Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots
The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON‐REGU...
Saved in:
Published in | Plant, cell and environment Vol. 41; no. 10; pp. 2263 - 2276 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.10.2018
Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON‐REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3‐mediated shoot‐to‐root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue‐specific localization of OPT3, together with other Fe‐responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level.
Iron (Fe) is an essential micronutrient that can become toxic at high concentrations. Fe uptake is induced under Fe deficiency and repressed when Fe levels are restored to prevent an Fe overload. Here, we show that Fe deficiency is rapidly sensed in the leaf vasculature and impaired sensing in leaves results in a systemic Fe overload while triggering opposite transcriptional programs in roots and leaves. |
---|---|
AbstractList | The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON-REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3-mediated shoot-to-root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue-specific localization of OPT3, together with other Fe-responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level. Abstract The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON‐REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3‐mediated shoot‐to‐root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue‐specific localization of OPT3 , together with other Fe‐responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level. Iron (Fe) is an essential micronutrient that can become toxic at high concentrations. Fe uptake is induced under Fe deficiency and repressed when Fe levels are restored to prevent an Fe overload. Here, we show that Fe deficiency is rapidly sensed in the leaf vasculature and impaired sensing in leaves results in a systemic Fe overload while triggering opposite transcriptional programs in roots and leaves. The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON‐REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3‐mediated shoot‐to‐root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue‐specific localization of OPT3, together with other Fe‐responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level. The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON‐REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3‐mediated shoot‐to‐root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue‐specific localization of OPT3, together with other Fe‐responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level. Iron (Fe) is an essential micronutrient that can become toxic at high concentrations. Fe uptake is induced under Fe deficiency and repressed when Fe levels are restored to prevent an Fe overload. Here, we show that Fe deficiency is rapidly sensed in the leaf vasculature and impaired sensing in leaves results in a systemic Fe overload while triggering opposite transcriptional programs in roots and leaves. |
Author | Castro‐Guerrero, Norma A. McInturf, Samuel A. Bindbeutel, Rebecca K. Khan, Mather A. Wang, Jiaojiao Mendoza‐Cozatl, David G. Joshi, Trupti Nusinow, Dmitri A. Jurisson, Silvia S. Dame, Ashley N. Nguyen, Nga T. |
Author_xml | – sequence: 1 givenname: Mather A. surname: Khan fullname: Khan, Mather A. organization: University of Missouri – sequence: 2 givenname: Norma A. surname: Castro‐Guerrero fullname: Castro‐Guerrero, Norma A. organization: University of Missouri – sequence: 3 givenname: Samuel A. surname: McInturf fullname: McInturf, Samuel A. organization: University of Missouri – sequence: 4 givenname: Nga T. surname: Nguyen fullname: Nguyen, Nga T. organization: University of Missouri – sequence: 5 givenname: Ashley N. surname: Dame fullname: Dame, Ashley N. organization: University of Missouri – sequence: 6 givenname: Jiaojiao surname: Wang fullname: Wang, Jiaojiao organization: University of Missouri – sequence: 7 givenname: Rebecca K. orcidid: 0000-0001-7994-2073 surname: Bindbeutel fullname: Bindbeutel, Rebecca K. organization: Donald Danforth Plant Science Center – sequence: 8 givenname: Trupti surname: Joshi fullname: Joshi, Trupti organization: University of Missouri – sequence: 9 givenname: Silvia S. surname: Jurisson fullname: Jurisson, Silvia S. organization: University of Missouri – sequence: 10 givenname: Dmitri A. orcidid: 0000-0002-0497-1723 surname: Nusinow fullname: Nusinow, Dmitri A. organization: Donald Danforth Plant Science Center – sequence: 11 givenname: David G. orcidid: 0000-0002-9616-0791 surname: Mendoza‐Cozatl fullname: Mendoza‐Cozatl, David G. email: mendozad@missouri.edu organization: University of Missouri |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29520929$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1454889$$D View this record in Osti.gov |
BookMark | eNp10c1u3CAQB3BUpWo2aQ99gQq1l_bgBDDeNcdolX5IkdpD7ojF410iDC6DN9pX6lMWx2kPlcoFMfPTX4PmgpyFGICQt5xd8XKuRwtXvOZKvCArXq-bqmaSnZEV45JVm43i5-QC8YGxUtioV-RcqEYwJdSK_NoeTNgDUheoSzFQczTOm53zLp_m4k0qjy6O6JCaBDSZ0XX-RBECQjeLfADqwfT0aNBO3uSpMBNKbxiNSwXN1oX9rDqkOdI4jhFdBpqTCWiTG7OLwXg6prhPZngap-hjGWxOSjFmfE1e9sYjvHm-L8n959v77dfq7vuXb9ubu8rKlotqYzdt2_V1o3oDTHBQdld3RqrOilrUu3UrO1nafC0s9ByskrJvWsV7C0La-pK8X2IjZqfRljHtwcYQwGbNZSPbVhX0cUFl4J8TYNaDQwvemwBxQi0YF4o3nM30wz_0IU6pfLYozpkQSvBZfVqUTRExQa_H5AaTTpozPS9ZlyXrpyUX--45cdoN0P2Vf7ZawPUCHp2H0_-T9I_t7RL5G47itVQ |
CitedBy_id | crossref_primary_10_1016_j_cub_2019_08_049 crossref_primary_10_1093_jxb_eraa012 crossref_primary_10_1186_s12870_019_1654_9 crossref_primary_10_1016_j_plantsci_2023_111919 crossref_primary_10_1038_s41477_018_0266_y crossref_primary_10_1093_pcp_pcac046 crossref_primary_10_1111_tpj_15611 crossref_primary_10_1016_j_mex_2020_100809 crossref_primary_10_1111_tpj_16449 crossref_primary_10_1093_jxb_erac030 crossref_primary_10_1002_pld3_396 crossref_primary_10_1007_s11104_022_05746_1 crossref_primary_10_3390_plants12152765 crossref_primary_10_3390_ijms21093395 crossref_primary_10_1016_j_plaphy_2023_108313 crossref_primary_10_1093_jxb_eraa535 crossref_primary_10_1111_tpj_14581 crossref_primary_10_1016_j_bbamcr_2020_118805 crossref_primary_10_1111_1462_2920_14631 crossref_primary_10_1093_jxb_erab531 crossref_primary_10_3389_fpls_2023_1204723 crossref_primary_10_1111_tpj_15286 crossref_primary_10_1111_nph_19756 crossref_primary_10_1093_pcp_pcab166 crossref_primary_10_3389_fpls_2021_794373 crossref_primary_10_3390_ijms222111643 crossref_primary_10_3389_fpls_2019_00909 crossref_primary_10_1007_s11104_019_04313_5 crossref_primary_10_3389_fpls_2023_1039053 crossref_primary_10_1093_plcell_koad053 crossref_primary_10_1093_jxb_erab393 crossref_primary_10_3390_ijms24010647 crossref_primary_10_3390_ijms21103591 crossref_primary_10_1111_pce_14424 crossref_primary_10_3389_fpls_2018_01325 crossref_primary_10_1093_jxb_erz290 crossref_primary_10_15252_embr_202153698 crossref_primary_10_1186_s12870_022_03627_4 crossref_primary_10_1016_j_molp_2020_01_006 crossref_primary_10_1002_tpg2_20411 crossref_primary_10_1016_j_pbi_2021_102149 crossref_primary_10_1093_plphys_kiac357 crossref_primary_10_1093_plphys_kiab366 crossref_primary_10_1093_pcp_pcz038 crossref_primary_10_1080_03650340_2019_1616288 crossref_primary_10_1111_nph_15933 crossref_primary_10_1080_15592324_2020_1784549 crossref_primary_10_3389_fpls_2019_00008 |
Cites_doi | 10.4161/psb.6.11.17847 10.1111/j.1365-313X.2008.03698.x 10.1007/s00425-005-0165-0 10.1016/j.bbamcr.2012.03.010 10.1105/tpc.113.116244 10.1104/pp.107.108183 10.1105/tpc.112.102491 10.7554/eLife.13292 10.1104/pp.109.136374 10.1111/nph.12291 10.1093/mp/ssu067 10.1002/cppb.20011 10.1186/1471-2229-11-87 10.1101/sqb.2007.72.006 10.1104/pp.102.016089 10.1007/978-1-4939-2444-8_9 10.1104/pp.107.113282 10.1105/tpc.111.090431 10.1105/tpc.110.074096 10.1073/pnas.0906131106 10.1093/bioinformatics/btp616 10.1104/pp.114.250837 10.1046/j.1365-313X.1996.10050835.x 10.1039/C7MT00152E 10.1093/mp/ssr015 10.1111/j.1365-313X.2004.02128.x 10.3390/ijms14047617 10.1111/j.2517-6161.1995.tb02031.x 10.1093/mp/ssr065 10.1104/pp.15.01537 10.1016/j.tplants.2014.11.004 10.4161/psb.27700 10.1007/s00425-012-1757-0 10.1016/j.plaphy.2010.12.001 10.1105/tpc.111.093179 10.1111/j.1365-313X.2012.04924.x 10.1105/tpc.112.099077 10.1007/s00425-007-0535-x 10.1016/j.celrep.2014.06.033 10.3389/fpls.2013.00276 10.1016/j.plantsci.2014.01.004 10.1371/journal.pone.0000718 10.1105/tpc.114.123737 10.1186/gb-2013-14-4-r36 10.1038/sj.emboj.7600864 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons Ltd 2018 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2018 John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7ST C1K SOI 7X8 OTOTI |
DOI | 10.1111/pce.13192 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 2276 |
ExternalDocumentID | 1454889 10_1111_pce_13192 29520929 PCE13192 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Vietnam Education Foundation Training Program funderid: G‐3‐10180 – fundername: US National Science Foundation funderid: IOS‐1456796 to D.A.N. – fundername: Department of Energy funderid: DE‐SC0002040 – fundername: NSF EPSCoR Track II award funderid: (IIA‐1430428) – fundername: CAREER funderid: IOS‐1252706 to D. M. C. |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7ST C1K SOI 7X8 ABHUG ABPTK ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS OTOTI UMP |
ID | FETCH-LOGICAL-c4812-7c788df359fae021e9cb3da49dc2323b684d4f35162cef1ec944f5891fce24c3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 |
IngestDate | Thu May 18 22:37:34 EDT 2023 Fri Aug 16 02:13:48 EDT 2024 Thu Oct 10 15:43:52 EDT 2024 Thu Sep 26 17:56:55 EDT 2024 Wed Oct 16 00:49:19 EDT 2024 Sat Aug 24 00:49:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | iron overload long-distance signaling iron translocation iron transcriptomics iron deficiency response |
Language | English |
License | 2018 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4812-7c788df359fae021e9cb3da49dc2323b684d4f35162cef1ec944f5891fce24c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE DE‐SC0002040 |
ORCID | 0000-0002-0497-1723 0000-0001-7994-2073 0000-0002-9616-0791 0000000204971723 0000000179942073 0000000296160791 |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/pce.13192 |
PMID | 29520929 |
PQID | 2110229219 |
PQPubID | 37957 |
PageCount | 14 |
ParticipantIDs | osti_scitechconnect_1454889 proquest_miscellaneous_2012915109 proquest_journals_2110229219 crossref_primary_10_1111_pce_13192 pubmed_primary_29520929 wiley_primary_10_1111_pce_13192_PCE13192 |
PublicationCentury | 2000 |
PublicationDate | October 2018 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: United Kingdom |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley-Blackwell |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-Blackwell |
References | 2013; 4 2007; 226 2012; 1823 1995; 57 2015; 167 2014; 26 2011; 11 2009; 150 2007; 72 2008; 146 2011; 4 2011; 6 2017; 9 1996; 10 2009; 26 2003; 132 2005; 24 2016; 5 2010; 22 2012; 70 2009; 57 2014; 5 2016; 1 2013; 14 2004; 39 2015; 20 2013; 237 2013; 199 2011; 23 2015 2007; 2 2013 2014; 9 2016; 171 2012; 24 2014; 8 2011; 49 2014; 7 2012; 5 2016; 8 2006; 223 2009; 106 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 Palmer C. M. (e_1_2_7_31_1) 2013 e_1_2_7_25_1 Nguyen N. T. (e_1_2_7_30_1) 2016; 8 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 23 start-page: 4428 year: 2011 end-page: 4445 article-title: Phloem ultrastructure and pressure flow: Sieve‐element‐occlusion‐related agglomerations do not affect translocation publication-title: The Plant Cell – volume: 5 start-page: 51 year: 2014 article-title: Moving toward a precise nutrition: Preferential loading of seeds with essential nutrients over non‐essential toxic elements publication-title: Frontiers in Plant Science – volume: 22 start-page: 2219 year: 2010 end-page: 2236 article-title: The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots publication-title: Plant Cell – volume: 26 start-page: 2249 year: 2014 end-page: 2264 article-title: OPT3 is a phloem‐specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis publication-title: The Plant Cell – volume: 9 start-page: 1 year: 2014 end-page: 18 article-title: WRKY transcription factors: Jack of many trades in plants publication-title: Plant Signaling & Behavior – volume: 57 start-page: 400 year: 2009 end-page: 412 article-title: Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis publication-title: Plant Journal – volume: 11 start-page: 87 year: 2011 article-title: Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana publication-title: BMC Plant Biology – volume: 24 start-page: 2380 year: 2012 end-page: 2400 article-title: Nicotianamine functions in the phloem‐based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis publication-title: The Plant Cell – volume: 223 start-page: 1178 year: 2006 end-page: 1190 article-title: Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper publication-title: Planta – volume: 24 start-page: 738 year: 2012 end-page: 761 article-title: Transcriptome sequencing identifies SPL7‐regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis publication-title: The Plant Cell – volume: 7 start-page: 1455 year: 2014 end-page: 1469 article-title: OPT3 is a component of the iron‐signaling network between leaves and roots and misregulation of OPT3 leads to an over‐accumulation of cadmium in seeds publication-title: Molecular Plant – volume: 26 start-page: 1294 year: 2014 end-page: 1307 article-title: SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON‐REGULATED TRANSPORTER1 publication-title: The Plant Cell – volume: 70 start-page: 783 year: 2012 end-page: 795 article-title: Feedback inhibition by thiols outranks glutathione depletion: A luciferase‐based screen reveals glutathione‐deficient γ‐ECS and glutathione synthetase mutants impaired in cadmium‐induced sulfate assimilation publication-title: Plant Journal – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 1823 start-page: 1521 year: 2012 end-page: 1530 article-title: Getting a sense for signals: Regulation of the plant iron deficiency response publication-title: Biochimica et Biophysica Acta – volume: 49 start-page: 462 year: 2011 end-page: 470 article-title: A hitchhiker's guide to the Arabidopsis ferrome publication-title: Plant physiology and biochemistry : PPB / Société française de physiologie végétale – volume: 167 start-page: 273 year: 2015 end-page: 286 article-title: Iron‐binding E3 ligase mediates iron response in plants by targeting basic helix‐loop‐helix transcription factors publication-title: Plant Physiology – volume: 9 start-page: 876 year: 2017 end-page: 890 article-title: BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana publication-title: Metallomics – volume: 2 start-page: 1 year: 2007 end-page: 12 article-title: An “electronic fluorescent pictograph” browser for exploring and analyzing large‐scale biological data sets publication-title: PLoS One – volume: 146 start-page: 1964 year: 2008 end-page: 1973 article-title: Iron‐induced turnover of the Arabidopsis IRON‐REGULATED TRANSPORTER1 metal transporter requires lysine residues publication-title: Plant Physiology – volume: 8 start-page: 622 year: 2014 end-page: 632 article-title: A genome‐scale resource for the functional characterization of Arabidopsis transcription factors publication-title: Cell Reports – volume: 4 start-page: 276 year: 2013 article-title: The transcriptional response of Arabidopsis leaves to Fe deficiency publication-title: Frontiers in Plant Science – volume: 24 start-page: 3921 year: 2012 end-page: 3948 article-title: Systems and ‐system level analysis identifies conserved iron deficiency responses in the plant lineage publication-title: The Plant Cell – volume: 132 start-page: 796 year: 2003 end-page: 804 article-title: Dual regulation of the Arabidopsis high‐affinity root iron uptake system by local and long‐distance signals publication-title: Plant Physiology – start-page: 9 issue: 11 year: 2013 article-title: MYB10 and MYB72 are required for growth under iron‐limiting conditions publication-title: PLoS Genetics – volume: 72 start-page: 353 year: 2007 end-page: 363 article-title: The DIURNAL project: DIURNAL and circadian expression profiling, model‐based pattern matching, and promoter analysis publication-title: Cold Spring Harbor Symposia on Quantitative Biology – volume: 4 start-page: 464 year: 2011 end-page: 476 article-title: Transporters contributing to iron trafficking in plants publication-title: Molecular Plant – volume: 171 start-page: 675 year: 2016 end-page: 693 article-title: The pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron‐deficient conditions publication-title: Plant Physiology – volume: 1 start-page: 185 year: 2016 end-page: 196 article-title: Purification of translating ribosomes and associated mRNAs from soybean ( ) publication-title: Current Protocols in Plant Biology – volume: 14 start-page: R36 year: 2013 article-title: TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biology – volume: 150 start-page: 257 year: 2009 end-page: 271 article-title: The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses publication-title: Plant Physiology – volume: 106 start-page: 18843 year: 2009 end-page: 18848 article-title: Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 39 start-page: 403 year: 2004 end-page: 414 article-title: Arabidopsis yellow stripe‐like2 (YSL2): A metal‐regulated gene encoding a plasma membrane transporter of nicotianamine‐metal complexes publication-title: Plant Journal – volume: 14 start-page: 7617 year: 2013 end-page: 7641 article-title: Plant core environmental stress response genes are systemically coordinated during abiotic stresses publication-title: International Journal of Molecular Sciences – volume: 226 start-page: 897 year: 2007 end-page: 908 article-title: Iron deficiency‐mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana publication-title: Planta – volume: 199 start-page: 639 year: 2013 end-page: 649 article-title: APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs publication-title: New Phytologist – volume: 26 start-page: 139 year: 2009 end-page: 140 article-title: edgeR: A bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 24 start-page: 4041 year: 2005 end-page: 4051 article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron publication-title: The EMBO Journal – volume: 10 start-page: 835 year: 1996 end-page: 844 article-title: Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency publication-title: Plant Journal – volume: 5 year: 2016 article-title: PCH1 integrates circadian and light‐signaling pathways to control photoperiod‐responsive growth in Arabidopsis publication-title: eLife – volume: 20 start-page: 124 year: 2015 end-page: 133 article-title: Molecular mechanisms governing Arabidopsis iron uptake publication-title: Trends in Plant Science – volume: 6 start-page: 1669 year: 2011 end-page: 1671 article-title: Transcriptome analysis of ein3 eil1 mutants in response to iron deficiency publication-title: Plant Signaling & Behavior – volume: 5 start-page: 27 year: 2012 end-page: 42 article-title: Fitting into the harsh reality: Regulation of iron‐deficiency responses in dicotyledonous plants publication-title: Molecular Plant – volume: 8 start-page: 1 year: 2016 end-page: 9 article-title: Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements publication-title: Journal of Visualized Experiments – volume: 146 start-page: 589 year: 2008 end-page: 601 article-title: The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds publication-title: Plant Physiology – volume: 237 start-page: 65 year: 2013 end-page: 75 article-title: Shoot to root communication is necessary to control the expression of iron‐acquisition genes in Strategy I plants publication-title: Planta – year: 2015 – ident: e_1_2_7_3_1 doi: 10.4161/psb.6.11.17847 – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-313X.2008.03698.x – ident: e_1_2_7_28_1 doi: 10.1007/s00425-005-0165-0 – ident: e_1_2_7_14_1 doi: 10.1016/j.bbamcr.2012.03.010 – ident: e_1_2_7_17_1 doi: 10.1105/tpc.113.116244 – ident: e_1_2_7_41_1 doi: 10.1104/pp.107.108183 – ident: e_1_2_7_43_1 doi: 10.1105/tpc.112.102491 – ident: e_1_2_7_15_1 doi: 10.7554/eLife.13292 – ident: e_1_2_7_22_1 doi: 10.1104/pp.109.136374 – ident: e_1_2_7_24_1 doi: 10.1111/nph.12291 – ident: e_1_2_7_26_1 doi: 10.1093/mp/ssu067 – ident: e_1_2_7_7_1 doi: 10.1002/cppb.20011 – ident: e_1_2_7_38_1 doi: 10.1186/1471-2229-11-87 – ident: e_1_2_7_27_1 doi: 10.1101/sqb.2007.72.006 – ident: e_1_2_7_44_1 doi: 10.1104/pp.102.016089 – ident: e_1_2_7_34_1 doi: 10.1007/978-1-4939-2444-8_9 – ident: e_1_2_7_19_1 doi: 10.1104/pp.107.113282 – ident: e_1_2_7_5_1 doi: 10.1105/tpc.111.090431 – ident: e_1_2_7_25_1 doi: 10.1105/tpc.110.074096 – volume: 8 start-page: 1 year: 2016 ident: e_1_2_7_30_1 article-title: Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements publication-title: Journal of Visualized Experiments contributor: fullname: Nguyen N. T. – ident: e_1_2_7_29_1 doi: 10.1073/pnas.0906131106 – start-page: 9 issue: 11 year: 2013 ident: e_1_2_7_31_1 article-title: MYB10 and MYB72 are required for growth under iron‐limiting conditions publication-title: PLoS Genetics contributor: fullname: Palmer C. M. – ident: e_1_2_7_35_1 doi: 10.1093/bioinformatics/btp616 – ident: e_1_2_7_40_1 doi: 10.1104/pp.114.250837 – ident: e_1_2_7_48_1 doi: 10.1046/j.1365-313X.1996.10050835.x – ident: e_1_2_7_13_1 doi: 10.1039/C7MT00152E – ident: e_1_2_7_8_1 doi: 10.1093/mp/ssr015 – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-313X.2004.02128.x – ident: e_1_2_7_12_1 doi: 10.3390/ijms14047617 – ident: e_1_2_7_4_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_7_16_1 doi: 10.1093/mp/ssr065 – ident: e_1_2_7_42_1 doi: 10.1104/pp.15.01537 – ident: e_1_2_7_6_1 doi: 10.1016/j.tplants.2014.11.004 – ident: e_1_2_7_2_1 doi: 10.4161/psb.27700 – ident: e_1_2_7_11_1 doi: 10.1007/s00425-012-1757-0 – ident: e_1_2_7_37_1 doi: 10.1016/j.plaphy.2010.12.001 – ident: e_1_2_7_10_1 doi: 10.1105/tpc.111.093179 – ident: e_1_2_7_18_1 doi: 10.1111/j.1365-313X.2012.04924.x – ident: e_1_2_7_39_1 doi: 10.1105/tpc.112.099077 – ident: e_1_2_7_46_1 – ident: e_1_2_7_45_1 doi: 10.1007/s00425-007-0535-x – ident: e_1_2_7_32_1 doi: 10.1016/j.celrep.2014.06.033 – ident: e_1_2_7_36_1 doi: 10.3389/fpls.2013.00276 – ident: e_1_2_7_20_1 doi: 10.1016/j.plantsci.2014.01.004 – ident: e_1_2_7_47_1 doi: 10.1371/journal.pone.0000718 – ident: e_1_2_7_49_1 doi: 10.1105/tpc.114.123737 – ident: e_1_2_7_21_1 doi: 10.1186/gb-2013-14-4-r36 – ident: e_1_2_7_23_1 doi: 10.1038/sj.emboj.7600864 |
SSID | ssj0001479 |
Score | 2.5326085 |
Snippet | The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in... Abstract The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in... |
SourceID | osti proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2263 |
SubjectTerms | Arabidopsis Arabidopsis - anatomy & histology Arabidopsis - metabolism Arabidopsis Proteins - metabolism Arabidopsis Proteins - physiology Deprivation Gene Expression Regulation, Plant Gene Regulatory Networks Homeostasis Iron Iron - metabolism Iron deficiency iron deficiency response iron overload iron transcriptomics iron translocation Leaves Localization long‐distance signaling Membrane Transport Proteins - metabolism Membrane Transport Proteins - physiology Nutrient deficiency Phloem - anatomy & histology Phloem - metabolism Plant Leaves - anatomy & histology Plant Leaves - metabolism Plant Roots - anatomy & histology Plant Roots - metabolism Plant tissues Relaying Roots Transcription Xylem Xylem - anatomy & histology Xylem - metabolism |
Title | Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13192 https://www.ncbi.nlm.nih.gov/pubmed/29520929 https://www.proquest.com/docview/2110229219 https://search.proquest.com/docview/2012915109 https://www.osti.gov/biblio/1454889 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF2CSaGXNk2_3KRlW3roRcYrrSUvOaVpQii0lJJCDgUx-wWmRhKWHHB-Un5lZnYltyktlN4s79geSzOzb6S3bxl7K7VRQlpIlNYmkUWuEw3FNAFlnEkLYSDssfTpc37-TX68nF3usKNhLUzUh9jecKPMCPWaEhx0-0uSN8ZNBAYQ1V-RFUTn-vD1p3SUkFFnj-iLRaFErypELJ7tJ-_MRaMac-pPOPMubA3zztlD9n3wONJNfkzWnZ6Y69_EHP_zL-2xBz0e5ccxgB6xHVfts3txh8rNPtt9XyN63DxmN3EZQssXFaeVcRyuYLGMIt8bevN4hQe2btpFy2Hl-AqahV1ueIt9srNkgVCTLx143rNf6dkFhwrHsCRh5bXBFqdSsrIt72peN4FU5nhHU-pQ4NDfnlYW3EHrK3SMvgnbgK59wi7OTi9OzpN-n4fESMQXSWGwD7c-mykPDjGHU0ZnFqSyBvFepvO5tBKHRZ4a54UzSkpPuyF641JpsqdsVNWVe854bueZNzADrzx2qgWAc6kVqbDFDKbgx-zNcMHLJqp5lEMXhCe_DCd_zA4oFEqEIKSja4hwZDrskbC5m6sxOxwipOzTvS2pi05ThdV_zF5vhzFR6ekLVK5eow3d8kN8NUWbZzGytj6kithIKY68C_Hxd-fKLyen4cWLfzc9YPfxx6OKrzhko261di8RSnX6VciZW-jLHT0 |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VAQQXHoVCaIEFceDiKGtv7KzEpZRWAdoKoSD1gqzxPqSIyLZip1L4SfxKZnbtQBFIiFuSnURjZx7frGe_YeylLLQS0kCkikJHMkuLqIBsHIHSVseZ0OBnLJ2dp7PP8v3F5GKHve7PwgR-iO2GG3mGj9fk4LQh_YuX19qOBFoQBuBr6O4JDW54--kneZSQgWmPGhizTImOV4j6eLZfvZKNBhV61Z-Q5lXg6jPPyR32pdc5NJx8Ha3bYqS__Ubn-L8XdZfd7iApPww2dI_t2HKX3QhDKje77PqbCgHk5j77Hk4iNHxRcjocx-ESFsvA872hDw9X-MZUdbNoOKwsX0G9MMsNb7BUtoYkEG3ypQXHuwZYenzBocQ1jEoYfI2XxWxKUqbhbcWr2veVWd5SVu1jHOrbdZZ5dVD6EhWjX8JKoG0esPnJ8fxoFnWjHiItEWJEmcZS3LhkohxYhB1W6SIxIJXRCPmSIp1KI3FZpLG2TlitpHQ0ENFpG0ud7LFBWZX2EeOpmSZOwwScclisZgDWxkbEwmQTGIMbshf9P57XgdAj7wshvPm5v_lDtk-2kCMKISpdTT1HusUyCeu7qRqyg95E8s7jm5wK6ThWmACG7Pl2GX2VHsBAaas1ytCuH0KsMco8DKa11SFW1JAU48orbyB_Vy7_eHTsXzz-d9Fn7OZsfnaan747_7DPbqEigdRXHLBBu1rbJ4is2uKpd6Afj2QhVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq5SEuFMpraQGDOHDJap14k7U4taWr8qoqVKQekKKJH9KKVRJtspWWn8SvZMZOlrYCCXFL4kk0SWbG39jjz4y9loVWQhqIVFHoSGZpERWQjSNQ2uo4Exr8HkufT9Ljr_LD-eR8i73t18IEfojNgBt5ho_X5OC1cZecvNZ2JNCAMP7ekCkiX0JEX35zRwkZiPaofjHLlOhohaiMZ3Prlc5oUKFT_QloXsWtvuOZbbNvvcqh3uT7aNUWI_3jGpvjf77TPXa3A6R8P1jQfbZlyx12K2xRud5hNw8qhI_rB-xnWIfQ8HnJaWkchwuYLwLL95ou7i_xxFR1M284LC1fQj03izVvMFG2hiQQa_KFBce78leavOBQYhvGJAy9xstiX0pSpuFtxavaV5VZ3lKf2kc41LerK_PqoPQFKkZPwjygbR6ys9nR2eFx1G30EGmJACPKNCbixiUT5cAi6LBKF4kBqYxGwJcU6VQaic0ijbV1wmolpaPtEJ22sdTJIzYoq9I-YTw108RpmIBTDlPVDMDa2IhYmGwCY3BD9qr_4Xkd6DzyPg3Cj5_7jz9ku2QKOWIQItLVVHGkW0ySMLubqiHb6y0k7_y9ySmNjmOF4X_IXm6a0VNp-gVKW61Qhsb8EGCNUeZxsKyNDrGicqQYW954-_i7cvnp4ZE_ePrvoi_Y7dN3s_zT-5OPu-wO6hEYfcUeG7TLlX2GsKotnnv3-QUeEiAE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+iron+availability+in+Arabidopsis+are+rapidly+sensed+in+the+leaf+vasculature+and+impaired+sensing+leads+to+opposite+transcriptional+programs+in+leaves+and+roots&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Khan%2C+Mather+A&rft.au=Norma+A+Castro%E2%80%90Guerrero&rft.au=McInturf%2C+Samuel+A&rft.au=Nguyen%2C+Nga+T&rft.date=2018-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=41&rft.issue=10&rft.spage=2263&rft.epage=2276&rft_id=info:doi/10.1111%2Fpce.13192&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |