Identification of the Alzheimer's disease amyloid precursor protein (APP) and its homologue APLP2 as essential modulators of glucose and insulin homeostasis and growth

The amyloid precursor protein (APP), the source of the neurotoxic amyloid β (Aβ) peptide involved in Alzheimer's disease (AD), belongs to a conserved family of related proteins. In mammals, the APP family contains amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (AP...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pathology Vol. 215; no. 2; pp. 155 - 163
Main Authors Needham, BE, Wlodek, ME, Ciccotosto, GD, Fam, BC, Masters, CL, Proietto, J, Andrikopoulos, S, Cappai, R
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.06.2008
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The amyloid precursor protein (APP), the source of the neurotoxic amyloid β (Aβ) peptide involved in Alzheimer's disease (AD), belongs to a conserved family of related proteins. In mammals, the APP family contains amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2). Whilst a number of activities have been attributed to the APP family, an overall function has not been definitively established. While ablating either the APP or APLP2 gene in mice produces minimal phenotypic change, the combined knockout of these genes in mice causes postnatal mortality. Postnatal survival therefore requires a shared but unknown function of APP and APLP2. To investigate the biochemical basis for the postnatal lethality, plasma was analysed from double knockout mice (APP⁻/⁻ APLP2⁻/⁻) 2 days before birth, at gestational day E17, and from mice at 12-16 h after birth. The postnatal double knockouts had 66% lower plasma glucose levels than their wild-type controls and 50% lower than their single knockout counterparts. Interestingly, the postnatal double knockouts displayed hyperinsulinaemia, as shown by inappropriate plasma insulin levels, given their degree of hypoglycaemia. The single knockout mice also showed hyperinsulinaemia and had 31% lower plasma glucose than the wild-types. While the double knockouts did not survive more than 24 h after birth, the single knockouts reached adulthood and their hypoglycaemia continued. Therefore, APP and APLP2 expression modulates plasma insulin and glucose concentrations. Plasma calcium, magnesium and phosphate were also significantly reduced in the double knockouts compared to the wild-types, and they showed distinctive growth restriction, suggesting the involvement of a metabolic impairment. These results link the expression of the APP and APLP2 genes with glucose homeostasis and growth and therefore identify a novel function for the APP family. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
AbstractList The amyloid precursor protein (APP), the source of the neurotoxic amyloid β (Aβ) peptide involved in Alzheimer's disease (AD), belongs to a conserved family of related proteins. In mammals, the APP family contains amyloid precursor‐like protein 1 (APLP1) and amyloid precursor‐like protein 2 (APLP2). Whilst a number of activities have been attributed to the APP family, an overall function has not been definitively established. While ablating either the APP or APLP2 gene in mice produces minimal phenotypic change, the combined knockout of these genes in mice causes postnatal mortality. Postnatal survival therefore requires a shared but unknown function of APP and APLP2. To investigate the biochemical basis for the postnatal lethality, plasma was analysed from double knockout mice (APP−/− APLP2−/−) 2 days before birth, at gestational day E17, and from mice at 12–16 h after birth. The postnatal double knockouts had 66% lower plasma glucose levels than their wild‐type controls and 50% lower than their single knockout counterparts. Interestingly, the postnatal double knockouts displayed hyperinsulinaemia, as shown by inappropriate plasma insulin levels, given their degree of hypoglycaemia. The single knockout mice also showed hyperinsulinaemia and had 31% lower plasma glucose than the wild‐types. While the double knockouts did not survive more than 24 h after birth, the single knockouts reached adulthood and their hypoglycaemia continued. Therefore, APP and APLP2 expression modulates plasma insulin and glucose concentrations. Plasma calcium, magnesium and phosphate were also significantly reduced in the double knockouts compared to the wild‐types, and they showed distinctive growth restriction, suggesting the involvement of a metabolic impairment. These results link the expression of the APP and APLP2 genes with glucose homeostasis and growth and therefore identify a novel function for the APP family. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
The amyloid precursor protein (APP), the source of the neurotoxic amyloid beta (A beta) peptide involved in Alzheimer's disease (AD), belongs to a conserved family of related proteins. In mammals, the APP family contains amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2). Whilst a number of activities have been attributed to the APP family, an overall function has not been definitively established. While ablating either the APP or APLP2 gene in mice produces minimal phenotypic change, the combined knockout of these genes in mice causes postnatal mortality. Postnatal survival therefore requires a shared but unknown function of APP and APLP2. To investigate the biochemical basis for the postnatal lethality, plasma was analysed from double knockout mice (APP-/- APLP2-/-) 2 days before birth, at gestational day E17, and from mice at 12-16 h after birth. The postnatal double knockouts had 66% lower plasma glucose levels than their wild-type controls and 50% lower than their single knockout counterparts. Interestingly, the postnatal double knockouts displayed hyperinsulinaemia, as shown by inappropriate plasma insulin levels, given their degree of hypoglycaemia. The single knockout mice also showed hyperinsulinaemia and had 31% lower plasma glucose than the wild-types. While the double knockouts did not survive more than 24 h after birth, the single knockouts reached adulthood and their hypoglycaemia continued. Therefore, APP and APLP2 expression modulates plasma insulin and glucose concentrations. Plasma calcium, magnesium and phosphate were also significantly reduced in the double knockouts compared to the wild-types, and they showed distinctive growth restriction, suggesting the involvement of a metabolic impairment. These results link the expression of the APP and APLP2 genes with glucose homeostasis and growth and therefore identify a novel function for the APP family.
The amyloid precursor protein (APP), the source of the neurotoxic amyloid β (Aβ) peptide involved in Alzheimer's disease (AD), belongs to a conserved family of related proteins. In mammals, the APP family contains amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2). Whilst a number of activities have been attributed to the APP family, an overall function has not been definitively established. While ablating either the APP or APLP2 gene in mice produces minimal phenotypic change, the combined knockout of these genes in mice causes postnatal mortality. Postnatal survival therefore requires a shared but unknown function of APP and APLP2. To investigate the biochemical basis for the postnatal lethality, plasma was analysed from double knockout mice (APP⁻/⁻ APLP2⁻/⁻) 2 days before birth, at gestational day E17, and from mice at 12-16 h after birth. The postnatal double knockouts had 66% lower plasma glucose levels than their wild-type controls and 50% lower than their single knockout counterparts. Interestingly, the postnatal double knockouts displayed hyperinsulinaemia, as shown by inappropriate plasma insulin levels, given their degree of hypoglycaemia. The single knockout mice also showed hyperinsulinaemia and had 31% lower plasma glucose than the wild-types. While the double knockouts did not survive more than 24 h after birth, the single knockouts reached adulthood and their hypoglycaemia continued. Therefore, APP and APLP2 expression modulates plasma insulin and glucose concentrations. Plasma calcium, magnesium and phosphate were also significantly reduced in the double knockouts compared to the wild-types, and they showed distinctive growth restriction, suggesting the involvement of a metabolic impairment. These results link the expression of the APP and APLP2 genes with glucose homeostasis and growth and therefore identify a novel function for the APP family. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Abstract The amyloid precursor protein (APP), the source of the neurotoxic amyloid β (Aβ) peptide involved in Alzheimer's disease (AD), belongs to a conserved family of related proteins. In mammals, the APP family contains amyloid precursor‐like protein 1 (APLP1) and amyloid precursor‐like protein 2 (APLP2). Whilst a number of activities have been attributed to the APP family, an overall function has not been definitively established. While ablating either the APP or APLP2 gene in mice produces minimal phenotypic change, the combined knockout of these genes in mice causes postnatal mortality. Postnatal survival therefore requires a shared but unknown function of APP and APLP2. To investigate the biochemical basis for the postnatal lethality, plasma was analysed from double knockout mice (APP −/− APLP2 −/− ) 2 days before birth, at gestational day E17, and from mice at 12–16 h after birth. The postnatal double knockouts had 66% lower plasma glucose levels than their wild‐type controls and 50% lower than their single knockout counterparts. Interestingly, the postnatal double knockouts displayed hyperinsulinaemia, as shown by inappropriate plasma insulin levels, given their degree of hypoglycaemia. The single knockout mice also showed hyperinsulinaemia and had 31% lower plasma glucose than the wild‐types. While the double knockouts did not survive more than 24 h after birth, the single knockouts reached adulthood and their hypoglycaemia continued. Therefore, APP and APLP2 expression modulates plasma insulin and glucose concentrations. Plasma calcium, magnesium and phosphate were also significantly reduced in the double knockouts compared to the wild‐types, and they showed distinctive growth restriction, suggesting the involvement of a metabolic impairment. These results link the expression of the APP and APLP2 genes with glucose homeostasis and growth and therefore identify a novel function for the APP family. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Author Proietto, J
Ciccotosto, GD
Andrikopoulos, S
Cappai, R
Masters, CL
Needham, BE
Fam, BC
Wlodek, ME
Author_xml – sequence: 1
  fullname: Needham, BE
– sequence: 2
  fullname: Wlodek, ME
– sequence: 3
  fullname: Ciccotosto, GD
– sequence: 4
  fullname: Fam, BC
– sequence: 5
  fullname: Masters, CL
– sequence: 6
  fullname: Proietto, J
– sequence: 7
  fullname: Andrikopoulos, S
– sequence: 8
  fullname: Cappai, R
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20344196$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18393365$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1u1DAUhS3Uik4LC14AvKmgi7T-yZ-XowJtxQgiaFV21p3EnhiSeOSbqAwvxGs2IaOyYnWt6--cc3WOyUHnO0PIK87OOWPiYgt9fS5kLJ-RBWcqjVSu0gOyGP9EJGOeHZFjxB-MMaWS5Dk54rlUUqbJgvy5qUzXO-tK6J3vqLe0rw1dNr9r41oT3iKtHBpAQ6HdNd5VdBtMOQT0YXz53riOvlsWxRmFrqKuR1r71jd-M4wuxaoQFJAaxCkFGtr6amig9wGnqE0zlH6ynqQdDs1oNsqNxx7Q4d_9JviHvn5BDi00aF7u5wm5-_jh9vI6Wn25urlcrqIyzrmMRJJVPM5slubKxqoSVSJLyE2Zm1SWOVtbkwPnuWCKC56KtbIZVFmSglRcrmN5Qs5m3zJ4xGCs3gbXQthpzvRUtp7K1lPZI_t6ZrfDujXVP3Lf7gic7gHAEhoboCsdPnGCyTjmKh25i5l7cI3Z_T9RF8vb6310NCsc9ubXkwLCT51mMkv0_ecrXbD38tNXdq-_j_ybmbfgNWzCeMXdN8G4ZCxXsUyUfAT8sLMa
CODEN JPTLAS
CitedBy_id crossref_primary_10_1039_c3mt00358b
crossref_primary_10_1002_mrd_22995
crossref_primary_10_3892_ijo_2012_1553
crossref_primary_10_1074_jbc_M109_038224
crossref_primary_10_1152_physiolgenomics_00014_2014
crossref_primary_10_1371_journal_pone_0029892
crossref_primary_10_1096_fj_201802315R
crossref_primary_10_1096_fj_11_200295
crossref_primary_10_14336_AD_2015_0907
crossref_primary_10_1007_s00232_022_00225_1
crossref_primary_10_1523_JNEUROSCI_4640_14_2016
crossref_primary_10_1016_j_bbadis_2008_10_014
crossref_primary_10_1152_ajpendo_00279_2018
crossref_primary_10_4161_onci_26293
crossref_primary_10_5498_wjp_v2_i6_102
crossref_primary_10_3390_ijms24076278
crossref_primary_10_1523_ENEURO_0376_22_2023
crossref_primary_10_3389_fnmol_2017_00189
crossref_primary_10_1038_mp_2011_168
crossref_primary_10_1007_s11064_018_2669_6
crossref_primary_10_1039_C4MT00176A
crossref_primary_10_1530_JOE_18_0051
crossref_primary_10_1371_journal_pgen_1003107
crossref_primary_10_1007_s00018_009_0020_8
crossref_primary_10_1016_j_neurobiolaging_2020_10_001
crossref_primary_10_3390_cimb45080402
crossref_primary_10_1007_s00401_010_0762_2
crossref_primary_10_3390_cancers13071535
crossref_primary_10_1530_JOE_17_0122
crossref_primary_10_1007_s00018_021_03924_5
crossref_primary_10_1038_cr_2011_116
crossref_primary_10_1016_j_omtn_2019_07_011
crossref_primary_10_1007_s12035_018_1070_4
crossref_primary_10_1002_oby_21494
crossref_primary_10_3390_ijms21155579
crossref_primary_10_1089_neu_2019_6955
crossref_primary_10_1038_s41380_023_02267_w
crossref_primary_10_1186_s13041_016_0245_z
crossref_primary_10_1111_bpa_13163
crossref_primary_10_1210_en_2008_0905
Cites_doi 10.1136/fn.82.2.F98
10.1071/RD9950351
10.1136/bmj.315.7115.1045
10.1016/j.neurobiolaging.2005.01.004
10.1056/NEJM199904153401505
10.1159/000241585
10.1523/JNEUROSCI.20-21-07951.2000
10.1046/j.1463-1326.2003.00221.x
10.1038/ng0993-95
10.1212/WNL.53.9.1937
10.1016/0014-5793(94)00387-4
10.1210/jc.2002-021403
10.1159/000017043
10.1111/j.1471-4159.2006.03989.x
10.2337/diabetes.53.2.474
10.1093/aje/154.7.635
10.2337/diabetes.51.4.1256
10.1016/j.pneurobio.2007.02.001
10.1016/S0197-4580(97)00151-6
10.1152/physrev.00022.2003
10.1523/JNEUROSCI.21-08-02561.2001
10.1523/JNEUROSCI.4660-04.2005
10.1016/S0021-9258(17)42286-1
10.1016/S0031-3955(05)70481-8
10.1007/s001250050588
10.1016/S0021-9258(17)41992-2
10.1016/0092-8674(95)90073-X
10.1203/00006450-197610080-00011
10.1177/026010608800600201
10.1210/en.143.6.2085
10.1007/BF00869264
10.1093/oxfordjournals.aje.a009106
10.1056/NEJM199904153401510
ContentType Journal Article
Copyright Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
2008 INIST-CNRS
Copyright (c) 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
– notice: 2008 INIST-CNRS
– notice: Copyright (c) 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
DBID FBQ
BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1002/path.2343
DatabaseName AGRIS
Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1096-9896
EndPage 163
ExternalDocumentID 10_1002_path_2343
18393365
20344196
PATH2343
ark_67375_WNG_P0D3KR0W_X
US201300894359
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council of Australia
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1KJ
1L6
1OB
1OC
1ZS
29L
31~
33P
3O-
3SF
3UE
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABLJU
ABWRO
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHMBA
AI.
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GSXLS
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M68
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
YQI
YQJ
ZA5
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
ABQWH
AHBTC
BSCLL
AITYG
HGLYW
OIG
08R
AAUGY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ID FETCH-LOGICAL-c4813-257d147f7689f49d2d53ca8ec8e63c80bfe8a11820912162b9f7ad756a3913b43
IEDL.DBID DR2
ISSN 0022-3417
IngestDate Fri Aug 23 01:39:23 EDT 2024
Thu May 23 23:12:26 EDT 2024
Sun Oct 22 16:04:39 EDT 2023
Sat Aug 24 00:50:28 EDT 2024
Wed Jan 17 05:06:37 EST 2024
Wed Dec 27 19:06:46 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Pancreatic hormone
Nervous system diseases
Modulator
knockout mice
postnatal lethality
Growth
Alzheimer disease
Homeostasis
Homology
Identification
Glucose
Essential
Insulin
Amyloid precursor protein
Cerebral disorder
glucose homeostasis
Anatomic pathology
Postnatal
Animal
Central nervous system disease
Knockout mouse
hyperinsulinaaemia
Degenerative disease
Alzheimer's disease
Language English
License CC BY 4.0
Copyright (c) 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4813-257d147f7689f49d2d53ca8ec8e63c80bfe8a11820912162b9f7ad756a3913b43
Notes http://dx.doi.org/10.1002/path.2343
National Health and Medical Research Council of Australia
ark:/67375/WNG-P0D3KR0W-X
ArticleID:PATH2343
No conflicts of interest were declared.
istex:0E8160FE2AC5AC7EF0291F3F0B6388AA230DF2E5
PMID 18393365
PageCount 9
ParticipantIDs crossref_primary_10_1002_path_2343
pubmed_primary_18393365
pascalfrancis_primary_20344196
wiley_primary_10_1002_path_2343_PATH2343
istex_primary_ark_67375_WNG_P0D3KR0W_X
fao_agris_US201300894359
PublicationCentury 2000
PublicationDate June 2008
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: June 2008
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
– name: England
PublicationTitle The Journal of pathology
PublicationTitleAlternate J. Pathol
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Sandbrink R, Masters CL, Beyreuther K. βA4-amyloid protein precursor mRNA isoforms without exon 15 are ubiquitously expressed in rat tissues including brain, but not in neurons. J Biol Chem 1994; 269: 1510-1517.
Heber S, Herms J, Gajic V, Hainfellner J, Aguzzi A, Rülicke T, et al. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci 2000; 20: 7951-7963.
Gralle M, Ferreira ST. Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Prog Neurobiol 2007; 82: 11-32.
Masters CL, Cappai R, Barnham KJ, Villemagne VL. Molecular mechanisms for Alzheimer's disease: implications for neuroimaging and therapeutics. J Neurochem 2006; 97: 1700-1725.
Aynsley-Green A, Hussain K, Hall J, Saudubray JM, Nihoul-Fekete C, De Lonlay-Debeney P, et al. Practical management of hyperinsulinism in infancy. Arch Dis Child 2000; 82: F98-107.
Slunt HH, Thinakaran G, Von Koch C, Lo ACY, Tanzi R, Sisodia SS. Expression of a ubiquitous, cross-reactive homologue of the mouse β-amyloid precursor protein (APP). J Biol Chem 1994; 269: 2637-2644.
Durand D, Dalle M, Barlet JP. Plasma calcium homeostasis in the guinea pig during the perinatal period. Biol Neonate 1982; 42: 120-126.
Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging 2006; 27: 190-198.
Brayne C, Gill C, Huppert FA, Barkley C, Gehlhaar E, Girling DM, et al. Vascular risks and incident dementia: results from a cohort study of the very old. Dement Geriatr Cogn Disord 1998; 9: 175-180.
Paolisso G, Sgambato S, Passariello N, Giugliano D, Scheen A, D'Onofrio F, et al. Insulin induces opposite changes in plasma and erythrocyte magnesium concentrations in normal man. Diabetologia 1986; 29: 644-647.
Garel JM, Barlet JP. Calcium metabolism in newborn animals: the interrelationship of calcium, magnesium, and inorganic phosphorus in newborn rats, foals, lambs, and calves. Pediatr Res 1976; 10: 749-754.
Kuusisto J, Koivisto K, Mykkanen L, Helkala EL, Vanhanen M, Hanninen T, et al. Association between features of the insulin resistance syndrome and Alzheimer's disease independently of apolipoprotein E4 phenotype: cross sectional population based study. Br Med J 1997; 315: 1045-1049.
Kooptiwut S, Zraika S, Thorburn AW, Dunlop ME, Darwiche R, Kay TW, et al. Comparison of insulin secretory function in two mouse models with different susceptibility to β cell failure. Endocrinology 2002; 143: 2085-2092.
Fowden AL. Endocrine regulation of fetal growth. Reprod Fertil Dev 1995; 7: 351-363.
Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 1999; 53: 1937-1942.
Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJ, Hopkins R, Smith DW, et al. β-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 1995; 81: 525-531.
Wang P, Yang G, Mosier DR, Chang P, Zaidi T, Gong YD, et al. Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-like protein 2. J Neurosci 2005; 25: 1219-1225.
Janson J, Laedtke T, Parisi JE, O'Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004; 53: 474-481.
Stanley CA, Baker L. The causes of neonatal hypoglycaemia. N Engl J Med 1999; 340: 1200-1201.
Stanley CA. Advances in diagnosis and treatment of hyperinsulinism in infants and children. J Clin Endocrinol Metab 2002; 87: 4857-4859.
Stanley CA. Hyperinsulinism in infants and children. Pediatr Clin North Am 1997; 44: 363-374.
Jones CT. Control of glucose metabolism in the perinatal period. J Dev Physiol 1991; 15: 81-89.
Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, et al. Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 2001; 21: 2561-2570.
Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MM. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia 1996; 39: 1392-1397.
Wasco W, Gurubhagavatula S, Paradis MD, Romano DM, Sisodia SS, Hyman BT, et al. Isolation and characterization of APLP2 encoding a homologue of the Alzheimer's associated amyloid β protein precursor. Nat Genet 1993; 5: 95-100.
de Lonlay-Debeney P, Poggi-Travert F, Fournet JC, Sempoux C, Vici CD, Brunelle F, et al. Clinical features of 52 neonates with hyperinsulinism. N Engl J Med 1999; 340: 1169-1175.
Wynn A, Wynn M. Magnesium and other nutrient deficiencies as possible causes of hypertension and low birthweight. Nutr Health 1988; 6: 69-88.
Kurochkin IV, Goto S. Alzheimer's β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 1994; 45: 33-37.
Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 2002; 51: 1256-1262.
Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O'Brien PC, et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 1997; 145: 301-308.
Reynolds RM, Walker BR. Human insulin resistance: the role of glucocorticoids. Diabetes Obes Metab 2003; 5: 5-12.
von Koch CS, Zheng H, Chen H, Trumbauer M, Thinakaran G, Van der Ploeg LHT, et al. Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol Aging 1997; 18: 661-669.
Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ. Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev 2004; 84: 239-275.
Luchsinger JA, Tang MX, Stern Y, Shea S, Mayeux R. Diabetes mellitus and risk of Alzheimer's disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 2001; 154: 635-641.
1997; 315
2006; 97
2004; 84
1996; 39
1991; 15
1997; 44
2002; 51
2000; 20
1999; 340
1994; 45
1993; 5
2005; 25
1995; 7
2001; 21
1976; 10
2001; 154
2004; 53
1995; 81
1994; 269
2001
2002; 143
1988; 6
2006; 27
1982; 42
2002; 87
1997; 145
1997; 18
1986; 29
2003; 5
2000; 82
2007; 82
1999; 53
1998; 9
e_1_2_6_31_2
e_1_2_6_30_2
Jones CT (e_1_2_6_19_2) 1991; 15
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
Cunningham FG (e_1_2_6_20_2) 2001
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 42
  start-page: 120
  year: 1982
  end-page: 126
  article-title: Plasma calcium homeostasis in the guinea pig during the perinatal period
  publication-title: Biol Neonate
– volume: 21
  start-page: 2561
  year: 2001
  end-page: 2570
  article-title: Stimulation of β‐amyloid precursor protein trafficking by insulin reduces intraneuronal β‐amyloid and requires mitogen‐activated protein kinase signaling
  publication-title: J Neurosci
– volume: 6
  start-page: 69
  year: 1988
  end-page: 88
  article-title: Magnesium and other nutrient deficiencies as possible causes of hypertension and low birthweight
  publication-title: Nutr Health
– volume: 25
  start-page: 1219
  year: 2005
  end-page: 1225
  article-title: Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP‐like protein 2
  publication-title: J Neurosci
– volume: 18
  start-page: 661
  year: 1997
  end-page: 669
  article-title: Generation of KO mice and early postnatal lethality in / double KO mice
  publication-title: Neurobiol Aging
– volume: 7
  start-page: 351
  year: 1995
  end-page: 363
  article-title: Endocrine regulation of fetal growth
  publication-title: Reprod Fertil Dev
– volume: 154
  start-page: 635
  year: 2001
  end-page: 641
  article-title: Diabetes mellitus and risk of Alzheimer's disease and dementia with stroke in a multiethnic cohort
  publication-title: Am J Epidemiol
– volume: 10
  start-page: 749
  year: 1976
  end-page: 754
  article-title: Calcium metabolism in newborn animals: the interrelationship of calcium, magnesium, and inorganic phosphorus in newborn rats, foals, lambs, and calves
  publication-title: Pediatr Res
– volume: 53
  start-page: 474
  year: 2004
  end-page: 481
  article-title: Increased risk of type 2 diabetes in Alzheimer disease
  publication-title: Diabetes
– volume: 81
  start-page: 525
  year: 1995
  end-page: 531
  article-title: β‐Amyloid precursor protein‐deficient mice show reactive gliosis and decreased locomotor activity
  publication-title: Cell
– volume: 51
  start-page: 1256
  year: 2002
  end-page: 1262
  article-title: Type 2 diabetes, gene, and the risk for dementia and related pathologies: The Honolulu–Asia Aging Study
  publication-title: Diabetes
– volume: 5
  start-page: 95
  year: 1993
  end-page: 100
  article-title: Isolation and characterization of APLP2 encoding a homologue of the Alzheimer's associated amyloid β protein precursor
  publication-title: Nat Genet
– start-page: 749
  year: 2001
  end-page: 750
– volume: 9
  start-page: 175
  year: 1998
  end-page: 180
  article-title: Vascular risks and incident dementia: results from a cohort study of the very old
  publication-title: Dement Geriatr Cogn Disord
– volume: 315
  start-page: 1045
  year: 1997
  end-page: 1049
  article-title: Association between features of the insulin resistance syndrome and Alzheimer's disease independently of apolipoprotein E4 phenotype: cross sectional population based study
  publication-title: Br Med J
– volume: 27
  start-page: 190
  year: 2006
  end-page: 198
  article-title: Insulin, insulin‐degrading enzyme and amyloid‐β peptide in Alzheimer's disease: review and hypothesis
  publication-title: Neurobiol Aging
– volume: 45
  start-page: 33
  year: 1994
  end-page: 37
  article-title: Alzheimer's β‐amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme
  publication-title: FEBS Lett
– volume: 44
  start-page: 363
  year: 1997
  end-page: 374
  article-title: Hyperinsulinism in infants and children
  publication-title: Pediatr Clin North Am
– volume: 97
  start-page: 1700
  year: 2006
  end-page: 1725
  article-title: Molecular mechanisms for Alzheimer's disease: implications for neuroimaging and therapeutics
  publication-title: J Neurochem
– volume: 53
  start-page: 1937
  year: 1999
  end-page: 1942
  article-title: Diabetes mellitus and the risk of dementia: the Rotterdam Study
  publication-title: Neurology
– volume: 82
  start-page: F98
  year: 2000
  end-page: 107
  article-title: Practical management of hyperinsulinism in infancy
  publication-title: Arch Dis Child
– volume: 29
  start-page: 644
  year: 1986
  end-page: 647
  article-title: Insulin induces opposite changes in plasma and erythrocyte magnesium concentrations in normal man
  publication-title: Diabetologia
– volume: 82
  start-page: 11
  year: 2007
  end-page: 32
  article-title: Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts
  publication-title: Prog Neurobiol
– volume: 269
  start-page: 1510
  year: 1994
  end-page: 1517
  article-title: βA4‐amyloid protein precursor mRNA isoforms without exon 15 are ubiquitously expressed in rat tissues including brain, but not in neurons
  publication-title: J Biol Chem
– volume: 20
  start-page: 7951
  year: 2000
  end-page: 7963
  article-title: Mice with combined gene knock‐outs reveal essential and partially redundant functions of amyloid precursor protein family members
  publication-title: J Neurosci
– volume: 39
  start-page: 1392
  year: 1996
  end-page: 1397
  article-title: Association of diabetes mellitus and dementia: the Rotterdam Study
  publication-title: Diabetologia
– volume: 145
  start-page: 301
  year: 1997
  end-page: 308
  article-title: Risk of dementia among persons with diabetes mellitus: a population‐based cohort study
  publication-title: Am J Epidemiol
– volume: 269
  start-page: 2637
  year: 1994
  end-page: 2644
  article-title: Expression of a ubiquitous, cross‐reactive homologue of the mouse β‐amyloid precursor protein (APP)
  publication-title: J Biol Chem
– volume: 5
  start-page: 5
  year: 2003
  end-page: 12
  article-title: Human insulin resistance: the role of glucocorticoids
  publication-title: Diabetes Obes Metab
– volume: 84
  start-page: 239
  year: 2004
  end-page: 275
  article-title: Hyperinsulinism in infancy: from basic science to clinical disease
  publication-title: Physiol Rev
– volume: 340
  start-page: 1169
  year: 1999
  end-page: 1175
  article-title: Clinical features of 52 neonates with hyperinsulinism
  publication-title: N Engl J Med
– volume: 15
  start-page: 81
  year: 1991
  end-page: 89
  article-title: Control of glucose metabolism in the perinatal period
  publication-title: J Dev Physiol
– volume: 340
  start-page: 1200
  year: 1999
  end-page: 1201
  article-title: The causes of neonatal hypoglycaemia
  publication-title: N Engl J Med
– volume: 87
  start-page: 4857
  year: 2002
  end-page: 4859
  article-title: Advances in diagnosis and treatment of hyperinsulinism in infants and children
  publication-title: J Clin Endocrinol Metab
– volume: 143
  start-page: 2085
  year: 2002
  end-page: 2092
  article-title: Comparison of insulin secretory function in two mouse models with different susceptibility to β cell failure
  publication-title: Endocrinology
– volume: 15
  start-page: 81
  year: 1991
  ident: e_1_2_6_19_2
  article-title: Control of glucose metabolism in the perinatal period
  publication-title: J Dev Physiol
  contributor:
    fullname: Jones CT
– ident: e_1_2_6_13_2
  doi: 10.1136/fn.82.2.F98
– ident: e_1_2_6_21_2
  doi: 10.1071/RD9950351
– ident: e_1_2_6_29_2
  doi: 10.1136/bmj.315.7115.1045
– ident: e_1_2_6_36_2
  doi: 10.1016/j.neurobiolaging.2005.01.004
– ident: e_1_2_6_16_2
  doi: 10.1056/NEJM199904153401505
– ident: e_1_2_6_25_2
  doi: 10.1159/000241585
– ident: e_1_2_6_9_2
  doi: 10.1523/JNEUROSCI.20-21-07951.2000
– ident: e_1_2_6_12_2
  doi: 10.1046/j.1463-1326.2003.00221.x
– ident: e_1_2_6_3_2
  doi: 10.1038/ng0993-95
– ident: e_1_2_6_33_2
  doi: 10.1212/WNL.53.9.1937
– ident: e_1_2_6_35_2
  doi: 10.1016/0014-5793(94)00387-4
– ident: e_1_2_6_15_2
  doi: 10.1210/jc.2002-021403
– ident: e_1_2_6_27_2
  doi: 10.1159/000017043
– ident: e_1_2_6_2_2
  doi: 10.1111/j.1471-4159.2006.03989.x
– ident: e_1_2_6_28_2
  doi: 10.2337/diabetes.53.2.474
– ident: e_1_2_6_31_2
  doi: 10.1093/aje/154.7.635
– ident: e_1_2_6_34_2
  doi: 10.2337/diabetes.51.4.1256
– ident: e_1_2_6_6_2
  doi: 10.1016/j.pneurobio.2007.02.001
– ident: e_1_2_6_8_2
  doi: 10.1016/S0197-4580(97)00151-6
– ident: e_1_2_6_14_2
  doi: 10.1152/physrev.00022.2003
– ident: e_1_2_6_26_2
  doi: 10.1523/JNEUROSCI.21-08-02561.2001
– start-page: 749
  volume-title: Williams Obstetrics
  year: 2001
  ident: e_1_2_6_20_2
  contributor:
    fullname: Cunningham FG
– ident: e_1_2_6_10_2
  doi: 10.1523/JNEUROSCI.4660-04.2005
– ident: e_1_2_6_4_2
  doi: 10.1016/S0021-9258(17)42286-1
– ident: e_1_2_6_17_2
  doi: 10.1016/S0031-3955(05)70481-8
– ident: e_1_2_6_32_2
  doi: 10.1007/s001250050588
– ident: e_1_2_6_5_2
  doi: 10.1016/S0021-9258(17)41992-2
– ident: e_1_2_6_7_2
  doi: 10.1016/0092-8674(95)90073-X
– ident: e_1_2_6_24_2
  doi: 10.1203/00006450-197610080-00011
– ident: e_1_2_6_23_2
  doi: 10.1177/026010608800600201
– ident: e_1_2_6_11_2
  doi: 10.1210/en.143.6.2085
– ident: e_1_2_6_22_2
  doi: 10.1007/BF00869264
– ident: e_1_2_6_30_2
  doi: 10.1093/oxfordjournals.aje.a009106
– ident: e_1_2_6_18_2
  doi: 10.1056/NEJM199904153401510
SSID ssj0009955
Score 2.1619158
Snippet The amyloid precursor protein (APP), the source of the neurotoxic amyloid β (Aβ) peptide involved in Alzheimer's disease (AD), belongs to a conserved family of...
The amyloid precursor protein (APP), the source of the neurotoxic amyloid beta (A beta) peptide involved in Alzheimer's disease (AD), belongs to a conserved...
Abstract The amyloid precursor protein (APP), the source of the neurotoxic amyloid β (Aβ) peptide involved in Alzheimer's disease (AD), belongs to a conserved...
SourceID crossref
pubmed
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 155
SubjectTerms Alzheimer's disease
Amyloid beta-Protein Precursor - analysis
Amyloid beta-Protein Precursor - genetics
amyloid precursor protein
Animals
Biological and medical sciences
Blood Glucose - metabolism
Corticosterone - metabolism
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Genotype
glucose homeostasis
Growth
Homeostasis
hyperinsulinaaemia
Immunohistochemistry
Insulin - metabolism
Investigative techniques, diagnostic techniques (general aspects)
knockout mice
Medical sciences
Mice
Mice, Inbred C57BL
Mice, Knockout
Neurology
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
postnatal lethality
Title Identification of the Alzheimer's disease amyloid precursor protein (APP) and its homologue APLP2 as essential modulators of glucose and insulin homeostasis and growth
URI https://api.istex.fr/ark:/67375/WNG-P0D3KR0W-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpath.2343
https://www.ncbi.nlm.nih.gov/pubmed/18393365
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKD4gLb2h4VBZCUA7ZJnacxOIUAWUFtIpKV90DUuTETjdqN66SVED_EH8TT5zNtkhIiFsUZeTJeGx_Ho-_QeglKQwIjgkUIA4KN_Aj342Zki7lUsSFASS2p_cPwuks-DRn8w30dnUXxvJDjAE3GBn9fA0DXOTt7po0FCr2TggNgOkTiPQAEB2uqaM4Z2xkCjc6rFiFPLI7Sl5bi26UQhuECsb9ARmSojVGKm11iyvL01UI269Be3fQt5X2NvXkdHLR5ZPi8g9ix__8vbvo9oBNcWKd6R7aUPV9dHN_OH1_gH7ZW73lEObDusQGPuLk7HKhqqVqXrd4OO_BYvnzTFcSnzcQz291g3tCiKrGO0mavsGilrjqWrzQS91Hj3CSfkkJFi0GMnPTilFkqSUUF9NNC00NyfVW1GbQg7jSBt-2Vdu_P2n0927xEM32Phy9m7pDoQe3CGKfumbakH4QlWbrw8uASyIZLUSsiliFtIi9vFSxgJ2QATfED0nOy0jIiIWCcp_mAX2ENmtdqy2Ec7Pj5orH0gDfQFCWl6GXK15IPyyVVzAHvVh1eXZu-Twyy9xMMjB5BiZ30JZxhkycmHk2m30lcLrrAVE94w561XvIKCyaU8iNi1h2fPAxS7339POhd5zNHbR9zYVGAQIki2bec9Bj61NrPYzqlIZGx53eM_6uYJYmR1N4ePLvnz5Ft2yuC0SQnqHNrrlQzw2g6vLtfuT8Boh8GxA
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQEvfMPKx7AQgu0hXWLHaSzxUgGjsLaKRqv1BVlO7KzR1npKOgH7h_g3OcdpuyEhId6iKCdfzmf75_P5dwi9JhmA4JjYAsRh5oVBJ_BippVHuZJxBoDE9fRgGPXG4ZcJm2ygd8u7MI4fYhVwsyOjnq_tALcB6f01a6gt2dsmNKSb6AYMd1ZvqI7W5FGcM7biCgctlrxCPtlfiV5bjTZzaQCjWvP-sDmSsgIz5a6-xZUF6iqIrVehg7vo21J_l3xy2r5YpO3s8g9qx__9wXvoTgNPcdf50320oecP0M1BcwD_EP1yF3vzJtKHTY4BQeLu2eVUFzNdvq1wc-SD5eznmSkUPi9tSL8yJa45IYo53u0myR6Wc4WLRYWnZmbqABLuJv2EYFlhy2cOrYAiM6NsfTFTVrapJr_eibokeiuuDUDcqqjq9yel-b6YPkLjg4-j9z2vqfXgZWEcUA9mDhWEnRx2PzwPuSKK0UzGOot1RLPYT3MdS7sZAnxDgoikPO9I1WGRpDygaUgfo625metthFPYdHPNYwXYN5SUpXnkp5pnKohy7WeshV4t-1ycO0oP4cibibAmF9bkLbQN3iDkCUy1YvyV2ANe33LVM95Cb2oXWQnL8tSmx3WYOB5-Eon_gR4e-cdi0kI713xoJUAszyJMfS30xDnVWg9QndIIdNytXePvCoqkO-rZh6f__ulLdKs3GvRF__Pw8Bm67VJfbEDpOdpalBf6BeCrRbpTD6PfNnUfMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IU288A0rH8NCCMZDusRO0lg8VZRS2FZFY9X6gGQ5sb1GW-sq6QTsH-LfxBen7YaEhHiLopx8OZ_tn8_n3yH0muQWBCcEChCHuRcGncBLIiU9yqRIcgtIXE8fDePBKPwyjsYb6P3yLozjh1gF3GBk1PM1DPC51Ptr0lCo2NsmNKSb6FYYUwIu3Ttec0cxFkUrqnCrxJJWyCf7K9Ebi9GmFsZCVLDuD0iRFJW1knblLa6tT9cxbL0I9e-ib0v1Xe7JeftykbXzqz-YHf_z_-6hOw04xV3nTffRhpo9QNtHzfH7Q_TLXevVTZwPG40tfsTdi6uJKqaqfFvh5sAHi-nPC1NIPC8hoF-ZEteMEMUM73XT9B0WM4mLRYUnZmrq8BHupocpwaLCwGZuW7GKTI2E6mKmrKCpJrveiboUehBXxgLcqqjq92el-b6YPEKj_seTDwOvqfTg5WESUM_OGzIIO9rufZgOmSQyorlIVJ6omOaJn2mVCNgKWXRDgphkTHeE7ESxoCygWUgfo62ZmakdhDO75WaKJdIi31DQKNOxnymWyyDWys-jFnq17HI-d4Qe3FE3Ew4m52DyFtqxzsDFmZ1o-egrgeNdH5jqI9ZCb2oPWQmL8hyS4zoRPx1-4qnfowfH_ikft9DuDRdaCRBgWbQTXws9cT611sOqTmlsddyrPePvCvK0ezKAh6f__ulLtJ32-vzw8_DgGbrt8l4gmvQcbS3KS_XCgqtFtlsPot_GXB3h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+the+Alzheimer%27s+disease+amyloid+precursor+protein+%28APP%29+and+its+homologue+APLP2+as+essential+modulators+of+glucose+and+insulin+homeostasis+and+growth&rft.jtitle=The+Journal+of+pathology&rft.au=Needham%2C+B+E&rft.au=Wlodek%2C+M+E&rft.au=Ciccotosto%2C+G+D&rft.au=Fam%2C+B+C&rft.date=2008-06-01&rft.issn=0022-3417&rft.eissn=1096-9896&rft.volume=215&rft.issue=2&rft.spage=155&rft_id=info:doi/10.1002%2Fpath.2343&rft_id=info%3Apmid%2F18393365&rft.externalDocID=18393365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3417&client=summon