Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species

• Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. • Here, eight...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 223; no. 2; pp. 882 - 895
Main Authors Wen, Zhihui, Li, Hongbo, Shen, Qi, Tang, Xiaomei, Xiong, Chuanyong, Li, Haigang, Pang, Jiayin, Ryan, Megan H., Lambers, Hans, Shen, Jianbo
Format Journal Article
LanguageEnglish
Published England Wiley 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. • Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. • We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath. • We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting.
AbstractList Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting.
Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first‐order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first‐order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P‐mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting.
Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting.Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting.
Summary Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first‐order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first‐order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P‐mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting.
• Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. • Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. • We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath. • We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting.
Author Wen, Zhihui
Lambers, Hans
Shen, Jianbo
Pang, Jiayin
Ryan, Megan H.
Li, Hongbo
Xiong, Chuanyong
Li, Haigang
Tang, Xiaomei
Shen, Qi
Author_xml – sequence: 1
  givenname: Zhihui
  surname: Wen
  fullname: Wen, Zhihui
– sequence: 2
  givenname: Hongbo
  surname: Li
  fullname: Li, Hongbo
– sequence: 3
  givenname: Qi
  surname: Shen
  fullname: Shen, Qi
– sequence: 4
  givenname: Xiaomei
  surname: Tang
  fullname: Tang, Xiaomei
– sequence: 5
  givenname: Chuanyong
  surname: Xiong
  fullname: Xiong, Chuanyong
– sequence: 6
  givenname: Haigang
  surname: Li
  fullname: Li, Haigang
– sequence: 7
  givenname: Jiayin
  surname: Pang
  fullname: Pang, Jiayin
– sequence: 8
  givenname: Megan H.
  surname: Ryan
  fullname: Ryan, Megan H.
– sequence: 9
  givenname: Hans
  surname: Lambers
  fullname: Lambers, Hans
– sequence: 10
  givenname: Jianbo
  surname: Shen
  fullname: Shen, Jianbo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30932187$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7G114Q9QslTotMkkM5lZSlFbKNVFBXchHyf3psxMpskMOoL_3Xg_XIjSQAgnPM-B854TdDSEARB6Sck5zediGDfntGoYe4JWlNdt0VAmjtCKkLIpal5_PUYnKd0TQtqqLp-hY0ZaVtJGrNDPu6gsBOcSVn0Y1jiGMOE-xHETurBezjB8n62afBiwGizuFxNi3PgfqsNp6bUPCRJ2IeIspHzjnAplHmaf_FZKU1QTrH2mgsO0xiaGEacRTP56jp461SV4sX9P0ZcP7-8ur4qbTx-vL9_dFIbnUYoatBLaOk01405ww3NlQHHbVFXFBLBG2YaCIEIby0CXmuZRrauAKqgFO0Vvdn3HGB5mSJPsfTLQdWqAMCdZMlLlOATnj6MloYK0bcsy-nqPzroHK8foexUXeUg3Axc7IM-cUgQnjZ-2WeZQfCcpkb_3J_P-5HZ_2Xj7l3Fo-i923_2b72D5PyhvP18djFc74z5NIf4xylrwklHOfgE2pLan
CitedBy_id crossref_primary_10_3390_agronomy14030456
crossref_primary_10_1007_s11104_021_05001_z
crossref_primary_10_1016_j_rhisph_2022_100549
crossref_primary_10_1111_gcbb_13000
crossref_primary_10_1016_j_agee_2023_108700
crossref_primary_10_1111_nph_16499
crossref_primary_10_1128_msystems_01107_21
crossref_primary_10_1111_eva_13390
crossref_primary_10_1111_nph_19082
crossref_primary_10_1186_s12870_022_03683_w
crossref_primary_10_1007_s11104_024_06491_3
crossref_primary_10_1007_s11104_024_06660_4
crossref_primary_10_1016_j_tplants_2022_11_008
crossref_primary_10_1111_nph_17906
crossref_primary_10_1007_s11104_024_06540_x
crossref_primary_10_1016_j_fcr_2025_109762
crossref_primary_10_1016_j_envpol_2021_117204
crossref_primary_10_1111_ppl_14247
crossref_primary_10_1016_j_tree_2021_06_005
crossref_primary_10_3389_fpls_2020_00966
crossref_primary_10_3389_fpls_2022_1069627
crossref_primary_10_1111_1365_2435_14629
crossref_primary_10_1002_eap_2863
crossref_primary_10_1093_aob_mcaa159
crossref_primary_10_1002_agj2_20643
crossref_primary_10_1111_jipb_13090
crossref_primary_10_1111_oik_08908
crossref_primary_10_1007_s42729_024_01727_8
crossref_primary_10_1093_treephys_tpad098
crossref_primary_10_1007_s11104_022_05809_3
crossref_primary_10_1007_s11056_024_10058_6
crossref_primary_10_1007_s11104_024_06623_9
crossref_primary_10_1016_j_soilbio_2025_109753
crossref_primary_10_1016_j_agee_2024_109181
crossref_primary_10_1007_s11104_021_05084_8
crossref_primary_10_1016_j_fcr_2022_108603
crossref_primary_10_1016_j_soilbio_2023_109074
crossref_primary_10_1042_BCJ20180615
crossref_primary_10_3389_fpls_2022_927435
crossref_primary_10_3389_fpls_2022_1051080
crossref_primary_10_1016_j_soilbio_2024_109690
crossref_primary_10_1007_s11104_022_05464_8
crossref_primary_10_1016_j_still_2022_105492
crossref_primary_10_1007_s11104_020_04544_x
crossref_primary_10_1111_pce_14898
crossref_primary_10_3389_fenvs_2022_855815
crossref_primary_10_1007_s00572_020_01006_1
crossref_primary_10_1016_j_envpol_2020_116098
crossref_primary_10_1111_1365_2435_14193
crossref_primary_10_1016_j_soilbio_2021_108310
crossref_primary_10_3390_plants10122781
crossref_primary_10_1016_j_geoderma_2022_115964
crossref_primary_10_1002_jpln_201900322
crossref_primary_10_1111_ejss_13303
crossref_primary_10_1007_s11104_021_04848_6
crossref_primary_10_1111_nph_17326
crossref_primary_10_1093_aob_mcz154
crossref_primary_10_1007_s42729_023_01409_x
crossref_primary_10_1016_j_tim_2024_11_011
crossref_primary_10_1111_nph_18419
crossref_primary_10_1111_tpj_16184
crossref_primary_10_3390_ijms24076233
crossref_primary_10_1007_s11104_024_06717_4
crossref_primary_10_1016_j_apsoil_2024_105351
crossref_primary_10_1016_j_pedsph_2023_07_021
crossref_primary_10_1038_s41598_019_51204_x
crossref_primary_10_1093_aob_mcab145
crossref_primary_10_1093_jxb_erad390
crossref_primary_10_1002_saj2_20613
crossref_primary_10_1016_j_still_2024_106276
crossref_primary_10_1016_j_tplants_2020_07_006
crossref_primary_10_1093_jxb_erae483
crossref_primary_10_1016_j_rhisph_2021_100391
crossref_primary_10_1111_1365_2745_14445
crossref_primary_10_1111_gcb_16950
crossref_primary_10_3390_plants11223105
crossref_primary_10_1002_jpln_202000527
crossref_primary_10_1007_s11104_025_07232_w
crossref_primary_10_3390_su17072899
crossref_primary_10_1111_nph_19567
crossref_primary_10_1016_j_fecs_2022_100055
crossref_primary_10_1111_nph_16170
crossref_primary_10_3389_ffgc_2021_698191
crossref_primary_10_3724_SP_J_1006_2021_04237
crossref_primary_10_1007_s11104_021_05232_0
crossref_primary_10_1016_j_apsoil_2024_105726
crossref_primary_10_1111_oik_07874
crossref_primary_10_1007_s40415_024_01026_7
crossref_primary_10_1016_j_foreco_2023_121316
crossref_primary_10_1111_oik_08606
crossref_primary_10_3389_fmicb_2023_1211397
crossref_primary_10_1093_aob_mcae212
crossref_primary_10_1111_gcb_17310
crossref_primary_10_1111_nph_17707
crossref_primary_10_3390_jof9100977
crossref_primary_10_1007_s00248_020_01678_4
crossref_primary_10_1016_j_scitotenv_2022_157906
crossref_primary_10_1016_j_scitotenv_2022_155667
crossref_primary_10_1016_j_apsoil_2024_105611
crossref_primary_10_3389_fpls_2024_1461893
crossref_primary_10_1007_s11104_024_06949_4
crossref_primary_10_1007_s00344_024_11467_9
crossref_primary_10_1016_j_agee_2022_108336
crossref_primary_10_1007_s11104_022_05434_0
crossref_primary_10_1002_imt2_245
crossref_primary_10_1016_j_soilbio_2024_109417
crossref_primary_10_1016_j_soilbio_2023_109039
crossref_primary_10_3390_agronomy11112267
crossref_primary_10_3389_fenvs_2022_906893
crossref_primary_10_1111_oik_08717
crossref_primary_10_1016_j_plaphy_2020_10_003
crossref_primary_10_1093_treephys_tpac081
crossref_primary_10_1007_s42729_024_01833_7
crossref_primary_10_1016_j_envexpbot_2025_106106
crossref_primary_10_1007_s11104_024_07188_3
crossref_primary_10_3390_agriculture13040884
crossref_primary_10_15302_J_FASE_2019275
crossref_primary_10_18393_ejss_1574580
crossref_primary_10_3389_fpls_2022_924154
crossref_primary_10_1016_j_agee_2024_109255
crossref_primary_10_1007_s11104_024_07043_5
crossref_primary_10_1007_s11104_023_06408_6
crossref_primary_10_1111_1365_2435_14390
crossref_primary_10_1016_j_soilbio_2024_109448
crossref_primary_10_1111_gcb_15391
crossref_primary_10_3390_agriculture14112065
crossref_primary_10_1016_j_chemosphere_2023_139392
crossref_primary_10_3389_fenvs_2023_1127920
crossref_primary_10_1021_acsanm_4c03379
crossref_primary_10_3389_fpls_2020_610591
crossref_primary_10_1111_gcb_14851
crossref_primary_10_3390_plants12203518
crossref_primary_10_1007_s00484_024_02655_z
crossref_primary_10_1016_j_rhisph_2020_100299
crossref_primary_10_1093_jxb_eraa482
crossref_primary_10_3390_ijms24129879
crossref_primary_10_1007_s11104_022_05522_1
crossref_primary_10_1007_s11104_024_06783_8
crossref_primary_10_1007_s10705_022_10234_0
crossref_primary_10_1016_j_scienta_2022_111779
crossref_primary_10_1002_ecm_1563
crossref_primary_10_1111_jac_12514
crossref_primary_10_1002_ppp3_10534
crossref_primary_10_1007_s10661_024_12779_9
crossref_primary_10_1016_j_cj_2024_12_022
crossref_primary_10_1016_j_scitotenv_2024_174858
crossref_primary_10_1007_s42832_024_0248_0
crossref_primary_10_1007_s00572_019_00927_w
crossref_primary_10_3389_fpls_2021_658321
crossref_primary_10_1080_00380768_2022_2104103
crossref_primary_10_1080_01904167_2020_1793190
crossref_primary_10_1021_acs_jafc_3c02912
crossref_primary_10_1111_1365_2745_13746
crossref_primary_10_1007_s11104_023_05884_0
crossref_primary_10_1007_s42729_022_00936_3
crossref_primary_10_1016_j_geoderma_2021_115261
crossref_primary_10_3389_fpls_2023_1094157
crossref_primary_10_1007_s11104_023_06310_1
crossref_primary_10_1016_j_still_2023_105710
crossref_primary_10_1111_1365_2745_14277
crossref_primary_10_1016_j_scitotenv_2023_166899
crossref_primary_10_3390_agronomy11112199
crossref_primary_10_1126_science_aaz5192
crossref_primary_10_3389_fpls_2021_734641
crossref_primary_10_1007_s00572_024_01154_8
crossref_primary_10_3390_jof8080800
crossref_primary_10_1111_pbi_13833
crossref_primary_10_3389_fmicb_2022_916610
crossref_primary_10_1016_j_rhisph_2021_100414
crossref_primary_10_1007_s11104_021_04989_8
crossref_primary_10_1016_j_soilbio_2021_108149
crossref_primary_10_3390_agronomy13020608
crossref_primary_10_1016_j_soilbio_2024_109615
crossref_primary_10_3389_fpls_2022_949086
crossref_primary_10_1111_1365_2745_14268
crossref_primary_10_1007_s11104_022_05347_y
crossref_primary_10_3390_su141811342
crossref_primary_10_1007_s11104_023_06078_4
crossref_primary_10_1111_gcb_16091
crossref_primary_10_3389_fmicb_2019_02047
crossref_primary_10_15302_J_FASE_2019283
crossref_primary_10_1029_2019WR026606
crossref_primary_10_1093_aob_mcab097
crossref_primary_10_1111_pce_14163
crossref_primary_10_1111_nph_17854
crossref_primary_10_3389_fpls_2022_1080014
crossref_primary_10_1093_aobpla_plz033
crossref_primary_10_1007_s13593_023_00916_6
crossref_primary_10_1016_j_fcr_2024_109410
crossref_primary_10_1002_jpln_202100112
crossref_primary_10_1111_1365_2435_13823
crossref_primary_10_1007_s42729_022_00890_0
crossref_primary_10_1093_jpe_rtae064
crossref_primary_10_1186_s12870_021_03164_6
crossref_primary_10_1016_j_micres_2021_126842
crossref_primary_10_1111_oik_09638
crossref_primary_10_1038_s41598_022_19047_1
crossref_primary_10_1111_gcb_16685
crossref_primary_10_3390_plants11010089
crossref_primary_10_1093_aob_mcae151
crossref_primary_10_1007_s42832_021_0108_0
crossref_primary_10_12677_IJE_2021_101014
crossref_primary_10_3389_fsufs_2021_716480
crossref_primary_10_1007_s11104_021_04988_9
crossref_primary_10_1016_j_apsoil_2024_105635
crossref_primary_10_3389_fpls_2024_1389082
crossref_primary_10_1007_s11104_022_05309_4
crossref_primary_10_3389_fpls_2023_1174151
crossref_primary_10_1016_j_jprot_2021_104450
crossref_primary_10_3389_fpls_2023_1153237
crossref_primary_10_1111_nph_16865
crossref_primary_10_1590_1519_6984_253083
crossref_primary_10_3390_agronomy10101534
crossref_primary_10_3389_fpls_2024_1423703
crossref_primary_10_1111_1365_2435_14658
crossref_primary_10_1007_s11104_020_04584_3
crossref_primary_10_1093_aob_mcae169
crossref_primary_10_1016_j_flora_2021_151876
crossref_primary_10_1002_jpln_202000487
crossref_primary_10_1016_j_isci_2023_106632
crossref_primary_10_1111_oik_10763
crossref_primary_10_1007_s11104_019_04161_3
crossref_primary_10_1007_s11104_022_05559_2
crossref_primary_10_1093_jpe_rtae043
crossref_primary_10_1016_j_apsoil_2021_104346
crossref_primary_10_1016_j_foreco_2020_118309
crossref_primary_10_1002_eap_3082
crossref_primary_10_1111_1365_2435_13562
crossref_primary_10_1007_s13562_021_00715_8
crossref_primary_10_1111_1365_2435_14653
crossref_primary_10_1111_ppl_13873
crossref_primary_10_1007_s11427_022_2178_7
crossref_primary_10_1007_s11104_024_06655_1
crossref_primary_10_1111_nph_18066
crossref_primary_10_1007_s42832_021_0088_0
crossref_primary_10_1016_j_plaphy_2023_107694
crossref_primary_10_1016_j_jwpe_2025_107219
crossref_primary_10_1016_j_scitotenv_2024_176665
crossref_primary_10_1186_s12870_020_02558_2
crossref_primary_10_1007_s11104_024_06485_1
crossref_primary_10_1016_j_soilbio_2022_108722
crossref_primary_10_1007_s11104_023_06250_w
crossref_primary_10_1016_j_stress_2022_100121
crossref_primary_10_7554_eLife_61701
crossref_primary_10_1111_pce_14247
crossref_primary_10_1111_1365_2745_14064
crossref_primary_10_3390_plants11030405
crossref_primary_10_1016_j_tplants_2021_08_003
crossref_primary_10_1007_s11104_024_06911_4
crossref_primary_10_1111_gcb_16768
crossref_primary_10_1093_plcell_koad326
crossref_primary_10_1016_j_micres_2023_127371
crossref_primary_10_1016_j_still_2020_104754
crossref_primary_10_1016_j_jplph_2020_153297
crossref_primary_10_1017_S0021859623000266
crossref_primary_10_1111_nph_19261
crossref_primary_10_1016_j_soilbio_2021_108518
crossref_primary_10_1071_FP23109
crossref_primary_10_1016_j_scienta_2022_110956
crossref_primary_10_1016_j_jia_2023_12_014
crossref_primary_10_1093_jpe_rtac085
crossref_primary_10_1002_ppp3_10263
crossref_primary_10_1080_01904167_2022_2046079
crossref_primary_10_1093_treephys_tpad118
crossref_primary_10_3389_fpls_2023_1150832
crossref_primary_10_1007_s11104_022_05516_z
crossref_primary_10_1002_jpln_202000471
crossref_primary_10_1016_j_scitotenv_2022_159033
crossref_primary_10_1016_j_ecolind_2021_107838
crossref_primary_10_1080_01904167_2022_2035754
crossref_primary_10_1093_aob_mcae060
crossref_primary_10_1016_j_scitotenv_2020_136495
crossref_primary_10_3389_fpls_2024_1377626
crossref_primary_10_1016_j_scitotenv_2023_167630
crossref_primary_10_1002_pld3_544
crossref_primary_10_1007_s00299_023_03133_3
crossref_primary_10_1093_aob_mcad096
Cites_doi 10.1111/nph.12842
10.1007/s11104-017-3350-6
10.1104/pp.116.2.447
10.1016/j.fcr.2017.04.004
10.1111/nph.13363
10.1111/nph.13451
10.1007/s00572-005-0033-6
10.1111/nph.14571
10.1111/nph.13613
10.1371/journal.pone.0090287
10.1111/nph.13828
10.1038/nplants.2015.159
10.3732/ajb.0800092
10.1007/s11104-016-2949-3
10.1007/s11104-017-3214-0
10.1002/ecy.1514
10.1016/S0007-1536(70)80110-3
10.1080/01904160009382068
10.1111/pce.12117
10.3389/fpls.2016.01939
10.1111/1365-2745.12977
10.1371/journal.pgen.1004487
10.1007/s11104-017-3511-7
10.1023/A:1022371130939
10.1073/pnas.1601006113
10.1023/A:1022375229625
10.1038/nplants.2015.50
10.1007/s11104-011-0950-4
10.1046/j.1365-3040.2003.00957.x
10.1071/CP16015
10.1111/j.1365-3040.2012.02547.x
10.1111/nph.14710
10.1111/nph.15200
10.1111/j.1469-8137.2009.02799.x
10.2134/agronj1983.00021962007500030010x
10.1111/j.1469-8137.2008.02573.x
10.1016/B978-0-12-420225-2.00005-4
10.3732/ajb.1200474
10.1093/jxb/ert023
10.1093/jxb/ert421
10.1146/annurev-arplant-050213-035949
10.1111/j.1469-8137.2006.01897.x
10.1111/pce.12451
10.1002/1522-2624(200104)164:2<121::AID-JPLN121>3.0.CO;2-6
10.1016/j.tplants.2013.01.008
10.1016/B978-0-12-155070-7.50016-0
10.1046/j.1469-8137.2003.00695.x
10.1111/j.1469-8137.1995.tb05726.x
10.1111/nph.13434
10.1038/nature25783
10.1146/annurev.arplant.52.1.527
10.1007/s11104-009-0249-x
10.1111/nph.14003
10.1111/1365-2435.12883
10.1093/bioinformatics/btq166
10.1007/BF02181879
10.1007/s11104-006-0014-3
10.1007/s11104-017-3358-y
10.1007/s11104-004-1096-4
10.1104/pp.113.233916
10.1046/j.1469-8137.2002.00413_1.x
10.1111/j.1469-8137.2004.01015.x
10.1038/344058a0
10.1093/jxb/err457
10.1016/j.tree.2007.10.008
10.1111/nph.13288
10.1007/s11104-017-3427-2
10.1007/s11104-013-1718-9
10.1007/BF00010407
10.1104/pp.111.175232
10.1093/aob/mcl114
10.1016/j.apsoil.2006.06.001
10.1023/A:1013351617532
10.1890/08-0127.1
10.1111/nph.14976
10.1139/b91-016
10.1111/j.1461-0248.2012.01786.x
10.1071/FP07222
10.1111/nph.14967
10.1104/pp.111.174581
ContentType Journal Article
Copyright 2019 The Authors © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Copyright_xml – notice: 2019 The Authors © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1111/nph.15833
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
CrossRef
AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 895
ExternalDocumentID 30932187
10_1111_nph_15833
NPH15833
26742314
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31330070; 31600319; 31772402
– fundername: National Key Research and Development Program of China
  funderid: 2016YFE0101100; 2017YFD0200200
– fundername: Chinese Scholarship Council (CSC)
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c4813-6eba7bdfb1b34f74c47bdcea4d855537e38ad81e707bcd3eb2b1095df5e1ae673
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:31:56 EDT 2025
Fri Jul 11 05:30:14 EDT 2025
Wed Feb 19 02:30:48 EST 2025
Tue Jul 01 02:28:31 EDT 2025
Thu Apr 24 23:11:34 EDT 2025
Wed Jan 22 16:42:04 EST 2025
Thu Jul 03 22:06:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords root plasticity
root diameter
interspecific variation
intraspecific variation
nutrient acquisition
root functional trait
Language English
License 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4813-6eba7bdfb1b34f74c47bdcea4d855537e38ad81e707bcd3eb2b1095df5e1ae673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8943-948X
0000-0002-4118-2272
0000-0002-8127-645X
0000-0003-0749-0199
OpenAccessLink https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.15833
PMID 30932187
PQID 2201709993
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2305187744
proquest_miscellaneous_2201709993
pubmed_primary_30932187
crossref_citationtrail_10_1111_nph_15833
crossref_primary_10_1111_nph_15833
wiley_primary_10_1111_nph_15833_NPH15833
jstor_primary_26742314
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2019
Publisher Wiley
Publisher_xml – name: Wiley
References 2015; 38
2002; 154
2004; 162
2013; 64
2008; 35
2012; 15
1998; 116
1995; 131
1990; 344
2003; 157
2007; 35
2011; 156
2014; 65
2013; 18
2017; 209
2017; 31
2010; 20
2010; 26
2003; 248
2007; 173
2018; 217
2005; 269
2016; 113
1986
2006; 286
2008; 23
2018; 219
2014; 9
2014; 166
2014; 203
2001; 52
2014; 10
2014; 123
2012; 63
1991; 132
2017; 416
2015; 1
2017; 418
2018; 220
2017; 419
2001; 164
2016; 407
2016; 209
2018; 106
2018; 424
2000; 23
2006; 98
2009; 182
2006; 16
1983; 75
1954
2016; 97
2013; 100
2009; 331
1970; 55
2006
2015; 208
1994
2015; 207
2015; 205
1979; 53
2012; 35
2008; 95
2017; 215
2017; 216
2008; 180
2015; 25
2016; 7
2013; 36
1991; 69
2011; 349
2018; 555
2016; 211
2016; 210
2003; 26
2017
2013; 372
2017; 424
2016; 67
2001; 237
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Trouvelot A (e_1_2_7_76_1) 1986
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
Neumann G (e_1_2_7_51_1) 2006
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Lambers H (e_1_2_7_36_1) 2015; 25
References_xml – volume: 248
  start-page: 43
  year: 2003
  end-page: 59
  article-title: Origins of root‐mediated pH changes in the rhizosphere and their responses to environmental constraints: a review
  publication-title: Plant and Soil
– volume: 100
  start-page: 263
  year: 2013
  end-page: 288
  article-title: How a phosphorus‐acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines ( , Fabaceae)
  publication-title: American Journal of Botany
– volume: 131
  start-page: 247
  year: 1995
  end-page: 254
  article-title: Root hair length determines beneficial effect of a species on shoot growth of some pasture species
  publication-title: New Phytologist
– volume: 16
  start-page: 299
  year: 2006
  end-page: 363
  article-title: Phylogenetic distribution and evolution of mycorrhizas in land plants
  publication-title: Mycorrhiza
– volume: 164
  start-page: 121
  year: 2001
  end-page: 129
  article-title: Root hairs and the acquisition of plant nutrients from soil
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 116
  start-page: 447
  year: 1998
  end-page: 453
  article-title: Phosphorus uptake by plants: from soil to cell
  publication-title: Plant Physiology
– volume: 349
  start-page: 121
  year: 2011
  end-page: 156
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant and Soil
– volume: 407
  start-page: 119
  year: 2016
  end-page: 134
  article-title: Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P‐fertilizer gradient
  publication-title: Plant and Soil
– volume: 173
  start-page: 181
  year: 2007
  end-page: 190
  article-title: Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources
  publication-title: New Phytologist
– volume: 182
  start-page: 919
  year: 2009
  end-page: 928
  article-title: Patterns in root trait variation among 25 co‐existing North American forest species
  publication-title: New Phytologist
– volume: 18
  start-page: 298
  year: 2013
  end-page: 304
  article-title: Evolution of the plant–microbe symbiotic ‘toolkit’
  publication-title: Trends in Plant Science
– volume: 113
  start-page: 8741
  year: 2016
  end-page: 8746
  article-title: Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 35
  start-page: 328
  year: 2008
  end-page: 336
  article-title: Is there a critical level of shoot phosphorus concentration for cluster‐root formation in ?
  publication-title: Functional Plant Biology
– volume: 132
  start-page: 261
  year: 1991
  end-page: 272
  article-title: Phosphorus efficiency of plants: II. significance of root radius, root hairs and cation‐anion balance for phosphorus influx in seven plant‐species
  publication-title: Plant and Soil
– start-page: 426
  year: 2006
  end-page: 427
– volume: 53
  start-page: 55
  year: 1979
  end-page: 65
  article-title: The availability of P from phosphate‐goethite bridging complexes. Desorption and uptake by ryegrass
  publication-title: Plant and Soil
– volume: 215
  start-page: 1562
  year: 2017
  end-page: 1573
  article-title: A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine‐root tissues in seed plants
  publication-title: New Phytologist
– volume: 35
  start-page: 1
  year: 2007
  end-page: 9
  article-title: Soil available phosphorus status determines indigenous mycorrhizal colonization of field and glasshouse‐grown spring wheat from Argentina
  publication-title: Applied Soil Ecology
– volume: 208
  start-page: 125
  year: 2015
  end-page: 136
  article-title: Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species
  publication-title: New Phytologist
– volume: 55
  start-page: 158‐IN118
  year: 1970
  article-title: Improved procedures for clearing roots and staining parasitic and vesicular‐arbuscular mycorrhizal fungi for rapid assessment of infection
  publication-title: Transactions of the British Mycological Society
– volume: 31
  start-page: 1506
  year: 2017
  end-page: 1518
  article-title: Sampling roots to capture plant and soil functions
  publication-title: Functional Ecology
– volume: 248
  start-page: 199
  year: 2003
  end-page: 206
  article-title: Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil‐grown
  publication-title: Plant and Soil
– volume: 211
  start-page: 1159
  year: 2016
  end-page: 1169
  article-title: Towards a multidimensional root trait framework: a tree root review
  publication-title: New Phytologist
– volume: 36
  start-page: 1911
  year: 2013
  end-page: 1915
  article-title: Interactions between arbuscular mycorrhizal and non‐mycorrhizal plants: do non‐mycorrhizal species at both extremes of nutrient availability play the same game?
  publication-title: Plant, Cell & Environment
– volume: 95
  start-page: 1506
  year: 2008
  end-page: 1514
  article-title: Root anatomy, morphology, and longevity among root orders in (Ericaceae)
  publication-title: American Journal of Botany
– volume: 237
  start-page: 173
  year: 2001
  end-page: 195
  article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root‐induced chemical changes: a review
  publication-title: Plant and Soil
– volume: 203
  start-page: 863
  year: 2014
  end-page: 872
  article-title: Leading dimensions in absorptive root trait variation across 96 subtropical forest species
  publication-title: New Phytologist
– start-page: 217
  year: 1986
  end-page: 221
– volume: 23
  start-page: 95
  year: 2008
  end-page: 103
  article-title: Plant nutrient‐acquisition strategies change with soil age
  publication-title: Trends in Ecology & Evolution
– volume: 419
  start-page: 319
  year: 2017
  end-page: 333
  article-title: Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization
  publication-title: Plant and Soil
– volume: 123
  start-page: 177
  year: 2014
  end-page: 228
  article-title: Phosphorus: its efficient use in agriculture
  publication-title: Advances in Agronomy
– volume: 156
  start-page: 1050
  year: 2011
  end-page: 1057
  article-title: Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition
  publication-title: Plant Physiology
– volume: 162
  start-page: 9
  year: 2004
  end-page: 24
  article-title: The plastic plant: root responses to heterogeneous supplies of nutrients
  publication-title: New Phytologist
– volume: 1
  start-page: 15159
  year: 2015
  article-title: Regulation of resource exchange in the arbuscular mycorrhizal symbiosis
  publication-title: Nature Plants
– volume: 98
  start-page: 693
  year: 2006
  end-page: 713
  article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits
  publication-title: Annals of Botany
– volume: 331
  start-page: 241
  year: 2009
  end-page: 255
  article-title: Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply
  publication-title: Plant and Soil
– volume: 26
  start-page: 265
  year: 2003
  end-page: 273
  article-title: Shoot P status regulates cluster‐root growth and citrate exudation in grown with a divided root system
  publication-title: Plant, Cell & Environment
– volume: 106
  start-page: 2320
  year: 2018
  end-page: 2331
  article-title: Multi‐dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes
  publication-title: Journal of Ecology
– volume: 75
  start-page: 457
  year: 1983
  end-page: 461
  article-title: Phosphorus uptake by six plant species as related to root hairs
  publication-title: Agronomy Journal
– volume: 157
  start-page: 423
  year: 2003
  end-page: 447
  article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource
  publication-title: New Phytologist
– volume: 220
  start-page: 1108
  year: 2018
  end-page: 1115
  article-title: Evolutionary history of mycorrhizal symbioses and global host plant diversity
  publication-title: New Phytologist
– volume: 10
  start-page: e1004487
  year: 2014
  article-title: Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution
  publication-title: PLoS Genetics
– volume: 9
  start-page: e90287
  year: 2014
  article-title: Is the inherent potential of maize roots efficient for soil phosphorus acquisition?
  publication-title: PLoS ONE
– volume: 207
  start-page: 505
  year: 2015
  end-page: 518
  article-title: Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes
  publication-title: New Phytologist
– volume: 555
  start-page: 94
  year: 2018
  end-page: 97
  article-title: Evolutionary history resolves global organization of root functional traits
  publication-title: Nature
– volume: 372
  start-page: 195
  year: 2013
  end-page: 205
  article-title: Interactions between root hair length and arbuscular mycorrhizal colonisation in phosphorus deficient barley ( )
  publication-title: Plant and Soil
– volume: 20
  start-page: 5
  year: 2010
  end-page: 15
  article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions
  publication-title: Ecological Applications
– volume: 344
  start-page: 58
  year: 1990
  end-page: 60
  article-title: Rapid physiological adjustment of roots to localized soil enrichment
  publication-title: Nature
– volume: 219
  start-page: 518
  year: 2018
  end-page: 529
  article-title: The carboxylate‐releasing phosphorus‐mobilising strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply
  publication-title: New Phytologist
– volume: 424
  start-page: 539
  year: 2018
  end-page: 554
  article-title: Differences in nutrient foraging among cultivars deliver improved P‐acquisition efficiency
  publication-title: Plant and Soil
– volume: 210
  start-page: 815
  year: 2016
  end-page: 826
  article-title: Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy
  publication-title: New Phytologist
– volume: 7
  start-page: 1939
  year: 2016
  article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply
  publication-title: Frontiers in Plant Science
– volume: 209
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Arbuscular mycorrhizal fungal colonization is considerable at optimal Olsen‐P levels for maximized yields in an intensive wheat–maize cropping system
  publication-title: Field Crops Research
– volume: 65
  start-page: 769
  year: 2014
  end-page: 778
  article-title: It's time to make changes: modulation of root system architecture by nutrient signals
  publication-title: Journal of Experimental Botany
– volume: 67
  start-page: 847
  year: 2016
  end-page: 856
  article-title: Biomass partitioning and rhizosphere responses of maize and faba bean to phosphorus deficiency
  publication-title: Crop & Pasture Science
– volume: 418
  start-page: 129
  year: 2017
  end-page: 139
  article-title: Unwrapping the rhizosheath
  publication-title: Plant and Soil
– volume: 35
  start-page: 2170
  year: 2012
  end-page: 2180
  article-title: Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition
  publication-title: Plant, Cell & Environment
– volume: 286
  start-page: 7
  year: 2006
  end-page: 19
  article-title: Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition
  publication-title: Plant and Soil
– volume: 424
  start-page: 11
  year: 2017
  end-page: 33
  article-title: How belowground interactions contribute to the coexistence of mycorrhizal and non‐mycorrhizal species in severely phosphorus‐impoverished hyperdiverse ecosystems
  publication-title: Plant and Soil
– volume: 416
  start-page: 377
  year: 2017
  end-page: 389
  article-title: Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation
  publication-title: Plant and Soil
– year: 1954
– volume: 26
  start-page: 1463
  year: 2010
  end-page: 1464
  article-title: Picante: R tools for integrating phylogenies and ecology
  publication-title: Bioinformatics
– volume: 1
  start-page: 1
  year: 2015
  end-page: 4
  article-title: Diversity of plant nutrient‐acquisition strategies increases during long‐term ecosystem development
  publication-title: Nature Plants
– volume: 25
  start-page: 23
  year: 2015
  end-page: 31
  article-title: Plant adaptations to severely phosphorus‐impoverished soils
  publication-title: Current Opinion in Biotechnology
– volume: 23
  start-page: 867
  year: 2000
  end-page: 902
  article-title: Mineral acquisition by arbuscular mycorrhizal plants
  publication-title: Journal of Plant Nutrition
– volume: 63
  start-page: 2717
  year: 2012
  end-page: 2727
  article-title: Phenotypic plasticity and water flux rates of root orders under salinity
  publication-title: Journal of Experimental Botany
– volume: 38
  start-page: 1775
  year: 2015
  end-page: 1784
  article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture
  publication-title: Plant, Cell & Environment
– start-page: 305
  year: 1994
  end-page: 323
– volume: 156
  start-page: 997
  year: 2011
  end-page: 1005
  article-title: Phosphorus dynamics: from soil to plant
  publication-title: Plant Physiology
– volume: 166
  start-page: 590
  year: 2014
  end-page: 602
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiology
– volume: 154
  start-page: 267
  year: 2002
  end-page: 270
  article-title: Fine roots of trees‐a new perspective
  publication-title: New Phytologist
– volume: 180
  start-page: 673
  year: 2008
  end-page: 683
  article-title: Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species
  publication-title: New Phytologist
– volume: 209
  start-page: 823
  year: 2016
  end-page: 831
  article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize
  publication-title: New Phytologist
– volume: 208
  start-page: 114
  year: 2015
  end-page: 124
  article-title: Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest
  publication-title: New Phytologist
– volume: 15
  start-page: 689
  year: 2012
  end-page: 695
  article-title: Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits
  publication-title: Ecology Letters
– volume: 269
  start-page: 45
  year: 2005
  end-page: 56
  article-title: Rhizoeconomics: carbon costs of phosphorus acquisition
  publication-title: Plant and Soil
– volume: 217
  start-page: 1420
  year: 2018
  end-page: 1427
  article-title: Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence
  publication-title: New Phytologist
– volume: 69
  start-page: 112
  year: 1991
  end-page: 118
  article-title: Root architecture of warm‐ and cool‐season grasses: relationship to mycorrhizal dependence
  publication-title: Canadian Journal of Botany
– volume: 65
  start-page: 95
  year: 2014
  end-page: 123
  article-title: Phosphate nutrition: improving low‐phosphate tolerance in crops
  publication-title: Annual Review of Plant Biology
– volume: 205
  start-page: 1406
  year: 2015
  end-page: 1423
  article-title: Mycorrhizal ecology and evolution: the past, the present, and the future
  publication-title: New Phytologist
– year: 2017
– volume: 216
  start-page: 1140
  year: 2017
  end-page: 1150
  article-title: Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient
  publication-title: New Phytologist
– volume: 64
  start-page: 1403
  year: 2013
  end-page: 1411
  article-title: Characterization of root response to phosphorus supply from morphology to gene analysis in field‐grown wheat
  publication-title: Journal of Experimental Botany
– volume: 52
  start-page: 527
  year: 2001
  end-page: 560
  article-title: Function and mechanism of organic anion exudation from plant roots
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 97
  start-page: 2815
  year: 2016
  end-page: 2823
  article-title: Mycorrhizal fungi and roots are complementary in foraging within nutrient patches
  publication-title: Ecology
– ident: e_1_2_7_32_1
  doi: 10.1111/nph.12842
– ident: e_1_2_7_33_1
  doi: 10.1007/s11104-017-3350-6
– ident: e_1_2_7_68_1
  doi: 10.1104/pp.116.2.447
– ident: e_1_2_7_12_1
  doi: 10.1016/j.fcr.2017.04.004
– ident: e_1_2_7_49_1
  doi: 10.1111/nph.13363
– ident: e_1_2_7_13_1
  doi: 10.1111/nph.13451
– ident: e_1_2_7_82_1
  doi: 10.1007/s00572-005-0033-6
– ident: e_1_2_7_77_1
  doi: 10.1111/nph.14571
– ident: e_1_2_7_86_1
  doi: 10.1111/nph.13613
– ident: e_1_2_7_11_1
  doi: 10.1371/journal.pone.0090287
– ident: e_1_2_7_65_1
  doi: 10.1111/nph.13828
– ident: e_1_2_7_81_1
  doi: 10.1038/nplants.2015.159
– ident: e_1_2_7_78_1
  doi: 10.3732/ajb.0800092
– ident: e_1_2_7_74_1
  doi: 10.1007/s11104-016-2949-3
– ident: e_1_2_7_84_1
  doi: 10.1007/s11104-017-3214-0
– ident: e_1_2_7_5_1
  doi: 10.1002/ecy.1514
– ident: e_1_2_7_58_1
  doi: 10.1016/S0007-1536(70)80110-3
– ident: e_1_2_7_6_1
  doi: 10.1080/01904160009382068
– start-page: 217
  volume-title: Physiological and genetical aspects of mycorrhizae
  year: 1986
  ident: e_1_2_7_76_1
– ident: e_1_2_7_39_1
  doi: 10.1111/pce.12117
– ident: e_1_2_7_52_1
– ident: e_1_2_7_47_1
  doi: 10.3389/fpls.2016.01939
– ident: e_1_2_7_87_1
  doi: 10.1111/1365-2745.12977
– ident: e_1_2_7_10_1
  doi: 10.1371/journal.pgen.1004487
– ident: e_1_2_7_19_1
  doi: 10.1007/s11104-017-3511-7
– ident: e_1_2_7_24_1
  doi: 10.1023/A:1022371130939
– ident: e_1_2_7_4_1
  doi: 10.1073/pnas.1601006113
– ident: e_1_2_7_30_1
– ident: e_1_2_7_71_1
  doi: 10.1023/A:1022375229625
– ident: e_1_2_7_85_1
  doi: 10.1038/nplants.2015.50
– ident: e_1_2_7_64_1
  doi: 10.1007/s11104-011-0950-4
– ident: e_1_2_7_70_1
  doi: 10.1046/j.1365-3040.2003.00957.x
– ident: e_1_2_7_43_1
  doi: 10.1071/CP16015
– ident: e_1_2_7_67_1
  doi: 10.1111/j.1365-3040.2012.02547.x
– ident: e_1_2_7_40_1
  doi: 10.1111/nph.14710
– ident: e_1_2_7_53_1
  doi: 10.1111/nph.15200
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1469-8137.2009.02799.x
– ident: e_1_2_7_26_1
  doi: 10.2134/agronj1983.00021962007500030010x
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1469-8137.2008.02573.x
– ident: e_1_2_7_28_1
  doi: 10.1016/B978-0-12-420225-2.00005-4
– ident: e_1_2_7_35_1
  doi: 10.3732/ajb.1200474
– volume: 25
  start-page: 23
  year: 2015
  ident: e_1_2_7_36_1
  article-title: Plant adaptations to severely phosphorus‐impoverished soils
  publication-title: Current Opinion in Biotechnology
– ident: e_1_2_7_75_1
  doi: 10.1093/jxb/ert023
– ident: e_1_2_7_17_1
  doi: 10.1093/jxb/ert421
– ident: e_1_2_7_44_1
  doi: 10.1146/annurev-arplant-050213-035949
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1469-8137.2006.01897.x
– ident: e_1_2_7_45_1
  doi: 10.1111/pce.12451
– ident: e_1_2_7_29_1
  doi: 10.1002/1522-2624(200104)164:2<121::AID-JPLN121>3.0.CO;2-6
– ident: e_1_2_7_9_1
  doi: 10.1016/j.tplants.2013.01.008
– ident: e_1_2_7_14_1
  doi: 10.1016/B978-0-12-155070-7.50016-0
– ident: e_1_2_7_79_1
  doi: 10.1046/j.1469-8137.2003.00695.x
– ident: e_1_2_7_69_1
  doi: 10.1111/j.1469-8137.1995.tb05726.x
– ident: e_1_2_7_42_1
  doi: 10.1111/nph.13434
– ident: e_1_2_7_48_1
  doi: 10.1038/nature25783
– start-page: 426
  volume-title: Handbook of methods used in rhizosphere research
  year: 2006
  ident: e_1_2_7_51_1
– ident: e_1_2_7_66_1
  doi: 10.1146/annurev.arplant.52.1.527
– ident: e_1_2_7_55_1
  doi: 10.1007/s11104-009-0249-x
– ident: e_1_2_7_83_1
  doi: 10.1111/nph.14003
– ident: e_1_2_7_16_1
  doi: 10.1111/1365-2435.12883
– ident: e_1_2_7_31_1
  doi: 10.1093/bioinformatics/btq166
– ident: e_1_2_7_56_1
  doi: 10.1007/BF02181879
– ident: e_1_2_7_22_1
  doi: 10.1007/s11104-006-0014-3
– ident: e_1_2_7_54_1
  doi: 10.1007/s11104-017-3358-y
– ident: e_1_2_7_46_1
  doi: 10.1007/s11104-004-1096-4
– ident: e_1_2_7_59_1
  doi: 10.1104/pp.113.233916
– ident: e_1_2_7_60_1
  doi: 10.1046/j.1469-8137.2002.00413_1.x
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1469-8137.2004.01015.x
– ident: e_1_2_7_27_1
  doi: 10.1038/344058a0
– ident: e_1_2_7_63_1
  doi: 10.1093/jxb/err457
– ident: e_1_2_7_37_1
  doi: 10.1016/j.tree.2007.10.008
– ident: e_1_2_7_20_1
  doi: 10.1111/nph.13288
– ident: e_1_2_7_34_1
  doi: 10.1007/s11104-017-3427-2
– ident: e_1_2_7_2_1
  doi: 10.1007/s11104-013-1718-9
– ident: e_1_2_7_15_1
  doi: 10.1007/BF00010407
– ident: e_1_2_7_72_1
  doi: 10.1104/pp.111.175232
– ident: e_1_2_7_38_1
  doi: 10.1093/aob/mcl114
– ident: e_1_2_7_8_1
  doi: 10.1016/j.apsoil.2006.06.001
– ident: e_1_2_7_23_1
  doi: 10.1023/A:1013351617532
– ident: e_1_2_7_50_1
– ident: e_1_2_7_80_1
  doi: 10.1890/08-0127.1
– ident: e_1_2_7_3_1
  doi: 10.1111/nph.14976
– ident: e_1_2_7_21_1
  doi: 10.1139/b91-016
– ident: e_1_2_7_62_1
  doi: 10.1111/j.1461-0248.2012.01786.x
– ident: e_1_2_7_41_1
  doi: 10.1071/FP07222
– ident: e_1_2_7_61_1
  doi: 10.1111/nph.14967
– ident: e_1_2_7_73_1
  doi: 10.1104/pp.111.174581
SSID ssj0009562
Score 2.667711
Snippet • Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and...
Summary Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and...
Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 882
SubjectTerms acid phosphatase
Analysis of Variance
crops
Crops, Agricultural - metabolism
enzyme activity
exudation
greenhouses
interspecific variation
intraspecific variation
Multivariate Analysis
mycorrhizae
Mycorrhizae - physiology
mycorrhizal fungi
nutrient acquisition
phosphorus
Phosphorus - metabolism
Plant Exudates - metabolism
Plant Roots - anatomy & histology
Principal Component Analysis
Quantitative Trait, Heritable
root diameter
root functional trait
root plasticity
root systems
roots
soil
Soil - chemistry
Symbiosis
Title Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species
URI https://www.jstor.org/stable/26742314
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15833
https://www.ncbi.nlm.nih.gov/pubmed/30932187
https://www.proquest.com/docview/2201709993
https://www.proquest.com/docview/2305187744
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFA9j-LAXdW7TO6dksgcf7KVp0qRlTyqOi7Ah4uA-CCVpUnbR2243LXj3oh9hn3GfZCfJbdlkivhQaMtpmj_n5PzanPwOQgdponMZGxHlMY8jpqgGm5MyEgp8kVE5l5nbnHx8wien7OM0na6hw34vTOCHGH64Ocvw87UzcKnsLSOvz8_GxO0ZgvnXxWo5QPQ5uUW4y5OegZkzPl2xCrkonuHJO74ohCPeBzTv4lbveI4eoa99lUO8ybdx16pxefkbm-N_tukxergCpPht0KBNtGbqJ-jBuwZA43IL_QRfpk1TVRb7tEQYgHaL5w2Mjv8f_wabH11Iy4RlrfF8CV-zi7PZJRRpl3M1a6yxGIAxhgcsHIvOXv-6kuVFNwvRYti2PVsFbipMOHZJxbDbAQq3ttHp0Ycv7yfRKmdDVLKM0IgbJYXSlSKKskqwksFVaSTTWZqmVBiaSZ0RI2KhSg3akCgCY6Wr1BBpuKA7aL1uavMMYUccA8rCNQUXWlZQMDcxzTPGjKgAhozQ6370inJFaO7yanwv-g8b6M7Cd-cIvRpEzwOLx31CO14FBomEu2VswkZov9eJAozPrajI2jSdLZLE0Q8BxqZ_kYEZlWSAsqGcp0Ghhje4ZWjAWAKa4tXiz5UrTj5N_Mnuv4s-RxtQvzwEF--h9XbRmRcAoVr10tvKDYLkGqI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFgkutPwUlvJjEEgcyCqJHTs5cABKtaXtCqFW2luwY0ddwSZlkwi2F3gEHoRX4SV4Esb5U4sK4tIDh0hJNHGceCbzTTz-BuBR4OtIukY4kctdhymq0eakdIRCX2RUxGVoFyfvjfnogL2eBJMl-N6thWn4IfofbtYy6u-1NXD7Q_qElWdHh0PPLhpqUyp3zOITBmzFs-1NHN3Hvr_1av_lyGlrCjgJCz3qcKOkUDpVnqIsFSxheJQYyXQYBAEVhoZSh54RrlCJxt76ykMUotPAeNJwQbHdC7BiK4hbpv7Nt_4Jil_ud5zPnPFJy2Nk84b6rp7yfk0C5FnQ9jRSrl3d1ir86F5Sk-HyfliVapgc_8Yf-b-8xTW40mJu8rwxkquwZLJrcPFFjrh4cR2-oLvWJk_TgtSVlwjGEiWZ5aiA9ZTDU2I-V03lKSIzTWYLDNjnh9NjbLJYzNQ0L0xBEPsTvKDAbV4VP79-k8nHatokxJGi7Ag5SJ4SjxNbN43YRa546gYcnMvDr8NylmfmFhDLjYP2wDVFlJCk2DA3Lo1CxoxIEWkN4EmnLnHScrbb0iEf4i52w-GL6-EbwMNe9KghKjlLaL3WuV7C53am3mMDeNApYYzfFztpJDOTV0Xs-5ZhCcMI-hcZdBpeiIEEtnOz0eD-DnamHWGkwEep9fDPnYvHb0b1zu1_F70Pl0b7e7vx7vZ4ZwMuY1-jJpf6DiyX88rcRcRYqnu1oRJ4d946_QsXt3vJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAX_gvLr0EgcSCrJHbs5MABWFZbCqsKUWlvwY4ddQWbLJtEsL3AI_AevApPwZMwzp9aVBCXHjhESqKJ48QzmW_i8TcADwJfR9I1wolc7jpMUY02J6UjFPoioyIuQ7s4-fWUT_bYy1kw24Dv3VqYhh-i_-FmLaP-XlsDX-r0kJFny_2hZ9cMtRmVO2b9CeO14sn2CAf3oe-PX7x9PnHakgJOwkKPOtwoKZROlacoSwVLGB4lRjIdBkFAhaGh1KFnhCtUorGzvvIQhOg0MJ40XFBs9xScZtyNbJ2I0Rv_EMMv9zvKZ874rKUxsmlDfVePOL8m__E4ZHsUKNeebnwBfnTvqElweT-sSjVMDn6jj_xPXuJFON8ibvK0MZFLsGGyy3DmWY6oeH0FvqCz1iZP04LUdZcIRhIlWeSofvWEw2NiPldN3SkiM00WawzXV_vzA2yyWC_UPC9MQRD5E7ygwG1VFT-_fpPJx2repMORouzoOEieEo8TWzWN2CWueOoq7J3Iw2_BZpZn5joQy4yD1sA1RYyQpNgwNy6NQsaMSBFnDeBRpy1x0jK228IhH-IucsPhi-vhG8D9XnTZ0JQcJ7RVq1wv4XM7T--xAdzrdDDGr4udMpKZyasi9n3Lr4RBBP2LDLoML8QwAtu51ihwfwc7z44gUuCj1Gr4587F091JvXPj30Xvwtnd0Th-tT3duQnnsKtRk0h9CzbLVWVuI1ws1Z3aTAm8O2mV_gUqtnp4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tradeoffs+among+root+morphology%2C+exudation+and+mycorrhizal+symbioses+for+phosphorus%E2%80%90acquisition+strategies+of+16+crop+species&rft.jtitle=The+New+phytologist&rft.au=Wen%2C+Zhihui&rft.au=Li%2C+Hongbo&rft.au=Shen%2C+Qi&rft.au=Tang%2C+Xiaomei&rft.date=2019-07-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=223&rft.issue=2&rft.spage=882&rft.epage=895&rft_id=info:doi/10.1111%2Fnph.15833&rft.externalDBID=10.1111%252Fnph.15833&rft.externalDocID=NPH15833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon