Orbital seeding of mesenchymal stromal cells increases osteogenic differentiation and bone‐like tissue formation
In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distri...
Saved in:
Published in | Journal of orthopaedic research Vol. 38; no. 6; pp. 1228 - 1237 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley and Sons Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distribution by using kinetic forces. However, most dynamic seeding techniques are elaborate or require special equipment and its influence on the final bone tissue‐engineered construct is not clear. In this study, we applied a simple, dynamic seeding method using an orbital shaker to seed human bone marrow–derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds. Significantly higher cell numbers with a more homogenous cell distribution, increased osteogenic differentiation, and mineral deposition were observed using the dynamic approach both for 4 and 6 hours as compared to the static seeding method. The positive influence of dynamic seeding could be attributed to both cell density and distribution but also nutrient supply during seeding and shear stresses (0.0‐3.0 mPa) as determined by computational simulations. The influence of relevant mechanical stimuli during seeding should be investigated in the future, especially regarding the importance of mechanical cues for bone TE applications. Our results highlight the importance of adequate choice of seeding method and its impact on developing tissue‐engineered constructs. The application of this simple seeding technique is not only recommended for bone TE but can also be used for seeding similar porous scaffolds with hBMSCs in other TE fields. |
---|---|
AbstractList | In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distribution by using kinetic forces. However, most dynamic seeding techniques are elaborate or require special equipment and its influence on the final bone tissue-engineered construct is not clear. In this study, we applied a simple, dynamic seeding method using an orbital shaker to seed human bone marrow-derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds. Significantly higher cell numbers with a more homogenous cell distribution, increased osteogenic differentiation, and mineral deposition were observed using the dynamic approach both for 4 and 6 hours as compared to the static seeding method. The positive influence of dynamic seeding could be attributed to both cell density and distribution but also nutrient supply during seeding and shear stresses (0.0-3.0 mPa) as determined by computational simulations. The influence of relevant mechanical stimuli during seeding should be investigated in the future, especially regarding the importance of mechanical cues for bone TE applications. Our results highlight the importance of adequate choice of seeding method and its impact on developing tissue-engineered constructs. The application of this simple seeding technique is not only recommended for bone TE but can also be used for seeding similar porous scaffolds with hBMSCs in other TE fields. Abstract In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distribution by using kinetic forces. However, most dynamic seeding techniques are elaborate or require special equipment and its influence on the final bone tissue‐engineered construct is not clear. In this study, we applied a simple, dynamic seeding method using an orbital shaker to seed human bone marrow–derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds. Significantly higher cell numbers with a more homogenous cell distribution, increased osteogenic differentiation, and mineral deposition were observed using the dynamic approach both for 4 and 6 hours as compared to the static seeding method. The positive influence of dynamic seeding could be attributed to both cell density and distribution but also nutrient supply during seeding and shear stresses (0.0‐3.0 mPa) as determined by computational simulations. The influence of relevant mechanical stimuli during seeding should be investigated in the future, especially regarding the importance of mechanical cues for bone TE applications. Our results highlight the importance of adequate choice of seeding method and its impact on developing tissue‐engineered constructs. The application of this simple seeding technique is not only recommended for bone TE but can also be used for seeding similar porous scaffolds with hBMSCs in other TE fields. |
Author | Melke, Johanna Zhao, Feihu Hofmann, Sandra Ito, Keita |
AuthorAffiliation | 1 Orthopaedic Biomechanics Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands 2 Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands |
AuthorAffiliation_xml | – name: 1 Orthopaedic Biomechanics Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands – name: 2 Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands |
Author_xml | – sequence: 1 givenname: Johanna orcidid: 0000-0002-4858-2092 surname: Melke fullname: Melke, Johanna organization: Eindhoven University of Technology – sequence: 2 givenname: Feihu orcidid: 0000-0003-0515-6808 surname: Zhao fullname: Zhao, Feihu organization: Eindhoven University of Technology – sequence: 3 givenname: Keita surname: Ito fullname: Ito, Keita organization: Eindhoven University of Technology – sequence: 4 givenname: Sandra orcidid: 0000-0002-2568-8388 surname: Hofmann fullname: Hofmann, Sandra email: s.hofmann@tue.nl organization: Eindhoven University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31922286$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFO3DAURa0KVAbaBT-AvGwXAdsviZ1NpQoVaIU0EqJSd5btvAymiU3tDGh2fALfyJeQYQC1i66eZR8dX727S7ZCDEjIPmeHnDFxdB3ToSgrBe_IjFdVWVRC_toiMyahLpio6x2ym_M1Y0xyod6THeCNEELVM5LmyfrR9DQjtj4saOzogBmDu1oN6-sxxfV02PeZ-uASmoyZxjxiXGDwjra-6zBhGL0ZfQzUhJbaKeDj_UPvfyMdfc5LpF1MwzPwgWx3ps_48WXukZ8n3y6Pz4rz-en346_nhSsVh0JKxUpoO4GWAweQtrQMeKvQdlJYKJWQrTGu5K4GZipsraqnY2MsmApq2CNfNt6bpR2wdVPCZHp9k_xg0kpH4_W_L8Ff6UW81RK4bHgzCT69CFL8s8Q86sHn9SJMwLjMWgDUomqaRk3o5w3qUsw5Yff2DWd63ZGeOtLPHU3swd-53sjXUibgaAPc-R5X_zfpH_OLjfIJ9zuiGA |
CitedBy_id | crossref_primary_10_3390_ijms232214074 crossref_primary_10_1002_bit_28314 crossref_primary_10_2139_ssrn_3940870 crossref_primary_10_1002_jbm_a_37430 crossref_primary_10_1021_acsabm_3c00145 crossref_primary_10_3389_fbioe_2024_1360089 crossref_primary_10_1002_jbm_a_37718 crossref_primary_10_1002_smtd_202201503 crossref_primary_10_1002_adhm_202301205 crossref_primary_10_1016_j_compchemeng_2023_108157 crossref_primary_10_3390_mi11060552 crossref_primary_10_1016_j_biomaterials_2021_120901 crossref_primary_10_1002_jbm_a_37544 crossref_primary_10_1021_acsomega_1c07225 crossref_primary_10_1021_acsami_2c07492 crossref_primary_10_3389_fbioe_2022_811942 crossref_primary_10_1134_S2075113323050040 |
Cites_doi | 10.2217/rme.10.60 10.22203/eCM.v036a05 10.1007/s10237-019-01188-4 10.1093/rb/rbx005 10.1016/j.actbio.2010.06.012 10.1016/j.biomaterials.2006.05.021 10.1002/btpr.507 10.1177/0022034510370022 10.1016/j.joca.2003.08.006 10.1002/jbm.b.33737 10.1016/j.tibtech.2003.12.001 10.1007/s10439-011-0444-9 10.1016/j.bone.2005.06.010 10.1016/j.scr.2011.01.004 10.1021/bm034327e 10.1002/jbm.a.35505 10.1016/S8756-3282(02)00979-1 10.1263/jbb.104.171 10.1016/j.jbiomech.2004.04.011 10.1016/j.biomaterials.2006.10.019 10.1021/bm401335g 10.1089/ten.tea.2007.0231 10.1002/bit.20797 10.1038/srep22898 10.1007/s10439-006-9244-z 10.1615/CritRevBiomedEng.v40.i5.10 10.1002/polb.1994.090320519 10.1359/jbmr.1999.14.7.1167 10.1002/jor.1100160205 10.1002/(SICI)1097-4636(199707)36:1<1::AID-JBM1>3.0.CO;2-P 10.1002/bit.10759 10.1089/ten.2006.12.1851 10.1038/nbt1055 10.1038/nmeth.2089 10.1007/s10237-015-0753-2 10.1007/s40610-015-0022-2 10.1002/bit.25672 10.1089/ten.tea.2007.0111 10.4248/BR201303002 10.1089/ten.tec.2011.0660 10.5661/bger-26-163 10.1021/bp0100878 10.1089/ten.tec.2008.0221 10.1016/S0142-9612(03)00038-3 10.1021/la104206h 10.22203/eCM.v022a08 10.1002/jbm.a.10592 10.1089/ten.2006.12.1811 |
ContentType | Journal Article |
Copyright | 2020 The Authors. ® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. |
Copyright_xml | – notice: 2020 The Authors. ® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society – notice: 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. |
DBID | 24P WIN NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1002/jor.24583 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | MELKE et al |
EISSN | 1554-527X |
EndPage | 1237 |
ExternalDocumentID | 10_1002_jor_24583 31922286 JOR24583 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: FP7 Ideas: European Research Council funderid: 336043 – fundername: FP7 Ideas: European Research Council grantid: 336043 |
GroupedDBID | --- --K .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1B1 1KJ 1L6 1OB 1OC 1ZS 1~5 24P 29L 31~ 33P 3SF 3V. 3WU 4.4 4G. 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 7-5 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8FI 8FJ 8R4 8R5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AALRI AANLZ AAONW AAQFI AAQQT AAQXK AASGY AAXRX AAXUO AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABMAC ABPVW ABQWH ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIUM ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMUD ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMXJE BPHCQ BQCPF BROTX BRXPI BVXVI BY8 C45 CCPQU CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 DWQXO EBD EBS EJD EMOBN F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC FYUFA G-S G.N GNP GNUQQ GODZA H.X HBH HCIFZ HF~ HGLYW HHY HHZ HMCUK HVGLF HZ~ IHE IX1 J0M JPC KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M41 M56 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K R2- RIG RIWAO RJQFR RNS ROL RPZ RWI RWL RWR RX1 RXW RYL SAMSI SEW SSZ SUPJJ SV3 TAE TEORI UB1 UKHRP UPT V2E V8K W8V W99 WBKPD WIB WIH WIJ WIK WIN WJL WNSPC WOHZO WQJ WRC WXI WXSBR WYB WYISQ X7M XG1 XV2 YCJ YQT ZGI ZXP ZZTAW ~IA ~WT NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c4813-778043df2eb131337b4b031d8ebf72b34827daac41c630a5edb86c639ab3a5363 |
IEDL.DBID | 24P |
ISSN | 0736-0266 |
IngestDate | Tue Sep 17 21:09:09 EDT 2024 Fri Aug 16 11:48:22 EDT 2024 Fri Aug 23 00:33:12 EDT 2024 Sat Sep 28 08:28:32 EDT 2024 Sat Aug 24 01:07:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | stem cells tissue engineering bone modeling osteoblasts |
Language | English |
License | Attribution-NonCommercial 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4813-778043df2eb131337b4b031d8ebf72b34827daac41c630a5edb86c639ab3a5363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0515-6808 0000-0002-2568-8388 0000-0002-4858-2092 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.24583 |
PMID | 31922286 |
PQID | 2336259998 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7317919 proquest_miscellaneous_2336259998 crossref_primary_10_1002_jor_24583 pubmed_primary_31922286 wiley_primary_10_1002_jor_24583_JOR24583 |
PublicationCentury | 2000 |
PublicationDate | June 2020 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of orthopaedic research |
PublicationTitleAlternate | J Orthop Res |
PublicationYear | 2020 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2015; 1 2006; 93 2007; 104 2004; 22 2017; 8 2013; 1 2017; 4 2006; 12 2015; 103 2008; 14 2019; 18 2004; 5 2012; 18 2016; 105 2011; 6 2016; 15 2007; 35 2005; 23 2003; 32 2003; 11 2010; 89 2007; 28 1998; 16 2016; 6 2013; 14 2010; 26 2006; 43 2006; 27 2015; 112 1997; 36 1999; 14 2003; 24 2011; 22 2001; 17 2005; 37 2011; 27 2005; 38 2003; 84 2010; 5 2010; 6 2003; 66 2018; 36 1994; 32 2012; 40 2012; 9 e_1_2_8_28_1 Cherng WJ (e_1_2_8_24_1) 2017; 8 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 Wendt D (e_1_2_8_14_1) 2006; 43 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 18 start-page: 1965 issue: 6 year: 2019 end-page: 1977 article-title: A multiscale computational fluid dynamics approach to simulate the micro‐fluidic environment within a tissue engineering scaffold with highly irregular pore geometry publication-title: Biomech Model Mechanobiol – volume: 14 start-page: 1331 issue: 8 year: 2008 end-page: 1340 article-title: Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone publication-title: Tissue Eng Part A – volume: 22 start-page: 97 year: 2011 end-page: 108 article-title: The influence of nutrient supply and cell density on the growth and survival of intervertebral disc cells in 3D culture publication-title: Eur Cell Mater – volume: 104 start-page: 171 issue: 3 year: 2007 end-page: 177 article-title: Mag‐seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering publication-title: J Biosci Bioeng – volume: 17 start-page: 935 issue: 5 year: 2001 end-page: 944 article-title: Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices publication-title: Biotechnol Prog – volume: 37 start-page: 688 issue: 5 year: 2005 end-page: 698 article-title: Silk implants for the healing of critical size bone defects publication-title: Bone – volume: 14 start-page: 4388 year: 2013 end-page: 4397 article-title: Effects of cell density and biomacromolecule addition on the flow behavior of concentrated mesenchymal cell suspensions publication-title: Biomacromolecules – volume: 4 start-page: 139 issue: 3 year: 2017 end-page: 148 article-title: Induced migration of endothelial cells into 3D scaffolds by chemoattractants secreted by pro‐inflammatory macrophages in situ publication-title: Regen Biomater – volume: 14 start-page: 1081 issue: 6 year: 2008 end-page: 1088 article-title: Analysis of the dynamics of bone formation, effect of cell seeding density, and potential of allogeneic cells in cell‐based bone tissue engineering in goats publication-title: Tissue Eng Part A – volume: 9 start-page: 671 year: 2012 end-page: 675 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat Methods – volume: 5 start-page: 713 issue: 5 year: 2010 end-page: 724 article-title: Shear stress induces osteogenic differentiation of human mesenchymal stem cells publication-title: Regen Med – volume: 35 start-page: 429 issue: 3 year: 2007 end-page: 442 article-title: Flow perfusion improves seeding of tissue engineering scaffolds with different architectures publication-title: Ann Biomed Eng – volume: 1 start-page: 216 year: 2013 end-page: 248 article-title: Bone regeneration based on tissue engineering conceptions—A 21st century perspective publication-title: Bone Res – volume: 36 start-page: 57 year: 2018 end-page: 68 article-title: Localisation of mineralised tissue in a complex spinner flask environment correlates with predicted wall shear stress level localisation publication-title: Eur Cell Mater – volume: 38 start-page: 543 issue: 3 year: 2005 end-page: 549 article-title: 3‐D computational modeling of media flow through scaffolds in a perfusion bioreactor publication-title: J Biomech – volume: 11 start-page: 879 issue: 12 year: 2003 end-page: 890 article-title: The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading publication-title: Osteoarthr Cartil – volume: 43 start-page: 481 issue: 3–4 year: 2006 end-page: 488 article-title: Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions publication-title: Biorheology – volume: 84 start-page: 205 issue: 2 year: 2003 end-page: 214 article-title: Oscillating perfusion of cell suspensions through three‐dimensional scaffolds enhances cell seeding efficiency and uniformity publication-title: Biotechnol Bioeng – volume: 14 start-page: 1167 issue: 7 year: 1999 end-page: 1174 article-title: Direct three‐dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus publication-title: J Bone Miner Res – volume: 18 start-page: 624 issue: 8 year: 2012 end-page: 631 article-title: Simulation of cell seeding within a three‐dimensional porous scaffold: A fluid‐particle analysis publication-title: Tissue Eng Part C Methods – volume: 36 start-page: 1 issue: 1 year: 1997 end-page: 8 article-title: Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL‐lactic‐co‐glycolic acid) foams implanted into the rat mesentery publication-title: J Biomed Mater Res – volume: 40 start-page: 363 issue: 5 year: 2012 end-page: 408 article-title: Bone tissue engineering: Recent advances and challenges publication-title: Crit Rev Biomed Eng – volume: 16 start-page: 181 issue: 2 year: 1998 end-page: 189 article-title: In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone‐like tissues publication-title: J Orthop Res – volume: 26 start-page: 19001 issue: 24 year: 2010 end-page: 19006 article-title: Three‐dimensional scaffolds for tissue engineering: The importance of uniformity in pore size and structure publication-title: Langmuir – volume: 6 year: 2016 article-title: Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three‐dimensional scaffolds publication-title: Sci Rep – volume: 24 start-page: 2267 issue: 13 year: 2003 end-page: 2275 article-title: A strategy for the development of tissue engineering scaffolds that regulate cell behavior publication-title: Biomaterials – volume: 32 start-page: 241 issue: 3 year: 2003 end-page: 251 article-title: Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways publication-title: Bone – volume: 105 start-page: 2074 year: 2016 end-page: 2084 article-title: Silk fibroin scaffolds with inverse opal structure for bone tissue engineering publication-title: J Biomed Mater Res B Appl Biomater – volume: 15 start-page: 169 issue: 1 year: 2016 end-page: 180 article-title: Coupling curvature‐dependent and shear stress‐stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold publication-title: Biomech Model Mechanobiol – volume: 89 start-page: 854 issue: 8 year: 2010 end-page: 859 article-title: Efficient cell‐seeding into scaffolds improves bone formation publication-title: J Dent Res – volume: 12 start-page: 1851 issue: 7 year: 2006 end-page: 1863 article-title: A rapid seeding technique for the assembly of large cell/scaffold composite constructs publication-title: Tissue Eng – volume: 28 start-page: 1152 issue: 6 year: 2007 end-page: 1162 article-title: Control of in vitro tissue‐engineered bone‐like structures using human mesenchymal stem cells and porous silk scaffolds publication-title: Biomaterials – volume: 8 start-page: 1 issue: 132 year: 2017 end-page: 9 article-title: Three dimensional geological modeling as a cost effective tool for horizontal drilling publication-title: Micromachines – volume: 103 start-page: 3649 issue: 11 year: 2015 end-page: 3658 article-title: Cell seeding density is a critical determinant for copolymer scaffolds‐induced bone regeneration publication-title: J Biomed Mater Res A – volume: 27 start-page: 4993 issue: 28 year: 2006 end-page: 5002 article-title: Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP‐2 publication-title: Biomaterials – volume: 14 start-page: 319 issue: 4 year: 2008 end-page: 331 article-title: Method to analyze three‐dimensional cell distribution and infiltration in degradable scaffolds publication-title: Tissue Eng Part C Methods – volume: 12 start-page: 1811 issue: 7 year: 2006 end-page: 1820 article-title: New technique of seeding chondrocytes into microporous poly(L‐lactide‐co‐epsilon‐caprolactone) sponge by cyclic compression force‐induced suction publication-title: Tissue Eng – volume: 6 start-page: 4208 issue: 11 year: 2010 end-page: 4217 article-title: Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing publication-title: Acta Biomater – volume: 5 start-page: 718 issue: 3 year: 2004 end-page: 726 article-title: Porous 3‐D scaffolds from regenerated silk fibroin publication-title: Biomacromolecules – volume: 93 start-page: 947 issue: 5 year: 2006 end-page: 954 article-title: Three‐dimensional cell seeding and growth in radial‐flow perfusion bioreactor for in vitro tissue reconstruction publication-title: Biotechnol Bioeng – volume: 22 start-page: 80 issue: 2 year: 2004 end-page: 86 article-title: The role of bioreactors in tissue engineering publication-title: Trends Biotechnol – volume: 6 start-page: 215 issue: 3 year: 2011 end-page: 225 article-title: Serum‐deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic publication-title: Stem Cell Res – volume: 112 start-page: 2591 issue: 12 year: 2015 end-page: 2600 article-title: A three‐dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor publication-title: Biotechnol Bioeng – volume: 40 start-page: 707 issue: 3 year: 2012 end-page: 728 article-title: Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates publication-title: Ann Biomed Eng – volume: 27 start-page: 460 issue: 2 year: 2011 end-page: 465 article-title: Spatial and temporal resolution of shear in an orbiting petri dish publication-title: Biotechnol Prog – volume: 23 start-page: 47 issue: 1 year: 2005 end-page: 55 article-title: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering publication-title: Nat Biotechnol – volume: 32 start-page: 961 issue: 5 year: 1994 end-page: 968 article-title: Structural changes of silk fibroin membranes induced by immersion in methanol aqueous solutions publication-title: J Polym Sci Part B Polym Phys – volume: 66 start-page: 425 issue: 2 year: 2003 end-page: 431 article-title: Seeding cells into needled felt scaffolds for tissue engineering applications publication-title: J Biomed Mater Res A – volume: 1 start-page: 132 issue: 3 year: 2015 end-page: 140 article-title: Bone tissue engineering publication-title: Curr Mol Biol Reports – volume: 26 start-page: 163 year: 2010 end-page: 178 article-title: Supply of nutrients to cells in engineered tissues publication-title: Biotechnol Genet Eng Rev – ident: e_1_2_8_37_1 doi: 10.2217/rme.10.60 – volume: 8 start-page: 1 issue: 132 year: 2017 ident: e_1_2_8_24_1 article-title: Three dimensional geological modeling as a cost effective tool for horizontal drilling publication-title: Micromachines contributor: fullname: Cherng WJ – ident: e_1_2_8_19_1 doi: 10.22203/eCM.v036a05 – ident: e_1_2_8_20_1 doi: 10.1007/s10237-019-01188-4 – ident: e_1_2_8_42_1 doi: 10.1093/rb/rbx005 – ident: e_1_2_8_48_1 doi: 10.1016/j.actbio.2010.06.012 – ident: e_1_2_8_11_1 doi: 10.1016/j.biomaterials.2006.05.021 – ident: e_1_2_8_26_1 doi: 10.1002/btpr.507 – ident: e_1_2_8_6_1 doi: 10.1177/0022034510370022 – ident: e_1_2_8_40_1 doi: 10.1016/j.joca.2003.08.006 – ident: e_1_2_8_51_1 doi: 10.1002/jbm.b.33737 – ident: e_1_2_8_33_1 doi: 10.1016/j.tibtech.2003.12.001 – ident: e_1_2_8_25_1 doi: 10.1007/s10439-011-0444-9 – ident: e_1_2_8_27_1 doi: 10.1016/j.bone.2005.06.010 – ident: e_1_2_8_41_1 doi: 10.1016/j.scr.2011.01.004 – ident: e_1_2_8_28_1 doi: 10.1021/bm034327e – ident: e_1_2_8_7_1 doi: 10.1002/jbm.a.35505 – ident: e_1_2_8_36_1 doi: 10.1016/S8756-3282(02)00979-1 – ident: e_1_2_8_18_1 doi: 10.1263/jbb.104.171 – ident: e_1_2_8_38_1 doi: 10.1016/j.jbiomech.2004.04.011 – volume: 43 start-page: 481 issue: 3 year: 2006 ident: e_1_2_8_14_1 article-title: Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions publication-title: Biorheology contributor: fullname: Wendt D – ident: e_1_2_8_30_1 doi: 10.1016/j.biomaterials.2006.10.019 – ident: e_1_2_8_23_1 doi: 10.1021/bm401335g – ident: e_1_2_8_44_1 doi: 10.1089/ten.tea.2007.0231 – ident: e_1_2_8_13_1 doi: 10.1002/bit.20797 – ident: e_1_2_8_43_1 doi: 10.1038/srep22898 – ident: e_1_2_8_17_1 doi: 10.1007/s10439-006-9244-z – ident: e_1_2_8_4_1 doi: 10.1615/CritRevBiomedEng.v40.i5.10 – ident: e_1_2_8_29_1 doi: 10.1002/polb.1994.090320519 – ident: e_1_2_8_32_1 doi: 10.1359/jbmr.1999.14.7.1167 – ident: e_1_2_8_47_1 doi: 10.1002/jor.1100160205 – ident: e_1_2_8_45_1 doi: 10.1002/(SICI)1097-4636(199707)36:1<1::AID-JBM1>3.0.CO;2-P – ident: e_1_2_8_9_1 doi: 10.1002/bit.10759 – ident: e_1_2_8_12_1 doi: 10.1089/ten.2006.12.1851 – ident: e_1_2_8_34_1 doi: 10.1038/nbt1055 – ident: e_1_2_8_31_1 doi: 10.1038/nmeth.2089 – ident: e_1_2_8_21_1 doi: 10.1007/s10237-015-0753-2 – ident: e_1_2_8_3_1 doi: 10.1007/s40610-015-0022-2 – ident: e_1_2_8_22_1 doi: 10.1002/bit.25672 – ident: e_1_2_8_5_1 doi: 10.1089/ten.tea.2007.0111 – ident: e_1_2_8_2_1 doi: 10.4248/BR201303002 – ident: e_1_2_8_49_1 doi: 10.1089/ten.tec.2011.0660 – ident: e_1_2_8_46_1 doi: 10.5661/bger-26-163 – ident: e_1_2_8_8_1 doi: 10.1021/bp0100878 – ident: e_1_2_8_10_1 doi: 10.1089/ten.tec.2008.0221 – ident: e_1_2_8_35_1 doi: 10.1016/S0142-9612(03)00038-3 – ident: e_1_2_8_50_1 doi: 10.1021/la104206h – ident: e_1_2_8_39_1 doi: 10.22203/eCM.v022a08 – ident: e_1_2_8_16_1 doi: 10.1002/jbm.a.10592 – ident: e_1_2_8_15_1 doi: 10.1089/ten.2006.12.1811 |
SSID | ssj0007128 |
Score | 2.448778 |
Snippet | In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate... Abstract In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1228 |
SubjectTerms | bone modeling osteoblasts stem cells tissue engineering |
Title | Orbital seeding of mesenchymal stromal cells increases osteogenic differentiation and bone‐like tissue formation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjor.24583 https://www.ncbi.nlm.nih.gov/pubmed/31922286 https://search.proquest.com/docview/2336259998 https://pubmed.ncbi.nlm.nih.gov/PMC7317919 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTt0wEB0B3bBBINoSXnKrLrpJubEdO1esEAUhpJYKFYldZMexuLQkKAkLdnwC38iXMOOQtFeoUjdJlDgPzYznFc8ZgE-pVOi36TQW00LG0jsVow6UsVUu4TbTQhoqFP72XZ1cyNPL9HIB9odamB4fYky40cwI-pomuLHt3h_Q0Ou6-cLpr98ivCHEGALO5_LHqIZ1EhqrogjTKlulBlihCd8bb503Rq88zNcLJf92YIMFOl6FlRfXkR30vF6DhbJah-assdT3g7W9GWK1ZzdUUVRc3d_Q6a6paU8J-pbNKnIS27JlVNtRo_DMCjb0SOl6LjFTOWbrqnx6ePw9-1WyLvCGjWWOb-Hi-Ojn4Un80kchLmSWCHSgs4kUznPUywJjUm2lxbnsstJ6zS3B22hnTCGTQomJSUtnM4WHU2OFSYUS72CpwtduAPO80N4kwkifSYfRM1rA1HtPndMzmbkIPg4EzW97uIy8B0bmOVI9D1SP4MNA6hyFmQhgqrK-a3MuBMVjGAJG8L4n_fgY1BWUrVIR6DmmjAMIKHv-SjW7CoDZWhAI6zSCz4F9__6y_PTsPBxs_v_QLVjmFIOHzMw2LHXNXbmDjkpnd4NA4vbrOX8G2u_oyQ |
link.rule.ids | 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoALD_FoeBrEgUu2G9uxsxIXBFRL6UOqWqkXFNlxrC6lCUqyBzjxE_iN_BJmnCZlqZAQp0SJkzie8bzs-QbgRSoV2m06jcWskLH0TsUoA2VslUu4zbSQhhKFd_fU_EhuH6fHa_BqyIXp8SHGgBvNjCCvaYJTQHrzAjX0U91MOC37XYGrON0FFW54e3ABHqWTUFkVeZi22So14ApN-eb46Ko2umRiXt4p-bsFG1TQ1k34OHS-33lyOll2dlJ8-wPX8X__7hbcOLdN2euemW7DWlndgWa_sVRYhLW9nmO1Z2eUslScfD2jy11T05FWAFq2qMgKbcuWUfJIjdy5KNhQhKXr2YCZyjFbV-XP7z8-L05L1gXiszGP8i4cbb07fDOPzws1xIXMEoEWejaVwnmOgl-g06uttCgsXFZar7kl_BztjClkUigxNWnpbKbwdGasMKlQ4h6sV_jZDWCeF9qbRBjpM-nQPUcVm3rvqTR7JjMXwfOBYPmXHo8j75GXeY5Dlochi-DZQMocZwsNgKnKetnmXAhy-NDHjOB-T9rxNSiMKBymItArRB8bEBL36p1qcRIQubUglNdZBC8DTf_es3x7_yCcPPj3pk_h2vxwdyffeb_34SFc5-TwhzDQI1jvmmX5GK2izj4JzP8LVWYMHw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8gJsaLgfhVRFmMBy-V193tbl84EeAFUIEYSbg1u91ueAotacvBm38Cf6N_iTNbWn0hJp66abcfmZmdr-78BuBdKhX6bTqNxbSQsfROxagDZWyVS7jNtJCGCoU_H6uDM3l0np4vwfZQC9PjQ4wJN1oZQV_TAr92fusPaOi3uvnA6a_fA3go0Q0n4HwuT0c1rJPQWBVFmHbZKjXACk341njrojG652He3yj5twMbLNBsBZ7cuY5sp-f1KiyV1VNoThpLfT9Y25shVnt2RRVFxcWPKzrdNTUdKUHfsnlFTmJbtoxqO2oUnnnBhh4pXc8lZirHbF2Vv37eXs6_l6wLvGFjmeMzOJvtf909iO_6KMSFzBKBDnQ2kcJ5jnpZYEyqrbS4ll1WWq-5JXgb7YwpZFIoMTFp6WymcDg1VphUKPEclit87Utgnhfam0QY6TPpMHpGC5h676lzeiYzF8HbgaD5dQ-XkffAyDxHqueB6hFsDqTOUZiJAKYq65s250JQPIYhYAQvetKPj0FdQdkqFYFeYMo4gYCyF69U84sAmK0FgbBOI3gf2PfvL8uPTr6Ewdr_T92AR6d7s_zT4fHHV_CYUzgekjTrsNw1N-Vr9Fk6-ybI5m-K8Op0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orbital+seeding+of+mesenchymal+stromal+cells+increases+osteogenic+differentiation+and+bone%E2%80%90like+tissue+formation&rft.jtitle=Journal+of+orthopaedic+research&rft.au=Melke%2C+Johanna&rft.au=Zhao%2C+Feihu&rft.au=Ito%2C+Keita&rft.au=Hofmann%2C+Sandra&rft.date=2020-06-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0736-0266&rft.eissn=1554-527X&rft.volume=38&rft.issue=6&rft.spage=1228&rft.epage=1237&rft_id=info:doi/10.1002%2Fjor.24583&rft_id=info%3Apmid%2F31922286&rft.externalDBID=PMC7317919 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-0266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-0266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-0266&client=summon |