Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots

The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON‐REGU...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 41; no. 10; pp. 2263 - 2276
Main Authors Khan, Mather A., Castro‐Guerrero, Norma A., McInturf, Samuel A., Nguyen, Nga T., Dame, Ashley N., Wang, Jiaojiao, Bindbeutel, Rebecca K., Joshi, Trupti, Jurisson, Silvia S., Nusinow, Dmitri A., Mendoza‐Cozatl, David G.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2018
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON‐REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3‐mediated shoot‐to‐root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue‐specific localization of OPT3, together with other Fe‐responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level. Iron (Fe) is an essential micronutrient that can become toxic at high concentrations. Fe uptake is induced under Fe deficiency and repressed when Fe levels are restored to prevent an Fe overload. Here, we show that Fe deficiency is rapidly sensed in the leaf vasculature and impaired sensing in leaves results in a systemic Fe overload while triggering opposite transcriptional programs in roots and leaves.
AbstractList The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON-REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3-mediated shoot-to-root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue-specific localization of OPT3, together with other Fe-responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level.
Abstract The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON‐REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3‐mediated shoot‐to‐root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue‐specific localization of OPT3 , together with other Fe‐responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level. Iron (Fe) is an essential micronutrient that can become toxic at high concentrations. Fe uptake is induced under Fe deficiency and repressed when Fe levels are restored to prevent an Fe overload. Here, we show that Fe deficiency is rapidly sensed in the leaf vasculature and impaired sensing in leaves results in a systemic Fe overload while triggering opposite transcriptional programs in roots and leaves.
The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON‐REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3‐mediated shoot‐to‐root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue‐specific localization of OPT3, together with other Fe‐responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level.
The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in Arabidopsis. Reduced expression of OPT3 induces an over accumulation of Fe in roots and leaves, due in part by an elevated expression of the IRON‐REGULATED TRANSPORTER 1. Here we show however, that opt3 leaves display a transcriptional program consistent with an Fe overload, suggesting that Fe excess is properly sensed in opt3 leaves and that the OPT3‐mediated shoot‐to‐root signaling is critical to prevent a systemic Fe overload. We also took advantage of the tissue‐specific localization of OPT3, together with other Fe‐responsive genes, to determine the timing and location of early transcriptional events during Fe limitation and resupply. Our results show that the leaf vasculature responds more rapidly than roots to both Fe deprivation and resupply, suggesting that the leaf vasculature is within the first tissues that sense and respond to changes in Fe availability. Our data highlight the importance of the leaf vasculature in Fe homeostasis by sensing changes in apoplastic levels of Fe coming through the xylem and relaying this information back to roots via the phloem to regulate Fe uptake at the root level. Iron (Fe) is an essential micronutrient that can become toxic at high concentrations. Fe uptake is induced under Fe deficiency and repressed when Fe levels are restored to prevent an Fe overload. Here, we show that Fe deficiency is rapidly sensed in the leaf vasculature and impaired sensing in leaves results in a systemic Fe overload while triggering opposite transcriptional programs in roots and leaves.
Author Castro‐Guerrero, Norma A.
McInturf, Samuel A.
Bindbeutel, Rebecca K.
Khan, Mather A.
Wang, Jiaojiao
Mendoza‐Cozatl, David G.
Joshi, Trupti
Nusinow, Dmitri A.
Jurisson, Silvia S.
Dame, Ashley N.
Nguyen, Nga T.
Author_xml – sequence: 1
  givenname: Mather A.
  surname: Khan
  fullname: Khan, Mather A.
  organization: University of Missouri
– sequence: 2
  givenname: Norma A.
  surname: Castro‐Guerrero
  fullname: Castro‐Guerrero, Norma A.
  organization: University of Missouri
– sequence: 3
  givenname: Samuel A.
  surname: McInturf
  fullname: McInturf, Samuel A.
  organization: University of Missouri
– sequence: 4
  givenname: Nga T.
  surname: Nguyen
  fullname: Nguyen, Nga T.
  organization: University of Missouri
– sequence: 5
  givenname: Ashley N.
  surname: Dame
  fullname: Dame, Ashley N.
  organization: University of Missouri
– sequence: 6
  givenname: Jiaojiao
  surname: Wang
  fullname: Wang, Jiaojiao
  organization: University of Missouri
– sequence: 7
  givenname: Rebecca K.
  orcidid: 0000-0001-7994-2073
  surname: Bindbeutel
  fullname: Bindbeutel, Rebecca K.
  organization: Donald Danforth Plant Science Center
– sequence: 8
  givenname: Trupti
  surname: Joshi
  fullname: Joshi, Trupti
  organization: University of Missouri
– sequence: 9
  givenname: Silvia S.
  surname: Jurisson
  fullname: Jurisson, Silvia S.
  organization: University of Missouri
– sequence: 10
  givenname: Dmitri A.
  orcidid: 0000-0002-0497-1723
  surname: Nusinow
  fullname: Nusinow, Dmitri A.
  organization: Donald Danforth Plant Science Center
– sequence: 11
  givenname: David G.
  orcidid: 0000-0002-9616-0791
  surname: Mendoza‐Cozatl
  fullname: Mendoza‐Cozatl, David G.
  email: mendozad@missouri.edu
  organization: University of Missouri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29520929$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1454889$$D View this record in Osti.gov
BookMark eNp10c1u3CAQB3BUpWo2aQ99gQq1l_bgBDDeNcdolX5IkdpD7ojF410iDC6DN9pX6lMWx2kPlcoFMfPTX4PmgpyFGICQt5xd8XKuRwtXvOZKvCArXq-bqmaSnZEV45JVm43i5-QC8YGxUtioV-RcqEYwJdSK_NoeTNgDUheoSzFQczTOm53zLp_m4k0qjy6O6JCaBDSZ0XX-RBECQjeLfADqwfT0aNBO3uSpMBNKbxiNSwXN1oX9rDqkOdI4jhFdBpqTCWiTG7OLwXg6prhPZngap-hjGWxOSjFmfE1e9sYjvHm-L8n959v77dfq7vuXb9ubu8rKlotqYzdt2_V1o3oDTHBQdld3RqrOilrUu3UrO1nafC0s9ByskrJvWsV7C0La-pK8X2IjZqfRljHtwcYQwGbNZSPbVhX0cUFl4J8TYNaDQwvemwBxQi0YF4o3nM30wz_0IU6pfLYozpkQSvBZfVqUTRExQa_H5AaTTpozPS9ZlyXrpyUX--45cdoN0P2Vf7ZawPUCHp2H0_-T9I_t7RL5G47itVQ
CitedBy_id crossref_primary_10_1016_j_cub_2019_08_049
crossref_primary_10_1093_jxb_eraa012
crossref_primary_10_1186_s12870_019_1654_9
crossref_primary_10_1016_j_plantsci_2023_111919
crossref_primary_10_1038_s41477_018_0266_y
crossref_primary_10_1093_pcp_pcac046
crossref_primary_10_1111_tpj_15611
crossref_primary_10_1016_j_mex_2020_100809
crossref_primary_10_1111_tpj_16449
crossref_primary_10_1093_jxb_erac030
crossref_primary_10_1002_pld3_396
crossref_primary_10_1007_s11104_022_05746_1
crossref_primary_10_3390_plants12152765
crossref_primary_10_3390_ijms21093395
crossref_primary_10_1016_j_plaphy_2023_108313
crossref_primary_10_1093_jxb_eraa535
crossref_primary_10_1111_tpj_14581
crossref_primary_10_1016_j_bbamcr_2020_118805
crossref_primary_10_1111_1462_2920_14631
crossref_primary_10_1093_jxb_erab531
crossref_primary_10_3389_fpls_2023_1204723
crossref_primary_10_1111_tpj_15286
crossref_primary_10_1111_nph_19756
crossref_primary_10_1093_pcp_pcab166
crossref_primary_10_3389_fpls_2021_794373
crossref_primary_10_3390_ijms222111643
crossref_primary_10_3389_fpls_2019_00909
crossref_primary_10_1007_s11104_019_04313_5
crossref_primary_10_3389_fpls_2023_1039053
crossref_primary_10_1093_plcell_koad053
crossref_primary_10_1093_jxb_erab393
crossref_primary_10_3390_ijms24010647
crossref_primary_10_3390_ijms21103591
crossref_primary_10_1111_pce_14424
crossref_primary_10_3389_fpls_2018_01325
crossref_primary_10_1093_jxb_erz290
crossref_primary_10_15252_embr_202153698
crossref_primary_10_1186_s12870_022_03627_4
crossref_primary_10_1016_j_molp_2020_01_006
crossref_primary_10_1002_tpg2_20411
crossref_primary_10_1016_j_pbi_2021_102149
crossref_primary_10_1093_plphys_kiac357
crossref_primary_10_1093_plphys_kiab366
crossref_primary_10_1093_pcp_pcz038
crossref_primary_10_1080_03650340_2019_1616288
crossref_primary_10_1111_nph_15933
crossref_primary_10_1080_15592324_2020_1784549
crossref_primary_10_3389_fpls_2019_00008
Cites_doi 10.4161/psb.6.11.17847
10.1111/j.1365-313X.2008.03698.x
10.1007/s00425-005-0165-0
10.1016/j.bbamcr.2012.03.010
10.1105/tpc.113.116244
10.1104/pp.107.108183
10.1105/tpc.112.102491
10.7554/eLife.13292
10.1104/pp.109.136374
10.1111/nph.12291
10.1093/mp/ssu067
10.1002/cppb.20011
10.1186/1471-2229-11-87
10.1101/sqb.2007.72.006
10.1104/pp.102.016089
10.1007/978-1-4939-2444-8_9
10.1104/pp.107.113282
10.1105/tpc.111.090431
10.1105/tpc.110.074096
10.1073/pnas.0906131106
10.1093/bioinformatics/btp616
10.1104/pp.114.250837
10.1046/j.1365-313X.1996.10050835.x
10.1039/C7MT00152E
10.1093/mp/ssr015
10.1111/j.1365-313X.2004.02128.x
10.3390/ijms14047617
10.1111/j.2517-6161.1995.tb02031.x
10.1093/mp/ssr065
10.1104/pp.15.01537
10.1016/j.tplants.2014.11.004
10.4161/psb.27700
10.1007/s00425-012-1757-0
10.1016/j.plaphy.2010.12.001
10.1105/tpc.111.093179
10.1111/j.1365-313X.2012.04924.x
10.1105/tpc.112.099077
10.1007/s00425-007-0535-x
10.1016/j.celrep.2014.06.033
10.3389/fpls.2013.00276
10.1016/j.plantsci.2014.01.004
10.1371/journal.pone.0000718
10.1105/tpc.114.123737
10.1186/gb-2013-14-4-r36
10.1038/sj.emboj.7600864
ContentType Journal Article
Copyright 2018 John Wiley & Sons Ltd
2018 John Wiley & Sons Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons Ltd
– notice: 2018 John Wiley & Sons Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7ST
C1K
SOI
7X8
OTOTI
DOI 10.1111/pce.13192
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Calcium & Calcified Tissue Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 2276
ExternalDocumentID 1454889
10_1111_pce_13192
29520929
PCE13192
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Vietnam Education Foundation Training Program
  funderid: G‐3‐10180
– fundername: US National Science Foundation
  funderid: IOS‐1456796 to D.A.N.
– fundername: Department of Energy
  funderid: DE‐SC0002040
– fundername: NSF EPSCoR Track II award
  funderid: (IIA‐1430428)
– fundername: CAREER
  funderid: IOS‐1252706 to D. M. C.
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7ST
C1K
SOI
7X8
ABHUG
ABPTK
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
UMP
ID FETCH-LOGICAL-c4812-7c788df359fae021e9cb3da49dc2323b684d4f35162cef1ec944f5891fce24c3
IEDL.DBID DR2
ISSN 0140-7791
IngestDate Thu May 18 22:37:34 EDT 2023
Fri Aug 16 02:13:48 EDT 2024
Thu Oct 10 15:43:52 EDT 2024
Thu Sep 26 17:56:55 EDT 2024
Wed Oct 16 00:49:19 EDT 2024
Sat Aug 24 00:49:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords iron overload
long-distance signaling
iron translocation
iron transcriptomics
iron deficiency response
Language English
License 2018 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4812-7c788df359fae021e9cb3da49dc2323b684d4f35162cef1ec944f5891fce24c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
DE‐SC0002040
ORCID 0000-0002-0497-1723
0000-0001-7994-2073
0000-0002-9616-0791
0000000204971723
0000000179942073
0000000296160791
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/pce.13192
PMID 29520929
PQID 2110229219
PQPubID 37957
PageCount 14
ParticipantIDs osti_scitechconnect_1454889
proquest_miscellaneous_2012915109
proquest_journals_2110229219
crossref_primary_10_1111_pce_13192
pubmed_primary_29520929
wiley_primary_10_1111_pce_13192_PCE13192
PublicationCentury 2000
PublicationDate October 2018
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: United Kingdom
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley-Blackwell
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-Blackwell
References 2013; 4
2007; 226
2012; 1823
1995; 57
2015; 167
2014; 26
2011; 11
2009; 150
2007; 72
2008; 146
2011; 4
2011; 6
2017; 9
1996; 10
2009; 26
2003; 132
2005; 24
2016; 5
2010; 22
2012; 70
2009; 57
2014; 5
2016; 1
2013; 14
2004; 39
2015; 20
2013; 237
2013; 199
2011; 23
2015
2007; 2
2013
2014; 9
2016; 171
2012; 24
2014; 8
2011; 49
2014; 7
2012; 5
2016; 8
2006; 223
2009; 106
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_29_1
Palmer C. M. (e_1_2_7_31_1) 2013
e_1_2_7_25_1
Nguyen N. T. (e_1_2_7_30_1) 2016; 8
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 23
  start-page: 4428
  year: 2011
  end-page: 4445
  article-title: Phloem ultrastructure and pressure flow: Sieve‐element‐occlusion‐related agglomerations do not affect translocation
  publication-title: The Plant Cell
– volume: 5
  start-page: 51
  year: 2014
  article-title: Moving toward a precise nutrition: Preferential loading of seeds with essential nutrients over non‐essential toxic elements
  publication-title: Frontiers in Plant Science
– volume: 22
  start-page: 2219
  year: 2010
  end-page: 2236
  article-title: The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots
  publication-title: Plant Cell
– volume: 26
  start-page: 2249
  year: 2014
  end-page: 2264
  article-title: OPT3 is a phloem‐specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis
  publication-title: The Plant Cell
– volume: 9
  start-page: 1
  year: 2014
  end-page: 18
  article-title: WRKY transcription factors: Jack of many trades in plants
  publication-title: Plant Signaling & Behavior
– volume: 57
  start-page: 400
  year: 2009
  end-page: 412
  article-title: Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis
  publication-title: Plant Journal
– volume: 11
  start-page: 87
  year: 2011
  article-title: Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana
  publication-title: BMC Plant Biology
– volume: 24
  start-page: 2380
  year: 2012
  end-page: 2400
  article-title: Nicotianamine functions in the phloem‐based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis
  publication-title: The Plant Cell
– volume: 223
  start-page: 1178
  year: 2006
  end-page: 1190
  article-title: Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper
  publication-title: Planta
– volume: 24
  start-page: 738
  year: 2012
  end-page: 761
  article-title: Transcriptome sequencing identifies SPL7‐regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis
  publication-title: The Plant Cell
– volume: 7
  start-page: 1455
  year: 2014
  end-page: 1469
  article-title: OPT3 is a component of the iron‐signaling network between leaves and roots and misregulation of OPT3 leads to an over‐accumulation of cadmium in seeds
  publication-title: Molecular Plant
– volume: 26
  start-page: 1294
  year: 2014
  end-page: 1307
  article-title: SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON‐REGULATED TRANSPORTER1
  publication-title: The Plant Cell
– volume: 70
  start-page: 783
  year: 2012
  end-page: 795
  article-title: Feedback inhibition by thiols outranks glutathione depletion: A luciferase‐based screen reveals glutathione‐deficient γ‐ECS and glutathione synthetase mutants impaired in cadmium‐induced sulfate assimilation
  publication-title: Plant Journal
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 1823
  start-page: 1521
  year: 2012
  end-page: 1530
  article-title: Getting a sense for signals: Regulation of the plant iron deficiency response
  publication-title: Biochimica et Biophysica Acta
– volume: 49
  start-page: 462
  year: 2011
  end-page: 470
  article-title: A hitchhiker's guide to the Arabidopsis ferrome
  publication-title: Plant physiology and biochemistry : PPB / Société française de physiologie végétale
– volume: 167
  start-page: 273
  year: 2015
  end-page: 286
  article-title: Iron‐binding E3 ligase mediates iron response in plants by targeting basic helix‐loop‐helix transcription factors
  publication-title: Plant Physiology
– volume: 9
  start-page: 876
  year: 2017
  end-page: 890
  article-title: BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana
  publication-title: Metallomics
– volume: 2
  start-page: 1
  year: 2007
  end-page: 12
  article-title: An “electronic fluorescent pictograph” browser for exploring and analyzing large‐scale biological data sets
  publication-title: PLoS One
– volume: 146
  start-page: 1964
  year: 2008
  end-page: 1973
  article-title: Iron‐induced turnover of the Arabidopsis IRON‐REGULATED TRANSPORTER1 metal transporter requires lysine residues
  publication-title: Plant Physiology
– volume: 8
  start-page: 622
  year: 2014
  end-page: 632
  article-title: A genome‐scale resource for the functional characterization of Arabidopsis transcription factors
  publication-title: Cell Reports
– volume: 4
  start-page: 276
  year: 2013
  article-title: The transcriptional response of Arabidopsis leaves to Fe deficiency
  publication-title: Frontiers in Plant Science
– volume: 24
  start-page: 3921
  year: 2012
  end-page: 3948
  article-title: Systems and ‐system level analysis identifies conserved iron deficiency responses in the plant lineage
  publication-title: The Plant Cell
– volume: 132
  start-page: 796
  year: 2003
  end-page: 804
  article-title: Dual regulation of the Arabidopsis high‐affinity root iron uptake system by local and long‐distance signals
  publication-title: Plant Physiology
– start-page: 9
  issue: 11
  year: 2013
  article-title: MYB10 and MYB72 are required for growth under iron‐limiting conditions
  publication-title: PLoS Genetics
– volume: 72
  start-page: 353
  year: 2007
  end-page: 363
  article-title: The DIURNAL project: DIURNAL and circadian expression profiling, model‐based pattern matching, and promoter analysis
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– volume: 4
  start-page: 464
  year: 2011
  end-page: 476
  article-title: Transporters contributing to iron trafficking in plants
  publication-title: Molecular Plant
– volume: 171
  start-page: 675
  year: 2016
  end-page: 693
  article-title: The pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron‐deficient conditions
  publication-title: Plant Physiology
– volume: 1
  start-page: 185
  year: 2016
  end-page: 196
  article-title: Purification of translating ribosomes and associated mRNAs from soybean ( )
  publication-title: Current Protocols in Plant Biology
– volume: 14
  start-page: R36
  year: 2013
  article-title: TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
  publication-title: Genome Biology
– volume: 150
  start-page: 257
  year: 2009
  end-page: 271
  article-title: The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses
  publication-title: Plant Physiology
– volume: 106
  start-page: 18843
  year: 2009
  end-page: 18848
  article-title: Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 39
  start-page: 403
  year: 2004
  end-page: 414
  article-title: Arabidopsis yellow stripe‐like2 (YSL2): A metal‐regulated gene encoding a plasma membrane transporter of nicotianamine‐metal complexes
  publication-title: Plant Journal
– volume: 14
  start-page: 7617
  year: 2013
  end-page: 7641
  article-title: Plant core environmental stress response genes are systemically coordinated during abiotic stresses
  publication-title: International Journal of Molecular Sciences
– volume: 226
  start-page: 897
  year: 2007
  end-page: 908
  article-title: Iron deficiency‐mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana
  publication-title: Planta
– volume: 199
  start-page: 639
  year: 2013
  end-page: 649
  article-title: APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs
  publication-title: New Phytologist
– volume: 26
  start-page: 139
  year: 2009
  end-page: 140
  article-title: edgeR: A bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 24
  start-page: 4041
  year: 2005
  end-page: 4051
  article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron
  publication-title: The EMBO Journal
– volume: 10
  start-page: 835
  year: 1996
  end-page: 844
  article-title: Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency
  publication-title: Plant Journal
– volume: 5
  year: 2016
  article-title: PCH1 integrates circadian and light‐signaling pathways to control photoperiod‐responsive growth in Arabidopsis
  publication-title: eLife
– volume: 20
  start-page: 124
  year: 2015
  end-page: 133
  article-title: Molecular mechanisms governing Arabidopsis iron uptake
  publication-title: Trends in Plant Science
– volume: 6
  start-page: 1669
  year: 2011
  end-page: 1671
  article-title: Transcriptome analysis of ein3 eil1 mutants in response to iron deficiency
  publication-title: Plant Signaling & Behavior
– volume: 5
  start-page: 27
  year: 2012
  end-page: 42
  article-title: Fitting into the harsh reality: Regulation of iron‐deficiency responses in dicotyledonous plants
  publication-title: Molecular Plant
– volume: 8
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements
  publication-title: Journal of Visualized Experiments
– volume: 146
  start-page: 589
  year: 2008
  end-page: 601
  article-title: The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds
  publication-title: Plant Physiology
– volume: 237
  start-page: 65
  year: 2013
  end-page: 75
  article-title: Shoot to root communication is necessary to control the expression of iron‐acquisition genes in Strategy I plants
  publication-title: Planta
– year: 2015
– ident: e_1_2_7_3_1
  doi: 10.4161/psb.6.11.17847
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1365-313X.2008.03698.x
– ident: e_1_2_7_28_1
  doi: 10.1007/s00425-005-0165-0
– ident: e_1_2_7_14_1
  doi: 10.1016/j.bbamcr.2012.03.010
– ident: e_1_2_7_17_1
  doi: 10.1105/tpc.113.116244
– ident: e_1_2_7_41_1
  doi: 10.1104/pp.107.108183
– ident: e_1_2_7_43_1
  doi: 10.1105/tpc.112.102491
– ident: e_1_2_7_15_1
  doi: 10.7554/eLife.13292
– ident: e_1_2_7_22_1
  doi: 10.1104/pp.109.136374
– ident: e_1_2_7_24_1
  doi: 10.1111/nph.12291
– ident: e_1_2_7_26_1
  doi: 10.1093/mp/ssu067
– ident: e_1_2_7_7_1
  doi: 10.1002/cppb.20011
– ident: e_1_2_7_38_1
  doi: 10.1186/1471-2229-11-87
– ident: e_1_2_7_27_1
  doi: 10.1101/sqb.2007.72.006
– ident: e_1_2_7_44_1
  doi: 10.1104/pp.102.016089
– ident: e_1_2_7_34_1
  doi: 10.1007/978-1-4939-2444-8_9
– ident: e_1_2_7_19_1
  doi: 10.1104/pp.107.113282
– ident: e_1_2_7_5_1
  doi: 10.1105/tpc.111.090431
– ident: e_1_2_7_25_1
  doi: 10.1105/tpc.110.074096
– volume: 8
  start-page: 1
  year: 2016
  ident: e_1_2_7_30_1
  article-title: Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements
  publication-title: Journal of Visualized Experiments
  contributor:
    fullname: Nguyen N. T.
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.0906131106
– start-page: 9
  issue: 11
  year: 2013
  ident: e_1_2_7_31_1
  article-title: MYB10 and MYB72 are required for growth under iron‐limiting conditions
  publication-title: PLoS Genetics
  contributor:
    fullname: Palmer C. M.
– ident: e_1_2_7_35_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_7_40_1
  doi: 10.1104/pp.114.250837
– ident: e_1_2_7_48_1
  doi: 10.1046/j.1365-313X.1996.10050835.x
– ident: e_1_2_7_13_1
  doi: 10.1039/C7MT00152E
– ident: e_1_2_7_8_1
  doi: 10.1093/mp/ssr015
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-313X.2004.02128.x
– ident: e_1_2_7_12_1
  doi: 10.3390/ijms14047617
– ident: e_1_2_7_4_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_7_16_1
  doi: 10.1093/mp/ssr065
– ident: e_1_2_7_42_1
  doi: 10.1104/pp.15.01537
– ident: e_1_2_7_6_1
  doi: 10.1016/j.tplants.2014.11.004
– ident: e_1_2_7_2_1
  doi: 10.4161/psb.27700
– ident: e_1_2_7_11_1
  doi: 10.1007/s00425-012-1757-0
– ident: e_1_2_7_37_1
  doi: 10.1016/j.plaphy.2010.12.001
– ident: e_1_2_7_10_1
  doi: 10.1105/tpc.111.093179
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1365-313X.2012.04924.x
– ident: e_1_2_7_39_1
  doi: 10.1105/tpc.112.099077
– ident: e_1_2_7_46_1
– ident: e_1_2_7_45_1
  doi: 10.1007/s00425-007-0535-x
– ident: e_1_2_7_32_1
  doi: 10.1016/j.celrep.2014.06.033
– ident: e_1_2_7_36_1
  doi: 10.3389/fpls.2013.00276
– ident: e_1_2_7_20_1
  doi: 10.1016/j.plantsci.2014.01.004
– ident: e_1_2_7_47_1
  doi: 10.1371/journal.pone.0000718
– ident: e_1_2_7_49_1
  doi: 10.1105/tpc.114.123737
– ident: e_1_2_7_21_1
  doi: 10.1186/gb-2013-14-4-r36
– ident: e_1_2_7_23_1
  doi: 10.1038/sj.emboj.7600864
SSID ssj0001479
Score 2.5326085
Snippet The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in...
Abstract The OLIGOPEPTIDE TRANSPORTER 3 (OPT3) has recently been identified as a component of the systemic network mediating iron (Fe) deficiency responses in...
SourceID osti
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2263
SubjectTerms Arabidopsis
Arabidopsis - anatomy & histology
Arabidopsis - metabolism
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
Deprivation
Gene Expression Regulation, Plant
Gene Regulatory Networks
Homeostasis
Iron
Iron - metabolism
Iron deficiency
iron deficiency response
iron overload
iron transcriptomics
iron translocation
Leaves
Localization
long‐distance signaling
Membrane Transport Proteins - metabolism
Membrane Transport Proteins - physiology
Nutrient deficiency
Phloem - anatomy & histology
Phloem - metabolism
Plant Leaves - anatomy & histology
Plant Leaves - metabolism
Plant Roots - anatomy & histology
Plant Roots - metabolism
Plant tissues
Relaying
Roots
Transcription
Xylem
Xylem - anatomy & histology
Xylem - metabolism
Title Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13192
https://www.ncbi.nlm.nih.gov/pubmed/29520929
https://www.proquest.com/docview/2110229219
https://search.proquest.com/docview/2012915109
https://www.osti.gov/biblio/1454889
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF2CSaGXNk2_3KRlW3roRcYrrSUvOaVpQii0lJJCDgUx-wWmRhKWHHB-Un5lZnYltyktlN4s79geSzOzb6S3bxl7K7VRQlpIlNYmkUWuEw3FNAFlnEkLYSDssfTpc37-TX68nF3usKNhLUzUh9jecKPMCPWaEhx0-0uSN8ZNBAYQ1V-RFUTn-vD1p3SUkFFnj-iLRaFErypELJ7tJ-_MRaMac-pPOPMubA3zztlD9n3wONJNfkzWnZ6Y69_EHP_zL-2xBz0e5ccxgB6xHVfts3txh8rNPtt9XyN63DxmN3EZQssXFaeVcRyuYLGMIt8bevN4hQe2btpFy2Hl-AqahV1ueIt9srNkgVCTLx143rNf6dkFhwrHsCRh5bXBFqdSsrIt72peN4FU5nhHU-pQ4NDfnlYW3EHrK3SMvgnbgK59wi7OTi9OzpN-n4fESMQXSWGwD7c-mykPDjGHU0ZnFqSyBvFepvO5tBKHRZ4a54UzSkpPuyF641JpsqdsVNWVe854bueZNzADrzx2qgWAc6kVqbDFDKbgx-zNcMHLJqp5lEMXhCe_DCd_zA4oFEqEIKSja4hwZDrskbC5m6sxOxwipOzTvS2pi05ThdV_zF5vhzFR6ekLVK5eow3d8kN8NUWbZzGytj6kithIKY68C_Hxd-fKLyen4cWLfzc9YPfxx6OKrzhko261di8RSnX6VciZW-jLHT0
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VAQQXHoVCaIEFceDiKGtv7KzEpZRWAdoKoSD1gqzxPqSIyLZip1L4SfxKZnbtQBFIiFuSnURjZx7frGe_YeylLLQS0kCkikJHMkuLqIBsHIHSVseZ0OBnLJ2dp7PP8v3F5GKHve7PwgR-iO2GG3mGj9fk4LQh_YuX19qOBFoQBuBr6O4JDW54--kneZSQgWmPGhizTImOV4j6eLZfvZKNBhV61Z-Q5lXg6jPPyR32pdc5NJx8Ha3bYqS__Ubn-L8XdZfd7iApPww2dI_t2HKX3QhDKje77PqbCgHk5j77Hk4iNHxRcjocx-ESFsvA872hDw9X-MZUdbNoOKwsX0G9MMsNb7BUtoYkEG3ypQXHuwZYenzBocQ1jEoYfI2XxWxKUqbhbcWr2veVWd5SVu1jHOrbdZZ5dVD6EhWjX8JKoG0esPnJ8fxoFnWjHiItEWJEmcZS3LhkohxYhB1W6SIxIJXRCPmSIp1KI3FZpLG2TlitpHQ0ENFpG0ud7LFBWZX2EeOpmSZOwwScclisZgDWxkbEwmQTGIMbshf9P57XgdAj7wshvPm5v_lDtk-2kCMKISpdTT1HusUyCeu7qRqyg95E8s7jm5wK6ThWmACG7Pl2GX2VHsBAaas1ytCuH0KsMco8DKa11SFW1JAU48orbyB_Vy7_eHTsXzz-d9Fn7OZsfnaan747_7DPbqEigdRXHLBBu1rbJ4is2uKpd6Afj2QhVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq5SEuFMpraQGDOHDJap14k7U4taWr8qoqVKQekKKJH9KKVRJtspWWn8SvZMZOlrYCCXFL4kk0SWbG39jjz4y9loVWQhqIVFHoSGZpERWQjSNQ2uo4Exr8HkufT9Ljr_LD-eR8i73t18IEfojNgBt5ho_X5OC1cZecvNZ2JNCAMP7ekCkiX0JEX35zRwkZiPaofjHLlOhohaiMZ3Prlc5oUKFT_QloXsWtvuOZbbNvvcqh3uT7aNUWI_3jGpvjf77TPXa3A6R8P1jQfbZlyx12K2xRud5hNw8qhI_rB-xnWIfQ8HnJaWkchwuYLwLL95ou7i_xxFR1M284LC1fQj03izVvMFG2hiQQa_KFBce78leavOBQYhvGJAy9xstiX0pSpuFtxavaV5VZ3lKf2kc41LerK_PqoPQFKkZPwjygbR6ys9nR2eFx1G30EGmJACPKNCbixiUT5cAi6LBKF4kBqYxGwJcU6VQaic0ijbV1wmolpaPtEJ22sdTJIzYoq9I-YTw108RpmIBTDlPVDMDa2IhYmGwCY3BD9qr_4Xkd6DzyPg3Cj5_7jz9ku2QKOWIQItLVVHGkW0ySMLubqiHb6y0k7_y9ySmNjmOF4X_IXm6a0VNp-gVKW61Qhsb8EGCNUeZxsKyNDrGicqQYW954-_i7cvnp4ZE_ePrvoi_Y7dN3s_zT-5OPu-wO6hEYfcUeG7TLlX2GsKotnnv3-QUeEiAE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+iron+availability+in+Arabidopsis+are+rapidly+sensed+in+the+leaf+vasculature+and+impaired+sensing+leads+to+opposite+transcriptional+programs+in+leaves+and+roots&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Khan%2C+Mather+A&rft.au=Norma+A+Castro%E2%80%90Guerrero&rft.au=McInturf%2C+Samuel+A&rft.au=Nguyen%2C+Nga+T&rft.date=2018-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=41&rft.issue=10&rft.spage=2263&rft.epage=2276&rft_id=info:doi/10.1111%2Fpce.13192&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon