Orbital seeding of mesenchymal stromal cells increases osteogenic differentiation and bone‐like tissue formation

In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distri...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic research Vol. 38; no. 6; pp. 1228 - 1237
Main Authors Melke, Johanna, Zhao, Feihu, Ito, Keita, Hofmann, Sandra
Format Journal Article
LanguageEnglish
Published United States John Wiley and Sons Inc 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distribution by using kinetic forces. However, most dynamic seeding techniques are elaborate or require special equipment and its influence on the final bone tissue‐engineered construct is not clear. In this study, we applied a simple, dynamic seeding method using an orbital shaker to seed human bone marrow–derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds. Significantly higher cell numbers with a more homogenous cell distribution, increased osteogenic differentiation, and mineral deposition were observed using the dynamic approach both for 4 and 6 hours as compared to the static seeding method. The positive influence of dynamic seeding could be attributed to both cell density and distribution but also nutrient supply during seeding and shear stresses (0.0‐3.0 mPa) as determined by computational simulations. The influence of relevant mechanical stimuli during seeding should be investigated in the future, especially regarding the importance of mechanical cues for bone TE applications. Our results highlight the importance of adequate choice of seeding method and its impact on developing tissue‐engineered constructs. The application of this simple seeding technique is not only recommended for bone TE but can also be used for seeding similar porous scaffolds with hBMSCs in other TE fields.
AbstractList In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distribution by using kinetic forces. However, most dynamic seeding techniques are elaborate or require special equipment and its influence on the final bone tissue-engineered construct is not clear. In this study, we applied a simple, dynamic seeding method using an orbital shaker to seed human bone marrow-derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds. Significantly higher cell numbers with a more homogenous cell distribution, increased osteogenic differentiation, and mineral deposition were observed using the dynamic approach both for 4 and 6 hours as compared to the static seeding method. The positive influence of dynamic seeding could be attributed to both cell density and distribution but also nutrient supply during seeding and shear stresses (0.0-3.0 mPa) as determined by computational simulations. The influence of relevant mechanical stimuli during seeding should be investigated in the future, especially regarding the importance of mechanical cues for bone TE applications. Our results highlight the importance of adequate choice of seeding method and its impact on developing tissue-engineered constructs. The application of this simple seeding technique is not only recommended for bone TE but can also be used for seeding similar porous scaffolds with hBMSCs in other TE fields.
Abstract In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distribution by using kinetic forces. However, most dynamic seeding techniques are elaborate or require special equipment and its influence on the final bone tissue‐engineered construct is not clear. In this study, we applied a simple, dynamic seeding method using an orbital shaker to seed human bone marrow–derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds. Significantly higher cell numbers with a more homogenous cell distribution, increased osteogenic differentiation, and mineral deposition were observed using the dynamic approach both for 4 and 6 hours as compared to the static seeding method. The positive influence of dynamic seeding could be attributed to both cell density and distribution but also nutrient supply during seeding and shear stresses (0.0‐3.0 mPa) as determined by computational simulations. The influence of relevant mechanical stimuli during seeding should be investigated in the future, especially regarding the importance of mechanical cues for bone TE applications. Our results highlight the importance of adequate choice of seeding method and its impact on developing tissue‐engineered constructs. The application of this simple seeding technique is not only recommended for bone TE but can also be used for seeding similar porous scaffolds with hBMSCs in other TE fields.
Author Melke, Johanna
Zhao, Feihu
Hofmann, Sandra
Ito, Keita
AuthorAffiliation 1 Orthopaedic Biomechanics Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands
2 Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
AuthorAffiliation_xml – name: 1 Orthopaedic Biomechanics Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands
– name: 2 Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
Author_xml – sequence: 1
  givenname: Johanna
  orcidid: 0000-0002-4858-2092
  surname: Melke
  fullname: Melke, Johanna
  organization: Eindhoven University of Technology
– sequence: 2
  givenname: Feihu
  orcidid: 0000-0003-0515-6808
  surname: Zhao
  fullname: Zhao, Feihu
  organization: Eindhoven University of Technology
– sequence: 3
  givenname: Keita
  surname: Ito
  fullname: Ito, Keita
  organization: Eindhoven University of Technology
– sequence: 4
  givenname: Sandra
  orcidid: 0000-0002-2568-8388
  surname: Hofmann
  fullname: Hofmann, Sandra
  email: s.hofmann@tue.nl
  organization: Eindhoven University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31922286$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFO3DAURa0KVAbaBT-AvGwXAdsviZ1NpQoVaIU0EqJSd5btvAymiU3tDGh2fALfyJeQYQC1i66eZR8dX727S7ZCDEjIPmeHnDFxdB3ToSgrBe_IjFdVWVRC_toiMyahLpio6x2ym_M1Y0xyod6THeCNEELVM5LmyfrR9DQjtj4saOzogBmDu1oN6-sxxfV02PeZ-uASmoyZxjxiXGDwjra-6zBhGL0ZfQzUhJbaKeDj_UPvfyMdfc5LpF1MwzPwgWx3ps_48WXukZ8n3y6Pz4rz-en346_nhSsVh0JKxUpoO4GWAweQtrQMeKvQdlJYKJWQrTGu5K4GZipsraqnY2MsmApq2CNfNt6bpR2wdVPCZHp9k_xg0kpH4_W_L8Ff6UW81RK4bHgzCT69CFL8s8Q86sHn9SJMwLjMWgDUomqaRk3o5w3qUsw5Yff2DWd63ZGeOtLPHU3swd-53sjXUibgaAPc-R5X_zfpH_OLjfIJ9zuiGA
CitedBy_id crossref_primary_10_3390_ijms232214074
crossref_primary_10_1002_bit_28314
crossref_primary_10_2139_ssrn_3940870
crossref_primary_10_1002_jbm_a_37430
crossref_primary_10_1021_acsabm_3c00145
crossref_primary_10_3389_fbioe_2024_1360089
crossref_primary_10_1002_jbm_a_37718
crossref_primary_10_1002_smtd_202201503
crossref_primary_10_1002_adhm_202301205
crossref_primary_10_1016_j_compchemeng_2023_108157
crossref_primary_10_3390_mi11060552
crossref_primary_10_1016_j_biomaterials_2021_120901
crossref_primary_10_1002_jbm_a_37544
crossref_primary_10_1021_acsomega_1c07225
crossref_primary_10_1021_acsami_2c07492
crossref_primary_10_3389_fbioe_2022_811942
crossref_primary_10_1134_S2075113323050040
Cites_doi 10.2217/rme.10.60
10.22203/eCM.v036a05
10.1007/s10237-019-01188-4
10.1093/rb/rbx005
10.1016/j.actbio.2010.06.012
10.1016/j.biomaterials.2006.05.021
10.1002/btpr.507
10.1177/0022034510370022
10.1016/j.joca.2003.08.006
10.1002/jbm.b.33737
10.1016/j.tibtech.2003.12.001
10.1007/s10439-011-0444-9
10.1016/j.bone.2005.06.010
10.1016/j.scr.2011.01.004
10.1021/bm034327e
10.1002/jbm.a.35505
10.1016/S8756-3282(02)00979-1
10.1263/jbb.104.171
10.1016/j.jbiomech.2004.04.011
10.1016/j.biomaterials.2006.10.019
10.1021/bm401335g
10.1089/ten.tea.2007.0231
10.1002/bit.20797
10.1038/srep22898
10.1007/s10439-006-9244-z
10.1615/CritRevBiomedEng.v40.i5.10
10.1002/polb.1994.090320519
10.1359/jbmr.1999.14.7.1167
10.1002/jor.1100160205
10.1002/(SICI)1097-4636(199707)36:1<1::AID-JBM1>3.0.CO;2-P
10.1002/bit.10759
10.1089/ten.2006.12.1851
10.1038/nbt1055
10.1038/nmeth.2089
10.1007/s10237-015-0753-2
10.1007/s40610-015-0022-2
10.1002/bit.25672
10.1089/ten.tea.2007.0111
10.4248/BR201303002
10.1089/ten.tec.2011.0660
10.5661/bger-26-163
10.1021/bp0100878
10.1089/ten.tec.2008.0221
10.1016/S0142-9612(03)00038-3
10.1021/la104206h
10.22203/eCM.v022a08
10.1002/jbm.a.10592
10.1089/ten.2006.12.1811
ContentType Journal Article
Copyright 2020 The Authors. ® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society
2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.
Copyright_xml – notice: 2020 The Authors. ® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society
– notice: 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.
DBID 24P
WIN
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1002/jor.24583
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate MELKE et al
EISSN 1554-527X
EndPage 1237
ExternalDocumentID 10_1002_jor_24583
31922286
JOR24583
Genre article
Journal Article
GrantInformation_xml – fundername: FP7 Ideas: European Research Council
  funderid: 336043
– fundername: FP7 Ideas: European Research Council
  grantid: 336043
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1B1
1KJ
1L6
1OB
1OC
1ZS
1~5
24P
29L
31~
33P
3SF
3V.
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
7-5
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8FI
8FJ
8R4
8R5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANLZ
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABMAC
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIUM
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BPHCQ
BQCPF
BROTX
BRXPI
BVXVI
BY8
C45
CCPQU
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
DWQXO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
FYUFA
G-S
G.N
GNP
GNUQQ
GODZA
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HMCUK
HVGLF
HZ~
IHE
IX1
J0M
JPC
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M41
M56
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
R2-
RIG
RIWAO
RJQFR
RNS
ROL
RPZ
RWI
RWL
RWR
RX1
RXW
RYL
SAMSI
SEW
SSZ
SUPJJ
SV3
TAE
TEORI
UB1
UKHRP
UPT
V2E
V8K
W8V
W99
WBKPD
WIB
WIH
WIJ
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXI
WXSBR
WYB
WYISQ
X7M
XG1
XV2
YCJ
YQT
ZGI
ZXP
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c4813-778043df2eb131337b4b031d8ebf72b34827daac41c630a5edb86c639ab3a5363
IEDL.DBID 24P
ISSN 0736-0266
IngestDate Tue Sep 17 21:09:09 EDT 2024
Fri Aug 16 11:48:22 EDT 2024
Fri Aug 23 00:33:12 EDT 2024
Sat Sep 28 08:28:32 EDT 2024
Sat Aug 24 01:07:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords stem cells
tissue engineering
bone
modeling
osteoblasts
Language English
License Attribution-NonCommercial
2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4813-778043df2eb131337b4b031d8ebf72b34827daac41c630a5edb86c639ab3a5363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0515-6808
0000-0002-2568-8388
0000-0002-4858-2092
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.24583
PMID 31922286
PQID 2336259998
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7317919
proquest_miscellaneous_2336259998
crossref_primary_10_1002_jor_24583
pubmed_primary_31922286
wiley_primary_10_1002_jor_24583_JOR24583
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of orthopaedic research
PublicationTitleAlternate J Orthop Res
PublicationYear 2020
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2015; 1
2006; 93
2007; 104
2004; 22
2017; 8
2013; 1
2017; 4
2006; 12
2015; 103
2008; 14
2019; 18
2004; 5
2012; 18
2016; 105
2011; 6
2016; 15
2007; 35
2005; 23
2003; 32
2003; 11
2010; 89
2007; 28
1998; 16
2016; 6
2013; 14
2010; 26
2006; 43
2006; 27
2015; 112
1997; 36
1999; 14
2003; 24
2011; 22
2001; 17
2005; 37
2011; 27
2005; 38
2003; 84
2010; 5
2010; 6
2003; 66
2018; 36
1994; 32
2012; 40
2012; 9
e_1_2_8_28_1
Cherng WJ (e_1_2_8_24_1) 2017; 8
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Wendt D (e_1_2_8_14_1) 2006; 43
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 18
  start-page: 1965
  issue: 6
  year: 2019
  end-page: 1977
  article-title: A multiscale computational fluid dynamics approach to simulate the micro‐fluidic environment within a tissue engineering scaffold with highly irregular pore geometry
  publication-title: Biomech Model Mechanobiol
– volume: 14
  start-page: 1331
  issue: 8
  year: 2008
  end-page: 1340
  article-title: Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone
  publication-title: Tissue Eng Part A
– volume: 22
  start-page: 97
  year: 2011
  end-page: 108
  article-title: The influence of nutrient supply and cell density on the growth and survival of intervertebral disc cells in 3D culture
  publication-title: Eur Cell Mater
– volume: 104
  start-page: 171
  issue: 3
  year: 2007
  end-page: 177
  article-title: Mag‐seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering
  publication-title: J Biosci Bioeng
– volume: 17
  start-page: 935
  issue: 5
  year: 2001
  end-page: 944
  article-title: Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices
  publication-title: Biotechnol Prog
– volume: 37
  start-page: 688
  issue: 5
  year: 2005
  end-page: 698
  article-title: Silk implants for the healing of critical size bone defects
  publication-title: Bone
– volume: 14
  start-page: 4388
  year: 2013
  end-page: 4397
  article-title: Effects of cell density and biomacromolecule addition on the flow behavior of concentrated mesenchymal cell suspensions
  publication-title: Biomacromolecules
– volume: 4
  start-page: 139
  issue: 3
  year: 2017
  end-page: 148
  article-title: Induced migration of endothelial cells into 3D scaffolds by chemoattractants secreted by pro‐inflammatory macrophages in situ
  publication-title: Regen Biomater
– volume: 14
  start-page: 1081
  issue: 6
  year: 2008
  end-page: 1088
  article-title: Analysis of the dynamics of bone formation, effect of cell seeding density, and potential of allogeneic cells in cell‐based bone tissue engineering in goats
  publication-title: Tissue Eng Part A
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
– volume: 5
  start-page: 713
  issue: 5
  year: 2010
  end-page: 724
  article-title: Shear stress induces osteogenic differentiation of human mesenchymal stem cells
  publication-title: Regen Med
– volume: 35
  start-page: 429
  issue: 3
  year: 2007
  end-page: 442
  article-title: Flow perfusion improves seeding of tissue engineering scaffolds with different architectures
  publication-title: Ann Biomed Eng
– volume: 1
  start-page: 216
  year: 2013
  end-page: 248
  article-title: Bone regeneration based on tissue engineering conceptions—A 21st century perspective
  publication-title: Bone Res
– volume: 36
  start-page: 57
  year: 2018
  end-page: 68
  article-title: Localisation of mineralised tissue in a complex spinner flask environment correlates with predicted wall shear stress level localisation
  publication-title: Eur Cell Mater
– volume: 38
  start-page: 543
  issue: 3
  year: 2005
  end-page: 549
  article-title: 3‐D computational modeling of media flow through scaffolds in a perfusion bioreactor
  publication-title: J Biomech
– volume: 11
  start-page: 879
  issue: 12
  year: 2003
  end-page: 890
  article-title: The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading
  publication-title: Osteoarthr Cartil
– volume: 43
  start-page: 481
  issue: 3–4
  year: 2006
  end-page: 488
  article-title: Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions
  publication-title: Biorheology
– volume: 84
  start-page: 205
  issue: 2
  year: 2003
  end-page: 214
  article-title: Oscillating perfusion of cell suspensions through three‐dimensional scaffolds enhances cell seeding efficiency and uniformity
  publication-title: Biotechnol Bioeng
– volume: 14
  start-page: 1167
  issue: 7
  year: 1999
  end-page: 1174
  article-title: Direct three‐dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus
  publication-title: J Bone Miner Res
– volume: 18
  start-page: 624
  issue: 8
  year: 2012
  end-page: 631
  article-title: Simulation of cell seeding within a three‐dimensional porous scaffold: A fluid‐particle analysis
  publication-title: Tissue Eng Part C Methods
– volume: 36
  start-page: 1
  issue: 1
  year: 1997
  end-page: 8
  article-title: Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL‐lactic‐co‐glycolic acid) foams implanted into the rat mesentery
  publication-title: J Biomed Mater Res
– volume: 40
  start-page: 363
  issue: 5
  year: 2012
  end-page: 408
  article-title: Bone tissue engineering: Recent advances and challenges
  publication-title: Crit Rev Biomed Eng
– volume: 16
  start-page: 181
  issue: 2
  year: 1998
  end-page: 189
  article-title: In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone‐like tissues
  publication-title: J Orthop Res
– volume: 26
  start-page: 19001
  issue: 24
  year: 2010
  end-page: 19006
  article-title: Three‐dimensional scaffolds for tissue engineering: The importance of uniformity in pore size and structure
  publication-title: Langmuir
– volume: 6
  year: 2016
  article-title: Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three‐dimensional scaffolds
  publication-title: Sci Rep
– volume: 24
  start-page: 2267
  issue: 13
  year: 2003
  end-page: 2275
  article-title: A strategy for the development of tissue engineering scaffolds that regulate cell behavior
  publication-title: Biomaterials
– volume: 32
  start-page: 241
  issue: 3
  year: 2003
  end-page: 251
  article-title: Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways
  publication-title: Bone
– volume: 105
  start-page: 2074
  year: 2016
  end-page: 2084
  article-title: Silk fibroin scaffolds with inverse opal structure for bone tissue engineering
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 15
  start-page: 169
  issue: 1
  year: 2016
  end-page: 180
  article-title: Coupling curvature‐dependent and shear stress‐stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold
  publication-title: Biomech Model Mechanobiol
– volume: 89
  start-page: 854
  issue: 8
  year: 2010
  end-page: 859
  article-title: Efficient cell‐seeding into scaffolds improves bone formation
  publication-title: J Dent Res
– volume: 12
  start-page: 1851
  issue: 7
  year: 2006
  end-page: 1863
  article-title: A rapid seeding technique for the assembly of large cell/scaffold composite constructs
  publication-title: Tissue Eng
– volume: 28
  start-page: 1152
  issue: 6
  year: 2007
  end-page: 1162
  article-title: Control of in vitro tissue‐engineered bone‐like structures using human mesenchymal stem cells and porous silk scaffolds
  publication-title: Biomaterials
– volume: 8
  start-page: 1
  issue: 132
  year: 2017
  end-page: 9
  article-title: Three dimensional geological modeling as a cost effective tool for horizontal drilling
  publication-title: Micromachines
– volume: 103
  start-page: 3649
  issue: 11
  year: 2015
  end-page: 3658
  article-title: Cell seeding density is a critical determinant for copolymer scaffolds‐induced bone regeneration
  publication-title: J Biomed Mater Res A
– volume: 27
  start-page: 4993
  issue: 28
  year: 2006
  end-page: 5002
  article-title: Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP‐2
  publication-title: Biomaterials
– volume: 14
  start-page: 319
  issue: 4
  year: 2008
  end-page: 331
  article-title: Method to analyze three‐dimensional cell distribution and infiltration in degradable scaffolds
  publication-title: Tissue Eng Part C Methods
– volume: 12
  start-page: 1811
  issue: 7
  year: 2006
  end-page: 1820
  article-title: New technique of seeding chondrocytes into microporous poly(L‐lactide‐co‐epsilon‐caprolactone) sponge by cyclic compression force‐induced suction
  publication-title: Tissue Eng
– volume: 6
  start-page: 4208
  issue: 11
  year: 2010
  end-page: 4217
  article-title: Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing
  publication-title: Acta Biomater
– volume: 5
  start-page: 718
  issue: 3
  year: 2004
  end-page: 726
  article-title: Porous 3‐D scaffolds from regenerated silk fibroin
  publication-title: Biomacromolecules
– volume: 93
  start-page: 947
  issue: 5
  year: 2006
  end-page: 954
  article-title: Three‐dimensional cell seeding and growth in radial‐flow perfusion bioreactor for in vitro tissue reconstruction
  publication-title: Biotechnol Bioeng
– volume: 22
  start-page: 80
  issue: 2
  year: 2004
  end-page: 86
  article-title: The role of bioreactors in tissue engineering
  publication-title: Trends Biotechnol
– volume: 6
  start-page: 215
  issue: 3
  year: 2011
  end-page: 225
  article-title: Serum‐deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic
  publication-title: Stem Cell Res
– volume: 112
  start-page: 2591
  issue: 12
  year: 2015
  end-page: 2600
  article-title: A three‐dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor
  publication-title: Biotechnol Bioeng
– volume: 40
  start-page: 707
  issue: 3
  year: 2012
  end-page: 728
  article-title: Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates
  publication-title: Ann Biomed Eng
– volume: 27
  start-page: 460
  issue: 2
  year: 2011
  end-page: 465
  article-title: Spatial and temporal resolution of shear in an orbiting petri dish
  publication-title: Biotechnol Prog
– volume: 23
  start-page: 47
  issue: 1
  year: 2005
  end-page: 55
  article-title: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
  publication-title: Nat Biotechnol
– volume: 32
  start-page: 961
  issue: 5
  year: 1994
  end-page: 968
  article-title: Structural changes of silk fibroin membranes induced by immersion in methanol aqueous solutions
  publication-title: J Polym Sci Part B Polym Phys
– volume: 66
  start-page: 425
  issue: 2
  year: 2003
  end-page: 431
  article-title: Seeding cells into needled felt scaffolds for tissue engineering applications
  publication-title: J Biomed Mater Res A
– volume: 1
  start-page: 132
  issue: 3
  year: 2015
  end-page: 140
  article-title: Bone tissue engineering
  publication-title: Curr Mol Biol Reports
– volume: 26
  start-page: 163
  year: 2010
  end-page: 178
  article-title: Supply of nutrients to cells in engineered tissues
  publication-title: Biotechnol Genet Eng Rev
– ident: e_1_2_8_37_1
  doi: 10.2217/rme.10.60
– volume: 8
  start-page: 1
  issue: 132
  year: 2017
  ident: e_1_2_8_24_1
  article-title: Three dimensional geological modeling as a cost effective tool for horizontal drilling
  publication-title: Micromachines
  contributor:
    fullname: Cherng WJ
– ident: e_1_2_8_19_1
  doi: 10.22203/eCM.v036a05
– ident: e_1_2_8_20_1
  doi: 10.1007/s10237-019-01188-4
– ident: e_1_2_8_42_1
  doi: 10.1093/rb/rbx005
– ident: e_1_2_8_48_1
  doi: 10.1016/j.actbio.2010.06.012
– ident: e_1_2_8_11_1
  doi: 10.1016/j.biomaterials.2006.05.021
– ident: e_1_2_8_26_1
  doi: 10.1002/btpr.507
– ident: e_1_2_8_6_1
  doi: 10.1177/0022034510370022
– ident: e_1_2_8_40_1
  doi: 10.1016/j.joca.2003.08.006
– ident: e_1_2_8_51_1
  doi: 10.1002/jbm.b.33737
– ident: e_1_2_8_33_1
  doi: 10.1016/j.tibtech.2003.12.001
– ident: e_1_2_8_25_1
  doi: 10.1007/s10439-011-0444-9
– ident: e_1_2_8_27_1
  doi: 10.1016/j.bone.2005.06.010
– ident: e_1_2_8_41_1
  doi: 10.1016/j.scr.2011.01.004
– ident: e_1_2_8_28_1
  doi: 10.1021/bm034327e
– ident: e_1_2_8_7_1
  doi: 10.1002/jbm.a.35505
– ident: e_1_2_8_36_1
  doi: 10.1016/S8756-3282(02)00979-1
– ident: e_1_2_8_18_1
  doi: 10.1263/jbb.104.171
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jbiomech.2004.04.011
– volume: 43
  start-page: 481
  issue: 3
  year: 2006
  ident: e_1_2_8_14_1
  article-title: Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions
  publication-title: Biorheology
  contributor:
    fullname: Wendt D
– ident: e_1_2_8_30_1
  doi: 10.1016/j.biomaterials.2006.10.019
– ident: e_1_2_8_23_1
  doi: 10.1021/bm401335g
– ident: e_1_2_8_44_1
  doi: 10.1089/ten.tea.2007.0231
– ident: e_1_2_8_13_1
  doi: 10.1002/bit.20797
– ident: e_1_2_8_43_1
  doi: 10.1038/srep22898
– ident: e_1_2_8_17_1
  doi: 10.1007/s10439-006-9244-z
– ident: e_1_2_8_4_1
  doi: 10.1615/CritRevBiomedEng.v40.i5.10
– ident: e_1_2_8_29_1
  doi: 10.1002/polb.1994.090320519
– ident: e_1_2_8_32_1
  doi: 10.1359/jbmr.1999.14.7.1167
– ident: e_1_2_8_47_1
  doi: 10.1002/jor.1100160205
– ident: e_1_2_8_45_1
  doi: 10.1002/(SICI)1097-4636(199707)36:1<1::AID-JBM1>3.0.CO;2-P
– ident: e_1_2_8_9_1
  doi: 10.1002/bit.10759
– ident: e_1_2_8_12_1
  doi: 10.1089/ten.2006.12.1851
– ident: e_1_2_8_34_1
  doi: 10.1038/nbt1055
– ident: e_1_2_8_31_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_8_21_1
  doi: 10.1007/s10237-015-0753-2
– ident: e_1_2_8_3_1
  doi: 10.1007/s40610-015-0022-2
– ident: e_1_2_8_22_1
  doi: 10.1002/bit.25672
– ident: e_1_2_8_5_1
  doi: 10.1089/ten.tea.2007.0111
– ident: e_1_2_8_2_1
  doi: 10.4248/BR201303002
– ident: e_1_2_8_49_1
  doi: 10.1089/ten.tec.2011.0660
– ident: e_1_2_8_46_1
  doi: 10.5661/bger-26-163
– ident: e_1_2_8_8_1
  doi: 10.1021/bp0100878
– ident: e_1_2_8_10_1
  doi: 10.1089/ten.tec.2008.0221
– ident: e_1_2_8_35_1
  doi: 10.1016/S0142-9612(03)00038-3
– ident: e_1_2_8_50_1
  doi: 10.1021/la104206h
– ident: e_1_2_8_39_1
  doi: 10.22203/eCM.v022a08
– ident: e_1_2_8_16_1
  doi: 10.1002/jbm.a.10592
– ident: e_1_2_8_15_1
  doi: 10.1089/ten.2006.12.1811
SSID ssj0007128
Score 2.448778
Snippet In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate...
Abstract In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1228
SubjectTerms bone
modeling
osteoblasts
stem cells
tissue engineering
Title Orbital seeding of mesenchymal stromal cells increases osteogenic differentiation and bone‐like tissue formation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.24583
https://www.ncbi.nlm.nih.gov/pubmed/31922286
https://search.proquest.com/docview/2336259998
https://pubmed.ncbi.nlm.nih.gov/PMC7317919
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTt0wEB0B3bBBINoSXnKrLrpJubEdO1esEAUhpJYKFYldZMexuLQkKAkLdnwC38iXMOOQtFeoUjdJlDgPzYznFc8ZgE-pVOi36TQW00LG0jsVow6UsVUu4TbTQhoqFP72XZ1cyNPL9HIB9odamB4fYky40cwI-pomuLHt3h_Q0Ou6-cLpr98ivCHEGALO5_LHqIZ1EhqrogjTKlulBlihCd8bb503Rq88zNcLJf92YIMFOl6FlRfXkR30vF6DhbJah-assdT3g7W9GWK1ZzdUUVRc3d_Q6a6paU8J-pbNKnIS27JlVNtRo_DMCjb0SOl6LjFTOWbrqnx6ePw9-1WyLvCGjWWOb-Hi-Ojn4Un80kchLmSWCHSgs4kUznPUywJjUm2lxbnsstJ6zS3B22hnTCGTQomJSUtnM4WHU2OFSYUS72CpwtduAPO80N4kwkifSYfRM1rA1HtPndMzmbkIPg4EzW97uIy8B0bmOVI9D1SP4MNA6hyFmQhgqrK-a3MuBMVjGAJG8L4n_fgY1BWUrVIR6DmmjAMIKHv-SjW7CoDZWhAI6zSCz4F9__6y_PTsPBxs_v_QLVjmFIOHzMw2LHXNXbmDjkpnd4NA4vbrOX8G2u_oyQ
link.rule.ids 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALD_FoeBrEgUu2G9uxsxIXBFRL6UOqWqkXFNlxrC6lCUqyBzjxE_iN_BJmnCZlqZAQp0SJkzie8bzs-QbgRSoV2m06jcWskLH0TsUoA2VslUu4zbSQhhKFd_fU_EhuH6fHa_BqyIXp8SHGgBvNjCCvaYJTQHrzAjX0U91MOC37XYGrON0FFW54e3ABHqWTUFkVeZi22So14ApN-eb46Ko2umRiXt4p-bsFG1TQ1k34OHS-33lyOll2dlJ8-wPX8X__7hbcOLdN2euemW7DWlndgWa_sVRYhLW9nmO1Z2eUslScfD2jy11T05FWAFq2qMgKbcuWUfJIjdy5KNhQhKXr2YCZyjFbV-XP7z8-L05L1gXiszGP8i4cbb07fDOPzws1xIXMEoEWejaVwnmOgl-g06uttCgsXFZar7kl_BztjClkUigxNWnpbKbwdGasMKlQ4h6sV_jZDWCeF9qbRBjpM-nQPUcVm3rvqTR7JjMXwfOBYPmXHo8j75GXeY5Dlochi-DZQMocZwsNgKnKetnmXAhy-NDHjOB-T9rxNSiMKBymItArRB8bEBL36p1qcRIQubUglNdZBC8DTf_es3x7_yCcPPj3pk_h2vxwdyffeb_34SFc5-TwhzDQI1jvmmX5GK2izj4JzP8LVWYMHw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8gJsaLgfhVRFmMBy-V193tbl84EeAFUIEYSbg1u91ueAotacvBm38Cf6N_iTNbWn0hJp66abcfmZmdr-78BuBdKhX6bTqNxbSQsfROxagDZWyVS7jNtJCGCoU_H6uDM3l0np4vwfZQC9PjQ4wJN1oZQV_TAr92fusPaOi3uvnA6a_fA3go0Q0n4HwuT0c1rJPQWBVFmHbZKjXACk341njrojG652He3yj5twMbLNBsBZ7cuY5sp-f1KiyV1VNoThpLfT9Y25shVnt2RRVFxcWPKzrdNTUdKUHfsnlFTmJbtoxqO2oUnnnBhh4pXc8lZirHbF2Vv37eXs6_l6wLvGFjmeMzOJvtf909iO_6KMSFzBKBDnQ2kcJ5jnpZYEyqrbS4ll1WWq-5JXgb7YwpZFIoMTFp6WymcDg1VphUKPEclit87Utgnhfam0QY6TPpMHpGC5h676lzeiYzF8HbgaD5dQ-XkffAyDxHqueB6hFsDqTOUZiJAKYq65s250JQPIYhYAQvetKPj0FdQdkqFYFeYMo4gYCyF69U84sAmK0FgbBOI3gf2PfvL8uPTr6Ewdr_T92AR6d7s_zT4fHHV_CYUzgekjTrsNw1N-Vr9Fk6-ybI5m-K8Op0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orbital+seeding+of+mesenchymal+stromal+cells+increases+osteogenic+differentiation+and+bone%E2%80%90like+tissue+formation&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Melke%2C+Johanna&rft.au=Zhao%2C+Feihu&rft.au=Ito%2C+Keita&rft.au=Hofmann%2C+Sandra&rft.date=2020-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=38&rft.issue=6&rft.spage=1228&rft.epage=1237&rft_id=info:doi/10.1002%2Fjor.24583&rft_id=info%3Apmid%2F31922286&rft.externalDBID=PMC7317919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon