Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals

The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructu...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 24; no. 15; pp. 1926 - 1945
Main Authors Wang, Yan, Li, Quan
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 17.04.2012
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes. The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent such a striking example. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric LC systems and their consequent applications.
AbstractList The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes. The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent such a striking example. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric LC systems and their consequent applications.
The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystals that are capable of self-organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light-driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes. The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystals that are capable of self-organizing into optically tunable helical superstructures undoubtedly represent such a striking example. In this review, we focus on different classes of light-driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric LC systems and their consequent applications.
The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystals that are capable of self-organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light-driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes.
The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystals that are capable of self-organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light-driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes.The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystals that are capable of self-organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light-driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes.
Author Li, Quan
Wang, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Liquid Crystal Institute and Chemical Physics, Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
– sequence: 2
  givenname: Quan
  surname: Li
  fullname: Li, Quan
  email: qli1@kent.edu
  organization: Liquid Crystal Institute and Chemical Physics, Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22411073$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQRi3Uim4LV44oN7hkmYntJD6usqUFpeVAEdys2cRmDdmktR3K_vum2rKqkAqn0Yzem5HmO2YH_dAbxl4hzBEge0fthuYZYDY1Ap-xGcoMUwFKHrAZKC5TlYvyiB2H8AMAVA75c3aUTSxCwWesqt33dUyX3v0yfVKtnacuuRg604wd-eTzrYvN2oRk8NM0Dj4krk9qdzO6Nqn8NkTqwgt2aKdiXj7UE_bl_elVdZ7Wn84-VIs6bUSJmFrMrShlC5JyUCUBcFEIJWxpSGKTc0IklMqiXdGKWmksSWUKbgU0VHJ-wt7s9l774WY0IeqNC43pOurNMAatFOdYyCybyLf_JDGfXgZSoZrQ1w_ouNqYVl97tyG_1X9eNAHzHdD4IQRv7B5B0PcZ6PsM9D6DSRB_CY2LFN3QR0-ue1pTO-3WdWb7nyN6sbxYPHbTnetCNL_3LvmfOi94IfXXyzMtsuVH-JZd6ZrfAfynqDw
CitedBy_id crossref_primary_10_1021_jacs_4c07848
crossref_primary_10_1002_adma_201704941
crossref_primary_10_1002_ange_202107992
crossref_primary_10_1002_smll_201502605
crossref_primary_10_1039_c3nr06623a
crossref_primary_10_1002_adma_201300798
crossref_primary_10_1063_5_0215262
crossref_primary_10_1016_j_reactfunctpolym_2020_104549
crossref_primary_10_1002_poc_3858
crossref_primary_10_1038_s41467_017_00122_5
crossref_primary_10_1039_C5PY01301A
crossref_primary_10_1142_S0219633618500232
crossref_primary_10_1002_anie_201908832
crossref_primary_10_1002_adma_202401912
crossref_primary_10_1002_chem_201405940
crossref_primary_10_1080_02678292_2013_783937
crossref_primary_10_1002_adom_201900393
crossref_primary_10_1039_c3ra44883e
crossref_primary_10_1080_08927022_2014_918974
crossref_primary_10_1021_ol3018165
crossref_primary_10_1039_C9SC04489B
crossref_primary_10_1039_C5PY00246J
crossref_primary_10_1039_D1TC00614B
crossref_primary_10_1002_pola_26350
crossref_primary_10_1002_cplu_202300700
crossref_primary_10_1002_marc_201500177
crossref_primary_10_1246_cl_160039
crossref_primary_10_1016_j_xcrp_2021_100512
crossref_primary_10_3390_nano7070169
crossref_primary_10_1002_adma_201700676
crossref_primary_10_1002_adom_202000155
crossref_primary_10_1007_s00706_014_1199_4
crossref_primary_10_1002_anie_201814441
crossref_primary_10_1002_ceur_202300069
crossref_primary_10_1021_ja500933h
crossref_primary_10_1002_asia_201800225
crossref_primary_10_1080_02678292_2023_2200266
crossref_primary_10_1039_C4TC01167H
crossref_primary_10_1039_C8CC00770E
crossref_primary_10_1002_poc_3716
crossref_primary_10_1080_15421406_2021_2023396
crossref_primary_10_1002_adfm_201702261
crossref_primary_10_1080_15421406_2019_1581712
crossref_primary_10_1016_j_molliq_2021_118151
crossref_primary_10_1063_5_0140843
crossref_primary_10_1080_15421406_2018_1553744
crossref_primary_10_1002_chem_201303924
crossref_primary_10_1002_ange_202311486
crossref_primary_10_1002_jsid_136
crossref_primary_10_1002_anie_201409399
crossref_primary_10_1002_cptc_202100256
crossref_primary_10_1016_j_nanoen_2016_06_021
crossref_primary_10_1002_smo_20230015
crossref_primary_10_1039_D0SC05213B
crossref_primary_10_3390_molecules26237379
crossref_primary_10_1021_acs_joc_8b00654
crossref_primary_10_1002_ange_201410788
crossref_primary_10_1002_chem_201402777
crossref_primary_10_1002_adom_202402310
crossref_primary_10_1016_j_biomaterials_2024_122813
crossref_primary_10_1016_j_apmt_2024_102287
crossref_primary_10_1002_admt_201600102
crossref_primary_10_1039_c3tc31488j
crossref_primary_10_1039_D2CP02859J
crossref_primary_10_1039_C9CC02849H
crossref_primary_10_1021_jacs_8b09622
crossref_primary_10_1002_ange_201409399
crossref_primary_10_1021_ma401731x
crossref_primary_10_1021_ma400302j
crossref_primary_10_1021_acs_macromol_1c00088
crossref_primary_10_1002_chem_201600854
crossref_primary_10_1080_02678292_2021_1975835
crossref_primary_10_1080_02678292_2021_1881834
crossref_primary_10_1002_ange_201505520
crossref_primary_10_1039_C4PY00162A
crossref_primary_10_1016_j_polymer_2016_05_074
crossref_primary_10_1002_anie_202413047
crossref_primary_10_1021_acsami_0c14880
crossref_primary_10_1021_acsami_3c00931
crossref_primary_10_1007_s40242_021_1034_5
crossref_primary_10_1246_bcsj_20180032
crossref_primary_10_1063_5_0044216
crossref_primary_10_1016_j_molliq_2016_10_002
crossref_primary_10_1039_D4TA02010C
crossref_primary_10_1039_D1TC00601K
crossref_primary_10_1002_chem_202404565
crossref_primary_10_1364_OE_21_031324
crossref_primary_10_1080_02678292_2017_1306635
crossref_primary_10_1016_j_mtcomm_2025_111610
crossref_primary_10_1002_chem_201303731
crossref_primary_10_1002_marc_201500136
crossref_primary_10_1016_j_dyepig_2014_07_030
crossref_primary_10_1016_j_giant_2024_100244
crossref_primary_10_1002_adom_201200028
crossref_primary_10_1021_acsnano_1c11057
crossref_primary_10_1002_pi_4726
crossref_primary_10_1080_21680396_2016_1193065
crossref_primary_10_1088_1361_648X_aaea51
crossref_primary_10_3390_molecules28020816
crossref_primary_10_1039_D2CC03629K
crossref_primary_10_1021_jacs_8b06323
crossref_primary_10_1039_C5TA01543J
crossref_primary_10_1039_D3TC01404E
crossref_primary_10_1002_adma_201705865
crossref_primary_10_6023_cjoc202204063
crossref_primary_10_1016_j_matchemphys_2020_123456
crossref_primary_10_1002_chem_201403705
crossref_primary_10_1080_02678292_2016_1185171
crossref_primary_10_1246_bcsj_20190092
crossref_primary_10_1002_ange_202413047
crossref_primary_10_1002_anie_201505520
crossref_primary_10_1021_acsami_5b09676
crossref_primary_10_1515_zkri_2018_2113
crossref_primary_10_1002_adma_201405690
crossref_primary_10_1002_adfm_201707562
crossref_primary_10_1021_acs_chemrev_1c00761
crossref_primary_10_1002_ange_201712781
crossref_primary_10_1080_02678292_2016_1144812
crossref_primary_10_1002_ange_201709136
crossref_primary_10_1073_pnas_1720742115
crossref_primary_10_1002_adom_201900784
crossref_primary_10_1364_OL_39_006490
crossref_primary_10_1038_s41467_021_26700_2
crossref_primary_10_1002_admt_201900454
crossref_primary_10_1002_anie_202216600
crossref_primary_10_1039_C4TC00015C
crossref_primary_10_1038_s41566_022_00957_5
crossref_primary_10_1039_D1DT01963E
crossref_primary_10_1002_adom_201400457
crossref_primary_10_1002_chem_201600095
crossref_primary_10_1021_acs_langmuir_7b03786
crossref_primary_10_1002_adom_201900430
crossref_primary_10_1002_smll_202303728
crossref_primary_10_1021_acsami_7b08661
crossref_primary_10_1039_C7CS00630F
crossref_primary_10_1080_02678292_2018_1530379
crossref_primary_10_1002_adom_202202707
crossref_primary_10_1002_ange_201509479
crossref_primary_10_1021_am405471e
crossref_primary_10_1002_chem_201302564
crossref_primary_10_1039_C5TC00730E
crossref_primary_10_1038_s41566_022_00967_3
crossref_primary_10_1039_D0TC04832A
crossref_primary_10_1002_anie_202016254
crossref_primary_10_1021_acsami_0c19527
crossref_primary_10_1007_s10118_021_2618_8
crossref_primary_10_1002_adma_201801335
crossref_primary_10_1002_adma_201300730
crossref_primary_10_1021_acs_jpcb_7b01886
crossref_primary_10_1002_adma_201706512
crossref_primary_10_1007_s11164_012_0777_5
crossref_primary_10_1002_adfm_201502071
crossref_primary_10_1002_chem_202001696
crossref_primary_10_1080_02678292_2016_1257745
crossref_primary_10_1080_02678292_2019_1614235
crossref_primary_10_6023_cjoc202210020
crossref_primary_10_1021_jacs_9b03231
crossref_primary_10_1002_ange_201814441
crossref_primary_10_1039_C7MH00920H
crossref_primary_10_1039_D0QM00522C
crossref_primary_10_1021_acs_macromol_8b00679
crossref_primary_10_1364_OE_21_021840
crossref_primary_10_1002_anie_202005361
crossref_primary_10_1021_am507499p
crossref_primary_10_1039_C4CE02502D
crossref_primary_10_1002_adom_201500159
crossref_primary_10_1002_advs_201700613
crossref_primary_10_1080_02678292_2015_1025871
crossref_primary_10_1002_adom_202000692
crossref_primary_10_1016_j_pmatsci_2019_03_005
crossref_primary_10_1021_ja302772z
crossref_primary_10_1039_C9CC01678C
crossref_primary_10_1002_adma_201600258
crossref_primary_10_1140_epje_i2013_13097_8
crossref_primary_10_1021_acs_chemrev_9b00288
crossref_primary_10_1002_adma_201905318
crossref_primary_10_1002_adom_201600824
crossref_primary_10_1002_pola_28045
crossref_primary_10_1002_sstr_202100038
crossref_primary_10_1016_j_optmat_2022_112098
crossref_primary_10_1002_ange_201303786
crossref_primary_10_1021_acs_jpcb_5b00209
crossref_primary_10_1021_ma500515s
crossref_primary_10_1021_ar500249k
crossref_primary_10_1080_02678292_2020_1855480
crossref_primary_10_1002_adfm_202107275
crossref_primary_10_1016_j_electacta_2023_142407
crossref_primary_10_1080_02678292_2017_1397212
crossref_primary_10_1002_adom_201500293
crossref_primary_10_1021_jacs_9b13360
crossref_primary_10_1080_02678292_2021_1988739
crossref_primary_10_1007_s12274_016_1245_0
crossref_primary_10_1021_acs_orglett_9b00277
crossref_primary_10_1039_c3tc32179g
crossref_primary_10_1007_s11164_012_0721_8
crossref_primary_10_1002_ange_201305514
crossref_primary_10_1039_C5SM00128E
crossref_primary_10_1039_C4TC01215A
crossref_primary_10_1002_marc_202200915
crossref_primary_10_1021_acsami_5b11888
crossref_primary_10_1002_anie_201306396
crossref_primary_10_1080_21680396_2013_769310
crossref_primary_10_1002_ejoc_202200228
crossref_primary_10_1016_j_apsusc_2015_10_111
crossref_primary_10_1002_adom_202001207
crossref_primary_10_1080_02678292_2017_1330430
crossref_primary_10_1002_chem_201801186
crossref_primary_10_1039_C4DT02812K
crossref_primary_10_1021_acs_jpca_6b09644
crossref_primary_10_1126_sciadv_1600480
crossref_primary_10_1080_15421406_2018_1432128
crossref_primary_10_1002_adma_202411291
crossref_primary_10_1002_anie_201913977
crossref_primary_10_1021_acs_macromol_4c00677
crossref_primary_10_1364_BOE_10_004636
crossref_primary_10_1016_j_talanta_2023_124840
crossref_primary_10_1039_C4TC01851F
crossref_primary_10_1021_acs_chemrev_6b00415
crossref_primary_10_1080_03602559_2014_909467
crossref_primary_10_1039_C4NJ02011A
crossref_primary_10_1002_cplu_202000077
crossref_primary_10_1002_adfm_201907625
crossref_primary_10_1016_j_synthmet_2015_01_019
crossref_primary_10_1002_cphc_201500194
crossref_primary_10_1103_PhysRevE_104_044702
crossref_primary_10_1080_02678292_2018_1550819
crossref_primary_10_1039_C4TC02832E
crossref_primary_10_1002_adom_201700014
crossref_primary_10_1002_ange_201210334
crossref_primary_10_1039_C6TC02443B
crossref_primary_10_1021_acs_langmuir_8b01031
crossref_primary_10_3390_molecules27020562
crossref_primary_10_1039_D1PY01206A
crossref_primary_10_1002_anie_201305514
crossref_primary_10_1016_j_ccr_2016_06_009
crossref_primary_10_1021_acs_langmuir_5b03603
crossref_primary_10_3390_molecules27196716
crossref_primary_10_1002_adom_201400166
crossref_primary_10_1016_j_molliq_2022_120182
crossref_primary_10_1002_cphc_201800106
crossref_primary_10_1002_rpm_20230008
crossref_primary_10_1103_PhysRevE_106_014704
crossref_primary_10_1002_chem_202300993
crossref_primary_10_1039_D0RA03024D
crossref_primary_10_1002_asia_201300154
crossref_primary_10_1002_anie_201404250
crossref_primary_10_1002_cptc_201800250
crossref_primary_10_1002_adfm_201504534
crossref_primary_10_1002_anie_201509479
crossref_primary_10_1039_D0QM00507J
crossref_primary_10_1038_s41467_018_06400_0
crossref_primary_10_1002_adom_201701128
crossref_primary_10_1080_02678292_2020_1769754
crossref_primary_10_1002_pol_20190133
crossref_primary_10_1021_jacs_5b11580
crossref_primary_10_1039_c3cs60385g
crossref_primary_10_1016_j_molliq_2017_01_111
crossref_primary_10_1080_02678292_2024_2361484
crossref_primary_10_1007_s10118_021_2531_1
crossref_primary_10_1039_C2CC38150H
crossref_primary_10_1039_D1TC04803A
crossref_primary_10_1016_j_progpolymsci_2013_08_005
crossref_primary_10_1039_C2TC00098A
crossref_primary_10_1002_ange_202216600
crossref_primary_10_1039_C8SM02434K
crossref_primary_10_1002_adma_201701903
crossref_primary_10_1002_adma_201400811
crossref_primary_10_1002_adma_201806172
crossref_primary_10_1002_ange_202111344
crossref_primary_10_1002_adfm_202007957
crossref_primary_10_1002_cjoc_202300076
crossref_primary_10_1021_acs_orglett_7b01184
crossref_primary_10_1002_adma_201903665
crossref_primary_10_1021_jacs_2c13108
crossref_primary_10_1002_qua_25856
crossref_primary_10_1364_OE_27_011462
crossref_primary_10_1080_15421406_2019_1595670
crossref_primary_10_2147_IJN_S285125
crossref_primary_10_1039_D0SM02109A
crossref_primary_10_1080_02678292_2013_796411
crossref_primary_10_1002_ange_201909739
crossref_primary_10_1039_C7SM02122D
crossref_primary_10_1016_j_cpc_2022_108379
crossref_primary_10_1002_agt2_141
crossref_primary_10_1039_C6RA00065G
crossref_primary_10_1080_02678292_2019_1662106
crossref_primary_10_1021_acsami_3c01103
crossref_primary_10_1109_JDT_2015_2449892
crossref_primary_10_1002_ange_201913977
crossref_primary_10_1002_anie_202111344
crossref_primary_10_1016_j_molliq_2023_121406
crossref_primary_10_1039_c3tc30611a
crossref_primary_10_1002_ange_201404250
crossref_primary_10_1080_02678292_2017_1359691
crossref_primary_10_1002_chem_201905814
crossref_primary_10_1364_OME_7_004163
crossref_primary_10_1039_C6RA12751G
crossref_primary_10_1039_C2CC37161H
crossref_primary_10_1002_open_201900031
crossref_primary_10_1021_prechem_4c00103
crossref_primary_10_1039_D3NR03729K
crossref_primary_10_1016_j_saa_2018_02_018
crossref_primary_10_1002_chem_202102797
crossref_primary_10_1002_marc_202000548
crossref_primary_10_1002_anie_202218767
crossref_primary_10_1039_C9CC08090B
crossref_primary_10_1039_C7SM00935F
crossref_primary_10_1016_j_optlastec_2019_105745
crossref_primary_10_1021_acs_orglett_8b00448
crossref_primary_10_3762_bjoc_21_6
crossref_primary_10_1002_chem_201902767
crossref_primary_10_3390_cryst11020133
crossref_primary_10_1002_admt_202300613
crossref_primary_10_1039_C4TC00649F
crossref_primary_10_1002_adma_202004420
crossref_primary_10_1016_j_dyepig_2024_112341
crossref_primary_10_1080_02678292_2014_929751
crossref_primary_10_1002_cphc_201200729
crossref_primary_10_3762_bjoc_12_212
crossref_primary_10_1016_j_synthmet_2013_11_017
crossref_primary_10_1002_anie_201410788
crossref_primary_10_1002_chem_201402268
crossref_primary_10_1002_adma_201504883
crossref_primary_10_1039_C8RA07657J
crossref_primary_10_1080_02678292_2022_2031326
crossref_primary_10_1080_03602559_2014_974275
crossref_primary_10_1016_j_molstruc_2018_03_093
crossref_primary_10_1080_15421406_2017_1369777
crossref_primary_10_1002_ange_202218767
crossref_primary_10_1364_AO_55_004436
crossref_primary_10_1016_j_molliq_2018_11_088
crossref_primary_10_1039_C4NJ01538J
crossref_primary_10_1039_C4TC01097C
crossref_primary_10_1002_rpm_20250010
crossref_primary_10_1080_02678292_2024_2406881
crossref_primary_10_1002_anie_201909739
crossref_primary_10_1002_ange_201908832
crossref_primary_10_1002_anie_202107992
crossref_primary_10_1002_adom_201500533
crossref_primary_10_1080_02678292_2021_1945694
crossref_primary_10_1039_D2TC04444G
crossref_primary_10_1002_adfm_201603145
crossref_primary_10_1002_chem_202403460
crossref_primary_10_1039_D0SM02283G
crossref_primary_10_1039_D4TC02956A
crossref_primary_10_1038_s41428_023_00805_5
crossref_primary_10_1002_adma_202004754
crossref_primary_10_1002_ange_202016254
crossref_primary_10_1515_zkri_2017_2081
crossref_primary_10_1021_acsami_2c20276
crossref_primary_10_1002_aisy_201900169
crossref_primary_10_1016_j_ces_2020_116386
crossref_primary_10_1002_cplu_201402315
crossref_primary_10_1039_C6TC02557A
crossref_primary_10_1080_02678292_2016_1254826
crossref_primary_10_1002_adma_201502545
crossref_primary_10_1080_02678292_2024_2372601
crossref_primary_10_1002_adom_201800335
crossref_primary_10_1039_C6MH00101G
crossref_primary_10_1002_adom_201800458
crossref_primary_10_1002_ange_201306396
crossref_primary_10_1038_s41557_024_01648_0
crossref_primary_10_1021_acsami_4c12834
crossref_primary_10_1002_anie_202311486
crossref_primary_10_1039_C7MH00644F
crossref_primary_10_1002_adom_201900069
crossref_primary_10_1002_anie_201210334
crossref_primary_10_1080_02678292_2022_2076945
crossref_primary_10_1039_C6CP00603E
crossref_primary_10_1080_02678292_2022_2076942
crossref_primary_10_1002_ange_202005361
crossref_primary_10_1002_marc_201400455
crossref_primary_10_1002_chem_201802927
crossref_primary_10_1002_anie_201712781
crossref_primary_10_1021_acs_jpcc_2c04865
crossref_primary_10_1038_s41570_017_0096
crossref_primary_10_1002_adfm_202414086
crossref_primary_10_1364_OE_24_026382
crossref_primary_10_3762_bjnano_9_37
crossref_primary_10_1002_advs_202002132
crossref_primary_10_1002_anie_201709136
crossref_primary_10_1007_s10118_025_3279_9
crossref_primary_10_3390_ma17030618
crossref_primary_10_1021_acs_jctc_2c00796
crossref_primary_10_1021_acs_joc_0c00852
crossref_primary_10_1002_marc_201700387
crossref_primary_10_3390_polym9070295
crossref_primary_10_1039_C6TC01103A
crossref_primary_10_1002_adma_201807751
crossref_primary_10_1364_OE_27_029055
crossref_primary_10_1002_rpm_20240010
crossref_primary_10_1080_02678292_2014_896053
crossref_primary_10_1002_adma_201902958
crossref_primary_10_1002_anie_201303786
crossref_primary_10_1364_OE_23_022922
crossref_primary_10_1002_adma_201201521
crossref_primary_10_1016_j_ccr_2023_215451
crossref_primary_10_1021_acsami_5b05645
crossref_primary_10_1016_j_optmat_2017_01_047
crossref_primary_10_1038_s41377_024_01391_8
crossref_primary_10_1039_D1NR06036H
Cites_doi 10.1039/c0jm03626a
10.1021/ja802472t
10.1080/02678299408027858
10.1021/ol1014152
10.1021/ja993297d
10.1063/1.122384
10.1002/adma.200401429
10.1039/b801886c
10.1002/adfm.200500127
10.1021/ja00754a068
10.1126/science.1172051
10.1039/b306216n
10.1021/ja8039629
10.1002/chem.200305276
10.1515/zna-1977-0818
10.1080/00268947808070309
10.1021/cr000470b
10.1080/02678290500284017
10.1002/(SICI)1521-4095(200001)12:2<94::AID-ADMA94>3.0.CO;2-T
10.1021/cr980079e
10.1002/chem.200400463
10.1021/jo070394d
10.1021/jp000338f
10.1021/cr9900228
10.1002/adfm.200900396
10.1039/b103925n
10.1002/adfm.200304313
10.1038/440163a
10.1073/pnas.062660699
10.1126/science.273.5282.1686
10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S
10.1021/jo201139t
10.1039/c002436h
10.1021/jo00127a026
10.1246/cl.1987.911
10.1080/02678290050043888
10.1080/02678290412331282118
10.1002/adma.201003577
10.1038/43646
10.1002/3527602054
10.1080/10587250108025365
10.1021/cm0007555
10.1021/cm9907559
10.1021/ja108437n
10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X
10.1246/cl.1999.653
10.1002/anie.198403481
10.1021/cr980069d
10.1002/3527600329
10.1021/ja065334o
10.1515/zna-1980-0607
10.1246/cl.1997.687
10.1039/b910583b
10.1002/1521-4095(200101)13:1<37::AID-ADMA37>3.0.CO;2-K
10.1246/bcsj.73.191
10.1002/cphc.200500007
10.1021/ja00014a057
10.1021/cr980070c
10.1021/ja00444a046
10.1039/B924962C
10.1021/ja01013a050
10.1021/jp112401k
10.1021/cm051404z
10.1021/ja00090a033
10.1039/b211421f
10.1063/1.2789290
10.1080/10587250108025281
10.1002/asia.200600116
10.1889/JSID17.10.869
10.1080/10587250008023933
10.1021/ja0747573
10.1063/1.358518
10.1021/ja00144a027
10.1021/ja9923033
10.1021/ja00130a013
10.1039/b208578j
10.1080/02678290310001599260
10.1039/b608749c
10.1039/b616320c
10.1080/026782998206632
10.1002/(SICI)1521-4095(199810)10:14<1080::AID-ADMA1080>3.0.CO;2-T
10.1038/nphoton.2009.172
10.1039/C0JM03479G
10.1080/02678290110093778
10.1021/cm9901616
10.1039/b009892m
10.1039/c0cc02685a
10.1080/02678290110048750
ContentType Journal Article
Copyright Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201200241
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 1945
ExternalDocumentID 22411073
10_1002_adma_201200241
ADMA201200241
ark_67375_WNG_42DJ0X2T_L
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4811-f16f485d05a6098a00347494f8ea51c63a11a159f1fbabad5efa59e73f40ca833
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 07:02:53 EDT 2025
Fri Jul 11 03:49:32 EDT 2025
Thu Apr 03 07:09:20 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Tue Jul 01 02:26:22 EDT 2025
Wed Jan 22 16:38:04 EST 2025
Wed Oct 30 09:54:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4811-f16f485d05a6098a00347494f8ea51c63a11a159f1fbabad5efa59e73f40ca833
Notes This review is adapted from the forthcoming book Liquid Crystals Beyond Displays: Chemistry, Physics and Applications (Ed: Q. Li), John Wiley & Sons, 2012
ArticleID:ADMA201200241
istex:D1F53DF52B93F176BCCC33DC7A17154AAADFA51F
ark:/67375/WNG-42DJ0X2T-L
(Ed: Q. Li), John Wiley & Sons, 2012
Liquid Crystals Beyond Displays: Chemistry, Physics and Applications
This review is adapted from the forthcoming book
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 22411073
PQID 1620105919
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_993317522
proquest_miscellaneous_1620105919
pubmed_primary_22411073
crossref_primary_10_1002_adma_201200241
crossref_citationtrail_10_1002_adma_201200241
wiley_primary_10_1002_adma_201200241_ADMA201200241
istex_primary_ark_67375_WNG_42DJ0X2T_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 17, 2012
PublicationDateYYYYMMDD 2012-04-17
PublicationDate_xml – month: 04
  year: 2012
  text: April 17, 2012
  day: 17
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2012
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References a) D. Pijper, B. L. Feringa, Soft Matter 2008, 4, 1349-1372
b) S. Kurihara, T. Kanda, T. Nagase, T. Nonaka, Appl. Phys. Lett. 1998, 73, 2081-2083
b) Y. Zhang, G. B. Schuster, J. Am. Chem. Soc. 1994, 116, 4852-4857
b) T. van Leeuwen, T. C. Pijper, J. Areephong, B. L. Feringa, W. R. Browne, N. Katsonis, J. Mater. Chem. 2011, 21, 3142-3146
c) T. Ikeda, J. Mater. Chem. 2003, 13, 2037-2057.
R. Eelkema, B. L. Feringa, Org. Biomol. Chem. 2006, 4, 3729-3745.
a) C. Ruslim, M. Nakagawa, S. Morino, K. Ichimura, Mol. Cryst. Liq. Cryst. 2001, 365, 55-62
a) G. Heppke, F. Oestreicher, Z. Naturforsch. 1977, 32, 899-901
a) M. Moriyama, S. Song, H. Matsuda, N. Tamaoki, J. Mater. Chem. 2001, 11, 1003-1010
C. Ruslim, K. Ichimura, J. Phys. Chem. B 2000, 104, 6529-6535.
b) G. Heppke, F. Oestreicher, Mol. Cryst, Liq. Lett. 1978, 41, 245-249
g) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, J. Mater. Chem. 2001, 11, 2453-2458
E. Sackmann, J. Am. Chem. Soc. 1971, 93, 7088-7090.
Y. Yokoyama, Chem. Rev. 2000, 100, 1717-1739.
M. Irie, Chem. Rev. 2000, 100, 1685-1716.
a) Y. Yokoyama, T. Sagisaka, Chem. Lett. 1997, 687-688
c) N. Tamaoki, S. Song, M. Moriyama, H. Matsuda, Adv. Mater. 2000, 12, 94-97
h) T. van Leeuwen, T. C. Pijper, J. Areephong, B. L. Feringa, W. R. Browne, N. Katsonis, J. Mater. Chem. 2011, 21, 3142-3146.
b) K. Ichimura, Chem. Rev. 2000, 100, 1847-1873
a) R. Eelkema, B. L. Feringa, Chem. Asian J. 2006, 1, 367-369
b) The May 2000 issue of Chem. Rev. (Memories and Switches) 100(5), 6-1890.
b) T. Yoshioka, M. D. Z. Alam, T. Ogata, T. Nonaka, S. Kurihara, Liq. Cryst. 2004, 31, 1285-1291
Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, J. W. Doane, J. Am. Chem. Soc. 2007, 129, 12908-12909.
a) E. Montbath, N. Venkataraman, A. Khan, I. Shiyanovskaya, T. Schneider, J. W. Doane, L. Green, Q. Li, SID Digest Tech. Pap. 2008, 919-922
b) M. Mathews, N. Tamaoki, J. Am. Chem. Soc. 2008, 130, 11409-11416
a) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348-3391
a) J. Lub, W.P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, B. Malo, Liq. Cryst. 2005, 32, 1031-1044
c) B. L. Feringa, W. F. Jager, B. De Lange, E. W. Meijer, J. Am. Chem. Soc. 1991, 113, 5468-5470
S. N. Yarmolenko, L. A. Kutulya, V. V. Vashchenko, L. V. Chepeleva, Liq. Cryst. 1994, 16, 877-882.
M. Mathews, R. Zola, D. Yang, Q. Li, J. Mater. Chem. 2011, 21, 2098-2103.
a) C.-T. Chen, Y.-C. Chou, J. Am. Chem. Soc. 2000, 122, 7662-7672
a) R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. Serrano Ramon, C. W. M. Bastiaansen, D. J. Broer, B. L. Feringa, Nature 2006, 440, 163-163
a) C. Ruslim, K. Ichimura, Adv. Mater. 2001, 13, 37-40
b) G. P. Spada, G. Proni, Enantiomer 1998, 3, 301-314
d) K. S. Burnham, G. B. Schuster, J. Am. Chem. Soc. 1999, 121, 10245-10246.
K. L. Stevenson, J. F. Verdieck, J. Am. Chem. Soc. 1968, 90, 2974-2975.
F. L. Carter, H. Siatkowski, H. Wohltgen, in Molecular Electronic Devices, Elsevier, Amsterdam, 1988.
a) M. Suarez, G. B. Schuster, J. Am. Chem. Soc. 1995, 117, 6732-6738
a) B. L. Feringa, in Molecular Switches, WILEY-VCH, Germany, 2001
b) Y. Yokoyama, S. Uchida, Y. Yokoyama, T. Sagisaka, Y. Uchida, T. Inada, Enantiomer 1998, 3, 123-132
a) B. L. Feringa, H. Wynberg, J. Am. Chem. Soc. 1977, 602-603
e) S. Pieraccini, G. Gottarelli, R. Labruto, S. Masiero, O. Pandoli, G. P. Spada, Chem. Eur. J. 2004, 10, 5632-5639.
Y. Li, A. Urbas, Q. Li, J. Org. Chem. 2011, 76, 7148-7156.
T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, Adv. Funct. Mater. 2009, 19, 3484-3488.
b) J. Lub, W. P. M. Nijssen, R. T. Wegh, J. P. A. Vogels, A. Ferrer, Adv. Funct. Mater. 2005, 15, 1961-1972.
f) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Mol. Cryst. Liq. Cryst. 2000, 345, 287-292
b) R. A. van Delden, T. Mecca, C. Rosini, B. L. Feringa, Chem. Eur. J. 2004, 10, 61-70
a) D.-K. Yang, J. W. Doane, SID Intl. Sump. Digest Tech. Papers 1992, 23, 759-761
B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema, Chem. Rev. 2000, 100, 1789-1816.
d) S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J.-P. Guillou, N. A. Usova, Liq. Cryst. 2002, 29, 19-26.
d) N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa, Nature 1999, 401, 152-155.
d) T. Ikeda, J. Mater. Chem. 2003, 13, 2037-2057.
a) R. A. van Delden, M. B. van Gelder, N. P. M. Huc, B. L. Feringa, Adv. Funct. Mater. 2003, 13, 319-324
H. Hattori, T. Uryu, Liq. Cryst. 2001, 28, 1099-1104.
b) R. A. van Delden, N. Koumura, N. Harada, B. L. Feringa, Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4945-4949.
b) R. Eelkema, M. M. Pollard, N. Katsonis, J. Vicario, D. J. Broer, B. L. Feringa, J. Am. Chem. Soc. 2006, 128, 14397-14407.
c) S. Pieraccini, S. Masiero, A. Ferrarini, G. P. Spada, Chem. Soc. Rev. 2011, 40, 258-271
a) S. Kinoshita, S. Yoshioka, ChemPhysChem 2005, 6, 1442-1459
c) T. Sagisaka, Y. Yokoyama, Bull. Chem. Soc. Jpn. 2000, 73, 191-196.
c) Y. Zhang, G. B. Schuster, J. Org. Chem. 1995, 60, 7192-7197
b) B. L. Feringa, N. P. M. Huck, H. A. V. Doren, J. Am. Chem. Soc. 1995, 117, 9929-9930
b) T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. kosa, B. Taheri, T. J. Bunning, Adv. Mater. 2011, 23, 1389-1392.
c) M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, Q. Li, J. Am. Chem. Soc. 2010, 132, 18361-18366.
S. Tazuke, S. Kurihara, T. Ikeda, Chem. Lett. 1987, 911-914.
b) S. Bertheier, in Iridescences: The Physical Color of Insects, Springer, New York, 2007
c) G. Proni, G. P. Spada, Enantiomer 2001, 6, 171-179.
J. Chen, S. M. Morris, T. D. Wilkinson, H. J. Coles, Appl. Phys. Lett. 2007, 91, 121118.
a) M. Kawamoto, T. Aoki, T. Wada, Chem. Commun. 2007, 930-932
d) I. Dierking, in Textures of Liquid Crystals, Wiley-VCH, Weinheim, 2003.
K. Rameshbabu, A. Urbas, Q. Li, J. Phys. Chem. B 2011, 115, 3409-3415.
b) N. Venkataraman, G. Magyar, E. Montbath, A. Khan, T. Schneider, J. W. Doane, L. Green, Q. Li, J. Soc. Information Display 2009, 17, 869-873.
P. M. A. Bonaccorsi, D. A. Dunmur, J. F. Stoddart, New J. Chem. 1988, 12, 83-85.
d) S. Kurihara, S. Nomiyama, T. Nonaka, Chem. Mater. 2001, 13, 1992-1997
d) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Chem. Mater. 2000, 12, 869-871
T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S.-N. Kim, S. Kurihara, Adv. Mater. 2005, 17, 1226-1229.
c) D. Graham-Rowe, Nat. Photonics 2009, 3, 551-553
M. Kawamoto, N. Shiga, K. Takashi, T. Yamashita, Chem. Commun. 2010, 46, 8344-8346.
b) J. Lub, A. Ferrer, C. Larossa, B. Malo, Liq. Cryst. 2003, 30, 1207-1218.
c) P. R. Gerber, Z. Naturforsch. 1980, 35, 619-622
a) C. Denekamp, B. L. Feringa, Adv. Mater. 1998, 10, 1080-1082
b) N. Tamaoki, Adv. Mater. 2001, 13, 1135-1147
b) D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, J. Appl. Phys. 1994, 76, 1331-1333.
N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, Science 1996, 273, 1686-1688.
a) G. Solladié, R. G. Zimmermann, Angew. Chem. Int. Ed. 1984, 23, 348-362
K. Ichimura, in Photochromism: Molecules and Systems, (Eds. H. Dürr H. Bouas-Laurent), Elsevier: Amsterdam, 1990.
Q. Li, L. Li, J. Kim, H.-K. Park, J. Williams, Chem. Mater. 2005, 17, 6018-6021.
L.-M. Jin, Y. Li, J. Ma, Q. Li, Org. Lett. 2010, 12, 3552-3555.
b) C. Ruslim, K. Ichimura, J. Mater. Chem. 2002, 12, 3377-3379.
B. L. Feringa, J. Org. Chem. 2007, 72, 6635-6652.
c) J. Ma, Y. Li, T. White, A. Urbas, Q. Li, Chem. Commun. 2010, 46, 3463-3465.
d) V. Sharma, M. Crne, J. Park, M. Srinivasarao, Science 2009, 325, 449-451.
c) T. Yamaguchi, H. Nakazumi, K. Uchida, M. Irie, Chem. Lett. 1999, 653-654
L. Green, Y. Li, T. White, A. Urbas, T. Bunning, Q. Li, Org. Biomol. Chem. 2009, 7, 3930-3933.
a) S. Pieraccini, S. Masiero, G. P. Spada, G. Gottarelli, Chem. Commun. 2003, 598-599
E. Mena, P. V. D. Witte, J. Lub, Liq. Cryst. 2000, 27, 929-933.
b) A. Bosco, M. G. M. Jongejan, R. Eelkema, N. Katsonis, E. Lacaze, A. Ferrarini, B. L. Feringa, J. Am. Chem. Soc. 2008, 130, 14615-14624.
e) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Mol. Cryst. Liq. Cryst. 2001, 365, 861-866
c) S. Kurihara, S. Nomiyama, T. Nonaka, Chem. Mater. 2000, 12, 9-12
a) P. V. D. Witte, J. C. Galan, J. Lub, Liq. Cryst. 1998, 24, 819-827
2010; 12
2011; 115
2007; 129
2000; 27
1977 1978 1980 2003; 32 41 35
2005 2007 2009 2009; 6 3 325
2007; 91
1988; 12
2008 2000 2003; 4 100 13
2011; 76
1995 1994 1995 1999; 117 116 60 121
2007; 72
2006; 4
2006 2006; 440 128
2003 2004 2010; 10 46
2001; 28
1984 1998 2001; 23 3 6
2001 2004 2000 2001 2004; 365 31 12 13 10
2006 2008; 1 130
2005 2005; 32 15
1977 1995 1991 1999; 117 113 401
2001 2001 2011 2003; 13 40 13
2003 2002; 13 99
1971; 93
1992 1994; 23 76
2010; 46
1990
2007 2008 2010; 130 132
2000; 104
2000 2011; 122 23
2001 2002; 13 12
2000; 39 100
1987
2011; 21
1997 1998 2000; 3 73
2009; 7
1994; 16
1968; 90
1998 2003; 24 30
2000; 100
1998 2011 1999 2000 2001 2000 2001 2011; 10 21 12 365 345 11 21
1996; 273
2009; 19
2005; 17
2001 1998 2000 2002; 11 73 12 29
1988
2008 2009; 17
e_1_2_6_30_2
e_1_2_6_15_5
e_1_2_6_15_6
e_1_2_6_19_2
e_1_2_6_11_3
e_1_2_6_11_4
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_15_3
e_1_2_6_15_4
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_41_2
e_1_2_6_5_5
e_1_2_6_5_4
e_1_2_6_1_5
e_1_2_6_1_4
e_1_2_6_5_3
e_1_2_6_5_2
e_1_2_6_22_3
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_45_3
e_1_2_6_50_2
e_1_2_6_50_3
Yokoyama Y. (e_1_2_6_43_3) 1998; 3
e_1_2_6_50_4
Carter F. L. (e_1_2_6_9_2) 1988
e_1_2_6_50_5
e_1_2_6_31_2
Montbath E. (e_1_2_6_22_2) 2008
e_1_2_6_35_9
e_1_2_6_16_4
e_1_2_6_35_8
e_1_2_6_35_7
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_12_3
e_1_2_6_16_2
e_1_2_6_35_6
e_1_2_6_39_2
e_1_2_6_16_3
e_1_2_6_35_5
e_1_2_6_12_4
e_1_2_6_35_4
e_1_2_6_12_5
e_1_2_6_35_3
e_1_2_6_42_2
e_1_2_6_27_4
e_1_2_6_6_2
Bonaccorsi P. M. A. (e_1_2_6_29_2) 1988; 12
e_1_2_6_23_3
e_1_2_6_46_3
e_1_2_6_2_2
e_1_2_6_27_3
e_1_2_6_27_2
e_1_2_6_46_2
Ichimura K. (e_1_2_6_3_2) 1990
e_1_2_6_13_2
e_1_2_6_32_3
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_7_3
e_1_2_6_7_2
e_1_2_6_7_5
e_1_2_6_7_4
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_47_3
e_1_2_6_20_3
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_43_4
Yang D.‐K. (e_1_2_6_23_2) 1992; 23
Bertheier S. (e_1_2_6_1_3) 2007
e_1_2_6_18_2
e_1_2_6_18_3
e_1_2_6_33_3
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_14_2
e_1_2_6_37_2
Proni G. (e_1_2_6_6_4) 2001; 6
(e_1_2_6_8_3); 100
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_4_2
Spada G. P. (e_1_2_6_6_3) 1998; 3
e_1_2_6_44_5
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_44_2
e_1_2_6_44_3
e_1_2_6_25_2
e_1_2_6_44_4
References_xml – reference: a) M. Moriyama, S. Song, H. Matsuda, N. Tamaoki, J. Mater. Chem. 2001, 11, 1003-1010;
– reference: Y. Li, A. Urbas, Q. Li, J. Org. Chem. 2011, 76, 7148-7156.
– reference: a) G. Heppke, F. Oestreicher, Z. Naturforsch. 1977, 32, 899-901;
– reference: g) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, J. Mater. Chem. 2001, 11, 2453-2458;
– reference: L.-M. Jin, Y. Li, J. Ma, Q. Li, Org. Lett. 2010, 12, 3552-3555.
– reference: c) T. Sagisaka, Y. Yokoyama, Bull. Chem. Soc. Jpn. 2000, 73, 191-196.
– reference: E. Mena, P. V. D. Witte, J. Lub, Liq. Cryst. 2000, 27, 929-933.
– reference: P. M. A. Bonaccorsi, D. A. Dunmur, J. F. Stoddart, New J. Chem. 1988, 12, 83-85.
– reference: d) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Chem. Mater. 2000, 12, 869-871;
– reference: b) Y. Zhang, G. B. Schuster, J. Am. Chem. Soc. 1994, 116, 4852-4857;
– reference: c) B. L. Feringa, W. F. Jager, B. De Lange, E. W. Meijer, J. Am. Chem. Soc. 1991, 113, 5468-5470;
– reference: a) D. Pijper, B. L. Feringa, Soft Matter 2008, 4, 1349-1372;
– reference: a) S. Pieraccini, S. Masiero, G. P. Spada, G. Gottarelli, Chem. Commun. 2003, 598-599;
– reference: d) K. S. Burnham, G. B. Schuster, J. Am. Chem. Soc. 1999, 121, 10245-10246.
– reference: E. Sackmann, J. Am. Chem. Soc. 1971, 93, 7088-7090.
– reference: a) Y. Yokoyama, T. Sagisaka, Chem. Lett. 1997, 687-688;
– reference: c) D. Graham-Rowe, Nat. Photonics 2009, 3, 551-553;
– reference: b) C. Ruslim, K. Ichimura, J. Mater. Chem. 2002, 12, 3377-3379.
– reference: M. Irie, Chem. Rev. 2000, 100, 1685-1716.
– reference: b) Y. Yokoyama, S. Uchida, Y. Yokoyama, T. Sagisaka, Y. Uchida, T. Inada, Enantiomer 1998, 3, 123-132;
– reference: Q. Li, L. Li, J. Kim, H.-K. Park, J. Williams, Chem. Mater. 2005, 17, 6018-6021.
– reference: b) A. Bosco, M. G. M. Jongejan, R. Eelkema, N. Katsonis, E. Lacaze, A. Ferrarini, B. L. Feringa, J. Am. Chem. Soc. 2008, 130, 14615-14624.
– reference: a) M. Kawamoto, T. Aoki, T. Wada, Chem. Commun. 2007, 930-932;
– reference: b) The May 2000 issue of Chem. Rev. (Memories and Switches) 100(5), 6-1890.
– reference: S. Tazuke, S. Kurihara, T. Ikeda, Chem. Lett. 1987, 911-914.
– reference: e) S. Pieraccini, G. Gottarelli, R. Labruto, S. Masiero, O. Pandoli, G. P. Spada, Chem. Eur. J. 2004, 10, 5632-5639.
– reference: d) S. Kurihara, S. Nomiyama, T. Nonaka, Chem. Mater. 2001, 13, 1992-1997;
– reference: a) B. L. Feringa, in Molecular Switches, WILEY-VCH, Germany, 2001;
– reference: b) J. Lub, W. P. M. Nijssen, R. T. Wegh, J. P. A. Vogels, A. Ferrer, Adv. Funct. Mater. 2005, 15, 1961-1972.
– reference: b) N. Venkataraman, G. Magyar, E. Montbath, A. Khan, T. Schneider, J. W. Doane, L. Green, Q. Li, J. Soc. Information Display 2009, 17, 869-873.
– reference: a) R. A. van Delden, M. B. van Gelder, N. P. M. Huc, B. L. Feringa, Adv. Funct. Mater. 2003, 13, 319-324;
– reference: S. N. Yarmolenko, L. A. Kutulya, V. V. Vashchenko, L. V. Chepeleva, Liq. Cryst. 1994, 16, 877-882.
– reference: c) Y. Zhang, G. B. Schuster, J. Org. Chem. 1995, 60, 7192-7197;
– reference: B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema, Chem. Rev. 2000, 100, 1789-1816.
– reference: b) G. P. Spada, G. Proni, Enantiomer 1998, 3, 301-314;
– reference: b) M. Mathews, N. Tamaoki, J. Am. Chem. Soc. 2008, 130, 11409-11416;
– reference: e) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Mol. Cryst. Liq. Cryst. 2001, 365, 861-866;
– reference: b) T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. kosa, B. Taheri, T. J. Bunning, Adv. Mater. 2011, 23, 1389-1392.
– reference: d) T. Ikeda, J. Mater. Chem. 2003, 13, 2037-2057.
– reference: a) C. Ruslim, K. Ichimura, Adv. Mater. 2001, 13, 37-40;
– reference: b) D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, J. Appl. Phys. 1994, 76, 1331-1333.
– reference: d) S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J.-P. Guillou, N. A. Usova, Liq. Cryst. 2002, 29, 19-26.
– reference: a) S. Kinoshita, S. Yoshioka, ChemPhysChem 2005, 6, 1442-1459;
– reference: b) S. Bertheier, in Iridescences: The Physical Color of Insects, Springer, New York, 2007;
– reference: h) T. van Leeuwen, T. C. Pijper, J. Areephong, B. L. Feringa, W. R. Browne, N. Katsonis, J. Mater. Chem. 2011, 21, 3142-3146.
– reference: a) C.-T. Chen, Y.-C. Chou, J. Am. Chem. Soc. 2000, 122, 7662-7672;
– reference: f) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Mol. Cryst. Liq. Cryst. 2000, 345, 287-292;
– reference: d) N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa, Nature 1999, 401, 152-155.
– reference: a) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348-3391;
– reference: a) R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. Serrano Ramon, C. W. M. Bastiaansen, D. J. Broer, B. L. Feringa, Nature 2006, 440, 163-163;
– reference: Y. Yokoyama, Chem. Rev. 2000, 100, 1717-1739.
– reference: a) D.-K. Yang, J. W. Doane, SID Intl. Sump. Digest Tech. Papers 1992, 23, 759-761;
– reference: K. Rameshbabu, A. Urbas, Q. Li, J. Phys. Chem. B 2011, 115, 3409-3415.
– reference: B. L. Feringa, J. Org. Chem. 2007, 72, 6635-6652.
– reference: a) C. Ruslim, M. Nakagawa, S. Morino, K. Ichimura, Mol. Cryst. Liq. Cryst. 2001, 365, 55-62;
– reference: a) M. Suarez, G. B. Schuster, J. Am. Chem. Soc. 1995, 117, 6732-6738;
– reference: L. Green, Y. Li, T. White, A. Urbas, T. Bunning, Q. Li, Org. Biomol. Chem. 2009, 7, 3930-3933.
– reference: a) B. L. Feringa, H. Wynberg, J. Am. Chem. Soc. 1977, 602-603;
– reference: a) E. Montbath, N. Venkataraman, A. Khan, I. Shiyanovskaya, T. Schneider, J. W. Doane, L. Green, Q. Li, SID Digest Tech. Pap. 2008, 919-922;
– reference: c) N. Tamaoki, S. Song, M. Moriyama, H. Matsuda, Adv. Mater. 2000, 12, 94-97;
– reference: d) I. Dierking, in Textures of Liquid Crystals, Wiley-VCH, Weinheim, 2003.
– reference: a) P. V. D. Witte, J. C. Galan, J. Lub, Liq. Cryst. 1998, 24, 819-827;
– reference: b) R. A. van Delden, T. Mecca, C. Rosini, B. L. Feringa, Chem. Eur. J. 2004, 10, 61-70;
– reference: c) S. Pieraccini, S. Masiero, A. Ferrarini, G. P. Spada, Chem. Soc. Rev. 2011, 40, 258-271;
– reference: b) S. Kurihara, T. Kanda, T. Nagase, T. Nonaka, Appl. Phys. Lett. 1998, 73, 2081-2083;
– reference: b) K. Ichimura, Chem. Rev. 2000, 100, 1847-1873;
– reference: a) R. Eelkema, B. L. Feringa, Chem. Asian J. 2006, 1, 367-369;
– reference: K. Ichimura, in Photochromism: Molecules and Systems, (Eds. H. Dürr H. Bouas-Laurent), Elsevier: Amsterdam, 1990.
– reference: c) M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, Q. Li, J. Am. Chem. Soc. 2010, 132, 18361-18366.
– reference: b) N. Tamaoki, Adv. Mater. 2001, 13, 1135-1147;
– reference: M. Kawamoto, N. Shiga, K. Takashi, T. Yamashita, Chem. Commun. 2010, 46, 8344-8346.
– reference: K. L. Stevenson, J. F. Verdieck, J. Am. Chem. Soc. 1968, 90, 2974-2975.
– reference: c) T. Ikeda, J. Mater. Chem. 2003, 13, 2037-2057.
– reference: N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, Science 1996, 273, 1686-1688.
– reference: b) R. Eelkema, M. M. Pollard, N. Katsonis, J. Vicario, D. J. Broer, B. L. Feringa, J. Am. Chem. Soc. 2006, 128, 14397-14407.
– reference: d) V. Sharma, M. Crne, J. Park, M. Srinivasarao, Science 2009, 325, 449-451.
– reference: C. Ruslim, K. Ichimura, J. Phys. Chem. B 2000, 104, 6529-6535.
– reference: c) T. Yamaguchi, H. Nakazumi, K. Uchida, M. Irie, Chem. Lett. 1999, 653-654;
– reference: b) R. A. van Delden, N. Koumura, N. Harada, B. L. Feringa, Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4945-4949.
– reference: c) S. Kurihara, S. Nomiyama, T. Nonaka, Chem. Mater. 2000, 12, 9-12;
– reference: Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, J. W. Doane, J. Am. Chem. Soc. 2007, 129, 12908-12909.
– reference: b) B. L. Feringa, N. P. M. Huck, H. A. V. Doren, J. Am. Chem. Soc. 1995, 117, 9929-9930;
– reference: T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S.-N. Kim, S. Kurihara, Adv. Mater. 2005, 17, 1226-1229.
– reference: J. Chen, S. M. Morris, T. D. Wilkinson, H. J. Coles, Appl. Phys. Lett. 2007, 91, 121118.
– reference: b) T. Yoshioka, M. D. Z. Alam, T. Ogata, T. Nonaka, S. Kurihara, Liq. Cryst. 2004, 31, 1285-1291;
– reference: c) G. Proni, G. P. Spada, Enantiomer 2001, 6, 171-179.
– reference: a) C. Denekamp, B. L. Feringa, Adv. Mater. 1998, 10, 1080-1082;
– reference: b) T. van Leeuwen, T. C. Pijper, J. Areephong, B. L. Feringa, W. R. Browne, N. Katsonis, J. Mater. Chem. 2011, 21, 3142-3146;
– reference: H. Hattori, T. Uryu, Liq. Cryst. 2001, 28, 1099-1104.
– reference: b) G. Heppke, F. Oestreicher, Mol. Cryst, Liq. Lett. 1978, 41, 245-249;
– reference: b) J. Lub, A. Ferrer, C. Larossa, B. Malo, Liq. Cryst. 2003, 30, 1207-1218.
– reference: M. Mathews, R. Zola, D. Yang, Q. Li, J. Mater. Chem. 2011, 21, 2098-2103.
– reference: F. L. Carter, H. Siatkowski, H. Wohltgen, in Molecular Electronic Devices, Elsevier, Amsterdam, 1988.
– reference: R. Eelkema, B. L. Feringa, Org. Biomol. Chem. 2006, 4, 3729-3745.
– reference: T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, Adv. Funct. Mater. 2009, 19, 3484-3488.
– reference: c) P. R. Gerber, Z. Naturforsch. 1980, 35, 619-622;
– reference: a) J. Lub, W.P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, B. Malo, Liq. Cryst. 2005, 32, 1031-1044;
– reference: a) G. Solladié, R. G. Zimmermann, Angew. Chem. Int. Ed. 1984, 23, 348-362;
– reference: c) J. Ma, Y. Li, T. White, A. Urbas, Q. Li, Chem. Commun. 2010, 46, 3463-3465.
– volume: 440 128
  start-page: 163 14397
  year: 2006 2006
  end-page: 163 14407
  publication-title: Nature J. Am. Chem. Soc.
– volume: 117 113 401
  start-page: 602 9929 5468 152
  year: 1977 1995 1991 1999
  end-page: 603 9930 5470 155
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Nature
– volume: 115
  start-page: 3409
  year: 2011
  end-page: 3415
  publication-title: J. Phys. Chem. B
– volume: 10 21 12 365 345 11 21
  start-page: 1080 3142 653 869 861 287 2453 3142
  year: 1998 2011 1999 2000 2001 2000 2001 2011
  end-page: 1082 3146 654 871 866 292 2458 3146
  publication-title: Adv. Mater. J. Mater. Chem. Chem. Lett. Chem. Mater. Mol. Cryst. Liq. Cryst. Mol. Cryst. Liq. Cryst. J. Mater. Chem. J. Mater. Chem.
– volume: 13 40 13
  start-page: 1135 258 2037
  year: 2001 2001 2011 2003
  end-page: 1147 271 2057
  publication-title: Adv. Mater. Chem. Soc. Rev. J. Mater. Chem.
– volume: 46
  start-page: 8344
  year: 2010
  end-page: 8346
  publication-title: Chem. Commun.
– volume: 122 23
  start-page: 7662 1389
  year: 2000 2011
  end-page: 7672 1392
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– year: 1990
– volume: 13 12
  start-page: 37 3377
  year: 2001 2002
  end-page: 40 3379
  publication-title: Adv. Mater. J. Mater. Chem.
– volume: 13 99
  start-page: 319 4945
  year: 2003 2002
  end-page: 324 4949
  publication-title: Adv. Funct. Mater. Proc. Natl. Acad. Sci. U.S.A.
– volume: 129
  start-page: 12908
  year: 2007
  end-page: 12909
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 2098
  year: 2011
  end-page: 2103
  publication-title: J. Mater. Chem.
– volume: 19
  start-page: 3484
  year: 2009
  end-page: 3488
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 83
  year: 1988
  end-page: 85
  publication-title: New J. Chem.
– volume: 32 15
  start-page: 1031 1961
  year: 2005 2005
  end-page: 1044 1972
  publication-title: Liq. Cryst. Adv. Funct. Mater.
– volume: 100
  start-page: 1789
  year: 2000
  end-page: 1816
  publication-title: Chem. Rev.
– volume: 39 100
  start-page: 3348 6
  issue: 5
  year: 2000
  end-page: 3391 1890
  publication-title: Angew. Chem. Int. Ed. Chem. Rev.
– volume: 7
  start-page: 3930
  year: 2009
  end-page: 3933
  publication-title: Org. Biomol. Chem.
– volume: 100
  start-page: 1685
  year: 2000
  end-page: 1716
  publication-title: Chem. Rev.
– volume: 27
  start-page: 929
  year: 2000
  end-page: 933
  publication-title: Liq. Cryst.
– volume: 23 3 6
  start-page: 348 301 171
  year: 1984 1998 2001
  end-page: 362 314 179
  publication-title: Angew. Chem. Int. Ed. Enantiomer Enantiomer
– volume: 104
  start-page: 6529
  year: 2000
  end-page: 6535
  publication-title: J. Phys. Chem. B
– volume: 23 76
  start-page: 759 1331
  year: 1992 1994
  end-page: 761 1333
  publication-title: SID Intl. Sump. Digest Tech. Papers J. Appl. Phys.
– volume: 17
  start-page: 6018
  year: 2005
  end-page: 6021
  publication-title: Chem. Mater.
– volume: 90
  start-page: 2974
  year: 1968
  end-page: 2975
  publication-title: J. Am. Chem. Soc.
– volume: 10 46
  start-page: 598 61 3463
  year: 2003 2004 2010
  end-page: 599 70 3465
  publication-title: Chem. Commun. Chem. Eur. J. Chem. Commun.
– volume: 91
  start-page: 121118
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 3552
  year: 2010
  end-page: 3555
  publication-title: Org. Lett.
– volume: 16
  start-page: 877
  year: 1994
  end-page: 882
  publication-title: Liq. Cryst.
– volume: 130 132
  start-page: 930 11409 18361
  year: 2007 2008 2010
  end-page: 932 11416 18366
  publication-title: Chem. Commun. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 72
  start-page: 6635
  year: 2007
  end-page: 6652
  publication-title: J. Org. Chem.
– volume: 17
  start-page: 919 869
  year: 2008 2009
  end-page: 922 873
  publication-title: SID Digest Tech. Pap. J. Soc. Information Display
– volume: 24 30
  start-page: 819 1207
  year: 1998 2003
  end-page: 827 1218
  publication-title: Liq. Cryst. Liq. Cryst.
– volume: 32 41 35
  start-page: 899 245 619
  year: 1977 1978 1980 2003
  end-page: 901 249 622
  publication-title: Z. Naturforsch. Mol. Cryst, Liq. Lett. Z. Naturforsch.
– volume: 11 73 12 29
  start-page: 1003 2081 94 19
  year: 2001 1998 2000 2002
  end-page: 1010 2083 97 26
  publication-title: J. Mater. Chem. Appl. Phys. Lett. Adv. Mater. Liq. Cryst.
– volume: 6 3 325
  start-page: 1442 551 449
  year: 2005 2007 2009 2009
  end-page: 1459 553 451
  publication-title: ChemPhysChem Nat. Photonics Science
– volume: 93
  start-page: 7088
  year: 1971
  end-page: 7090
  publication-title: J. Am. Chem. Soc.
– volume: 4 100 13
  start-page: 1349 1847 2037
  year: 2008 2000 2003
  end-page: 1372 1873 2057
  publication-title: Soft Matter Chem. Rev. J. Mater. Chem.
– start-page: 911
  year: 1987
  end-page: 914
  publication-title: Chem. Lett.
– volume: 76
  start-page: 7148
  year: 2011
  end-page: 7156
  publication-title: J. Org. Chem.
– volume: 1 130
  start-page: 367 14615
  year: 2006 2008
  end-page: 369 14624
  publication-title: Chem. Asian J. J. Am. Chem. Soc.
– volume: 273
  start-page: 1686
  year: 1996
  end-page: 1688
  publication-title: Science
– volume: 28
  start-page: 1099
  year: 2001
  end-page: 1104
  publication-title: Liq. Cryst.
– year: 1988
– volume: 117 116 60 121
  start-page: 6732 4852 7192 10245
  year: 1995 1994 1995 1999
  end-page: 6738 4857 7197 10246
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Org. Chem. J. Am. Chem. Soc.
– volume: 17
  start-page: 1226
  year: 2005
  end-page: 1229
  publication-title: Adv. Mater.
– volume: 3 73
  start-page: 687 123 191
  year: 1997 1998 2000
  end-page: 688 132 196
  publication-title: Chem. Lett. Enantiomer Bull. Chem. Soc. Jpn.
– volume: 4
  start-page: 3729
  year: 2006
  end-page: 3745
  publication-title: Org. Biomol. Chem.
– volume: 100
  start-page: 1717
  year: 2000
  end-page: 1739
  publication-title: Chem. Rev.
– volume: 365 31 12 13 10
  start-page: 55 1285 9 1992 5632
  year: 2001 2004 2000 2001 2004
  end-page: 62 1291 12 1997 5639
  publication-title: Mol. Cryst. Liq. Cryst. Liq. Cryst. Chem. Mater. Chem. Mater. Chem. Eur. J.
– ident: e_1_2_6_35_3
  doi: 10.1039/c0jm03626a
– ident: e_1_2_6_27_3
  doi: 10.1021/ja802472t
– ident: e_1_2_6_30_2
  doi: 10.1080/02678299408027858
– ident: e_1_2_6_41_2
  doi: 10.1021/ol1014152
– ident: e_1_2_6_47_2
  doi: 10.1021/ja993297d
– ident: e_1_2_6_12_3
  doi: 10.1063/1.122384
– ident: e_1_2_6_19_2
  doi: 10.1002/adma.200401429
– ident: e_1_2_6_11_2
  doi: 10.1039/b801886c
– ident: e_1_2_6_33_3
  doi: 10.1002/adfm.200500127
– ident: e_1_2_6_10_2
  doi: 10.1021/ja00754a068
– ident: e_1_2_6_1_5
  doi: 10.1126/science.1172051
– ident: e_1_2_6_11_4
  doi: 10.1039/b306216n
– ident: e_1_2_6_45_3
  doi: 10.1021/ja8039629
– ident: e_1_2_6_16_3
  doi: 10.1002/chem.200305276
– volume: 3
  start-page: 301
  year: 1998
  ident: e_1_2_6_6_3
  publication-title: Enantiomer
– ident: e_1_2_6_5_2
  doi: 10.1515/zna-1977-0818
– ident: e_1_2_6_5_3
  doi: 10.1080/00268947808070309
– volume: 100
  start-page: 6
  issue: 5
  ident: e_1_2_6_8_3
  publication-title: Chem. Rev.
  doi: 10.1021/cr000470b
– ident: e_1_2_6_33_2
  doi: 10.1080/02678290500284017
– ident: e_1_2_6_12_4
  doi: 10.1002/(SICI)1521-4095(200001)12:2<94::AID-ADMA94>3.0.CO;2-T
– ident: e_1_2_6_11_3
  doi: 10.1021/cr980079e
– ident: e_1_2_6_15_6
  doi: 10.1002/chem.200400463
– ident: e_1_2_6_2_2
  doi: 10.1021/jo070394d
– ident: e_1_2_6_14_2
  doi: 10.1021/jp000338f
– ident: e_1_2_6_39_2
  doi: 10.1021/cr9900228
– ident: e_1_2_6_24_2
  doi: 10.1002/adfm.200900396
– volume-title: Molecular Electronic Devices
  year: 1988
  ident: e_1_2_6_9_2
– ident: e_1_2_6_35_8
  doi: 10.1039/b103925n
– ident: e_1_2_6_35_9
  doi: 10.1039/c0jm03626a
– ident: e_1_2_6_20_2
  doi: 10.1002/adfm.200304313
– ident: e_1_2_6_46_2
  doi: 10.1038/440163a
– ident: e_1_2_6_20_3
  doi: 10.1073/pnas.062660699
– ident: e_1_2_6_49_2
  doi: 10.1126/science.273.5282.1686
– ident: e_1_2_6_7_3
  doi: 10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S
– ident: e_1_2_6_38_2
  doi: 10.1021/jo201139t
– volume: 3
  start-page: 123
  year: 1998
  ident: e_1_2_6_43_3
  publication-title: Enantiomer
– ident: e_1_2_6_16_4
  doi: 10.1039/c002436h
– ident: e_1_2_6_50_4
  doi: 10.1021/jo00127a026
– volume: 23
  start-page: 759
  year: 1992
  ident: e_1_2_6_23_2
  publication-title: SID Intl. Sump. Digest Tech. Papers
– ident: e_1_2_6_13_2
  doi: 10.1246/cl.1987.911
– ident: e_1_2_6_31_2
  doi: 10.1080/02678290050043888
– ident: e_1_2_6_15_3
  doi: 10.1080/02678290412331282118
– ident: e_1_2_6_47_3
  doi: 10.1002/adma.201003577
– volume-title: Iridescences: The Physical Color of Insects
  year: 2007
  ident: e_1_2_6_1_3
– ident: e_1_2_6_44_5
  doi: 10.1038/43646
– ident: e_1_2_6_5_5
  doi: 10.1002/3527602054
– ident: e_1_2_6_35_6
  doi: 10.1080/10587250108025365
– ident: e_1_2_6_15_5
  doi: 10.1021/cm0007555
– ident: e_1_2_6_35_5
  doi: 10.1021/cm9907559
– ident: e_1_2_6_27_4
  doi: 10.1021/ja108437n
– ident: e_1_2_6_8_2
  doi: 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X
– ident: e_1_2_6_35_4
  doi: 10.1246/cl.1999.653
– ident: e_1_2_6_6_2
  doi: 10.1002/anie.198403481
– ident: e_1_2_6_34_2
  doi: 10.1021/cr980069d
– ident: e_1_2_6_7_2
  doi: 10.1002/3527600329
– ident: e_1_2_6_46_3
  doi: 10.1021/ja065334o
– ident: e_1_2_6_5_4
  doi: 10.1515/zna-1980-0607
– ident: e_1_2_6_43_2
  doi: 10.1246/cl.1997.687
– ident: e_1_2_6_25_2
  doi: 10.1039/b910583b
– ident: e_1_2_6_18_2
  doi: 10.1002/1521-4095(200101)13:1<37::AID-ADMA37>3.0.CO;2-K
– ident: e_1_2_6_43_4
  doi: 10.1246/bcsj.73.191
– ident: e_1_2_6_1_2
  doi: 10.1002/cphc.200500007
– start-page: 919
  year: 2008
  ident: e_1_2_6_22_2
  publication-title: SID Digest Tech. Pap.
– ident: e_1_2_6_44_4
  doi: 10.1021/ja00014a057
– ident: e_1_2_6_7_5
  doi: 10.1039/b306216n
– ident: e_1_2_6_42_2
  doi: 10.1021/cr980070c
– ident: e_1_2_6_44_2
  doi: 10.1021/ja00444a046
– ident: e_1_2_6_7_4
  doi: 10.1039/B924962C
– ident: e_1_2_6_48_2
  doi: 10.1021/ja01013a050
– volume: 6
  start-page: 171
  year: 2001
  ident: e_1_2_6_6_4
  publication-title: Enantiomer
– ident: e_1_2_6_37_2
  doi: 10.1021/jp112401k
– ident: e_1_2_6_17_2
  doi: 10.1021/cm051404z
– ident: e_1_2_6_50_3
  doi: 10.1021/ja00090a033
– ident: e_1_2_6_16_2
  doi: 10.1039/b211421f
– ident: e_1_2_6_26_2
  doi: 10.1063/1.2789290
– ident: e_1_2_6_15_2
  doi: 10.1080/10587250108025281
– ident: e_1_2_6_45_2
  doi: 10.1002/asia.200600116
– ident: e_1_2_6_22_3
  doi: 10.1889/JSID17.10.869
– ident: e_1_2_6_35_7
  doi: 10.1080/10587250008023933
– volume: 12
  start-page: 83
  year: 1988
  ident: e_1_2_6_29_2
  publication-title: New J. Chem.
– ident: e_1_2_6_21_2
  doi: 10.1021/ja0747573
– ident: e_1_2_6_23_3
  doi: 10.1063/1.358518
– ident: e_1_2_6_44_3
  doi: 10.1021/ja00144a027
– ident: e_1_2_6_50_5
  doi: 10.1021/ja9923033
– ident: e_1_2_6_50_2
  doi: 10.1021/ja00130a013
– ident: e_1_2_6_18_3
  doi: 10.1039/b208578j
– ident: e_1_2_6_32_3
  doi: 10.1080/02678290310001599260
– ident: e_1_2_6_36_2
  doi: 10.1039/b608749c
– ident: e_1_2_6_27_2
  doi: 10.1039/b616320c
– ident: e_1_2_6_32_2
  doi: 10.1080/026782998206632
– ident: e_1_2_6_35_2
  doi: 10.1002/(SICI)1521-4095(199810)10:14<1080::AID-ADMA1080>3.0.CO;2-T
– ident: e_1_2_6_1_4
  doi: 10.1038/nphoton.2009.172
– ident: e_1_2_6_4_2
  doi: 10.1039/C0JM03479G
– ident: e_1_2_6_12_5
  doi: 10.1080/02678290110093778
– ident: e_1_2_6_15_4
  doi: 10.1021/cm9901616
– ident: e_1_2_6_12_2
  doi: 10.1039/b009892m
– ident: e_1_2_6_28_2
  doi: 10.1039/c0cc02685a
– volume-title: Photochromism: Molecules and Systems
  year: 1990
  ident: e_1_2_6_3_2
– ident: e_1_2_6_40_2
  doi: 10.1080/02678290110048750
SSID ssj0009606
Score 2.558444
SecondaryResourceType review_article
Snippet The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices....
The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1926
SubjectTerms cholesteric liquid crystals
Devices
Helical
helical twisting power
Light
light-driven chiral molecular switches
Liquid crystals
Liquid Crystals - chemistry
Media
molecular motors
Motors
Nanostructure
Organic Chemicals - chemistry
photo addressed displays
self-organized helical superstructures
Stereoisomerism
Superstructures
Switches
Title Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals
URI https://api.istex.fr/ark:/67375/WNG-42DJ0X2T-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201200241
https://www.ncbi.nlm.nih.gov/pubmed/22411073
https://www.proquest.com/docview/1620105919
https://www.proquest.com/docview/993317522
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9gIH3o-Uh4yE4JQ2TuzEPq52W6pqtwdoxd4sx7HVqFUWsrsq9NSf0N_IL8GTbNIuokKCWxKNZcfj8Xy2x98AvKOWJdY7_tAIb24sYyzMTcJDLbVBl-SiZkN_cpjuH7ODKZ_euMXf8kP0G25oGc18jQau8_nONWmoLhreIIpRBs3NdQzYQlT06Zo_CuF5Q7bna5cpEx1rYxTvrBdf80qb2MHf_wQ51xFs44L2HoDuGt9GnpxuLxf5trn4jdfxf_7uIdxf4VMyaAfUI7hjq8dw7wZr4RPYHeOC_ufl1ajGqZIMT8raF5l0iXbJ5_MSx8KczGr_FdP5kLIi4_LbsizIsP7hAenZ_Ckc7-0eDffDVTaG0DBBaeho6pjgRcR1GkmhkdkmY5I5YTWnJk00pdqDI0ddrnNdcOs0lzZLHIuMFknyDDaqWWVfACkMlZoy4xczgiXCCY9aXMqLVGYF8xUEEHbaUGZFVY4ZM85US7IcK-we1XdPAB96-a8tScetku8b5fZiuj7F0LaMqy-HHxWLRwfRND5S4wDedtpX3uDwFEVXdracK5piAAGXVAZAbpHxoA9xWRwH8LwdOX2FCJn8kjsJIG70_5cGq8FoMujftv6l0Eu4i894BEazV7CxqJf2tUdSi_xNYy2_AO0vEYU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V7QE48H6Ep5F4nNLGiZ3HgcNq07Jts3uArdib6ziOiFplIburUk78BP4Kf4WfwC_Bk2xSFlEhIfXAMdFYSTwzns_jyTcAz6hmnjaB31ahcTcWMGanyuO2jKTCkJQ7dUJ_OPIHB2xvwidr8K39F6bhh-gSbugZ9XqNDo4J6a0z1lCZ1cRBFMsMGF3WVe7r0xOza5u92o2Nip-77s72uD-wl40FbMVCSu2c-jkLeeZw6TtRKJGkJWARy0MtOVW-JymVJs7nNE9lKjOuc8kjHXg5c5QMMQdqVv0NbCOOdP3xmzPGKtwQ1PR-5nsjn4UtT6Tjbq2-70oc3ECVfvoTyF3FzHXQ27kG39vpampdjjYX83RTff6NSfK_ms_rcHUJwUmv8ZkbsKbLm3DlF2LGW7CdYM7ix5evcYXRgPTfF5UZMmx7CZO3JwWa-4xMK3MXOxaRoiRJ8XFRZKRfnRrMfTy7DQcX8h13YL2clvoekEzRSFKmzH4tZF6YhwaY5T7P_CjImHmABXarfqGWbOzYFORYNDzSrkB1iE4dFrzs5D80PCTnSr6orakTk9URVu8FXLwbvRbMjfeciTsWiQVPW3MTZk3BgyJZ6uliJqiPNRI8opEF5BwZg2sRerquBXcbU-0eiKiQmtBhgVsb3F9eWPTiYa-7uv8vg57ApcF4mIhkd7T_AC7jfTzxo8FDWJ9XC_3IAMd5-rh2VQKHF23LPwEiP28x
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VrYTgwPsRnkbicUobJ07iHDisNl362F0haMXeXMexRdRqt2R3VcqJn8BP4a_wF_gleJJNyiIqJKQeOMay5cfMeD7bk28AnlHNAm0dv6u4NTcWM-ZmKghdmUiFLsl41YX-YBht7bOdUThagW_NvzA1P0R74YaWUe3XaODHudk4Iw2VecUbRDHKgNFFWOWuPj2xh7bpq-3USvi57_c297pb7iKvgKsYp9Q1NDKMh7kXyshLuESOlpglzHAtQ6qiQFIqrZs31GQyk3mojQwTHQeGeUpyvAK1m_4as40xWUT69oywCs8DFbufnW4SMd7QRHr-xvJ4l9zgGkr0058w7jJkrnxe7xp8b1arDnU5XJ_PsnX1-Tciyf9pOa_D1QUAJ53aYm7Aih7fhCu_0DLegs0-3lj8-PI1LdEXkO6HorRNBk0mYfLupEBln5JJaUsxXxEpxqRffJwXOemWpxZxH01vw_6FzOMOrI4nY30PSK5oIilT9rTGWcANt7DMRGEeJXHObAcOuI30hVpwsWNKkCNRs0j7AsUhWnE48LKtf1yzkJxb80WlTG01WR5i7F4civfD14L56Y438vdE34GnjbYJu6PgM5Ec68l8KmiEERJhQhMHyDl1LKpF4On7DtytNbXtEDEhtY7DAb_St78MWHTSQaf9uv8vjZ7ApTdpT_S3h7sP4DIW43MfjR_C6qyc60cWNc6yx5WhEji4aFX-CT8nbeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light%E2%80%90Driven+Chiral+Molecular+Switches+or+Motors+in+Liquid+Crystals&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Yan&rft.au=Li%2C+Quan&rft.date=2012-04-17&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=24&rft.issue=15&rft.spage=1926&rft.epage=1945&rft_id=info:doi/10.1002%2Fadma.201200241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201200241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon