKgqN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEXypvQFoyE4JTWiR0ne6y2u7TQjRBsoTfLThwOrbLVPqqWEz-B38gvYSbeBBYhIYEUKUpsy47n7Yw_A7woU-XQ7PDQ8sKFUigXWlshQShfUSZFVjWIN6NcHRzLNyfJyS-7-D0-RLfgRpLR6GsS8POy2v0JGko7sCk1S3IhlLgO61Kh-0tu0fsOQCpG7vT7i4QI6Rj6FraRx7ur7VfM0jrN8OWffM5VF7axQcMNMO3oferJ6c5ibneKL78BO_7P592B20sHle15jroL11x9D27223Ph7sP4A62efz67Yh8d9lKyvpnaSc1QT0_OnLlwM2bwYpRBgpUGDUYFmjY2cujof__6bTh1jg388TvN6tHVbP4AjoeDcf8gXJ7NEBYyi0SIuomjapSxFC6zoiiE4QbvIqsKFRVoF7kyFrV6RlFnhY6QNb3KyTIrCwxpIvEQ1upJ7R4DU66SZZI5jFyELFNkbcvTHkERRsrwhAfwqiWNPvcQHNqDLceaZkl3sxTAy4ZyXTUzPaXEtTTRn_LXOjri47GUI50HsNWSVi9ldqZR9_cyjOhEHMDzrhgnl36hmNpNFlgnRX0YEY5eAI88S3SdETicTHtYEjeE_ctg9V5-OOienvxLo2dw493-UB8d5m834Ra99onEW7A2ny7cNrpLc_u0kYgfnTgJPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly+Veined+Carbon+Nanoleaves+as+a+Highly+Efficient+Metal-Free+Electrocatalyst&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ye%2C+Tian-Nan&rft.au=Lv%2C+Li-Bing&rft.au=Li%2C+Xin-Hao&rft.au=Xu%2C+Miao&rft.date=2014-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=27&rft.spage=6905&rft_id=info:doi/10.1002%2Fanie.201403363&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3348467011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |