Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species
• Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. • Here, eight...
Saved in:
Published in | The New phytologist Vol. 223; no. 2; pp. 882 - 895 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear.
• Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability.
• We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath.
• We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting. |
---|---|
AbstractList | Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting. Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first‐order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first‐order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P‐mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting. Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting.Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting. Summary Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first‐order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first‐order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P‐mobilizing exudates in the rhizosheath. We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting. • Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and mycorrhizal symbioses. Yet, whether these traits are differently coordinated among crop species to enhance P acquisition is unclear. • Here, eight root functional traits for P acquisition were characterized in 16 major herbaceous crop species grown in a glasshouse under limiting and adequate soil P availability. • We found substantial interspecific variation in root functional traits among species. Those with thinner roots showed more root branching and less first-order root length, and had consistently lower colonization by arbuscular mycorrhizal fungi (AMF), fewer rhizosheath carboxylates and reduced acid phosphatase activity. In response to limiting soil P, species with thinner roots showed a stronger response in root branching, first-order root length and specific root length of the whole root system, Conversely, species with thicker roots exhibited higher colonization by AMF and/or more P-mobilizing exudates in the rhizosheath. • We conclude that, at the species level, tradeoffs occur among the three groups of root functional traits we examined. Root diameter is a good predictor of the relative expression of these traits and how they change when P is limiting. |
Author | Wen, Zhihui Lambers, Hans Shen, Jianbo Pang, Jiayin Ryan, Megan H. Li, Hongbo Xiong, Chuanyong Li, Haigang Tang, Xiaomei Shen, Qi |
Author_xml | – sequence: 1 givenname: Zhihui surname: Wen fullname: Wen, Zhihui – sequence: 2 givenname: Hongbo surname: Li fullname: Li, Hongbo – sequence: 3 givenname: Qi surname: Shen fullname: Shen, Qi – sequence: 4 givenname: Xiaomei surname: Tang fullname: Tang, Xiaomei – sequence: 5 givenname: Chuanyong surname: Xiong fullname: Xiong, Chuanyong – sequence: 6 givenname: Haigang surname: Li fullname: Li, Haigang – sequence: 7 givenname: Jiayin surname: Pang fullname: Pang, Jiayin – sequence: 8 givenname: Megan H. surname: Ryan fullname: Ryan, Megan H. – sequence: 9 givenname: Hans surname: Lambers fullname: Lambers, Hans – sequence: 10 givenname: Jianbo surname: Shen fullname: Shen, Jianbo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30932187$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7G114Q9QslTotMkkM5lZSlFbKNVFBXchHyf3psxMpskMOoL_3Xg_XIjSQAgnPM-B854TdDSEARB6Sck5zediGDfntGoYe4JWlNdt0VAmjtCKkLIpal5_PUYnKd0TQtqqLp-hY0ZaVtJGrNDPu6gsBOcSVn0Y1jiGMOE-xHETurBezjB8n62afBiwGizuFxNi3PgfqsNp6bUPCRJ2IeIspHzjnAplHmaf_FZKU1QTrH2mgsO0xiaGEacRTP56jp461SV4sX9P0ZcP7-8ur4qbTx-vL9_dFIbnUYoatBLaOk01405ww3NlQHHbVFXFBLBG2YaCIEIby0CXmuZRrauAKqgFO0Vvdn3HGB5mSJPsfTLQdWqAMCdZMlLlOATnj6MloYK0bcsy-nqPzroHK8foexUXeUg3Axc7IM-cUgQnjZ-2WeZQfCcpkb_3J_P-5HZ_2Xj7l3Fo-i923_2b72D5PyhvP18djFc74z5NIf4xylrwklHOfgE2pLan |
CitedBy_id | crossref_primary_10_3390_agronomy14030456 crossref_primary_10_1007_s11104_021_05001_z crossref_primary_10_1016_j_rhisph_2022_100549 crossref_primary_10_1111_gcbb_13000 crossref_primary_10_1016_j_agee_2023_108700 crossref_primary_10_1111_nph_16499 crossref_primary_10_1128_msystems_01107_21 crossref_primary_10_1111_eva_13390 crossref_primary_10_1111_nph_19082 crossref_primary_10_1186_s12870_022_03683_w crossref_primary_10_1007_s11104_024_06491_3 crossref_primary_10_1007_s11104_024_06660_4 crossref_primary_10_1016_j_tplants_2022_11_008 crossref_primary_10_1111_nph_17906 crossref_primary_10_1007_s11104_024_06540_x crossref_primary_10_1016_j_fcr_2025_109762 crossref_primary_10_1016_j_envpol_2021_117204 crossref_primary_10_1111_ppl_14247 crossref_primary_10_1016_j_tree_2021_06_005 crossref_primary_10_3389_fpls_2020_00966 crossref_primary_10_3389_fpls_2022_1069627 crossref_primary_10_1111_1365_2435_14629 crossref_primary_10_1002_eap_2863 crossref_primary_10_1093_aob_mcaa159 crossref_primary_10_1002_agj2_20643 crossref_primary_10_1111_jipb_13090 crossref_primary_10_1111_oik_08908 crossref_primary_10_1007_s42729_024_01727_8 crossref_primary_10_1093_treephys_tpad098 crossref_primary_10_1007_s11104_022_05809_3 crossref_primary_10_1007_s11056_024_10058_6 crossref_primary_10_1007_s11104_024_06623_9 crossref_primary_10_1016_j_soilbio_2025_109753 crossref_primary_10_1016_j_agee_2024_109181 crossref_primary_10_1007_s11104_021_05084_8 crossref_primary_10_1016_j_fcr_2022_108603 crossref_primary_10_1016_j_soilbio_2023_109074 crossref_primary_10_1042_BCJ20180615 crossref_primary_10_3389_fpls_2022_927435 crossref_primary_10_3389_fpls_2022_1051080 crossref_primary_10_1016_j_soilbio_2024_109690 crossref_primary_10_1007_s11104_022_05464_8 crossref_primary_10_1016_j_still_2022_105492 crossref_primary_10_1007_s11104_020_04544_x crossref_primary_10_1111_pce_14898 crossref_primary_10_3389_fenvs_2022_855815 crossref_primary_10_1007_s00572_020_01006_1 crossref_primary_10_1016_j_envpol_2020_116098 crossref_primary_10_1111_1365_2435_14193 crossref_primary_10_1016_j_soilbio_2021_108310 crossref_primary_10_3390_plants10122781 crossref_primary_10_1016_j_geoderma_2022_115964 crossref_primary_10_1002_jpln_201900322 crossref_primary_10_1111_ejss_13303 crossref_primary_10_1007_s11104_021_04848_6 crossref_primary_10_1111_nph_17326 crossref_primary_10_1093_aob_mcz154 crossref_primary_10_1007_s42729_023_01409_x crossref_primary_10_1016_j_tim_2024_11_011 crossref_primary_10_1111_nph_18419 crossref_primary_10_1111_tpj_16184 crossref_primary_10_3390_ijms24076233 crossref_primary_10_1007_s11104_024_06717_4 crossref_primary_10_1016_j_apsoil_2024_105351 crossref_primary_10_1016_j_pedsph_2023_07_021 crossref_primary_10_1038_s41598_019_51204_x crossref_primary_10_1093_aob_mcab145 crossref_primary_10_1093_jxb_erad390 crossref_primary_10_1002_saj2_20613 crossref_primary_10_1016_j_still_2024_106276 crossref_primary_10_1016_j_tplants_2020_07_006 crossref_primary_10_1093_jxb_erae483 crossref_primary_10_1016_j_rhisph_2021_100391 crossref_primary_10_1111_1365_2745_14445 crossref_primary_10_1111_gcb_16950 crossref_primary_10_3390_plants11223105 crossref_primary_10_1002_jpln_202000527 crossref_primary_10_1007_s11104_025_07232_w crossref_primary_10_3390_su17072899 crossref_primary_10_1111_nph_19567 crossref_primary_10_1016_j_fecs_2022_100055 crossref_primary_10_1111_nph_16170 crossref_primary_10_3389_ffgc_2021_698191 crossref_primary_10_3724_SP_J_1006_2021_04237 crossref_primary_10_1007_s11104_021_05232_0 crossref_primary_10_1016_j_apsoil_2024_105726 crossref_primary_10_1111_oik_07874 crossref_primary_10_1007_s40415_024_01026_7 crossref_primary_10_1016_j_foreco_2023_121316 crossref_primary_10_1111_oik_08606 crossref_primary_10_3389_fmicb_2023_1211397 crossref_primary_10_1093_aob_mcae212 crossref_primary_10_1111_gcb_17310 crossref_primary_10_1111_nph_17707 crossref_primary_10_3390_jof9100977 crossref_primary_10_1007_s00248_020_01678_4 crossref_primary_10_1016_j_scitotenv_2022_157906 crossref_primary_10_1016_j_scitotenv_2022_155667 crossref_primary_10_1016_j_apsoil_2024_105611 crossref_primary_10_3389_fpls_2024_1461893 crossref_primary_10_1007_s11104_024_06949_4 crossref_primary_10_1007_s00344_024_11467_9 crossref_primary_10_1016_j_agee_2022_108336 crossref_primary_10_1007_s11104_022_05434_0 crossref_primary_10_1002_imt2_245 crossref_primary_10_1016_j_soilbio_2024_109417 crossref_primary_10_1016_j_soilbio_2023_109039 crossref_primary_10_3390_agronomy11112267 crossref_primary_10_3389_fenvs_2022_906893 crossref_primary_10_1111_oik_08717 crossref_primary_10_1016_j_plaphy_2020_10_003 crossref_primary_10_1093_treephys_tpac081 crossref_primary_10_1007_s42729_024_01833_7 crossref_primary_10_1016_j_envexpbot_2025_106106 crossref_primary_10_1007_s11104_024_07188_3 crossref_primary_10_3390_agriculture13040884 crossref_primary_10_15302_J_FASE_2019275 crossref_primary_10_18393_ejss_1574580 crossref_primary_10_3389_fpls_2022_924154 crossref_primary_10_1016_j_agee_2024_109255 crossref_primary_10_1007_s11104_024_07043_5 crossref_primary_10_1007_s11104_023_06408_6 crossref_primary_10_1111_1365_2435_14390 crossref_primary_10_1016_j_soilbio_2024_109448 crossref_primary_10_1111_gcb_15391 crossref_primary_10_3390_agriculture14112065 crossref_primary_10_1016_j_chemosphere_2023_139392 crossref_primary_10_3389_fenvs_2023_1127920 crossref_primary_10_1021_acsanm_4c03379 crossref_primary_10_3389_fpls_2020_610591 crossref_primary_10_1111_gcb_14851 crossref_primary_10_3390_plants12203518 crossref_primary_10_1007_s00484_024_02655_z crossref_primary_10_1016_j_rhisph_2020_100299 crossref_primary_10_1093_jxb_eraa482 crossref_primary_10_3390_ijms24129879 crossref_primary_10_1007_s11104_022_05522_1 crossref_primary_10_1007_s11104_024_06783_8 crossref_primary_10_1007_s10705_022_10234_0 crossref_primary_10_1016_j_scienta_2022_111779 crossref_primary_10_1002_ecm_1563 crossref_primary_10_1111_jac_12514 crossref_primary_10_1002_ppp3_10534 crossref_primary_10_1007_s10661_024_12779_9 crossref_primary_10_1016_j_cj_2024_12_022 crossref_primary_10_1016_j_scitotenv_2024_174858 crossref_primary_10_1007_s42832_024_0248_0 crossref_primary_10_1007_s00572_019_00927_w crossref_primary_10_3389_fpls_2021_658321 crossref_primary_10_1080_00380768_2022_2104103 crossref_primary_10_1080_01904167_2020_1793190 crossref_primary_10_1021_acs_jafc_3c02912 crossref_primary_10_1111_1365_2745_13746 crossref_primary_10_1007_s11104_023_05884_0 crossref_primary_10_1007_s42729_022_00936_3 crossref_primary_10_1016_j_geoderma_2021_115261 crossref_primary_10_3389_fpls_2023_1094157 crossref_primary_10_1007_s11104_023_06310_1 crossref_primary_10_1016_j_still_2023_105710 crossref_primary_10_1111_1365_2745_14277 crossref_primary_10_1016_j_scitotenv_2023_166899 crossref_primary_10_3390_agronomy11112199 crossref_primary_10_1126_science_aaz5192 crossref_primary_10_3389_fpls_2021_734641 crossref_primary_10_1007_s00572_024_01154_8 crossref_primary_10_3390_jof8080800 crossref_primary_10_1111_pbi_13833 crossref_primary_10_3389_fmicb_2022_916610 crossref_primary_10_1016_j_rhisph_2021_100414 crossref_primary_10_1007_s11104_021_04989_8 crossref_primary_10_1016_j_soilbio_2021_108149 crossref_primary_10_3390_agronomy13020608 crossref_primary_10_1016_j_soilbio_2024_109615 crossref_primary_10_3389_fpls_2022_949086 crossref_primary_10_1111_1365_2745_14268 crossref_primary_10_1007_s11104_022_05347_y crossref_primary_10_3390_su141811342 crossref_primary_10_1007_s11104_023_06078_4 crossref_primary_10_1111_gcb_16091 crossref_primary_10_3389_fmicb_2019_02047 crossref_primary_10_15302_J_FASE_2019283 crossref_primary_10_1029_2019WR026606 crossref_primary_10_1093_aob_mcab097 crossref_primary_10_1111_pce_14163 crossref_primary_10_1111_nph_17854 crossref_primary_10_3389_fpls_2022_1080014 crossref_primary_10_1093_aobpla_plz033 crossref_primary_10_1007_s13593_023_00916_6 crossref_primary_10_1016_j_fcr_2024_109410 crossref_primary_10_1002_jpln_202100112 crossref_primary_10_1111_1365_2435_13823 crossref_primary_10_1007_s42729_022_00890_0 crossref_primary_10_1093_jpe_rtae064 crossref_primary_10_1186_s12870_021_03164_6 crossref_primary_10_1016_j_micres_2021_126842 crossref_primary_10_1111_oik_09638 crossref_primary_10_1038_s41598_022_19047_1 crossref_primary_10_1111_gcb_16685 crossref_primary_10_3390_plants11010089 crossref_primary_10_1093_aob_mcae151 crossref_primary_10_1007_s42832_021_0108_0 crossref_primary_10_12677_IJE_2021_101014 crossref_primary_10_3389_fsufs_2021_716480 crossref_primary_10_1007_s11104_021_04988_9 crossref_primary_10_1016_j_apsoil_2024_105635 crossref_primary_10_3389_fpls_2024_1389082 crossref_primary_10_1007_s11104_022_05309_4 crossref_primary_10_3389_fpls_2023_1174151 crossref_primary_10_1016_j_jprot_2021_104450 crossref_primary_10_3389_fpls_2023_1153237 crossref_primary_10_1111_nph_16865 crossref_primary_10_1590_1519_6984_253083 crossref_primary_10_3390_agronomy10101534 crossref_primary_10_3389_fpls_2024_1423703 crossref_primary_10_1111_1365_2435_14658 crossref_primary_10_1007_s11104_020_04584_3 crossref_primary_10_1093_aob_mcae169 crossref_primary_10_1016_j_flora_2021_151876 crossref_primary_10_1002_jpln_202000487 crossref_primary_10_1016_j_isci_2023_106632 crossref_primary_10_1111_oik_10763 crossref_primary_10_1007_s11104_019_04161_3 crossref_primary_10_1007_s11104_022_05559_2 crossref_primary_10_1093_jpe_rtae043 crossref_primary_10_1016_j_apsoil_2021_104346 crossref_primary_10_1016_j_foreco_2020_118309 crossref_primary_10_1002_eap_3082 crossref_primary_10_1111_1365_2435_13562 crossref_primary_10_1007_s13562_021_00715_8 crossref_primary_10_1111_1365_2435_14653 crossref_primary_10_1111_ppl_13873 crossref_primary_10_1007_s11427_022_2178_7 crossref_primary_10_1007_s11104_024_06655_1 crossref_primary_10_1111_nph_18066 crossref_primary_10_1007_s42832_021_0088_0 crossref_primary_10_1016_j_plaphy_2023_107694 crossref_primary_10_1016_j_jwpe_2025_107219 crossref_primary_10_1016_j_scitotenv_2024_176665 crossref_primary_10_1186_s12870_020_02558_2 crossref_primary_10_1007_s11104_024_06485_1 crossref_primary_10_1016_j_soilbio_2022_108722 crossref_primary_10_1007_s11104_023_06250_w crossref_primary_10_1016_j_stress_2022_100121 crossref_primary_10_7554_eLife_61701 crossref_primary_10_1111_pce_14247 crossref_primary_10_1111_1365_2745_14064 crossref_primary_10_3390_plants11030405 crossref_primary_10_1016_j_tplants_2021_08_003 crossref_primary_10_1007_s11104_024_06911_4 crossref_primary_10_1111_gcb_16768 crossref_primary_10_1093_plcell_koad326 crossref_primary_10_1016_j_micres_2023_127371 crossref_primary_10_1016_j_still_2020_104754 crossref_primary_10_1016_j_jplph_2020_153297 crossref_primary_10_1017_S0021859623000266 crossref_primary_10_1111_nph_19261 crossref_primary_10_1016_j_soilbio_2021_108518 crossref_primary_10_1071_FP23109 crossref_primary_10_1016_j_scienta_2022_110956 crossref_primary_10_1016_j_jia_2023_12_014 crossref_primary_10_1093_jpe_rtac085 crossref_primary_10_1002_ppp3_10263 crossref_primary_10_1080_01904167_2022_2046079 crossref_primary_10_1093_treephys_tpad118 crossref_primary_10_3389_fpls_2023_1150832 crossref_primary_10_1007_s11104_022_05516_z crossref_primary_10_1002_jpln_202000471 crossref_primary_10_1016_j_scitotenv_2022_159033 crossref_primary_10_1016_j_ecolind_2021_107838 crossref_primary_10_1080_01904167_2022_2035754 crossref_primary_10_1093_aob_mcae060 crossref_primary_10_1016_j_scitotenv_2020_136495 crossref_primary_10_3389_fpls_2024_1377626 crossref_primary_10_1016_j_scitotenv_2023_167630 crossref_primary_10_1002_pld3_544 crossref_primary_10_1007_s00299_023_03133_3 crossref_primary_10_1093_aob_mcad096 |
Cites_doi | 10.1111/nph.12842 10.1007/s11104-017-3350-6 10.1104/pp.116.2.447 10.1016/j.fcr.2017.04.004 10.1111/nph.13363 10.1111/nph.13451 10.1007/s00572-005-0033-6 10.1111/nph.14571 10.1111/nph.13613 10.1371/journal.pone.0090287 10.1111/nph.13828 10.1038/nplants.2015.159 10.3732/ajb.0800092 10.1007/s11104-016-2949-3 10.1007/s11104-017-3214-0 10.1002/ecy.1514 10.1016/S0007-1536(70)80110-3 10.1080/01904160009382068 10.1111/pce.12117 10.3389/fpls.2016.01939 10.1111/1365-2745.12977 10.1371/journal.pgen.1004487 10.1007/s11104-017-3511-7 10.1023/A:1022371130939 10.1073/pnas.1601006113 10.1023/A:1022375229625 10.1038/nplants.2015.50 10.1007/s11104-011-0950-4 10.1046/j.1365-3040.2003.00957.x 10.1071/CP16015 10.1111/j.1365-3040.2012.02547.x 10.1111/nph.14710 10.1111/nph.15200 10.1111/j.1469-8137.2009.02799.x 10.2134/agronj1983.00021962007500030010x 10.1111/j.1469-8137.2008.02573.x 10.1016/B978-0-12-420225-2.00005-4 10.3732/ajb.1200474 10.1093/jxb/ert023 10.1093/jxb/ert421 10.1146/annurev-arplant-050213-035949 10.1111/j.1469-8137.2006.01897.x 10.1111/pce.12451 10.1002/1522-2624(200104)164:2<121::AID-JPLN121>3.0.CO;2-6 10.1016/j.tplants.2013.01.008 10.1016/B978-0-12-155070-7.50016-0 10.1046/j.1469-8137.2003.00695.x 10.1111/j.1469-8137.1995.tb05726.x 10.1111/nph.13434 10.1038/nature25783 10.1146/annurev.arplant.52.1.527 10.1007/s11104-009-0249-x 10.1111/nph.14003 10.1111/1365-2435.12883 10.1093/bioinformatics/btq166 10.1007/BF02181879 10.1007/s11104-006-0014-3 10.1007/s11104-017-3358-y 10.1007/s11104-004-1096-4 10.1104/pp.113.233916 10.1046/j.1469-8137.2002.00413_1.x 10.1111/j.1469-8137.2004.01015.x 10.1038/344058a0 10.1093/jxb/err457 10.1016/j.tree.2007.10.008 10.1111/nph.13288 10.1007/s11104-017-3427-2 10.1007/s11104-013-1718-9 10.1007/BF00010407 10.1104/pp.111.175232 10.1093/aob/mcl114 10.1016/j.apsoil.2006.06.001 10.1023/A:1013351617532 10.1890/08-0127.1 10.1111/nph.14976 10.1139/b91-016 10.1111/j.1461-0248.2012.01786.x 10.1071/FP07222 10.1111/nph.14967 10.1104/pp.111.174581 |
ContentType | Journal Article |
Copyright | 2019 The Authors © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. |
Copyright_xml | – notice: 2019 The Authors © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1111/nph.15833 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 895 |
ExternalDocumentID | 30932187 10_1111_nph_15833 NPH15833 26742314 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31330070; 31600319; 31772402 – fundername: National Key Research and Development Program of China funderid: 2016YFE0101100; 2017YFD0200200 – fundername: Chinese Scholarship Council (CSC) |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4813-6eba7bdfb1b34f74c47bdcea4d855537e38ad81e707bcd3eb2b1095df5e1ae673 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:31:56 EDT 2025 Fri Jul 11 05:30:14 EDT 2025 Wed Feb 19 02:30:48 EST 2025 Tue Jul 01 02:28:31 EDT 2025 Thu Apr 24 23:11:34 EDT 2025 Wed Jan 22 16:42:04 EST 2025 Thu Jul 03 22:06:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | root plasticity root diameter interspecific variation intraspecific variation nutrient acquisition root functional trait |
Language | English |
License | 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4813-6eba7bdfb1b34f74c47bdcea4d855537e38ad81e707bcd3eb2b1095df5e1ae673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8943-948X 0000-0002-4118-2272 0000-0002-8127-645X 0000-0003-0749-0199 |
OpenAccessLink | https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.15833 |
PMID | 30932187 |
PQID | 2201709993 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2305187744 proquest_miscellaneous_2201709993 pubmed_primary_30932187 crossref_citationtrail_10_1111_nph_15833 crossref_primary_10_1111_nph_15833 wiley_primary_10_1111_nph_15833_NPH15833 jstor_primary_26742314 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2019 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2015; 38 2002; 154 2004; 162 2013; 64 2008; 35 2012; 15 1998; 116 1995; 131 1990; 344 2003; 157 2007; 35 2011; 156 2014; 65 2013; 18 2017; 209 2017; 31 2010; 20 2010; 26 2003; 248 2007; 173 2018; 217 2005; 269 2016; 113 1986 2006; 286 2008; 23 2018; 219 2014; 9 2014; 166 2014; 203 2001; 52 2014; 10 2014; 123 2012; 63 1991; 132 2017; 416 2015; 1 2017; 418 2018; 220 2017; 419 2001; 164 2016; 407 2016; 209 2018; 106 2018; 424 2000; 23 2006; 98 2009; 182 2006; 16 1983; 75 1954 2016; 97 2013; 100 2009; 331 1970; 55 2006 2015; 208 1994 2015; 207 2015; 205 1979; 53 2012; 35 2008; 95 2017; 215 2017; 216 2008; 180 2015; 25 2016; 7 2013; 36 1991; 69 2011; 349 2018; 555 2016; 211 2016; 210 2003; 26 2017 2013; 372 2017; 424 2016; 67 2001; 237 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Trouvelot A (e_1_2_7_76_1) 1986 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 Neumann G (e_1_2_7_51_1) 2006 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Lambers H (e_1_2_7_36_1) 2015; 25 |
References_xml | – volume: 248 start-page: 43 year: 2003 end-page: 59 article-title: Origins of root‐mediated pH changes in the rhizosphere and their responses to environmental constraints: a review publication-title: Plant and Soil – volume: 100 start-page: 263 year: 2013 end-page: 288 article-title: How a phosphorus‐acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines ( , Fabaceae) publication-title: American Journal of Botany – volume: 131 start-page: 247 year: 1995 end-page: 254 article-title: Root hair length determines beneficial effect of a species on shoot growth of some pasture species publication-title: New Phytologist – volume: 16 start-page: 299 year: 2006 end-page: 363 article-title: Phylogenetic distribution and evolution of mycorrhizas in land plants publication-title: Mycorrhiza – volume: 164 start-page: 121 year: 2001 end-page: 129 article-title: Root hairs and the acquisition of plant nutrients from soil publication-title: Journal of Plant Nutrition and Soil Science – volume: 116 start-page: 447 year: 1998 end-page: 453 article-title: Phosphorus uptake by plants: from soil to cell publication-title: Plant Physiology – volume: 349 start-page: 121 year: 2011 end-page: 156 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant and Soil – volume: 407 start-page: 119 year: 2016 end-page: 134 article-title: Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P‐fertilizer gradient publication-title: Plant and Soil – volume: 173 start-page: 181 year: 2007 end-page: 190 article-title: Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources publication-title: New Phytologist – volume: 182 start-page: 919 year: 2009 end-page: 928 article-title: Patterns in root trait variation among 25 co‐existing North American forest species publication-title: New Phytologist – volume: 18 start-page: 298 year: 2013 end-page: 304 article-title: Evolution of the plant–microbe symbiotic ‘toolkit’ publication-title: Trends in Plant Science – volume: 113 start-page: 8741 year: 2016 end-page: 8746 article-title: Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees publication-title: Proceedings of the National Academy of Sciences, USA – volume: 35 start-page: 328 year: 2008 end-page: 336 article-title: Is there a critical level of shoot phosphorus concentration for cluster‐root formation in ? publication-title: Functional Plant Biology – volume: 132 start-page: 261 year: 1991 end-page: 272 article-title: Phosphorus efficiency of plants: II. significance of root radius, root hairs and cation‐anion balance for phosphorus influx in seven plant‐species publication-title: Plant and Soil – start-page: 426 year: 2006 end-page: 427 – volume: 53 start-page: 55 year: 1979 end-page: 65 article-title: The availability of P from phosphate‐goethite bridging complexes. Desorption and uptake by ryegrass publication-title: Plant and Soil – volume: 215 start-page: 1562 year: 2017 end-page: 1573 article-title: A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine‐root tissues in seed plants publication-title: New Phytologist – volume: 35 start-page: 1 year: 2007 end-page: 9 article-title: Soil available phosphorus status determines indigenous mycorrhizal colonization of field and glasshouse‐grown spring wheat from Argentina publication-title: Applied Soil Ecology – volume: 208 start-page: 125 year: 2015 end-page: 136 article-title: Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species publication-title: New Phytologist – volume: 55 start-page: 158‐IN118 year: 1970 article-title: Improved procedures for clearing roots and staining parasitic and vesicular‐arbuscular mycorrhizal fungi for rapid assessment of infection publication-title: Transactions of the British Mycological Society – volume: 31 start-page: 1506 year: 2017 end-page: 1518 article-title: Sampling roots to capture plant and soil functions publication-title: Functional Ecology – volume: 248 start-page: 199 year: 2003 end-page: 206 article-title: Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil‐grown publication-title: Plant and Soil – volume: 211 start-page: 1159 year: 2016 end-page: 1169 article-title: Towards a multidimensional root trait framework: a tree root review publication-title: New Phytologist – volume: 36 start-page: 1911 year: 2013 end-page: 1915 article-title: Interactions between arbuscular mycorrhizal and non‐mycorrhizal plants: do non‐mycorrhizal species at both extremes of nutrient availability play the same game? publication-title: Plant, Cell & Environment – volume: 95 start-page: 1506 year: 2008 end-page: 1514 article-title: Root anatomy, morphology, and longevity among root orders in (Ericaceae) publication-title: American Journal of Botany – volume: 237 start-page: 173 year: 2001 end-page: 195 article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root‐induced chemical changes: a review publication-title: Plant and Soil – volume: 203 start-page: 863 year: 2014 end-page: 872 article-title: Leading dimensions in absorptive root trait variation across 96 subtropical forest species publication-title: New Phytologist – start-page: 217 year: 1986 end-page: 221 – volume: 23 start-page: 95 year: 2008 end-page: 103 article-title: Plant nutrient‐acquisition strategies change with soil age publication-title: Trends in Ecology & Evolution – volume: 419 start-page: 319 year: 2017 end-page: 333 article-title: Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization publication-title: Plant and Soil – volume: 123 start-page: 177 year: 2014 end-page: 228 article-title: Phosphorus: its efficient use in agriculture publication-title: Advances in Agronomy – volume: 156 start-page: 1050 year: 2011 end-page: 1057 article-title: Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition publication-title: Plant Physiology – volume: 162 start-page: 9 year: 2004 end-page: 24 article-title: The plastic plant: root responses to heterogeneous supplies of nutrients publication-title: New Phytologist – volume: 1 start-page: 15159 year: 2015 article-title: Regulation of resource exchange in the arbuscular mycorrhizal symbiosis publication-title: Nature Plants – volume: 98 start-page: 693 year: 2006 end-page: 713 article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits publication-title: Annals of Botany – volume: 331 start-page: 241 year: 2009 end-page: 255 article-title: Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply publication-title: Plant and Soil – volume: 26 start-page: 265 year: 2003 end-page: 273 article-title: Shoot P status regulates cluster‐root growth and citrate exudation in grown with a divided root system publication-title: Plant, Cell & Environment – volume: 106 start-page: 2320 year: 2018 end-page: 2331 article-title: Multi‐dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes publication-title: Journal of Ecology – volume: 75 start-page: 457 year: 1983 end-page: 461 article-title: Phosphorus uptake by six plant species as related to root hairs publication-title: Agronomy Journal – volume: 157 start-page: 423 year: 2003 end-page: 447 article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource publication-title: New Phytologist – volume: 220 start-page: 1108 year: 2018 end-page: 1115 article-title: Evolutionary history of mycorrhizal symbioses and global host plant diversity publication-title: New Phytologist – volume: 10 start-page: e1004487 year: 2014 article-title: Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution publication-title: PLoS Genetics – volume: 9 start-page: e90287 year: 2014 article-title: Is the inherent potential of maize roots efficient for soil phosphorus acquisition? publication-title: PLoS ONE – volume: 207 start-page: 505 year: 2015 end-page: 518 article-title: Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes publication-title: New Phytologist – volume: 555 start-page: 94 year: 2018 end-page: 97 article-title: Evolutionary history resolves global organization of root functional traits publication-title: Nature – volume: 372 start-page: 195 year: 2013 end-page: 205 article-title: Interactions between root hair length and arbuscular mycorrhizal colonisation in phosphorus deficient barley ( ) publication-title: Plant and Soil – volume: 20 start-page: 5 year: 2010 end-page: 15 article-title: Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions publication-title: Ecological Applications – volume: 344 start-page: 58 year: 1990 end-page: 60 article-title: Rapid physiological adjustment of roots to localized soil enrichment publication-title: Nature – volume: 219 start-page: 518 year: 2018 end-page: 529 article-title: The carboxylate‐releasing phosphorus‐mobilising strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply publication-title: New Phytologist – volume: 424 start-page: 539 year: 2018 end-page: 554 article-title: Differences in nutrient foraging among cultivars deliver improved P‐acquisition efficiency publication-title: Plant and Soil – volume: 210 start-page: 815 year: 2016 end-page: 826 article-title: Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy publication-title: New Phytologist – volume: 7 start-page: 1939 year: 2016 article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply publication-title: Frontiers in Plant Science – volume: 209 start-page: 1 year: 2017 end-page: 9 article-title: Arbuscular mycorrhizal fungal colonization is considerable at optimal Olsen‐P levels for maximized yields in an intensive wheat–maize cropping system publication-title: Field Crops Research – volume: 65 start-page: 769 year: 2014 end-page: 778 article-title: It's time to make changes: modulation of root system architecture by nutrient signals publication-title: Journal of Experimental Botany – volume: 67 start-page: 847 year: 2016 end-page: 856 article-title: Biomass partitioning and rhizosphere responses of maize and faba bean to phosphorus deficiency publication-title: Crop & Pasture Science – volume: 418 start-page: 129 year: 2017 end-page: 139 article-title: Unwrapping the rhizosheath publication-title: Plant and Soil – volume: 35 start-page: 2170 year: 2012 end-page: 2180 article-title: Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition publication-title: Plant, Cell & Environment – volume: 286 start-page: 7 year: 2006 end-page: 19 article-title: Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition publication-title: Plant and Soil – volume: 424 start-page: 11 year: 2017 end-page: 33 article-title: How belowground interactions contribute to the coexistence of mycorrhizal and non‐mycorrhizal species in severely phosphorus‐impoverished hyperdiverse ecosystems publication-title: Plant and Soil – volume: 416 start-page: 377 year: 2017 end-page: 389 article-title: Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation publication-title: Plant and Soil – year: 1954 – volume: 26 start-page: 1463 year: 2010 end-page: 1464 article-title: Picante: R tools for integrating phylogenies and ecology publication-title: Bioinformatics – volume: 1 start-page: 1 year: 2015 end-page: 4 article-title: Diversity of plant nutrient‐acquisition strategies increases during long‐term ecosystem development publication-title: Nature Plants – volume: 25 start-page: 23 year: 2015 end-page: 31 article-title: Plant adaptations to severely phosphorus‐impoverished soils publication-title: Current Opinion in Biotechnology – volume: 23 start-page: 867 year: 2000 end-page: 902 article-title: Mineral acquisition by arbuscular mycorrhizal plants publication-title: Journal of Plant Nutrition – volume: 63 start-page: 2717 year: 2012 end-page: 2727 article-title: Phenotypic plasticity and water flux rates of root orders under salinity publication-title: Journal of Experimental Botany – volume: 38 start-page: 1775 year: 2015 end-page: 1784 article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture publication-title: Plant, Cell & Environment – start-page: 305 year: 1994 end-page: 323 – volume: 156 start-page: 997 year: 2011 end-page: 1005 article-title: Phosphorus dynamics: from soil to plant publication-title: Plant Physiology – volume: 166 start-page: 590 year: 2014 end-page: 602 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability publication-title: Plant Physiology – volume: 154 start-page: 267 year: 2002 end-page: 270 article-title: Fine roots of trees‐a new perspective publication-title: New Phytologist – volume: 180 start-page: 673 year: 2008 end-page: 683 article-title: Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species publication-title: New Phytologist – volume: 209 start-page: 823 year: 2016 end-page: 831 article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize publication-title: New Phytologist – volume: 208 start-page: 114 year: 2015 end-page: 124 article-title: Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest publication-title: New Phytologist – volume: 15 start-page: 689 year: 2012 end-page: 695 article-title: Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits publication-title: Ecology Letters – volume: 269 start-page: 45 year: 2005 end-page: 56 article-title: Rhizoeconomics: carbon costs of phosphorus acquisition publication-title: Plant and Soil – volume: 217 start-page: 1420 year: 2018 end-page: 1427 article-title: Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence publication-title: New Phytologist – volume: 69 start-page: 112 year: 1991 end-page: 118 article-title: Root architecture of warm‐ and cool‐season grasses: relationship to mycorrhizal dependence publication-title: Canadian Journal of Botany – volume: 65 start-page: 95 year: 2014 end-page: 123 article-title: Phosphate nutrition: improving low‐phosphate tolerance in crops publication-title: Annual Review of Plant Biology – volume: 205 start-page: 1406 year: 2015 end-page: 1423 article-title: Mycorrhizal ecology and evolution: the past, the present, and the future publication-title: New Phytologist – year: 2017 – volume: 216 start-page: 1140 year: 2017 end-page: 1150 article-title: Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient publication-title: New Phytologist – volume: 64 start-page: 1403 year: 2013 end-page: 1411 article-title: Characterization of root response to phosphorus supply from morphology to gene analysis in field‐grown wheat publication-title: Journal of Experimental Botany – volume: 52 start-page: 527 year: 2001 end-page: 560 article-title: Function and mechanism of organic anion exudation from plant roots publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 97 start-page: 2815 year: 2016 end-page: 2823 article-title: Mycorrhizal fungi and roots are complementary in foraging within nutrient patches publication-title: Ecology – ident: e_1_2_7_32_1 doi: 10.1111/nph.12842 – ident: e_1_2_7_33_1 doi: 10.1007/s11104-017-3350-6 – ident: e_1_2_7_68_1 doi: 10.1104/pp.116.2.447 – ident: e_1_2_7_12_1 doi: 10.1016/j.fcr.2017.04.004 – ident: e_1_2_7_49_1 doi: 10.1111/nph.13363 – ident: e_1_2_7_13_1 doi: 10.1111/nph.13451 – ident: e_1_2_7_82_1 doi: 10.1007/s00572-005-0033-6 – ident: e_1_2_7_77_1 doi: 10.1111/nph.14571 – ident: e_1_2_7_86_1 doi: 10.1111/nph.13613 – ident: e_1_2_7_11_1 doi: 10.1371/journal.pone.0090287 – ident: e_1_2_7_65_1 doi: 10.1111/nph.13828 – ident: e_1_2_7_81_1 doi: 10.1038/nplants.2015.159 – ident: e_1_2_7_78_1 doi: 10.3732/ajb.0800092 – ident: e_1_2_7_74_1 doi: 10.1007/s11104-016-2949-3 – ident: e_1_2_7_84_1 doi: 10.1007/s11104-017-3214-0 – ident: e_1_2_7_5_1 doi: 10.1002/ecy.1514 – ident: e_1_2_7_58_1 doi: 10.1016/S0007-1536(70)80110-3 – ident: e_1_2_7_6_1 doi: 10.1080/01904160009382068 – start-page: 217 volume-title: Physiological and genetical aspects of mycorrhizae year: 1986 ident: e_1_2_7_76_1 – ident: e_1_2_7_39_1 doi: 10.1111/pce.12117 – ident: e_1_2_7_52_1 – ident: e_1_2_7_47_1 doi: 10.3389/fpls.2016.01939 – ident: e_1_2_7_87_1 doi: 10.1111/1365-2745.12977 – ident: e_1_2_7_10_1 doi: 10.1371/journal.pgen.1004487 – ident: e_1_2_7_19_1 doi: 10.1007/s11104-017-3511-7 – ident: e_1_2_7_24_1 doi: 10.1023/A:1022371130939 – ident: e_1_2_7_4_1 doi: 10.1073/pnas.1601006113 – ident: e_1_2_7_30_1 – ident: e_1_2_7_71_1 doi: 10.1023/A:1022375229625 – ident: e_1_2_7_85_1 doi: 10.1038/nplants.2015.50 – ident: e_1_2_7_64_1 doi: 10.1007/s11104-011-0950-4 – ident: e_1_2_7_70_1 doi: 10.1046/j.1365-3040.2003.00957.x – ident: e_1_2_7_43_1 doi: 10.1071/CP16015 – ident: e_1_2_7_67_1 doi: 10.1111/j.1365-3040.2012.02547.x – ident: e_1_2_7_40_1 doi: 10.1111/nph.14710 – ident: e_1_2_7_53_1 doi: 10.1111/nph.15200 – ident: e_1_2_7_7_1 doi: 10.1111/j.1469-8137.2009.02799.x – ident: e_1_2_7_26_1 doi: 10.2134/agronj1983.00021962007500030010x – ident: e_1_2_7_18_1 doi: 10.1111/j.1469-8137.2008.02573.x – ident: e_1_2_7_28_1 doi: 10.1016/B978-0-12-420225-2.00005-4 – ident: e_1_2_7_35_1 doi: 10.3732/ajb.1200474 – volume: 25 start-page: 23 year: 2015 ident: e_1_2_7_36_1 article-title: Plant adaptations to severely phosphorus‐impoverished soils publication-title: Current Opinion in Biotechnology – ident: e_1_2_7_75_1 doi: 10.1093/jxb/ert023 – ident: e_1_2_7_17_1 doi: 10.1093/jxb/ert421 – ident: e_1_2_7_44_1 doi: 10.1146/annurev-arplant-050213-035949 – ident: e_1_2_7_57_1 doi: 10.1111/j.1469-8137.2006.01897.x – ident: e_1_2_7_45_1 doi: 10.1111/pce.12451 – ident: e_1_2_7_29_1 doi: 10.1002/1522-2624(200104)164:2<121::AID-JPLN121>3.0.CO;2-6 – ident: e_1_2_7_9_1 doi: 10.1016/j.tplants.2013.01.008 – ident: e_1_2_7_14_1 doi: 10.1016/B978-0-12-155070-7.50016-0 – ident: e_1_2_7_79_1 doi: 10.1046/j.1469-8137.2003.00695.x – ident: e_1_2_7_69_1 doi: 10.1111/j.1469-8137.1995.tb05726.x – ident: e_1_2_7_42_1 doi: 10.1111/nph.13434 – ident: e_1_2_7_48_1 doi: 10.1038/nature25783 – start-page: 426 volume-title: Handbook of methods used in rhizosphere research year: 2006 ident: e_1_2_7_51_1 – ident: e_1_2_7_66_1 doi: 10.1146/annurev.arplant.52.1.527 – ident: e_1_2_7_55_1 doi: 10.1007/s11104-009-0249-x – ident: e_1_2_7_83_1 doi: 10.1111/nph.14003 – ident: e_1_2_7_16_1 doi: 10.1111/1365-2435.12883 – ident: e_1_2_7_31_1 doi: 10.1093/bioinformatics/btq166 – ident: e_1_2_7_56_1 doi: 10.1007/BF02181879 – ident: e_1_2_7_22_1 doi: 10.1007/s11104-006-0014-3 – ident: e_1_2_7_54_1 doi: 10.1007/s11104-017-3358-y – ident: e_1_2_7_46_1 doi: 10.1007/s11104-004-1096-4 – ident: e_1_2_7_59_1 doi: 10.1104/pp.113.233916 – ident: e_1_2_7_60_1 doi: 10.1046/j.1469-8137.2002.00413_1.x – ident: e_1_2_7_25_1 doi: 10.1111/j.1469-8137.2004.01015.x – ident: e_1_2_7_27_1 doi: 10.1038/344058a0 – ident: e_1_2_7_63_1 doi: 10.1093/jxb/err457 – ident: e_1_2_7_37_1 doi: 10.1016/j.tree.2007.10.008 – ident: e_1_2_7_20_1 doi: 10.1111/nph.13288 – ident: e_1_2_7_34_1 doi: 10.1007/s11104-017-3427-2 – ident: e_1_2_7_2_1 doi: 10.1007/s11104-013-1718-9 – ident: e_1_2_7_15_1 doi: 10.1007/BF00010407 – ident: e_1_2_7_72_1 doi: 10.1104/pp.111.175232 – ident: e_1_2_7_38_1 doi: 10.1093/aob/mcl114 – ident: e_1_2_7_8_1 doi: 10.1016/j.apsoil.2006.06.001 – ident: e_1_2_7_23_1 doi: 10.1023/A:1013351617532 – ident: e_1_2_7_50_1 – ident: e_1_2_7_80_1 doi: 10.1890/08-0127.1 – ident: e_1_2_7_3_1 doi: 10.1111/nph.14976 – ident: e_1_2_7_21_1 doi: 10.1139/b91-016 – ident: e_1_2_7_62_1 doi: 10.1111/j.1461-0248.2012.01786.x – ident: e_1_2_7_41_1 doi: 10.1071/FP07222 – ident: e_1_2_7_61_1 doi: 10.1111/nph.14967 – ident: e_1_2_7_73_1 doi: 10.1104/pp.111.174581 |
SSID | ssj0009562 |
Score | 2.667711 |
Snippet | • Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and... Summary Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and... Plant roots exhibit diverse root functional traits to enable soil phosphorus (P) acquisition, including changes in root morphology, root exudation and... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 882 |
SubjectTerms | acid phosphatase Analysis of Variance crops Crops, Agricultural - metabolism enzyme activity exudation greenhouses interspecific variation intraspecific variation Multivariate Analysis mycorrhizae Mycorrhizae - physiology mycorrhizal fungi nutrient acquisition phosphorus Phosphorus - metabolism Plant Exudates - metabolism Plant Roots - anatomy & histology Principal Component Analysis Quantitative Trait, Heritable root diameter root functional trait root plasticity root systems roots soil Soil - chemistry Symbiosis |
Title | Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species |
URI | https://www.jstor.org/stable/26742314 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15833 https://www.ncbi.nlm.nih.gov/pubmed/30932187 https://www.proquest.com/docview/2201709993 https://www.proquest.com/docview/2305187744 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9UwFA9j-LAXdW7TO6dksgcf7KVp0qRlTyqOi7Ah4uA-CCVpUnbR2243LXj3oh9hn3GfZCfJbdlkivhQaMtpmj_n5PzanPwOQgdponMZGxHlMY8jpqgGm5MyEgp8kVE5l5nbnHx8wien7OM0na6hw34vTOCHGH64Ocvw87UzcKnsLSOvz8_GxO0ZgvnXxWo5QPQ5uUW4y5OegZkzPl2xCrkonuHJO74ohCPeBzTv4lbveI4eoa99lUO8ybdx16pxefkbm-N_tukxergCpPht0KBNtGbqJ-jBuwZA43IL_QRfpk1TVRb7tEQYgHaL5w2Mjv8f_wabH11Iy4RlrfF8CV-zi7PZJRRpl3M1a6yxGIAxhgcsHIvOXv-6kuVFNwvRYti2PVsFbipMOHZJxbDbAQq3ttHp0Ycv7yfRKmdDVLKM0IgbJYXSlSKKskqwksFVaSTTWZqmVBiaSZ0RI2KhSg3akCgCY6Wr1BBpuKA7aL1uavMMYUccA8rCNQUXWlZQMDcxzTPGjKgAhozQ6370inJFaO7yanwv-g8b6M7Cd-cIvRpEzwOLx31CO14FBomEu2VswkZov9eJAozPrajI2jSdLZLE0Q8BxqZ_kYEZlWSAsqGcp0Ghhje4ZWjAWAKa4tXiz5UrTj5N_Mnuv4s-RxtQvzwEF--h9XbRmRcAoVr10tvKDYLkGqI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFgkutPwUlvJjEEgcyCqJHTs5cABKtaXtCqFW2luwY0ddwSZlkwi2F3gEHoRX4SV4Esb5U4sK4tIDh0hJNHGceCbzTTz-BuBR4OtIukY4kctdhymq0eakdIRCX2RUxGVoFyfvjfnogL2eBJMl-N6thWn4IfofbtYy6u-1NXD7Q_qElWdHh0PPLhpqUyp3zOITBmzFs-1NHN3Hvr_1av_lyGlrCjgJCz3qcKOkUDpVnqIsFSxheJQYyXQYBAEVhoZSh54RrlCJxt76ykMUotPAeNJwQbHdC7BiK4hbpv7Nt_4Jil_ud5zPnPFJy2Nk84b6rp7yfk0C5FnQ9jRSrl3d1ir86F5Sk-HyfliVapgc_8Yf-b-8xTW40mJu8rwxkquwZLJrcPFFjrh4cR2-oLvWJk_TgtSVlwjGEiWZ5aiA9ZTDU2I-V03lKSIzTWYLDNjnh9NjbLJYzNQ0L0xBEPsTvKDAbV4VP79-k8nHatokxJGi7Ag5SJ4SjxNbN43YRa546gYcnMvDr8NylmfmFhDLjYP2wDVFlJCk2DA3Lo1CxoxIEWkN4EmnLnHScrbb0iEf4i52w-GL6-EbwMNe9KghKjlLaL3WuV7C53am3mMDeNApYYzfFztpJDOTV0Xs-5ZhCcMI-hcZdBpeiIEEtnOz0eD-DnamHWGkwEep9fDPnYvHb0b1zu1_F70Pl0b7e7vx7vZ4ZwMuY1-jJpf6DiyX88rcRcRYqnu1oRJ4d946_QsXt3vJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAX_gvLr0EgcSCrJHbs5MABWFZbCqsKUWlvwY4ddQWbLJtEsL3AI_AevApPwZMwzp9aVBCXHjhESqKJ48QzmW_i8TcADwJfR9I1wolc7jpMUY02J6UjFPoioyIuQ7s4-fWUT_bYy1kw24Dv3VqYhh-i_-FmLaP-XlsDX-r0kJFny_2hZ9cMtRmVO2b9CeO14sn2CAf3oe-PX7x9PnHakgJOwkKPOtwoKZROlacoSwVLGB4lRjIdBkFAhaGh1KFnhCtUorGzvvIQhOg0MJ40XFBs9xScZtyNbJ2I0Rv_EMMv9zvKZ874rKUxsmlDfVePOL8m__E4ZHsUKNeebnwBfnTvqElweT-sSjVMDn6jj_xPXuJFON8ibvK0MZFLsGGyy3DmWY6oeH0FvqCz1iZP04LUdZcIRhIlWeSofvWEw2NiPldN3SkiM00WawzXV_vzA2yyWC_UPC9MQRD5E7ygwG1VFT-_fpPJx2repMORouzoOEieEo8TWzWN2CWueOoq7J3Iw2_BZpZn5joQy4yD1sA1RYyQpNgwNy6NQsaMSBFnDeBRpy1x0jK228IhH-IucsPhi-vhG8D9XnTZ0JQcJ7RVq1wv4XM7T--xAdzrdDDGr4udMpKZyasi9n3Lr4RBBP2LDLoML8QwAtu51ihwfwc7z44gUuCj1Gr4587F091JvXPj30Xvwtnd0Th-tT3duQnnsKtRk0h9CzbLVWVuI1ws1Z3aTAm8O2mV_gUqtnp4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tradeoffs+among+root+morphology%2C+exudation+and+mycorrhizal+symbioses+for+phosphorus%E2%80%90acquisition+strategies+of+16+crop+species&rft.jtitle=The+New+phytologist&rft.au=Wen%2C+Zhihui&rft.au=Li%2C+Hongbo&rft.au=Shen%2C+Qi&rft.au=Tang%2C+Xiaomei&rft.date=2019-07-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=223&rft.issue=2&rft.spage=882&rft.epage=895&rft_id=info:doi/10.1111%2Fnph.15833&rft.externalDBID=10.1111%252Fnph.15833&rft.externalDocID=NPH15833 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |