Strongly Veined Carbon Nanoleaves as a Highly Efficient Metal-Free Electrocatalyst

Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐do...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 53; no. 27; pp. 6905 - 6909
Main Authors Ye, Tian-Nan, Lv, Li-Bing, Li, Xin-Hao, Xu, Miao, Chen, Jie-Sheng
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.07.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐doped graphene (NG) was prepared through a simple thermal condensation of urea and bacterial cellulose. During the formation of the 3D complex CNF@NG, the graphene species was tethered to CNF via carbon–carbon bonds. Such an interconnected 3D network facilitates both the electron transfer and mass diffusion for electrochemical reactions. “Green” leaves: A novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐doped graphene (CNF@NG) was prepared through thermolysis of biomass materials. The interconnected 3D network of CNF@NG facilitates both the electron transfer and mass diffusion for electrochemical reactions. As a result, the CNF@NG complexes demonstrate remarkable electrocatalytic activities toward the oxygen reduction reaction (ORR).
AbstractList Abstract Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐doped graphene (NG) was prepared through a simple thermal condensation of urea and bacterial cellulose. During the formation of the 3D complex CNF@NG, the graphene species was tethered to CNF via carbon–carbon bonds. Such an interconnected 3D network facilitates both the electron transfer and mass diffusion for electrochemical reactions.
Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐doped graphene (NG) was prepared through a simple thermal condensation of urea and bacterial cellulose. During the formation of the 3D complex CNF@NG, the graphene species was tethered to CNF via carbon–carbon bonds. Such an interconnected 3D network facilitates both the electron transfer and mass diffusion for electrochemical reactions. “Green” leaves: A novel “vein‐leaf”‐type 3D complex of carbon nanofibers with nitrogen‐doped graphene (CNF@NG) was prepared through thermolysis of biomass materials. The interconnected 3D network of CNF@NG facilitates both the electron transfer and mass diffusion for electrochemical reactions. As a result, the CNF@NG complexes demonstrate remarkable electrocatalytic activities toward the oxygen reduction reaction (ORR).
Effective integration of one-dimensional carbon nanofibers (CNF) and two-dimensional carbon sheets into three-dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel "vein-leaf"-type 3D complex of carbon nanofibers with nitrogen-doped graphene (NG) was prepared through a simple thermal condensation of urea and bacterial cellulose. During the formation of the 3D complex CNF[at]NG, the graphene species was tethered to CNF via carbon-carbon bonds. Such an interconnected 3D network facilitates both the electron transfer and mass diffusion for electrochemical reactions. "Green" leaves: A novel "vein-leaf"-type 3D complex of carbon nanofibers with nitrogen-doped graphene (CNF[at]NG) was prepared through thermolysis of biomass materials. The interconnected 3D network of CNF[at]NG facilitates both the electron transfer and mass diffusion for electrochemical reactions. As a result, the CNF[at]NG complexes demonstrate remarkable electrocatalytic activities toward the oxygen reduction reaction (ORR).
Effective integration of one-dimensional carbon nanofibers (CNF) and two-dimensional carbon sheets into three-dimensional (3D) conductive frameworks is essential for their practical applications as electrode materials. Herein, a novel "vein-leaf"-type 3D complex of carbon nanofibers with nitrogen-doped graphene (NG) was prepared through a simple thermal condensation of urea and bacterial cellulose. During the formation of the 3D complex CNF@NG, the graphene species was tethered to CNF via carbon-carbon bonds. Such an interconnected 3D network facilitates both the electron transfer and mass diffusion for electrochemical reactions.
Author Lv, Li-Bing
Ye, Tian-Nan
Xu, Miao
Li, Xin-Hao
Chen, Jie-Sheng
Author_xml – sequence: 1
  givenname: Tian-Nan
  surname: Ye
  fullname: Ye, Tian-Nan
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P. R. China)
– sequence: 2
  givenname: Li-Bing
  surname: Lv
  fullname: Lv, Li-Bing
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P. R. China)
– sequence: 3
  givenname: Xin-Hao
  surname: Li
  fullname: Li, Xin-Hao
  email: xinhaoli@sjtu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P. R. China)
– sequence: 4
  givenname: Miao
  surname: Xu
  fullname: Xu, Miao
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P. R. China)
– sequence: 5
  givenname: Jie-Sheng
  surname: Chen
  fullname: Chen, Jie-Sheng
  email: chemcj@sjtu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (P. R. China)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24854797$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1v1DAQhi1URD_gyhFF4sIly0zGiZ1jtdp-SNtFggWOluNMSkrWae0ssP8eV1tWiAuSrbGs5300ek_FkR89C_EaYYYAxXvre54VgBKIKnomTrAsMCel6Ci9JVGudInH4jTGu8RrDdULcVxIXUpVqxPx8dMURn877LIv3Htus7kNzeizlfXjwPYHx8ymk131t98StOi63vXsp-yGJzvkF4E5WwzsksXZ9LOL00vxvLND5FdP80x8vlis51f58sPl9fx8mTupkXKtFdi2lYUk1g05RxZsmqQ7V6EDqqCyDVunARA6qKixdcey1a1DXSCdiXd7730YH7YcJ7Ppo-NhsJ7HbTSoABHTVQl9-w96N26DT9sZLKnWUFdUJGq2p1wYYwzcmfvQb2zYGQTz2LZ5bNsc2k6BN0_abbPh9oD_qTcB9R742Q-8-4_OnK-uF3_L8322jxP_OmRt-G4qRao0X1eXBpewXkt5Y1b0G5dWm3A
CODEN ACIEAY
CitedBy_id crossref_primary_10_1002_celc_201800141
crossref_primary_10_1039_C6TA00615A
crossref_primary_10_1002_anie_201504830
crossref_primary_10_1002_adma_201703691
crossref_primary_10_1016_j_ijhydene_2016_10_043
crossref_primary_10_1039_C4TA04450A
crossref_primary_10_1002_celc_201900662
crossref_primary_10_1016_j_aca_2014_07_031
crossref_primary_10_1021_acsami_5b03845
crossref_primary_10_1039_C5CC02028J
crossref_primary_10_1016_j_electacta_2018_06_058
crossref_primary_10_1039_C7NR06801H
crossref_primary_10_1002_celc_202001593
crossref_primary_10_1016_j_jcat_2018_03_021
crossref_primary_10_1039_C9CC00791A
crossref_primary_10_1039_C6TA02143C
crossref_primary_10_1002_asia_202100858
crossref_primary_10_1016_j_procbio_2020_09_003
crossref_primary_10_1016_j_scib_2017_08_011
crossref_primary_10_1038_srep28049
crossref_primary_10_1039_C6NR07268B
crossref_primary_10_1039_D0TA06368A
crossref_primary_10_1039_D1TA01417J
crossref_primary_10_1016_j_jechem_2020_08_030
crossref_primary_10_1039_D0SE00671H
crossref_primary_10_1016_j_ceramint_2015_12_071
crossref_primary_10_1016_j_apsusc_2016_11_073
crossref_primary_10_1016_j_apsusc_2019_05_185
crossref_primary_10_1002_aenm_201702476
crossref_primary_10_1002_ange_201905729
crossref_primary_10_1016_j_ijhydene_2018_11_096
crossref_primary_10_1016_j_jpowsour_2016_01_005
crossref_primary_10_1021_acscentsci_5b00191
crossref_primary_10_1038_s41427_022_00446_9
crossref_primary_10_1007_s12274_021_3827_8
crossref_primary_10_1016_j_jechem_2017_03_016
crossref_primary_10_1039_C5NR05998D
crossref_primary_10_1002_anie_201713429
crossref_primary_10_1016_j_flatc_2021_100248
crossref_primary_10_1039_C6TA05607E
crossref_primary_10_1021_acs_accounts_5b00380
crossref_primary_10_1002_adma_201500863
crossref_primary_10_1016_j_carbon_2017_10_083
crossref_primary_10_1039_D1QM00285F
crossref_primary_10_1002_advs_201800959
crossref_primary_10_1016_j_jechem_2020_06_033
crossref_primary_10_1002_cctc_201601284
crossref_primary_10_1016_j_carbon_2015_07_063
crossref_primary_10_1021_acsami_5b02467
crossref_primary_10_1016_j_est_2023_108073
crossref_primary_10_1039_C7TA04952H
crossref_primary_10_1016_j_electacta_2019_06_078
crossref_primary_10_1002_smll_201600336
crossref_primary_10_1016_j_carbon_2016_05_007
crossref_primary_10_1021_acsami_7b08115
crossref_primary_10_1039_C9TA12536A
crossref_primary_10_1016_j_jallcom_2021_158940
crossref_primary_10_1039_C7TA10094A
crossref_primary_10_1039_D2EE03642H
crossref_primary_10_1021_acsami_6b04189
crossref_primary_10_1016_j_carbpol_2016_09_008
crossref_primary_10_1016_j_cej_2018_11_043
crossref_primary_10_1016_S1872_2067_17_62801_8
crossref_primary_10_1039_C6RA28381K
crossref_primary_10_1016_j_jallcom_2018_01_144
crossref_primary_10_1016_j_jallcom_2017_01_082
crossref_primary_10_1039_C8EE01642A
crossref_primary_10_2139_ssrn_4197809
crossref_primary_10_1007_s40242_021_1386_x
crossref_primary_10_1016_j_electacta_2015_04_094
crossref_primary_10_1016_j_energy_2017_11_083
crossref_primary_10_1016_j_jpowsour_2016_01_026
crossref_primary_10_1016_j_ijhydene_2017_11_173
crossref_primary_10_1039_D0TC05433J
crossref_primary_10_1002_adfm_202005779
crossref_primary_10_1021_acsami_1c10925
crossref_primary_10_1016_j_apsusc_2018_02_279
crossref_primary_10_1016_j_ijhydene_2016_10_081
crossref_primary_10_1002_ange_201802663
crossref_primary_10_1002_adma_201805718
crossref_primary_10_1021_acsenergylett_6b00602
crossref_primary_10_1002_cssc_201403334
crossref_primary_10_1002_cssc_201501561
crossref_primary_10_1039_C7TA07608H
crossref_primary_10_1016_j_nanoen_2015_04_033
crossref_primary_10_1039_C5NR02346G
crossref_primary_10_1002_smll_201903760
crossref_primary_10_1002_adma_201907500
crossref_primary_10_1007_s11051_016_3457_3
crossref_primary_10_1016_j_nanoen_2015_02_025
crossref_primary_10_1002_aenm_201703539
crossref_primary_10_2139_ssrn_4059825
crossref_primary_10_2139_ssrn_4143248
crossref_primary_10_1002_cctc_201500368
crossref_primary_10_1016_j_microc_2019_04_051
crossref_primary_10_1088_2053_1591_aa6df6
crossref_primary_10_1016_j_jpowsour_2018_02_078
crossref_primary_10_1039_D2TA09353G
crossref_primary_10_1002_ange_201713429
crossref_primary_10_1016_j_carbon_2019_02_061
crossref_primary_10_1016_j_nanoen_2017_07_008
crossref_primary_10_1039_C9CC00196D
crossref_primary_10_1002_cssc_201700779
crossref_primary_10_1039_C8QI00356D
crossref_primary_10_1039_D0CC03039B
crossref_primary_10_1002_chem_201704266
crossref_primary_10_1021_acsaem_0c02234
crossref_primary_10_1039_C6RA08815E
crossref_primary_10_1021_acssuschemeng_1c07601
crossref_primary_10_1002_cssc_201800826
crossref_primary_10_1039_C5CC01759A
crossref_primary_10_1039_C8CC00846A
crossref_primary_10_1002_ange_202111920
crossref_primary_10_1016_j_apcatb_2024_123947
crossref_primary_10_1016_S1872_5805_22_60590_0
crossref_primary_10_1021_cm503988n
crossref_primary_10_3390_catal5031034
crossref_primary_10_1039_C7RA04127F
crossref_primary_10_1039_C5CS00670H
crossref_primary_10_1007_s12274_016_1136_4
crossref_primary_10_1039_C4TA06764A
crossref_primary_10_1039_C5TA04632G
crossref_primary_10_1002_smll_201906057
crossref_primary_10_1007_s40242_022_2030_0
crossref_primary_10_1016_j_jpowsour_2015_10_055
crossref_primary_10_1007_s12274_015_0911_y
crossref_primary_10_1021_acsami_7b10227
crossref_primary_10_1039_C6TA01657J
crossref_primary_10_1039_C6TA00136J
crossref_primary_10_1002_anie_201905729
crossref_primary_10_1016_j_carbon_2016_04_018
crossref_primary_10_1016_j_apsusc_2019_143643
crossref_primary_10_1002_er_6722
crossref_primary_10_1002_ange_201504830
crossref_primary_10_1002_anie_201802663
crossref_primary_10_1016_j_nanoen_2015_05_017
crossref_primary_10_1016_j_ijhydene_2022_11_210
crossref_primary_10_1002_smll_201502297
crossref_primary_10_1007_s12274_016_1147_1
crossref_primary_10_1016_j_ijhydene_2021_08_215
crossref_primary_10_1016_j_electacta_2015_06_054
crossref_primary_10_1039_C6EE02169G
crossref_primary_10_1002_anie_202111920
crossref_primary_10_1016_S1872_2067_15_60912_3
crossref_primary_10_1039_C5TA03485J
crossref_primary_10_1038_srep17396
crossref_primary_10_1021_acscatal_5b02325
crossref_primary_10_1016_j_jiec_2021_05_037
crossref_primary_10_1039_C9TA07466J
crossref_primary_10_1039_D0NR02763D
crossref_primary_10_1016_j_nanoen_2017_07_039
Cites_doi 10.1021/cr040110e
10.1002/ange.201206554
10.1126/science.1200770
10.1002/ange.201203207
10.1039/c0ee00326c
10.1021/ja407552k
10.1002/anie.201109257
10.1002/adma.201302753
10.1002/ange.201206720
10.1002/cssc.200900182
10.1038/nature07719
10.1002/anie.201209320
10.1002/ange.201209320
10.1021/ja402450a
10.1038/nmat3001
10.1002/adma.201302569
10.1002/adma.201300515
10.1002/ange.200907289
10.1038/nature11115
10.1002/anie.201106166
10.1038/nnano.2012.72
10.1021/nn203393d
10.1002/ange.201106166
10.1002/ange.201109257
10.1002/anie.200907289
10.1002/anie.201206720
10.1002/adma.201200197
10.1038/ncomms3076
10.1002/adma.201202424
10.1039/c2sc20289a
10.1126/science.1200832
10.1021/cs200652y
10.1016/j.apcatb.2004.06.021
10.1021/ja306376s
10.1021/jp044442z
10.1021/nn901850u
10.1126/science.1170335
10.1038/nmat3087
10.1038/35104620
10.1021/nn302674k
10.1002/anie.201203207
10.1002/adma.201100984
10.1126/science.1168049
10.1002/anie.201206554
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
NPM
AAYXX
CITATION
7TM
K9.
7SR
8BQ
8FD
JG9
DOI 10.1002/anie.201403363
DatabaseName Istex
PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 6909
ExternalDocumentID 3348467011
10_1002_anie_201403363
24854797
ANIE201403363
ark_67375_WNG_1L0TT44M_N
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Basic Research Program of China
  funderid: 2013CB934102; 2011CB808703
– fundername: National Natural Science Foundation of China
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AETEA
NPM
.GJ
.HR
0ZS
186
31~
9M8
AAYJJ
AAYOK
AAYXX
ABEFU
ABTAH
AGCDD
AI.
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
G8K
HF~
HVGLF
H~9
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
UQL
VH1
WHG
WSR
XOL
YCJ
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
7TM
K9.
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c4813-8870add4243e8b3cc3a0ab3c38fc61c03606abeac80010f063ba9fe4d8dc18213
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Oct 25 03:36:03 EDT 2024
Thu Oct 10 16:07:18 EDT 2024
Thu Sep 26 19:02:07 EDT 2024
Sat Sep 28 07:53:49 EDT 2024
Sat Aug 24 01:02:00 EDT 2024
Wed Oct 30 09:53:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords biomass
electrocatalysts
carbon nanofibers
graphene
leaf nanostructures
Language English
License 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4813-8870add4243e8b3cc3a0ab3c38fc61c03606abeac80010f063ba9fe4d8dc18213
Notes istex:49D351F436889D08A37520B111DD7DD150BC2F2E
National Natural Science Foundation of China
ArticleID:ANIE201403363
This work was financially supported by the National Basic Research Program of China (2013CB934102, 2011CB808703) and the National Natural Science Foundation of China.
ark:/67375/WNG-1L0TT44M-N
National Basic Research Program of China - No. 2013CB934102; No. 2011CB808703
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24854797
PQID 1539809632
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1701110117
proquest_journals_1539809632
crossref_primary_10_1002_anie_201403363
pubmed_primary_24854797
wiley_primary_10_1002_anie_201403363_ANIE201403363
istex_primary_ark_67375_WNG_1L0TT44M_N
PublicationCentury 2000
PublicationDate July 1, 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 1, 2014
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li, S. H. Yu, Adv. Mater. 2013, 25, 3192-3196
Angew. Chem. Int. Ed. 2012, 51, 11496-11500
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760-764
Angew. Chem. Int. Ed. 2012, 51, 11371-11375.
H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B 2005, 56, 9-35
G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443-447
D. S. Su, R. Schlögl, ChemSusChem 2010, 3, 136-168.
M. K. Debe, Nature 2012, 486, 43-51.
L. Qu, Y. Liu, J. B. Baek, L. Dai, ACS Nano 2010, 4, 1321-1326
I. Y. Jeon, S. Zhang, L. Zhang, H. J. Choi, J. M. Seo, Z. Xia, L. Dai, J. B. Baek, Adv. Mater. 2013, 25, 6138-6145.
D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127-16130
Z. Niu, J. Chen, H. H. Hng, J. Ma, X. Chen, Adv. Mater. 2012, 24, 4144-4150.
D. S. Su, G. Sun, Angew. Chem. 2011, 123, 11774-11777
X. H. Li, S. Kurasch, U. Kaiser, M. Antonietti, Angew. Chem. 2012, 124, 9827-9830
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. M. Cheng, Nat. Mater. 2011, 10, 424-428
S. Wang, L. Zhang, Z. Xia, A. Roy, D. W. Chang, J. B. Baek, L. Dai, Angew. Chem. 2012, 124, 4285-4288
R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823-7826
X. H. Li, M. Antonietti, Angew. Chem. 2013, 125, 4670-4674
Angew. Chem. Int. Ed. 2012, 51, 9689-9692
K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, K. Müllen, ACS Nano 2012, 6, 9541-9550
R. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem. 2010, 122, 2619-2623
Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, Science 2011, 332, 1537-1541
Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai, Adv. Mater. 2011, 23, 4828-4850
Angew. Chem. Int. Ed. 2012, 51, 4209-4212.
Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. a. Chen, S. Huang, ACS Nano 2011, 6, 205-211.
S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu, Adv. Mater. 2012, 24, 5593-5597
Angew. Chem. Int. Ed. 2010, 49, 2565-2569
M. Winter, R. J. Brodd, Chem. Rev. 2005, 105, 1021-1021.
Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, Angew. Chem. 2012, 124, 11533-11537
H. W. Liang, W. Wei, Z.-S. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 2013, 135, 16002-16005.
S. Maldonado, K. J. Stevenson, J. Phys. Chem. B 2005, 109, 4707-4716
J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. 2012, 124, 11664-11668
Angew. Chem. Int. Ed. 2011, 50, 11570-11572.
K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706-710.
X. H. Li, X. Wang, M. Antonietti, Chem. Sci. 2012, 3, 2170-2174.
B. C. Steele, A. Heinzel, Nature 2001, 414, 345-352
R. Cao, R. Thapa, H. Kim, X. Xu, M. G. Kim, Q. Li, N. Park, M. Liu, J. Cho, Nat. Commun. 2013, 4, 2076
X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, H. Dai, Science 2009, 324, 768-771
J. Liang, X. Du, C. Gibson, X. W. Du, S. Z. Qiao, Adv. Mater. 2013, 25, 6226-6231.
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780-786
D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, Energy Environ. Sci. 2011, 4, 760-764
Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394-400.
Angew. Chem. Int. Ed. 2013, 52, 4572-4576
H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2012, 2, 781-794.
2013; 25
2013; 4
2012; 486
2010 2010; 122 49
2013 2013; 125 52
2011; 10
2011 2011; 123 50
2011; 4
2011; 6
2011; 332
2009; 457
2012; 2
2012; 3
2012; 134
2005; 105
2005; 109
2013; 135
2011; 23
2012 2012; 124 51
2010; 3
2012; 6
2012; 24
2012; 7
2010; 4
2009; 323
2005; 56
2009; 324
2001; 414
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_26_3
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_24_3
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_19_3
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_30_3
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_3_2
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_2
e_1_2_2_40_2
e_1_2_2_29_3
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_9_3
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_18_3
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – volume: 4
  start-page: 2076
  year: 2013
  publication-title: Nat. Commun.
– volume: 124 51
  start-page: 11664 11496
  year: 2012 2012
  end-page: 11668 11500
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 124 51
  start-page: 4285 4209
  year: 2012 2012
  end-page: 4288 4212
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 135
  start-page: 7823
  year: 2013
  end-page: 7826
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 4144
  year: 2012
  end-page: 4150
  publication-title: Adv. Mater.
– volume: 486
  start-page: 43
  year: 2012
  end-page: 51
  publication-title: Nature
– volume: 6
  start-page: 205
  year: 2011
  end-page: 211
  publication-title: ACS Nano
– volume: 10
  start-page: 780
  year: 2011
  end-page: 786
  publication-title: Nat. Mater.
– volume: 56
  start-page: 9
  year: 2005
  end-page: 35
  publication-title: Appl. Catal. B
– volume: 109
  start-page: 4707
  year: 2005
  end-page: 4716
  publication-title: J. Phys. Chem. B
– volume: 135
  start-page: 16002
  year: 2013
  end-page: 16005
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 424
  year: 2011
  end-page: 428
  publication-title: Nat. Mater.
– volume: 332
  start-page: 1537
  year: 2011
  end-page: 1541
  publication-title: Science
– volume: 6
  start-page: 9541
  year: 2012
  end-page: 9550
  publication-title: ACS Nano
– volume: 105
  start-page: 1021
  year: 2005
  end-page: 1021
  publication-title: Chem. Rev.
– volume: 323
  start-page: 760
  year: 2009
  end-page: 764
  publication-title: Science
– volume: 134
  start-page: 16127
  year: 2012
  end-page: 16130
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 4828
  year: 2011
  end-page: 4850
  publication-title: Adv. Mater.
– volume: 324
  start-page: 768
  year: 2009
  end-page: 771
  publication-title: Science
– volume: 124 51
  start-page: 11533 11371
  year: 2012 2012
  end-page: 11537 11375
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 24
  start-page: 5593
  year: 2012
  end-page: 5597
  publication-title: Adv. Mater.
– volume: 457
  start-page: 706
  year: 2009
  end-page: 710
  publication-title: Nature
– volume: 4
  start-page: 760
  year: 2011
  end-page: 764
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 6226
  year: 2013
  end-page: 6231
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2170
  year: 2012
  end-page: 2174
  publication-title: Chem. Sci.
– volume: 122 49
  start-page: 2619 2565
  year: 2010 2010
  end-page: 2623 2569
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 3
  start-page: 136
  year: 2010
  end-page: 168
  publication-title: ChemSusChem
– volume: 123 50
  start-page: 11774 11570
  year: 2011 2011
  end-page: 11777 11572
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 414
  start-page: 345
  year: 2001
  end-page: 352
  publication-title: Nature
– volume: 7
  start-page: 394
  year: 2012
  end-page: 400
  publication-title: Nat. Nanotechnol.
– volume: 332
  start-page: 443
  year: 2011
  end-page: 447
  publication-title: Science
– volume: 4
  start-page: 1321
  year: 2010
  end-page: 1326
  publication-title: ACS Nano
– volume: 125 52
  start-page: 4670 4572
  year: 2013 2013
  end-page: 4674 4576
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 25
  start-page: 3192
  year: 2013
  end-page: 3196
  publication-title: Adv. Mater.
– volume: 25
  start-page: 6138
  year: 2013
  end-page: 6145
  publication-title: Adv. Mater.
– volume: 124 51
  start-page: 9827 9689
  year: 2012 2012
  end-page: 9830 9692
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 2
  start-page: 781
  year: 2012
  end-page: 794
  publication-title: ACS Catal.
– ident: e_1_2_2_5_2
  doi: 10.1021/cr040110e
– ident: e_1_2_2_30_2
  doi: 10.1002/ange.201206554
– ident: e_1_2_2_37_2
  doi: 10.1126/science.1200770
– ident: e_1_2_2_19_2
  doi: 10.1002/ange.201203207
– ident: e_1_2_2_36_2
– ident: e_1_2_2_40_2
  doi: 10.1039/c0ee00326c
– ident: e_1_2_2_44_2
  doi: 10.1021/ja407552k
– ident: e_1_2_2_26_3
  doi: 10.1002/anie.201109257
– ident: e_1_2_2_20_2
  doi: 10.1002/adma.201302753
– ident: e_1_2_2_24_2
  doi: 10.1002/ange.201206720
– ident: e_1_2_2_14_2
– ident: e_1_2_2_13_2
  doi: 10.1002/cssc.200900182
– ident: e_1_2_2_33_2
  doi: 10.1038/nature07719
– ident: e_1_2_2_2_2
– ident: e_1_2_2_29_3
  doi: 10.1002/anie.201209320
– ident: e_1_2_2_29_2
  doi: 10.1002/ange.201209320
– ident: e_1_2_2_21_2
– ident: e_1_2_2_16_2
  doi: 10.1021/ja402450a
– ident: e_1_2_2_32_2
  doi: 10.1038/nmat3001
– ident: e_1_2_2_34_2
  doi: 10.1002/adma.201302569
– ident: e_1_2_2_27_2
– ident: e_1_2_2_17_2
  doi: 10.1002/adma.201300515
– ident: e_1_2_2_18_2
  doi: 10.1002/ange.200907289
– ident: e_1_2_2_1_2
  doi: 10.1038/nature11115
– ident: e_1_2_2_9_3
  doi: 10.1002/anie.201106166
– ident: e_1_2_2_35_2
  doi: 10.1038/nnano.2012.72
– ident: e_1_2_2_47_2
  doi: 10.1021/nn203393d
– ident: e_1_2_2_9_2
  doi: 10.1002/ange.201106166
– ident: e_1_2_2_26_2
  doi: 10.1002/ange.201109257
– ident: e_1_2_2_18_3
  doi: 10.1002/anie.200907289
– ident: e_1_2_2_24_3
  doi: 10.1002/anie.201206720
– ident: e_1_2_2_38_2
  doi: 10.1002/adma.201200197
– ident: e_1_2_2_43_2
  doi: 10.1038/ncomms3076
– ident: e_1_2_2_23_2
  doi: 10.1002/adma.201202424
– ident: e_1_2_2_48_2
  doi: 10.1039/c2sc20289a
– ident: e_1_2_2_8_2
  doi: 10.1126/science.1200832
– ident: e_1_2_2_41_2
  doi: 10.1021/cs200652y
– ident: e_1_2_2_3_2
  doi: 10.1016/j.apcatb.2004.06.021
– ident: e_1_2_2_6_2
– ident: e_1_2_2_25_2
  doi: 10.1021/ja306376s
– ident: e_1_2_2_22_2
  doi: 10.1021/jp044442z
– ident: e_1_2_2_39_2
– ident: e_1_2_2_10_2
– ident: e_1_2_2_15_2
  doi: 10.1021/nn901850u
– ident: e_1_2_2_28_2
  doi: 10.1126/science.1170335
– ident: e_1_2_2_7_2
  doi: 10.1038/nmat3087
– ident: e_1_2_2_4_2
  doi: 10.1038/35104620
– ident: e_1_2_2_46_2
  doi: 10.1021/nn302674k
– ident: e_1_2_2_19_3
  doi: 10.1002/anie.201203207
– ident: e_1_2_2_12_2
  doi: 10.1002/adma.201100984
– ident: e_1_2_2_31_2
– ident: e_1_2_2_11_2
  doi: 10.1126/science.1168049
– ident: e_1_2_2_45_2
– ident: e_1_2_2_30_3
  doi: 10.1002/anie.201206554
– ident: e_1_2_2_42_2
SSID ssj0028806
Score 2.5579884
Snippet Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks is...
Effective integration of one-dimensional carbon nanofibers (CNF) and two-dimensional carbon sheets into three-dimensional (3D) conductive frameworks is...
Abstract Effective integration of one‐dimensional carbon nanofibers (CNF) and two‐dimensional carbon sheets into three‐dimensional (3D) conductive frameworks...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 6905
SubjectTerms Bacteria
biomass
Carbon
Carbon fibers
carbon nanofibers
Diffusion
electrocatalysts
Electron transfer
Graphene
leaf nanostructures
Nanofibers
Networks
Three dimensional
Title Strongly Veined Carbon Nanoleaves as a Highly Efficient Metal-Free Electrocatalyst
URI https://api.istex.fr/ark:/67375/WNG-1L0TT44M-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201403363
https://www.ncbi.nlm.nih.gov/pubmed/24854797
https://www.proquest.com/docview/1539809632
https://search.proquest.com/docview/1701110117
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoAL70egICMhOKV1Yuexx2rZpSB2D7CF3izbmfTQKov2UbWc-An8Rn4JM_EmsAgJCaRISWRbdmbseTjjbwCeV0WOpHZk7KTHWKscY-dqYgjHK-rMl3WLeDOZ5odH-u1xdvzLKf6AD9FvuPHKaOU1L3Drlvs_QUP5BDaHZmmpVM5wn4kqOKbr1fsePyqlyRmOFykVcxb6DrVRpvvbzbe00lUm8MWfTM5tC7ZVQeObYLvBh8iT0731yu35L7_hOv7P192CGxv7VByECXUbrmBzB64Nu7Rwd2H2gTfPT84uxUekXioxtAs3bwSJ6fkZ2nNcCkuX4AASqjRqISpIs4kJkp3__eu38QJRjEL2nXbz6HK5ugdH49FseBhvUjPEXpeJikk0SZKMOtUKS6e8V1Zauquy9nniSS3K3DoS6iU7nTXZQc4OatRVWXnyaBJ1H3aaeYMPQeRY6yorkRwXpauCZraTxYCRCJPcykxG8LJjjfkcEDhMwFpODVPJ9FSK4EXLub6aXZxy3FqRmU_T1yZ5J2czrSdmGsFux1qzWbJLQ6J_UJJDp9IInvXFRFz-g2IbnK-pTkHiMGEYvQgehCnRd8bYcLoYUEnaMvYvgzUH0zej_u3RvzR6DNf5OQQP78LOarHGJ2QirdzTdhn8AGyLBnU
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygX3o-UAkZCcErrxM5jj9WyyxZ2c4AUuFm243Bola32gSgnfgK_kV_CTLwJWoSEBFKkKLEtOx7Pyxl_A_CsylKHaoeHhlsXSpG60JgaCULxijKxed0i3syKdHIqX39MumhCOgvj8SH6DTfijFZeE4PThvTRL9RQOoJNsVmSC5GKq7CLPC8oe8PLtz2CVIzL0x8wEiKkPPQdbiOPj7bbb-mlXZriL38yOrdt2FYJjW-A6YbvY0_ODtcrc2i__obs-F_fdxOub0xUduzX1C244prbsDfsMsPdgfId7Z9_Or9k7x12U7GhXph5w1BSz8-d_uyWTOPFKIYEK41alApUbmzm0NT_8e37eOEcG_kEPO3-0eVydRdOx6NyOAk32RlCK_NIhCidOApHGUvhciOsFZprvIu8tmlkUTPyVBuU6zn5nTWaQkYPaiervLLo1ETiHuw088Y9AJa6WlZJ7tB3EbLKcHEbng0IjDBKNU94AC862qgLD8KhPNxyrGiWVD9LATxvSddX04szCl3LEvWheKWiKS9LKWeqCOCgo63acO1SofQf5OjTiTiAp30xTi79RNGNm6-xToYSMSIkvQDu-zXRd0bwcDIbYEncUvYvg1XHxcmof9r_l0ZPYG9SzqZqelK8eQjX6L2PJT6AndVi7R6hxbQyj1ue-AnNKgqN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEXypvQFoyE4JTWiR0ne6y2u7TQjRBsoTfLThwOrbLVPqqWEz-B38gvYSbeBBYhIYEUKUpsy47n7Yw_A7woU-XQ7PDQ8sKFUigXWlshQShfUSZFVjWIN6NcHRzLNyfJyS-7-D0-RLfgRpLR6GsS8POy2v0JGko7sCk1S3IhlLgO61Kh-0tu0fsOQCpG7vT7i4QI6Rj6FraRx7ur7VfM0jrN8OWffM5VF7axQcMNMO3oferJ6c5ibneKL78BO_7P592B20sHle15jroL11x9D27223Ph7sP4A62efz67Yh8d9lKyvpnaSc1QT0_OnLlwM2bwYpRBgpUGDUYFmjY2cujof__6bTh1jg388TvN6tHVbP4AjoeDcf8gXJ7NEBYyi0SIuomjapSxFC6zoiiE4QbvIqsKFRVoF7kyFrV6RlFnhY6QNb3KyTIrCwxpIvEQ1upJ7R4DU66SZZI5jFyELFNkbcvTHkERRsrwhAfwqiWNPvcQHNqDLceaZkl3sxTAy4ZyXTUzPaXEtTTRn_LXOjri47GUI50HsNWSVi9ldqZR9_cyjOhEHMDzrhgnl36hmNpNFlgnRX0YEY5eAI88S3SdETicTHtYEjeE_ctg9V5-OOienvxLo2dw493-UB8d5m834Ra99onEW7A2ny7cNrpLc_u0kYgfnTgJPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly+Veined+Carbon+Nanoleaves+as+a+Highly+Efficient+Metal-Free+Electrocatalyst&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ye%2C+Tian-Nan&rft.au=Lv%2C+Li-Bing&rft.au=Li%2C+Xin-Hao&rft.au=Xu%2C+Miao&rft.date=2014-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=27&rft.spage=6905&rft_id=info:doi/10.1002%2Fanie.201403363&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3348467011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon