Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals
The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructu...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 24; no. 15; pp. 1926 - 1945 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
17.04.2012
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes.
The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent such a striking example. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric LC systems and their consequent applications. |
---|---|
AbstractList | The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes.
The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent such a striking example. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric LC systems and their consequent applications. The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystals that are capable of self-organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light-driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes. The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystals that are capable of self-organizing into optically tunable helical superstructures undoubtedly represent such a striking example. In this review, we focus on different classes of light-driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric LC systems and their consequent applications. The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystals that are capable of self-organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light-driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes. The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystals that are capable of self-organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light-driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes.The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystals that are capable of self-organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light-driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes. |
Author | Li, Quan Wang, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Wang fullname: Wang, Yan organization: Liquid Crystal Institute and Chemical Physics, Interdisciplinary Program, Kent State University, Kent, OH 44242, USA – sequence: 2 givenname: Quan surname: Li fullname: Li, Quan email: qli1@kent.edu organization: Liquid Crystal Institute and Chemical Physics, Interdisciplinary Program, Kent State University, Kent, OH 44242, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22411073$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQRi3Uim4LV44oN7hkmYntJD6usqUFpeVAEdys2cRmDdmktR3K_vum2rKqkAqn0Yzem5HmO2YH_dAbxl4hzBEge0fthuYZYDY1Ap-xGcoMUwFKHrAZKC5TlYvyiB2H8AMAVA75c3aUTSxCwWesqt33dUyX3v0yfVKtnacuuRg604wd-eTzrYvN2oRk8NM0Dj4krk9qdzO6Nqn8NkTqwgt2aKdiXj7UE_bl_elVdZ7Wn84-VIs6bUSJmFrMrShlC5JyUCUBcFEIJWxpSGKTc0IklMqiXdGKWmksSWUKbgU0VHJ-wt7s9l774WY0IeqNC43pOurNMAatFOdYyCybyLf_JDGfXgZSoZrQ1w_ouNqYVl97tyG_1X9eNAHzHdD4IQRv7B5B0PcZ6PsM9D6DSRB_CY2LFN3QR0-ue1pTO-3WdWb7nyN6sbxYPHbTnetCNL_3LvmfOi94IfXXyzMtsuVH-JZd6ZrfAfynqDw |
CitedBy_id | crossref_primary_10_1021_jacs_4c07848 crossref_primary_10_1002_adma_201704941 crossref_primary_10_1002_ange_202107992 crossref_primary_10_1002_smll_201502605 crossref_primary_10_1039_c3nr06623a crossref_primary_10_1002_adma_201300798 crossref_primary_10_1063_5_0215262 crossref_primary_10_1016_j_reactfunctpolym_2020_104549 crossref_primary_10_1002_poc_3858 crossref_primary_10_1038_s41467_017_00122_5 crossref_primary_10_1039_C5PY01301A crossref_primary_10_1142_S0219633618500232 crossref_primary_10_1002_anie_201908832 crossref_primary_10_1002_adma_202401912 crossref_primary_10_1002_chem_201405940 crossref_primary_10_1080_02678292_2013_783937 crossref_primary_10_1002_adom_201900393 crossref_primary_10_1039_c3ra44883e crossref_primary_10_1080_08927022_2014_918974 crossref_primary_10_1021_ol3018165 crossref_primary_10_1039_C9SC04489B crossref_primary_10_1039_C5PY00246J crossref_primary_10_1039_D1TC00614B crossref_primary_10_1002_pola_26350 crossref_primary_10_1002_cplu_202300700 crossref_primary_10_1002_marc_201500177 crossref_primary_10_1246_cl_160039 crossref_primary_10_1016_j_xcrp_2021_100512 crossref_primary_10_3390_nano7070169 crossref_primary_10_1002_adma_201700676 crossref_primary_10_1002_adom_202000155 crossref_primary_10_1007_s00706_014_1199_4 crossref_primary_10_1002_anie_201814441 crossref_primary_10_1002_ceur_202300069 crossref_primary_10_1021_ja500933h crossref_primary_10_1002_asia_201800225 crossref_primary_10_1080_02678292_2023_2200266 crossref_primary_10_1039_C4TC01167H crossref_primary_10_1039_C8CC00770E crossref_primary_10_1002_poc_3716 crossref_primary_10_1080_15421406_2021_2023396 crossref_primary_10_1002_adfm_201702261 crossref_primary_10_1080_15421406_2019_1581712 crossref_primary_10_1016_j_molliq_2021_118151 crossref_primary_10_1063_5_0140843 crossref_primary_10_1080_15421406_2018_1553744 crossref_primary_10_1002_chem_201303924 crossref_primary_10_1002_ange_202311486 crossref_primary_10_1002_jsid_136 crossref_primary_10_1002_anie_201409399 crossref_primary_10_1002_cptc_202100256 crossref_primary_10_1016_j_nanoen_2016_06_021 crossref_primary_10_1002_smo_20230015 crossref_primary_10_1039_D0SC05213B crossref_primary_10_3390_molecules26237379 crossref_primary_10_1021_acs_joc_8b00654 crossref_primary_10_1002_ange_201410788 crossref_primary_10_1002_chem_201402777 crossref_primary_10_1002_adom_202402310 crossref_primary_10_1016_j_biomaterials_2024_122813 crossref_primary_10_1016_j_apmt_2024_102287 crossref_primary_10_1002_admt_201600102 crossref_primary_10_1039_c3tc31488j crossref_primary_10_1039_D2CP02859J crossref_primary_10_1039_C9CC02849H crossref_primary_10_1021_jacs_8b09622 crossref_primary_10_1002_ange_201409399 crossref_primary_10_1021_ma401731x crossref_primary_10_1021_ma400302j crossref_primary_10_1021_acs_macromol_1c00088 crossref_primary_10_1002_chem_201600854 crossref_primary_10_1080_02678292_2021_1975835 crossref_primary_10_1080_02678292_2021_1881834 crossref_primary_10_1002_ange_201505520 crossref_primary_10_1039_C4PY00162A crossref_primary_10_1016_j_polymer_2016_05_074 crossref_primary_10_1002_anie_202413047 crossref_primary_10_1021_acsami_0c14880 crossref_primary_10_1021_acsami_3c00931 crossref_primary_10_1007_s40242_021_1034_5 crossref_primary_10_1246_bcsj_20180032 crossref_primary_10_1063_5_0044216 crossref_primary_10_1016_j_molliq_2016_10_002 crossref_primary_10_1039_D4TA02010C crossref_primary_10_1039_D1TC00601K crossref_primary_10_1002_chem_202404565 crossref_primary_10_1364_OE_21_031324 crossref_primary_10_1080_02678292_2017_1306635 crossref_primary_10_1016_j_mtcomm_2025_111610 crossref_primary_10_1002_chem_201303731 crossref_primary_10_1002_marc_201500136 crossref_primary_10_1016_j_dyepig_2014_07_030 crossref_primary_10_1016_j_giant_2024_100244 crossref_primary_10_1002_adom_201200028 crossref_primary_10_1021_acsnano_1c11057 crossref_primary_10_1002_pi_4726 crossref_primary_10_1080_21680396_2016_1193065 crossref_primary_10_1088_1361_648X_aaea51 crossref_primary_10_3390_molecules28020816 crossref_primary_10_1039_D2CC03629K crossref_primary_10_1021_jacs_8b06323 crossref_primary_10_1039_C5TA01543J crossref_primary_10_1039_D3TC01404E crossref_primary_10_1002_adma_201705865 crossref_primary_10_6023_cjoc202204063 crossref_primary_10_1016_j_matchemphys_2020_123456 crossref_primary_10_1002_chem_201403705 crossref_primary_10_1080_02678292_2016_1185171 crossref_primary_10_1246_bcsj_20190092 crossref_primary_10_1002_ange_202413047 crossref_primary_10_1002_anie_201505520 crossref_primary_10_1021_acsami_5b09676 crossref_primary_10_1515_zkri_2018_2113 crossref_primary_10_1002_adma_201405690 crossref_primary_10_1002_adfm_201707562 crossref_primary_10_1021_acs_chemrev_1c00761 crossref_primary_10_1002_ange_201712781 crossref_primary_10_1080_02678292_2016_1144812 crossref_primary_10_1002_ange_201709136 crossref_primary_10_1073_pnas_1720742115 crossref_primary_10_1002_adom_201900784 crossref_primary_10_1364_OL_39_006490 crossref_primary_10_1038_s41467_021_26700_2 crossref_primary_10_1002_admt_201900454 crossref_primary_10_1002_anie_202216600 crossref_primary_10_1039_C4TC00015C crossref_primary_10_1038_s41566_022_00957_5 crossref_primary_10_1039_D1DT01963E crossref_primary_10_1002_adom_201400457 crossref_primary_10_1002_chem_201600095 crossref_primary_10_1021_acs_langmuir_7b03786 crossref_primary_10_1002_adom_201900430 crossref_primary_10_1002_smll_202303728 crossref_primary_10_1021_acsami_7b08661 crossref_primary_10_1039_C7CS00630F crossref_primary_10_1080_02678292_2018_1530379 crossref_primary_10_1002_adom_202202707 crossref_primary_10_1002_ange_201509479 crossref_primary_10_1021_am405471e crossref_primary_10_1002_chem_201302564 crossref_primary_10_1039_C5TC00730E crossref_primary_10_1038_s41566_022_00967_3 crossref_primary_10_1039_D0TC04832A crossref_primary_10_1002_anie_202016254 crossref_primary_10_1021_acsami_0c19527 crossref_primary_10_1007_s10118_021_2618_8 crossref_primary_10_1002_adma_201801335 crossref_primary_10_1002_adma_201300730 crossref_primary_10_1021_acs_jpcb_7b01886 crossref_primary_10_1002_adma_201706512 crossref_primary_10_1007_s11164_012_0777_5 crossref_primary_10_1002_adfm_201502071 crossref_primary_10_1002_chem_202001696 crossref_primary_10_1080_02678292_2016_1257745 crossref_primary_10_1080_02678292_2019_1614235 crossref_primary_10_6023_cjoc202210020 crossref_primary_10_1021_jacs_9b03231 crossref_primary_10_1002_ange_201814441 crossref_primary_10_1039_C7MH00920H crossref_primary_10_1039_D0QM00522C crossref_primary_10_1021_acs_macromol_8b00679 crossref_primary_10_1364_OE_21_021840 crossref_primary_10_1002_anie_202005361 crossref_primary_10_1021_am507499p crossref_primary_10_1039_C4CE02502D crossref_primary_10_1002_adom_201500159 crossref_primary_10_1002_advs_201700613 crossref_primary_10_1080_02678292_2015_1025871 crossref_primary_10_1002_adom_202000692 crossref_primary_10_1016_j_pmatsci_2019_03_005 crossref_primary_10_1021_ja302772z crossref_primary_10_1039_C9CC01678C crossref_primary_10_1002_adma_201600258 crossref_primary_10_1140_epje_i2013_13097_8 crossref_primary_10_1021_acs_chemrev_9b00288 crossref_primary_10_1002_adma_201905318 crossref_primary_10_1002_adom_201600824 crossref_primary_10_1002_pola_28045 crossref_primary_10_1002_sstr_202100038 crossref_primary_10_1016_j_optmat_2022_112098 crossref_primary_10_1002_ange_201303786 crossref_primary_10_1021_acs_jpcb_5b00209 crossref_primary_10_1021_ma500515s crossref_primary_10_1021_ar500249k crossref_primary_10_1080_02678292_2020_1855480 crossref_primary_10_1002_adfm_202107275 crossref_primary_10_1016_j_electacta_2023_142407 crossref_primary_10_1080_02678292_2017_1397212 crossref_primary_10_1002_adom_201500293 crossref_primary_10_1021_jacs_9b13360 crossref_primary_10_1080_02678292_2021_1988739 crossref_primary_10_1007_s12274_016_1245_0 crossref_primary_10_1021_acs_orglett_9b00277 crossref_primary_10_1039_c3tc32179g crossref_primary_10_1007_s11164_012_0721_8 crossref_primary_10_1002_ange_201305514 crossref_primary_10_1039_C5SM00128E crossref_primary_10_1039_C4TC01215A crossref_primary_10_1002_marc_202200915 crossref_primary_10_1021_acsami_5b11888 crossref_primary_10_1002_anie_201306396 crossref_primary_10_1080_21680396_2013_769310 crossref_primary_10_1002_ejoc_202200228 crossref_primary_10_1016_j_apsusc_2015_10_111 crossref_primary_10_1002_adom_202001207 crossref_primary_10_1080_02678292_2017_1330430 crossref_primary_10_1002_chem_201801186 crossref_primary_10_1039_C4DT02812K crossref_primary_10_1021_acs_jpca_6b09644 crossref_primary_10_1126_sciadv_1600480 crossref_primary_10_1080_15421406_2018_1432128 crossref_primary_10_1002_adma_202411291 crossref_primary_10_1002_anie_201913977 crossref_primary_10_1021_acs_macromol_4c00677 crossref_primary_10_1364_BOE_10_004636 crossref_primary_10_1016_j_talanta_2023_124840 crossref_primary_10_1039_C4TC01851F crossref_primary_10_1021_acs_chemrev_6b00415 crossref_primary_10_1080_03602559_2014_909467 crossref_primary_10_1039_C4NJ02011A crossref_primary_10_1002_cplu_202000077 crossref_primary_10_1002_adfm_201907625 crossref_primary_10_1016_j_synthmet_2015_01_019 crossref_primary_10_1002_cphc_201500194 crossref_primary_10_1103_PhysRevE_104_044702 crossref_primary_10_1080_02678292_2018_1550819 crossref_primary_10_1039_C4TC02832E crossref_primary_10_1002_adom_201700014 crossref_primary_10_1002_ange_201210334 crossref_primary_10_1039_C6TC02443B crossref_primary_10_1021_acs_langmuir_8b01031 crossref_primary_10_3390_molecules27020562 crossref_primary_10_1039_D1PY01206A crossref_primary_10_1002_anie_201305514 crossref_primary_10_1016_j_ccr_2016_06_009 crossref_primary_10_1021_acs_langmuir_5b03603 crossref_primary_10_3390_molecules27196716 crossref_primary_10_1002_adom_201400166 crossref_primary_10_1016_j_molliq_2022_120182 crossref_primary_10_1002_cphc_201800106 crossref_primary_10_1002_rpm_20230008 crossref_primary_10_1103_PhysRevE_106_014704 crossref_primary_10_1002_chem_202300993 crossref_primary_10_1039_D0RA03024D crossref_primary_10_1002_asia_201300154 crossref_primary_10_1002_anie_201404250 crossref_primary_10_1002_cptc_201800250 crossref_primary_10_1002_adfm_201504534 crossref_primary_10_1002_anie_201509479 crossref_primary_10_1039_D0QM00507J crossref_primary_10_1038_s41467_018_06400_0 crossref_primary_10_1002_adom_201701128 crossref_primary_10_1080_02678292_2020_1769754 crossref_primary_10_1002_pol_20190133 crossref_primary_10_1021_jacs_5b11580 crossref_primary_10_1039_c3cs60385g crossref_primary_10_1016_j_molliq_2017_01_111 crossref_primary_10_1080_02678292_2024_2361484 crossref_primary_10_1007_s10118_021_2531_1 crossref_primary_10_1039_C2CC38150H crossref_primary_10_1039_D1TC04803A crossref_primary_10_1016_j_progpolymsci_2013_08_005 crossref_primary_10_1039_C2TC00098A crossref_primary_10_1002_ange_202216600 crossref_primary_10_1039_C8SM02434K crossref_primary_10_1002_adma_201701903 crossref_primary_10_1002_adma_201400811 crossref_primary_10_1002_adma_201806172 crossref_primary_10_1002_ange_202111344 crossref_primary_10_1002_adfm_202007957 crossref_primary_10_1002_cjoc_202300076 crossref_primary_10_1021_acs_orglett_7b01184 crossref_primary_10_1002_adma_201903665 crossref_primary_10_1021_jacs_2c13108 crossref_primary_10_1002_qua_25856 crossref_primary_10_1364_OE_27_011462 crossref_primary_10_1080_15421406_2019_1595670 crossref_primary_10_2147_IJN_S285125 crossref_primary_10_1039_D0SM02109A crossref_primary_10_1080_02678292_2013_796411 crossref_primary_10_1002_ange_201909739 crossref_primary_10_1039_C7SM02122D crossref_primary_10_1016_j_cpc_2022_108379 crossref_primary_10_1002_agt2_141 crossref_primary_10_1039_C6RA00065G crossref_primary_10_1080_02678292_2019_1662106 crossref_primary_10_1021_acsami_3c01103 crossref_primary_10_1109_JDT_2015_2449892 crossref_primary_10_1002_ange_201913977 crossref_primary_10_1002_anie_202111344 crossref_primary_10_1016_j_molliq_2023_121406 crossref_primary_10_1039_c3tc30611a crossref_primary_10_1002_ange_201404250 crossref_primary_10_1080_02678292_2017_1359691 crossref_primary_10_1002_chem_201905814 crossref_primary_10_1364_OME_7_004163 crossref_primary_10_1039_C6RA12751G crossref_primary_10_1039_C2CC37161H crossref_primary_10_1002_open_201900031 crossref_primary_10_1021_prechem_4c00103 crossref_primary_10_1039_D3NR03729K crossref_primary_10_1016_j_saa_2018_02_018 crossref_primary_10_1002_chem_202102797 crossref_primary_10_1002_marc_202000548 crossref_primary_10_1002_anie_202218767 crossref_primary_10_1039_C9CC08090B crossref_primary_10_1039_C7SM00935F crossref_primary_10_1016_j_optlastec_2019_105745 crossref_primary_10_1021_acs_orglett_8b00448 crossref_primary_10_3762_bjoc_21_6 crossref_primary_10_1002_chem_201902767 crossref_primary_10_3390_cryst11020133 crossref_primary_10_1002_admt_202300613 crossref_primary_10_1039_C4TC00649F crossref_primary_10_1002_adma_202004420 crossref_primary_10_1016_j_dyepig_2024_112341 crossref_primary_10_1080_02678292_2014_929751 crossref_primary_10_1002_cphc_201200729 crossref_primary_10_3762_bjoc_12_212 crossref_primary_10_1016_j_synthmet_2013_11_017 crossref_primary_10_1002_anie_201410788 crossref_primary_10_1002_chem_201402268 crossref_primary_10_1002_adma_201504883 crossref_primary_10_1039_C8RA07657J crossref_primary_10_1080_02678292_2022_2031326 crossref_primary_10_1080_03602559_2014_974275 crossref_primary_10_1016_j_molstruc_2018_03_093 crossref_primary_10_1080_15421406_2017_1369777 crossref_primary_10_1002_ange_202218767 crossref_primary_10_1364_AO_55_004436 crossref_primary_10_1016_j_molliq_2018_11_088 crossref_primary_10_1039_C4NJ01538J crossref_primary_10_1039_C4TC01097C crossref_primary_10_1002_rpm_20250010 crossref_primary_10_1080_02678292_2024_2406881 crossref_primary_10_1002_anie_201909739 crossref_primary_10_1002_ange_201908832 crossref_primary_10_1002_anie_202107992 crossref_primary_10_1002_adom_201500533 crossref_primary_10_1080_02678292_2021_1945694 crossref_primary_10_1039_D2TC04444G crossref_primary_10_1002_adfm_201603145 crossref_primary_10_1002_chem_202403460 crossref_primary_10_1039_D0SM02283G crossref_primary_10_1039_D4TC02956A crossref_primary_10_1038_s41428_023_00805_5 crossref_primary_10_1002_adma_202004754 crossref_primary_10_1002_ange_202016254 crossref_primary_10_1515_zkri_2017_2081 crossref_primary_10_1021_acsami_2c20276 crossref_primary_10_1002_aisy_201900169 crossref_primary_10_1016_j_ces_2020_116386 crossref_primary_10_1002_cplu_201402315 crossref_primary_10_1039_C6TC02557A crossref_primary_10_1080_02678292_2016_1254826 crossref_primary_10_1002_adma_201502545 crossref_primary_10_1080_02678292_2024_2372601 crossref_primary_10_1002_adom_201800335 crossref_primary_10_1039_C6MH00101G crossref_primary_10_1002_adom_201800458 crossref_primary_10_1002_ange_201306396 crossref_primary_10_1038_s41557_024_01648_0 crossref_primary_10_1021_acsami_4c12834 crossref_primary_10_1002_anie_202311486 crossref_primary_10_1039_C7MH00644F crossref_primary_10_1002_adom_201900069 crossref_primary_10_1002_anie_201210334 crossref_primary_10_1080_02678292_2022_2076945 crossref_primary_10_1039_C6CP00603E crossref_primary_10_1080_02678292_2022_2076942 crossref_primary_10_1002_ange_202005361 crossref_primary_10_1002_marc_201400455 crossref_primary_10_1002_chem_201802927 crossref_primary_10_1002_anie_201712781 crossref_primary_10_1021_acs_jpcc_2c04865 crossref_primary_10_1038_s41570_017_0096 crossref_primary_10_1002_adfm_202414086 crossref_primary_10_1364_OE_24_026382 crossref_primary_10_3762_bjnano_9_37 crossref_primary_10_1002_advs_202002132 crossref_primary_10_1002_anie_201709136 crossref_primary_10_1007_s10118_025_3279_9 crossref_primary_10_3390_ma17030618 crossref_primary_10_1021_acs_jctc_2c00796 crossref_primary_10_1021_acs_joc_0c00852 crossref_primary_10_1002_marc_201700387 crossref_primary_10_3390_polym9070295 crossref_primary_10_1039_C6TC01103A crossref_primary_10_1002_adma_201807751 crossref_primary_10_1364_OE_27_029055 crossref_primary_10_1002_rpm_20240010 crossref_primary_10_1080_02678292_2014_896053 crossref_primary_10_1002_adma_201902958 crossref_primary_10_1002_anie_201303786 crossref_primary_10_1364_OE_23_022922 crossref_primary_10_1002_adma_201201521 crossref_primary_10_1016_j_ccr_2023_215451 crossref_primary_10_1021_acsami_5b05645 crossref_primary_10_1016_j_optmat_2017_01_047 crossref_primary_10_1038_s41377_024_01391_8 crossref_primary_10_1039_D1NR06036H |
Cites_doi | 10.1039/c0jm03626a 10.1021/ja802472t 10.1080/02678299408027858 10.1021/ol1014152 10.1021/ja993297d 10.1063/1.122384 10.1002/adma.200401429 10.1039/b801886c 10.1002/adfm.200500127 10.1021/ja00754a068 10.1126/science.1172051 10.1039/b306216n 10.1021/ja8039629 10.1002/chem.200305276 10.1515/zna-1977-0818 10.1080/00268947808070309 10.1021/cr000470b 10.1080/02678290500284017 10.1002/(SICI)1521-4095(200001)12:2<94::AID-ADMA94>3.0.CO;2-T 10.1021/cr980079e 10.1002/chem.200400463 10.1021/jo070394d 10.1021/jp000338f 10.1021/cr9900228 10.1002/adfm.200900396 10.1039/b103925n 10.1002/adfm.200304313 10.1038/440163a 10.1073/pnas.062660699 10.1126/science.273.5282.1686 10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S 10.1021/jo201139t 10.1039/c002436h 10.1021/jo00127a026 10.1246/cl.1987.911 10.1080/02678290050043888 10.1080/02678290412331282118 10.1002/adma.201003577 10.1038/43646 10.1002/3527602054 10.1080/10587250108025365 10.1021/cm0007555 10.1021/cm9907559 10.1021/ja108437n 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X 10.1246/cl.1999.653 10.1002/anie.198403481 10.1021/cr980069d 10.1002/3527600329 10.1021/ja065334o 10.1515/zna-1980-0607 10.1246/cl.1997.687 10.1039/b910583b 10.1002/1521-4095(200101)13:1<37::AID-ADMA37>3.0.CO;2-K 10.1246/bcsj.73.191 10.1002/cphc.200500007 10.1021/ja00014a057 10.1021/cr980070c 10.1021/ja00444a046 10.1039/B924962C 10.1021/ja01013a050 10.1021/jp112401k 10.1021/cm051404z 10.1021/ja00090a033 10.1039/b211421f 10.1063/1.2789290 10.1080/10587250108025281 10.1002/asia.200600116 10.1889/JSID17.10.869 10.1080/10587250008023933 10.1021/ja0747573 10.1063/1.358518 10.1021/ja00144a027 10.1021/ja9923033 10.1021/ja00130a013 10.1039/b208578j 10.1080/02678290310001599260 10.1039/b608749c 10.1039/b616320c 10.1080/026782998206632 10.1002/(SICI)1521-4095(199810)10:14<1080::AID-ADMA1080>3.0.CO;2-T 10.1038/nphoton.2009.172 10.1039/C0JM03479G 10.1080/02678290110093778 10.1021/cm9901616 10.1039/b009892m 10.1039/c0cc02685a 10.1080/02678290110048750 |
ContentType | Journal Article |
Copyright | Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201200241 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 1945 |
ExternalDocumentID | 22411073 10_1002_adma_201200241 ADMA201200241 ark_67375_WNG_42DJ0X2T_L |
Genre | reviewArticle Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4811-f16f485d05a6098a00347494f8ea51c63a11a159f1fbabad5efa59e73f40ca833 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 07:02:53 EDT 2025 Fri Jul 11 03:49:32 EDT 2025 Thu Apr 03 07:09:20 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Tue Jul 01 02:26:22 EDT 2025 Wed Jan 22 16:38:04 EST 2025 Wed Oct 30 09:54:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4811-f16f485d05a6098a00347494f8ea51c63a11a159f1fbabad5efa59e73f40ca833 |
Notes | This review is adapted from the forthcoming book Liquid Crystals Beyond Displays: Chemistry, Physics and Applications (Ed: Q. Li), John Wiley & Sons, 2012 ArticleID:ADMA201200241 istex:D1F53DF52B93F176BCCC33DC7A17154AAADFA51F ark:/67375/WNG-42DJ0X2T-L (Ed: Q. Li), John Wiley & Sons, 2012 Liquid Crystals Beyond Displays: Chemistry, Physics and Applications This review is adapted from the forthcoming book ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
PMID | 22411073 |
PQID | 1620105919 |
PQPubID | 23500 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_993317522 proquest_miscellaneous_1620105919 pubmed_primary_22411073 crossref_primary_10_1002_adma_201200241 crossref_citationtrail_10_1002_adma_201200241 wiley_primary_10_1002_adma_201200241_ADMA201200241 istex_primary_ark_67375_WNG_42DJ0X2T_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 17, 2012 |
PublicationDateYYYYMMDD | 2012-04-17 |
PublicationDate_xml | – month: 04 year: 2012 text: April 17, 2012 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2012 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | a) D. Pijper, B. L. Feringa, Soft Matter 2008, 4, 1349-1372 b) S. Kurihara, T. Kanda, T. Nagase, T. Nonaka, Appl. Phys. Lett. 1998, 73, 2081-2083 b) Y. Zhang, G. B. Schuster, J. Am. Chem. Soc. 1994, 116, 4852-4857 b) T. van Leeuwen, T. C. Pijper, J. Areephong, B. L. Feringa, W. R. Browne, N. Katsonis, J. Mater. Chem. 2011, 21, 3142-3146 c) T. Ikeda, J. Mater. Chem. 2003, 13, 2037-2057. R. Eelkema, B. L. Feringa, Org. Biomol. Chem. 2006, 4, 3729-3745. a) C. Ruslim, M. Nakagawa, S. Morino, K. Ichimura, Mol. Cryst. Liq. Cryst. 2001, 365, 55-62 a) G. Heppke, F. Oestreicher, Z. Naturforsch. 1977, 32, 899-901 a) M. Moriyama, S. Song, H. Matsuda, N. Tamaoki, J. Mater. Chem. 2001, 11, 1003-1010 C. Ruslim, K. Ichimura, J. Phys. Chem. B 2000, 104, 6529-6535. b) G. Heppke, F. Oestreicher, Mol. Cryst, Liq. Lett. 1978, 41, 245-249 g) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, J. Mater. Chem. 2001, 11, 2453-2458 E. Sackmann, J. Am. Chem. Soc. 1971, 93, 7088-7090. Y. Yokoyama, Chem. Rev. 2000, 100, 1717-1739. M. Irie, Chem. Rev. 2000, 100, 1685-1716. a) Y. Yokoyama, T. Sagisaka, Chem. Lett. 1997, 687-688 c) N. Tamaoki, S. Song, M. Moriyama, H. Matsuda, Adv. Mater. 2000, 12, 94-97 h) T. van Leeuwen, T. C. Pijper, J. Areephong, B. L. Feringa, W. R. Browne, N. Katsonis, J. Mater. Chem. 2011, 21, 3142-3146. b) K. Ichimura, Chem. Rev. 2000, 100, 1847-1873 a) R. Eelkema, B. L. Feringa, Chem. Asian J. 2006, 1, 367-369 b) The May 2000 issue of Chem. Rev. (Memories and Switches) 100(5), 6-1890. b) T. Yoshioka, M. D. Z. Alam, T. Ogata, T. Nonaka, S. Kurihara, Liq. Cryst. 2004, 31, 1285-1291 Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, J. W. Doane, J. Am. Chem. Soc. 2007, 129, 12908-12909. a) E. Montbath, N. Venkataraman, A. Khan, I. Shiyanovskaya, T. Schneider, J. W. Doane, L. Green, Q. Li, SID Digest Tech. Pap. 2008, 919-922 b) M. Mathews, N. Tamaoki, J. Am. Chem. Soc. 2008, 130, 11409-11416 a) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348-3391 a) J. Lub, W.P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, B. Malo, Liq. Cryst. 2005, 32, 1031-1044 c) B. L. Feringa, W. F. Jager, B. De Lange, E. W. Meijer, J. Am. Chem. Soc. 1991, 113, 5468-5470 S. N. Yarmolenko, L. A. Kutulya, V. V. Vashchenko, L. V. Chepeleva, Liq. Cryst. 1994, 16, 877-882. M. Mathews, R. Zola, D. Yang, Q. Li, J. Mater. Chem. 2011, 21, 2098-2103. a) C.-T. Chen, Y.-C. Chou, J. Am. Chem. Soc. 2000, 122, 7662-7672 a) R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. Serrano Ramon, C. W. M. Bastiaansen, D. J. Broer, B. L. Feringa, Nature 2006, 440, 163-163 a) C. Ruslim, K. Ichimura, Adv. Mater. 2001, 13, 37-40 b) G. P. Spada, G. Proni, Enantiomer 1998, 3, 301-314 d) K. S. Burnham, G. B. Schuster, J. Am. Chem. Soc. 1999, 121, 10245-10246. K. L. Stevenson, J. F. Verdieck, J. Am. Chem. Soc. 1968, 90, 2974-2975. F. L. Carter, H. Siatkowski, H. Wohltgen, in Molecular Electronic Devices, Elsevier, Amsterdam, 1988. a) M. Suarez, G. B. Schuster, J. Am. Chem. Soc. 1995, 117, 6732-6738 a) B. L. Feringa, in Molecular Switches, WILEY-VCH, Germany, 2001 b) Y. Yokoyama, S. Uchida, Y. Yokoyama, T. Sagisaka, Y. Uchida, T. Inada, Enantiomer 1998, 3, 123-132 a) B. L. Feringa, H. Wynberg, J. Am. Chem. Soc. 1977, 602-603 e) S. Pieraccini, G. Gottarelli, R. Labruto, S. Masiero, O. Pandoli, G. P. Spada, Chem. Eur. J. 2004, 10, 5632-5639. Y. Li, A. Urbas, Q. Li, J. Org. Chem. 2011, 76, 7148-7156. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, Adv. Funct. Mater. 2009, 19, 3484-3488. b) J. Lub, W. P. M. Nijssen, R. T. Wegh, J. P. A. Vogels, A. Ferrer, Adv. Funct. Mater. 2005, 15, 1961-1972. f) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Mol. Cryst. Liq. Cryst. 2000, 345, 287-292 b) R. A. van Delden, T. Mecca, C. Rosini, B. L. Feringa, Chem. Eur. J. 2004, 10, 61-70 a) D.-K. Yang, J. W. Doane, SID Intl. Sump. Digest Tech. Papers 1992, 23, 759-761 B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema, Chem. Rev. 2000, 100, 1789-1816. d) S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J.-P. Guillou, N. A. Usova, Liq. Cryst. 2002, 29, 19-26. d) N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa, Nature 1999, 401, 152-155. d) T. Ikeda, J. Mater. Chem. 2003, 13, 2037-2057. a) R. A. van Delden, M. B. van Gelder, N. P. M. Huc, B. L. Feringa, Adv. Funct. Mater. 2003, 13, 319-324 H. Hattori, T. Uryu, Liq. Cryst. 2001, 28, 1099-1104. b) R. A. van Delden, N. Koumura, N. Harada, B. L. Feringa, Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4945-4949. b) R. Eelkema, M. M. Pollard, N. Katsonis, J. Vicario, D. J. Broer, B. L. Feringa, J. Am. Chem. Soc. 2006, 128, 14397-14407. c) S. Pieraccini, S. Masiero, A. Ferrarini, G. P. Spada, Chem. Soc. Rev. 2011, 40, 258-271 a) S. Kinoshita, S. Yoshioka, ChemPhysChem 2005, 6, 1442-1459 c) T. Sagisaka, Y. Yokoyama, Bull. Chem. Soc. Jpn. 2000, 73, 191-196. c) Y. Zhang, G. B. Schuster, J. Org. Chem. 1995, 60, 7192-7197 b) B. L. Feringa, N. P. M. Huck, H. A. V. Doren, J. Am. Chem. Soc. 1995, 117, 9929-9930 b) T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. kosa, B. Taheri, T. J. Bunning, Adv. Mater. 2011, 23, 1389-1392. c) M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, Q. Li, J. Am. Chem. Soc. 2010, 132, 18361-18366. S. Tazuke, S. Kurihara, T. Ikeda, Chem. Lett. 1987, 911-914. b) S. Bertheier, in Iridescences: The Physical Color of Insects, Springer, New York, 2007 c) G. Proni, G. P. Spada, Enantiomer 2001, 6, 171-179. J. Chen, S. M. Morris, T. D. Wilkinson, H. J. Coles, Appl. Phys. Lett. 2007, 91, 121118. a) M. Kawamoto, T. Aoki, T. Wada, Chem. Commun. 2007, 930-932 d) I. Dierking, in Textures of Liquid Crystals, Wiley-VCH, Weinheim, 2003. K. Rameshbabu, A. Urbas, Q. Li, J. Phys. Chem. B 2011, 115, 3409-3415. b) N. Venkataraman, G. Magyar, E. Montbath, A. Khan, T. Schneider, J. W. Doane, L. Green, Q. Li, J. Soc. Information Display 2009, 17, 869-873. P. M. A. Bonaccorsi, D. A. Dunmur, J. F. Stoddart, New J. Chem. 1988, 12, 83-85. d) S. Kurihara, S. Nomiyama, T. Nonaka, Chem. Mater. 2001, 13, 1992-1997 d) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Chem. Mater. 2000, 12, 869-871 T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S.-N. Kim, S. Kurihara, Adv. Mater. 2005, 17, 1226-1229. c) D. Graham-Rowe, Nat. Photonics 2009, 3, 551-553 M. Kawamoto, N. Shiga, K. Takashi, T. Yamashita, Chem. Commun. 2010, 46, 8344-8346. b) J. Lub, A. Ferrer, C. Larossa, B. Malo, Liq. Cryst. 2003, 30, 1207-1218. c) P. R. Gerber, Z. Naturforsch. 1980, 35, 619-622 a) C. Denekamp, B. L. Feringa, Adv. Mater. 1998, 10, 1080-1082 b) N. Tamaoki, Adv. Mater. 2001, 13, 1135-1147 b) D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, J. Appl. Phys. 1994, 76, 1331-1333. N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, Science 1996, 273, 1686-1688. a) G. Solladié, R. G. Zimmermann, Angew. Chem. Int. Ed. 1984, 23, 348-362 K. Ichimura, in Photochromism: Molecules and Systems, (Eds. H. Dürr H. Bouas-Laurent), Elsevier: Amsterdam, 1990. Q. Li, L. Li, J. Kim, H.-K. Park, J. Williams, Chem. Mater. 2005, 17, 6018-6021. L.-M. Jin, Y. Li, J. Ma, Q. Li, Org. Lett. 2010, 12, 3552-3555. b) C. Ruslim, K. Ichimura, J. Mater. Chem. 2002, 12, 3377-3379. B. L. Feringa, J. Org. Chem. 2007, 72, 6635-6652. c) J. Ma, Y. Li, T. White, A. Urbas, Q. Li, Chem. Commun. 2010, 46, 3463-3465. d) V. Sharma, M. Crne, J. Park, M. Srinivasarao, Science 2009, 325, 449-451. c) T. Yamaguchi, H. Nakazumi, K. Uchida, M. Irie, Chem. Lett. 1999, 653-654 L. Green, Y. Li, T. White, A. Urbas, T. Bunning, Q. Li, Org. Biomol. Chem. 2009, 7, 3930-3933. a) S. Pieraccini, S. Masiero, G. P. Spada, G. Gottarelli, Chem. Commun. 2003, 598-599 E. Mena, P. V. D. Witte, J. Lub, Liq. Cryst. 2000, 27, 929-933. b) A. Bosco, M. G. M. Jongejan, R. Eelkema, N. Katsonis, E. Lacaze, A. Ferrarini, B. L. Feringa, J. Am. Chem. Soc. 2008, 130, 14615-14624. e) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Mol. Cryst. Liq. Cryst. 2001, 365, 861-866 c) S. Kurihara, S. Nomiyama, T. Nonaka, Chem. Mater. 2000, 12, 9-12 a) P. V. D. Witte, J. C. Galan, J. Lub, Liq. Cryst. 1998, 24, 819-827 2010; 12 2011; 115 2007; 129 2000; 27 1977 1978 1980 2003; 32 41 35 2005 2007 2009 2009; 6 3 325 2007; 91 1988; 12 2008 2000 2003; 4 100 13 2011; 76 1995 1994 1995 1999; 117 116 60 121 2007; 72 2006; 4 2006 2006; 440 128 2003 2004 2010; 10 46 2001; 28 1984 1998 2001; 23 3 6 2001 2004 2000 2001 2004; 365 31 12 13 10 2006 2008; 1 130 2005 2005; 32 15 1977 1995 1991 1999; 117 113 401 2001 2001 2011 2003; 13 40 13 2003 2002; 13 99 1971; 93 1992 1994; 23 76 2010; 46 1990 2007 2008 2010; 130 132 2000; 104 2000 2011; 122 23 2001 2002; 13 12 2000; 39 100 1987 2011; 21 1997 1998 2000; 3 73 2009; 7 1994; 16 1968; 90 1998 2003; 24 30 2000; 100 1998 2011 1999 2000 2001 2000 2001 2011; 10 21 12 365 345 11 21 1996; 273 2009; 19 2005; 17 2001 1998 2000 2002; 11 73 12 29 1988 2008 2009; 17 e_1_2_6_30_2 e_1_2_6_15_5 e_1_2_6_15_6 e_1_2_6_19_2 e_1_2_6_11_3 e_1_2_6_11_4 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_15_3 e_1_2_6_15_4 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_41_2 e_1_2_6_5_5 e_1_2_6_5_4 e_1_2_6_1_5 e_1_2_6_1_4 e_1_2_6_5_3 e_1_2_6_5_2 e_1_2_6_22_3 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_45_3 e_1_2_6_50_2 e_1_2_6_50_3 Yokoyama Y. (e_1_2_6_43_3) 1998; 3 e_1_2_6_50_4 Carter F. L. (e_1_2_6_9_2) 1988 e_1_2_6_50_5 e_1_2_6_31_2 Montbath E. (e_1_2_6_22_2) 2008 e_1_2_6_35_9 e_1_2_6_16_4 e_1_2_6_35_8 e_1_2_6_35_7 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_12_3 e_1_2_6_16_2 e_1_2_6_35_6 e_1_2_6_39_2 e_1_2_6_16_3 e_1_2_6_35_5 e_1_2_6_12_4 e_1_2_6_35_4 e_1_2_6_12_5 e_1_2_6_35_3 e_1_2_6_42_2 e_1_2_6_27_4 e_1_2_6_6_2 Bonaccorsi P. M. A. (e_1_2_6_29_2) 1988; 12 e_1_2_6_23_3 e_1_2_6_46_3 e_1_2_6_2_2 e_1_2_6_27_3 e_1_2_6_27_2 e_1_2_6_46_2 Ichimura K. (e_1_2_6_3_2) 1990 e_1_2_6_13_2 e_1_2_6_32_3 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_7_3 e_1_2_6_7_2 e_1_2_6_7_5 e_1_2_6_7_4 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_47_3 e_1_2_6_20_3 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_43_4 Yang D.‐K. (e_1_2_6_23_2) 1992; 23 Bertheier S. (e_1_2_6_1_3) 2007 e_1_2_6_18_2 e_1_2_6_18_3 e_1_2_6_33_3 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_14_2 e_1_2_6_37_2 Proni G. (e_1_2_6_6_4) 2001; 6 (e_1_2_6_8_3); 100 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_4_2 Spada G. P. (e_1_2_6_6_3) 1998; 3 e_1_2_6_44_5 e_1_2_6_48_2 e_1_2_6_21_2 e_1_2_6_44_2 e_1_2_6_44_3 e_1_2_6_25_2 e_1_2_6_44_4 |
References_xml | – reference: a) M. Moriyama, S. Song, H. Matsuda, N. Tamaoki, J. Mater. Chem. 2001, 11, 1003-1010; – reference: Y. Li, A. Urbas, Q. Li, J. Org. Chem. 2011, 76, 7148-7156. – reference: a) G. Heppke, F. Oestreicher, Z. Naturforsch. 1977, 32, 899-901; – reference: g) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, J. Mater. Chem. 2001, 11, 2453-2458; – reference: L.-M. Jin, Y. Li, J. Ma, Q. Li, Org. Lett. 2010, 12, 3552-3555. – reference: c) T. Sagisaka, Y. Yokoyama, Bull. Chem. Soc. Jpn. 2000, 73, 191-196. – reference: E. Mena, P. V. D. Witte, J. Lub, Liq. Cryst. 2000, 27, 929-933. – reference: P. M. A. Bonaccorsi, D. A. Dunmur, J. F. Stoddart, New J. Chem. 1988, 12, 83-85. – reference: d) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Chem. Mater. 2000, 12, 869-871; – reference: b) Y. Zhang, G. B. Schuster, J. Am. Chem. Soc. 1994, 116, 4852-4857; – reference: c) B. L. Feringa, W. F. Jager, B. De Lange, E. W. Meijer, J. Am. Chem. Soc. 1991, 113, 5468-5470; – reference: a) D. Pijper, B. L. Feringa, Soft Matter 2008, 4, 1349-1372; – reference: a) S. Pieraccini, S. Masiero, G. P. Spada, G. Gottarelli, Chem. Commun. 2003, 598-599; – reference: d) K. S. Burnham, G. B. Schuster, J. Am. Chem. Soc. 1999, 121, 10245-10246. – reference: E. Sackmann, J. Am. Chem. Soc. 1971, 93, 7088-7090. – reference: a) Y. Yokoyama, T. Sagisaka, Chem. Lett. 1997, 687-688; – reference: c) D. Graham-Rowe, Nat. Photonics 2009, 3, 551-553; – reference: b) C. Ruslim, K. Ichimura, J. Mater. Chem. 2002, 12, 3377-3379. – reference: M. Irie, Chem. Rev. 2000, 100, 1685-1716. – reference: b) Y. Yokoyama, S. Uchida, Y. Yokoyama, T. Sagisaka, Y. Uchida, T. Inada, Enantiomer 1998, 3, 123-132; – reference: Q. Li, L. Li, J. Kim, H.-K. Park, J. Williams, Chem. Mater. 2005, 17, 6018-6021. – reference: b) A. Bosco, M. G. M. Jongejan, R. Eelkema, N. Katsonis, E. Lacaze, A. Ferrarini, B. L. Feringa, J. Am. Chem. Soc. 2008, 130, 14615-14624. – reference: a) M. Kawamoto, T. Aoki, T. Wada, Chem. Commun. 2007, 930-932; – reference: b) The May 2000 issue of Chem. Rev. (Memories and Switches) 100(5), 6-1890. – reference: S. Tazuke, S. Kurihara, T. Ikeda, Chem. Lett. 1987, 911-914. – reference: e) S. Pieraccini, G. Gottarelli, R. Labruto, S. Masiero, O. Pandoli, G. P. Spada, Chem. Eur. J. 2004, 10, 5632-5639. – reference: d) S. Kurihara, S. Nomiyama, T. Nonaka, Chem. Mater. 2001, 13, 1992-1997; – reference: a) B. L. Feringa, in Molecular Switches, WILEY-VCH, Germany, 2001; – reference: b) J. Lub, W. P. M. Nijssen, R. T. Wegh, J. P. A. Vogels, A. Ferrer, Adv. Funct. Mater. 2005, 15, 1961-1972. – reference: b) N. Venkataraman, G. Magyar, E. Montbath, A. Khan, T. Schneider, J. W. Doane, L. Green, Q. Li, J. Soc. Information Display 2009, 17, 869-873. – reference: a) R. A. van Delden, M. B. van Gelder, N. P. M. Huc, B. L. Feringa, Adv. Funct. Mater. 2003, 13, 319-324; – reference: S. N. Yarmolenko, L. A. Kutulya, V. V. Vashchenko, L. V. Chepeleva, Liq. Cryst. 1994, 16, 877-882. – reference: c) Y. Zhang, G. B. Schuster, J. Org. Chem. 1995, 60, 7192-7197; – reference: B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema, Chem. Rev. 2000, 100, 1789-1816. – reference: b) G. P. Spada, G. Proni, Enantiomer 1998, 3, 301-314; – reference: b) M. Mathews, N. Tamaoki, J. Am. Chem. Soc. 2008, 130, 11409-11416; – reference: e) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Mol. Cryst. Liq. Cryst. 2001, 365, 861-866; – reference: b) T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. kosa, B. Taheri, T. J. Bunning, Adv. Mater. 2011, 23, 1389-1392. – reference: d) T. Ikeda, J. Mater. Chem. 2003, 13, 2037-2057. – reference: a) C. Ruslim, K. Ichimura, Adv. Mater. 2001, 13, 37-40; – reference: b) D.-K. Yang, J. L. West, L.-C. Chien, J. W. Doane, J. Appl. Phys. 1994, 76, 1331-1333. – reference: d) S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J.-P. Guillou, N. A. Usova, Liq. Cryst. 2002, 29, 19-26. – reference: a) S. Kinoshita, S. Yoshioka, ChemPhysChem 2005, 6, 1442-1459; – reference: b) S. Bertheier, in Iridescences: The Physical Color of Insects, Springer, New York, 2007; – reference: h) T. van Leeuwen, T. C. Pijper, J. Areephong, B. L. Feringa, W. R. Browne, N. Katsonis, J. Mater. Chem. 2011, 21, 3142-3146. – reference: a) C.-T. Chen, Y.-C. Chou, J. Am. Chem. Soc. 2000, 122, 7662-7672; – reference: f) T. Yamaguchi, T. Inagawa, H. Nakazumi, S. Irie, M. Irie, Mol. Cryst. Liq. Cryst. 2000, 345, 287-292; – reference: d) N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, B. L. Feringa, Nature 1999, 401, 152-155. – reference: a) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348-3391; – reference: a) R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. Serrano Ramon, C. W. M. Bastiaansen, D. J. Broer, B. L. Feringa, Nature 2006, 440, 163-163; – reference: Y. Yokoyama, Chem. Rev. 2000, 100, 1717-1739. – reference: a) D.-K. Yang, J. W. Doane, SID Intl. Sump. Digest Tech. Papers 1992, 23, 759-761; – reference: K. Rameshbabu, A. Urbas, Q. Li, J. Phys. Chem. B 2011, 115, 3409-3415. – reference: B. L. Feringa, J. Org. Chem. 2007, 72, 6635-6652. – reference: a) C. Ruslim, M. Nakagawa, S. Morino, K. Ichimura, Mol. Cryst. Liq. Cryst. 2001, 365, 55-62; – reference: a) M. Suarez, G. B. Schuster, J. Am. Chem. Soc. 1995, 117, 6732-6738; – reference: L. Green, Y. Li, T. White, A. Urbas, T. Bunning, Q. Li, Org. Biomol. Chem. 2009, 7, 3930-3933. – reference: a) B. L. Feringa, H. Wynberg, J. Am. Chem. Soc. 1977, 602-603; – reference: a) E. Montbath, N. Venkataraman, A. Khan, I. Shiyanovskaya, T. Schneider, J. W. Doane, L. Green, Q. Li, SID Digest Tech. Pap. 2008, 919-922; – reference: c) N. Tamaoki, S. Song, M. Moriyama, H. Matsuda, Adv. Mater. 2000, 12, 94-97; – reference: d) I. Dierking, in Textures of Liquid Crystals, Wiley-VCH, Weinheim, 2003. – reference: a) P. V. D. Witte, J. C. Galan, J. Lub, Liq. Cryst. 1998, 24, 819-827; – reference: b) R. A. van Delden, T. Mecca, C. Rosini, B. L. Feringa, Chem. Eur. J. 2004, 10, 61-70; – reference: c) S. Pieraccini, S. Masiero, A. Ferrarini, G. P. Spada, Chem. Soc. Rev. 2011, 40, 258-271; – reference: b) S. Kurihara, T. Kanda, T. Nagase, T. Nonaka, Appl. Phys. Lett. 1998, 73, 2081-2083; – reference: b) K. Ichimura, Chem. Rev. 2000, 100, 1847-1873; – reference: a) R. Eelkema, B. L. Feringa, Chem. Asian J. 2006, 1, 367-369; – reference: K. Ichimura, in Photochromism: Molecules and Systems, (Eds. H. Dürr H. Bouas-Laurent), Elsevier: Amsterdam, 1990. – reference: c) M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, Q. Li, J. Am. Chem. Soc. 2010, 132, 18361-18366. – reference: b) N. Tamaoki, Adv. Mater. 2001, 13, 1135-1147; – reference: M. Kawamoto, N. Shiga, K. Takashi, T. Yamashita, Chem. Commun. 2010, 46, 8344-8346. – reference: K. L. Stevenson, J. F. Verdieck, J. Am. Chem. Soc. 1968, 90, 2974-2975. – reference: c) T. Ikeda, J. Mater. Chem. 2003, 13, 2037-2057. – reference: N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, Science 1996, 273, 1686-1688. – reference: b) R. Eelkema, M. M. Pollard, N. Katsonis, J. Vicario, D. J. Broer, B. L. Feringa, J. Am. Chem. Soc. 2006, 128, 14397-14407. – reference: d) V. Sharma, M. Crne, J. Park, M. Srinivasarao, Science 2009, 325, 449-451. – reference: C. Ruslim, K. Ichimura, J. Phys. Chem. B 2000, 104, 6529-6535. – reference: c) T. Yamaguchi, H. Nakazumi, K. Uchida, M. Irie, Chem. Lett. 1999, 653-654; – reference: b) R. A. van Delden, N. Koumura, N. Harada, B. L. Feringa, Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4945-4949. – reference: c) S. Kurihara, S. Nomiyama, T. Nonaka, Chem. Mater. 2000, 12, 9-12; – reference: Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, J. W. Doane, J. Am. Chem. Soc. 2007, 129, 12908-12909. – reference: b) B. L. Feringa, N. P. M. Huck, H. A. V. Doren, J. Am. Chem. Soc. 1995, 117, 9929-9930; – reference: T. Yoshioka, T. Ogata, T. Nonaka, M. Moritsugu, S.-N. Kim, S. Kurihara, Adv. Mater. 2005, 17, 1226-1229. – reference: J. Chen, S. M. Morris, T. D. Wilkinson, H. J. Coles, Appl. Phys. Lett. 2007, 91, 121118. – reference: b) T. Yoshioka, M. D. Z. Alam, T. Ogata, T. Nonaka, S. Kurihara, Liq. Cryst. 2004, 31, 1285-1291; – reference: c) G. Proni, G. P. Spada, Enantiomer 2001, 6, 171-179. – reference: a) C. Denekamp, B. L. Feringa, Adv. Mater. 1998, 10, 1080-1082; – reference: b) T. van Leeuwen, T. C. Pijper, J. Areephong, B. L. Feringa, W. R. Browne, N. Katsonis, J. Mater. Chem. 2011, 21, 3142-3146; – reference: H. Hattori, T. Uryu, Liq. Cryst. 2001, 28, 1099-1104. – reference: b) G. Heppke, F. Oestreicher, Mol. Cryst, Liq. Lett. 1978, 41, 245-249; – reference: b) J. Lub, A. Ferrer, C. Larossa, B. Malo, Liq. Cryst. 2003, 30, 1207-1218. – reference: M. Mathews, R. Zola, D. Yang, Q. Li, J. Mater. Chem. 2011, 21, 2098-2103. – reference: F. L. Carter, H. Siatkowski, H. Wohltgen, in Molecular Electronic Devices, Elsevier, Amsterdam, 1988. – reference: R. Eelkema, B. L. Feringa, Org. Biomol. Chem. 2006, 4, 3729-3745. – reference: T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, T. J. Bunning, Adv. Funct. Mater. 2009, 19, 3484-3488. – reference: c) P. R. Gerber, Z. Naturforsch. 1980, 35, 619-622; – reference: a) J. Lub, W.P. M. Nijssen, R. T. Wegh, I. De Francisco, M. P. Ezquerro, B. Malo, Liq. Cryst. 2005, 32, 1031-1044; – reference: a) G. Solladié, R. G. Zimmermann, Angew. Chem. Int. Ed. 1984, 23, 348-362; – reference: c) J. Ma, Y. Li, T. White, A. Urbas, Q. Li, Chem. Commun. 2010, 46, 3463-3465. – volume: 440 128 start-page: 163 14397 year: 2006 2006 end-page: 163 14407 publication-title: Nature J. Am. Chem. Soc. – volume: 117 113 401 start-page: 602 9929 5468 152 year: 1977 1995 1991 1999 end-page: 603 9930 5470 155 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Nature – volume: 115 start-page: 3409 year: 2011 end-page: 3415 publication-title: J. Phys. Chem. B – volume: 10 21 12 365 345 11 21 start-page: 1080 3142 653 869 861 287 2453 3142 year: 1998 2011 1999 2000 2001 2000 2001 2011 end-page: 1082 3146 654 871 866 292 2458 3146 publication-title: Adv. Mater. J. Mater. Chem. Chem. Lett. Chem. Mater. Mol. Cryst. Liq. Cryst. Mol. Cryst. Liq. Cryst. J. Mater. Chem. J. Mater. Chem. – volume: 13 40 13 start-page: 1135 258 2037 year: 2001 2001 2011 2003 end-page: 1147 271 2057 publication-title: Adv. Mater. Chem. Soc. Rev. J. Mater. Chem. – volume: 46 start-page: 8344 year: 2010 end-page: 8346 publication-title: Chem. Commun. – volume: 122 23 start-page: 7662 1389 year: 2000 2011 end-page: 7672 1392 publication-title: J. Am. Chem. Soc. Adv. Mater. – year: 1990 – volume: 13 12 start-page: 37 3377 year: 2001 2002 end-page: 40 3379 publication-title: Adv. Mater. J. Mater. Chem. – volume: 13 99 start-page: 319 4945 year: 2003 2002 end-page: 324 4949 publication-title: Adv. Funct. Mater. Proc. Natl. Acad. Sci. U.S.A. – volume: 129 start-page: 12908 year: 2007 end-page: 12909 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 2098 year: 2011 end-page: 2103 publication-title: J. Mater. Chem. – volume: 19 start-page: 3484 year: 2009 end-page: 3488 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 83 year: 1988 end-page: 85 publication-title: New J. Chem. – volume: 32 15 start-page: 1031 1961 year: 2005 2005 end-page: 1044 1972 publication-title: Liq. Cryst. Adv. Funct. Mater. – volume: 100 start-page: 1789 year: 2000 end-page: 1816 publication-title: Chem. Rev. – volume: 39 100 start-page: 3348 6 issue: 5 year: 2000 end-page: 3391 1890 publication-title: Angew. Chem. Int. Ed. Chem. Rev. – volume: 7 start-page: 3930 year: 2009 end-page: 3933 publication-title: Org. Biomol. Chem. – volume: 100 start-page: 1685 year: 2000 end-page: 1716 publication-title: Chem. Rev. – volume: 27 start-page: 929 year: 2000 end-page: 933 publication-title: Liq. Cryst. – volume: 23 3 6 start-page: 348 301 171 year: 1984 1998 2001 end-page: 362 314 179 publication-title: Angew. Chem. Int. Ed. Enantiomer Enantiomer – volume: 104 start-page: 6529 year: 2000 end-page: 6535 publication-title: J. Phys. Chem. B – volume: 23 76 start-page: 759 1331 year: 1992 1994 end-page: 761 1333 publication-title: SID Intl. Sump. Digest Tech. Papers J. Appl. Phys. – volume: 17 start-page: 6018 year: 2005 end-page: 6021 publication-title: Chem. Mater. – volume: 90 start-page: 2974 year: 1968 end-page: 2975 publication-title: J. Am. Chem. Soc. – volume: 10 46 start-page: 598 61 3463 year: 2003 2004 2010 end-page: 599 70 3465 publication-title: Chem. Commun. Chem. Eur. J. Chem. Commun. – volume: 91 start-page: 121118 year: 2007 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 3552 year: 2010 end-page: 3555 publication-title: Org. Lett. – volume: 16 start-page: 877 year: 1994 end-page: 882 publication-title: Liq. Cryst. – volume: 130 132 start-page: 930 11409 18361 year: 2007 2008 2010 end-page: 932 11416 18366 publication-title: Chem. Commun. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 72 start-page: 6635 year: 2007 end-page: 6652 publication-title: J. Org. Chem. – volume: 17 start-page: 919 869 year: 2008 2009 end-page: 922 873 publication-title: SID Digest Tech. Pap. J. Soc. Information Display – volume: 24 30 start-page: 819 1207 year: 1998 2003 end-page: 827 1218 publication-title: Liq. Cryst. Liq. Cryst. – volume: 32 41 35 start-page: 899 245 619 year: 1977 1978 1980 2003 end-page: 901 249 622 publication-title: Z. Naturforsch. Mol. Cryst, Liq. Lett. Z. Naturforsch. – volume: 11 73 12 29 start-page: 1003 2081 94 19 year: 2001 1998 2000 2002 end-page: 1010 2083 97 26 publication-title: J. Mater. Chem. Appl. Phys. Lett. Adv. Mater. Liq. Cryst. – volume: 6 3 325 start-page: 1442 551 449 year: 2005 2007 2009 2009 end-page: 1459 553 451 publication-title: ChemPhysChem Nat. Photonics Science – volume: 93 start-page: 7088 year: 1971 end-page: 7090 publication-title: J. Am. Chem. Soc. – volume: 4 100 13 start-page: 1349 1847 2037 year: 2008 2000 2003 end-page: 1372 1873 2057 publication-title: Soft Matter Chem. Rev. J. Mater. Chem. – start-page: 911 year: 1987 end-page: 914 publication-title: Chem. Lett. – volume: 76 start-page: 7148 year: 2011 end-page: 7156 publication-title: J. Org. Chem. – volume: 1 130 start-page: 367 14615 year: 2006 2008 end-page: 369 14624 publication-title: Chem. Asian J. J. Am. Chem. Soc. – volume: 273 start-page: 1686 year: 1996 end-page: 1688 publication-title: Science – volume: 28 start-page: 1099 year: 2001 end-page: 1104 publication-title: Liq. Cryst. – year: 1988 – volume: 117 116 60 121 start-page: 6732 4852 7192 10245 year: 1995 1994 1995 1999 end-page: 6738 4857 7197 10246 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Org. Chem. J. Am. Chem. Soc. – volume: 17 start-page: 1226 year: 2005 end-page: 1229 publication-title: Adv. Mater. – volume: 3 73 start-page: 687 123 191 year: 1997 1998 2000 end-page: 688 132 196 publication-title: Chem. Lett. Enantiomer Bull. Chem. Soc. Jpn. – volume: 4 start-page: 3729 year: 2006 end-page: 3745 publication-title: Org. Biomol. Chem. – volume: 100 start-page: 1717 year: 2000 end-page: 1739 publication-title: Chem. Rev. – volume: 365 31 12 13 10 start-page: 55 1285 9 1992 5632 year: 2001 2004 2000 2001 2004 end-page: 62 1291 12 1997 5639 publication-title: Mol. Cryst. Liq. Cryst. Liq. Cryst. Chem. Mater. Chem. Mater. Chem. Eur. J. – ident: e_1_2_6_35_3 doi: 10.1039/c0jm03626a – ident: e_1_2_6_27_3 doi: 10.1021/ja802472t – ident: e_1_2_6_30_2 doi: 10.1080/02678299408027858 – ident: e_1_2_6_41_2 doi: 10.1021/ol1014152 – ident: e_1_2_6_47_2 doi: 10.1021/ja993297d – ident: e_1_2_6_12_3 doi: 10.1063/1.122384 – ident: e_1_2_6_19_2 doi: 10.1002/adma.200401429 – ident: e_1_2_6_11_2 doi: 10.1039/b801886c – ident: e_1_2_6_33_3 doi: 10.1002/adfm.200500127 – ident: e_1_2_6_10_2 doi: 10.1021/ja00754a068 – ident: e_1_2_6_1_5 doi: 10.1126/science.1172051 – ident: e_1_2_6_11_4 doi: 10.1039/b306216n – ident: e_1_2_6_45_3 doi: 10.1021/ja8039629 – ident: e_1_2_6_16_3 doi: 10.1002/chem.200305276 – volume: 3 start-page: 301 year: 1998 ident: e_1_2_6_6_3 publication-title: Enantiomer – ident: e_1_2_6_5_2 doi: 10.1515/zna-1977-0818 – ident: e_1_2_6_5_3 doi: 10.1080/00268947808070309 – volume: 100 start-page: 6 issue: 5 ident: e_1_2_6_8_3 publication-title: Chem. Rev. doi: 10.1021/cr000470b – ident: e_1_2_6_33_2 doi: 10.1080/02678290500284017 – ident: e_1_2_6_12_4 doi: 10.1002/(SICI)1521-4095(200001)12:2<94::AID-ADMA94>3.0.CO;2-T – ident: e_1_2_6_11_3 doi: 10.1021/cr980079e – ident: e_1_2_6_15_6 doi: 10.1002/chem.200400463 – ident: e_1_2_6_2_2 doi: 10.1021/jo070394d – ident: e_1_2_6_14_2 doi: 10.1021/jp000338f – ident: e_1_2_6_39_2 doi: 10.1021/cr9900228 – ident: e_1_2_6_24_2 doi: 10.1002/adfm.200900396 – volume-title: Molecular Electronic Devices year: 1988 ident: e_1_2_6_9_2 – ident: e_1_2_6_35_8 doi: 10.1039/b103925n – ident: e_1_2_6_35_9 doi: 10.1039/c0jm03626a – ident: e_1_2_6_20_2 doi: 10.1002/adfm.200304313 – ident: e_1_2_6_46_2 doi: 10.1038/440163a – ident: e_1_2_6_20_3 doi: 10.1073/pnas.062660699 – ident: e_1_2_6_49_2 doi: 10.1126/science.273.5282.1686 – ident: e_1_2_6_7_3 doi: 10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S – ident: e_1_2_6_38_2 doi: 10.1021/jo201139t – volume: 3 start-page: 123 year: 1998 ident: e_1_2_6_43_3 publication-title: Enantiomer – ident: e_1_2_6_16_4 doi: 10.1039/c002436h – ident: e_1_2_6_50_4 doi: 10.1021/jo00127a026 – volume: 23 start-page: 759 year: 1992 ident: e_1_2_6_23_2 publication-title: SID Intl. Sump. Digest Tech. Papers – ident: e_1_2_6_13_2 doi: 10.1246/cl.1987.911 – ident: e_1_2_6_31_2 doi: 10.1080/02678290050043888 – ident: e_1_2_6_15_3 doi: 10.1080/02678290412331282118 – ident: e_1_2_6_47_3 doi: 10.1002/adma.201003577 – volume-title: Iridescences: The Physical Color of Insects year: 2007 ident: e_1_2_6_1_3 – ident: e_1_2_6_44_5 doi: 10.1038/43646 – ident: e_1_2_6_5_5 doi: 10.1002/3527602054 – ident: e_1_2_6_35_6 doi: 10.1080/10587250108025365 – ident: e_1_2_6_15_5 doi: 10.1021/cm0007555 – ident: e_1_2_6_35_5 doi: 10.1021/cm9907559 – ident: e_1_2_6_27_4 doi: 10.1021/ja108437n – ident: e_1_2_6_8_2 doi: 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X – ident: e_1_2_6_35_4 doi: 10.1246/cl.1999.653 – ident: e_1_2_6_6_2 doi: 10.1002/anie.198403481 – ident: e_1_2_6_34_2 doi: 10.1021/cr980069d – ident: e_1_2_6_7_2 doi: 10.1002/3527600329 – ident: e_1_2_6_46_3 doi: 10.1021/ja065334o – ident: e_1_2_6_5_4 doi: 10.1515/zna-1980-0607 – ident: e_1_2_6_43_2 doi: 10.1246/cl.1997.687 – ident: e_1_2_6_25_2 doi: 10.1039/b910583b – ident: e_1_2_6_18_2 doi: 10.1002/1521-4095(200101)13:1<37::AID-ADMA37>3.0.CO;2-K – ident: e_1_2_6_43_4 doi: 10.1246/bcsj.73.191 – ident: e_1_2_6_1_2 doi: 10.1002/cphc.200500007 – start-page: 919 year: 2008 ident: e_1_2_6_22_2 publication-title: SID Digest Tech. Pap. – ident: e_1_2_6_44_4 doi: 10.1021/ja00014a057 – ident: e_1_2_6_7_5 doi: 10.1039/b306216n – ident: e_1_2_6_42_2 doi: 10.1021/cr980070c – ident: e_1_2_6_44_2 doi: 10.1021/ja00444a046 – ident: e_1_2_6_7_4 doi: 10.1039/B924962C – ident: e_1_2_6_48_2 doi: 10.1021/ja01013a050 – volume: 6 start-page: 171 year: 2001 ident: e_1_2_6_6_4 publication-title: Enantiomer – ident: e_1_2_6_37_2 doi: 10.1021/jp112401k – ident: e_1_2_6_17_2 doi: 10.1021/cm051404z – ident: e_1_2_6_50_3 doi: 10.1021/ja00090a033 – ident: e_1_2_6_16_2 doi: 10.1039/b211421f – ident: e_1_2_6_26_2 doi: 10.1063/1.2789290 – ident: e_1_2_6_15_2 doi: 10.1080/10587250108025281 – ident: e_1_2_6_45_2 doi: 10.1002/asia.200600116 – ident: e_1_2_6_22_3 doi: 10.1889/JSID17.10.869 – ident: e_1_2_6_35_7 doi: 10.1080/10587250008023933 – volume: 12 start-page: 83 year: 1988 ident: e_1_2_6_29_2 publication-title: New J. Chem. – ident: e_1_2_6_21_2 doi: 10.1021/ja0747573 – ident: e_1_2_6_23_3 doi: 10.1063/1.358518 – ident: e_1_2_6_44_3 doi: 10.1021/ja00144a027 – ident: e_1_2_6_50_5 doi: 10.1021/ja9923033 – ident: e_1_2_6_50_2 doi: 10.1021/ja00130a013 – ident: e_1_2_6_18_3 doi: 10.1039/b208578j – ident: e_1_2_6_32_3 doi: 10.1080/02678290310001599260 – ident: e_1_2_6_36_2 doi: 10.1039/b608749c – ident: e_1_2_6_27_2 doi: 10.1039/b616320c – ident: e_1_2_6_32_2 doi: 10.1080/026782998206632 – ident: e_1_2_6_35_2 doi: 10.1002/(SICI)1521-4095(199810)10:14<1080::AID-ADMA1080>3.0.CO;2-T – ident: e_1_2_6_1_4 doi: 10.1038/nphoton.2009.172 – ident: e_1_2_6_4_2 doi: 10.1039/C0JM03479G – ident: e_1_2_6_12_5 doi: 10.1080/02678290110093778 – ident: e_1_2_6_15_4 doi: 10.1021/cm9901616 – ident: e_1_2_6_12_2 doi: 10.1039/b009892m – ident: e_1_2_6_28_2 doi: 10.1039/c0cc02685a – volume-title: Photochromism: Molecules and Systems year: 1990 ident: e_1_2_6_3_2 – ident: e_1_2_6_40_2 doi: 10.1080/02678290110048750 |
SSID | ssj0009606 |
Score | 2.558444 |
SecondaryResourceType | review_article |
Snippet | The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices.... The ability to tune molecular self-organization with an external stimulus is a main driving force in the bottom-up nanofabrication of molecular devices.... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1926 |
SubjectTerms | cholesteric liquid crystals Devices Helical helical twisting power Light light-driven chiral molecular switches Liquid crystals Liquid Crystals - chemistry Media molecular motors Motors Nanostructure Organic Chemicals - chemistry photo addressed displays self-organized helical superstructures Stereoisomerism Superstructures Switches |
Title | Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals |
URI | https://api.istex.fr/ark:/67375/WNG-42DJ0X2T-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201200241 https://www.ncbi.nlm.nih.gov/pubmed/22411073 https://www.proquest.com/docview/1620105919 https://www.proquest.com/docview/993317522 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9gIH3o-Uh4yE4JQ2TuzEPq52W6pqtwdoxd4sx7HVqFUWsrsq9NSf0N_IL8GTbNIuokKCWxKNZcfj8Xy2x98AvKOWJdY7_tAIb24sYyzMTcJDLbVBl-SiZkN_cpjuH7ODKZ_euMXf8kP0G25oGc18jQau8_nONWmoLhreIIpRBs3NdQzYQlT06Zo_CuF5Q7bna5cpEx1rYxTvrBdf80qb2MHf_wQ51xFs44L2HoDuGt9GnpxuLxf5trn4jdfxf_7uIdxf4VMyaAfUI7hjq8dw7wZr4RPYHeOC_ufl1ajGqZIMT8raF5l0iXbJ5_MSx8KczGr_FdP5kLIi4_LbsizIsP7hAenZ_Ckc7-0eDffDVTaG0DBBaeho6pjgRcR1GkmhkdkmY5I5YTWnJk00pdqDI0ddrnNdcOs0lzZLHIuMFknyDDaqWWVfACkMlZoy4xczgiXCCY9aXMqLVGYF8xUEEHbaUGZFVY4ZM85US7IcK-we1XdPAB96-a8tScetku8b5fZiuj7F0LaMqy-HHxWLRwfRND5S4wDedtpX3uDwFEVXdracK5piAAGXVAZAbpHxoA9xWRwH8LwdOX2FCJn8kjsJIG70_5cGq8FoMujftv6l0Eu4i894BEazV7CxqJf2tUdSi_xNYy2_AO0vEYU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V7QE48H6Ep5F4nNLGiZ3HgcNq07Jts3uArdib6ziOiFplIburUk78BP4Kf4WfwC_Bk2xSFlEhIfXAMdFYSTwzns_jyTcAz6hmnjaB31ahcTcWMGanyuO2jKTCkJQ7dUJ_OPIHB2xvwidr8K39F6bhh-gSbugZ9XqNDo4J6a0z1lCZ1cRBFMsMGF3WVe7r0xOza5u92o2Nip-77s72uD-wl40FbMVCSu2c-jkLeeZw6TtRKJGkJWARy0MtOVW-JymVJs7nNE9lKjOuc8kjHXg5c5QMMQdqVv0NbCOOdP3xmzPGKtwQ1PR-5nsjn4UtT6Tjbq2-70oc3ECVfvoTyF3FzHXQ27kG39vpampdjjYX83RTff6NSfK_ms_rcHUJwUmv8ZkbsKbLm3DlF2LGW7CdYM7ix5evcYXRgPTfF5UZMmx7CZO3JwWa-4xMK3MXOxaRoiRJ8XFRZKRfnRrMfTy7DQcX8h13YL2clvoekEzRSFKmzH4tZF6YhwaY5T7P_CjImHmABXarfqGWbOzYFORYNDzSrkB1iE4dFrzs5D80PCTnSr6orakTk9URVu8FXLwbvRbMjfeciTsWiQVPW3MTZk3BgyJZ6uliJqiPNRI8opEF5BwZg2sRerquBXcbU-0eiKiQmtBhgVsb3F9eWPTiYa-7uv8vg57ApcF4mIhkd7T_AC7jfTzxo8FDWJ9XC_3IAMd5-rh2VQKHF23LPwEiP28x |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VrYTgwPsRnkbicUobJ07iHDisNl362F0haMXeXMexRdRqt2R3VcqJn8BP4a_wF_gleJJNyiIqJKQeOMay5cfMeD7bk28AnlHNAm0dv6u4NTcWM-ZmKghdmUiFLsl41YX-YBht7bOdUThagW_NvzA1P0R74YaWUe3XaODHudk4Iw2VecUbRDHKgNFFWOWuPj2xh7bpq-3USvi57_c297pb7iKvgKsYp9Q1NDKMh7kXyshLuESOlpglzHAtQ6qiQFIqrZs31GQyk3mojQwTHQeGeUpyvAK1m_4as40xWUT69oywCs8DFbufnW4SMd7QRHr-xvJ4l9zgGkr0058w7jJkrnxe7xp8b1arDnU5XJ_PsnX1-Tciyf9pOa_D1QUAJ53aYm7Aih7fhCu_0DLegs0-3lj8-PI1LdEXkO6HorRNBk0mYfLupEBln5JJaUsxXxEpxqRffJwXOemWpxZxH01vw_6FzOMOrI4nY30PSK5oIilT9rTGWcANt7DMRGEeJXHObAcOuI30hVpwsWNKkCNRs0j7AsUhWnE48LKtf1yzkJxb80WlTG01WR5i7F4civfD14L56Y438vdE34GnjbYJu6PgM5Ec68l8KmiEERJhQhMHyDl1LKpF4On7DtytNbXtEDEhtY7DAb_St78MWHTSQaf9uv8vjZ7ApTdpT_S3h7sP4DIW43MfjR_C6qyc60cWNc6yx5WhEji4aFX-CT8nbeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light%E2%80%90Driven+Chiral+Molecular+Switches+or+Motors+in+Liquid+Crystals&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Yan&rft.au=Li%2C+Quan&rft.date=2012-04-17&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=24&rft.issue=15&rft.spage=1926&rft.epage=1945&rft_id=info:doi/10.1002%2Fadma.201200241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201200241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |