Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe
We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial communities at large spatial scales. Using datasets from two contrasting regions and ecosystem types in Australia and England, we report that...
Saved in:
Published in | The New phytologist Vol. 219; no. 2; pp. 574 - 587 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial communities at large spatial scales.
Using datasets from two contrasting regions and ecosystem types in Australia and England, we report that aboveground plant community attributes, such as diversity (species richness) and cover, and functional traits can predict a unique portion of the variation in the diversity (number of phylotypes) and community composition of soil bacteria and fungi that cannot be explained by soil abiotic properties and climate. We further identify the relative importance and evaluate the potential direct and indirect effects of climate, soil properties and plant attributes in regulating the diversity and community composition of soil microbial communities.
Finally, we deliver a list of examples of common taxa from Australia and England that are strongly related to specific plant traits, such as specific leaf area index, leaf nitrogen and nitrogen fixation.
Together, our work provides new evidence that plant attributes, especially plant functional traits, can predict the distribution of soil microbial communities at the regional scale and across two hemispheres. |
---|---|
AbstractList | We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial communities at large spatial scales.
Using datasets from two contrasting regions and ecosystem types in Australia and England, we report that aboveground plant community attributes, such as diversity (species richness) and cover, and functional traits can predict a unique portion of the variation in the diversity (number of phylotypes) and community composition of soil bacteria and fungi that cannot be explained by soil abiotic properties and climate. We further identify the relative importance and evaluate the potential direct and indirect effects of climate, soil properties and plant attributes in regulating the diversity and community composition of soil microbial communities.
Finally, we deliver a list of examples of common taxa from Australia and England that are strongly related to specific plant traits, such as specific leaf area index, leaf nitrogen and nitrogen fixation.
Together, our work provides new evidence that plant attributes, especially plant functional traits, can predict the distribution of soil microbial communities at the regional scale and across two hemispheres. We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial communities at large spatial scales. Using datasets from two contrasting regions and ecosystem types in Australia and England, we report that aboveground plant community attributes, such as diversity (species richness) and cover, and functional traits can predict a unique portion of the variation in the diversity (number of phylotypes) and community composition of soil bacteria and fungi that cannot be explained by soil abiotic properties and climate. We further identify the relative importance and evaluate the potential direct and indirect effects of climate, soil properties and plant attributes in regulating the diversity and community composition of soil microbial communities. Finally, we deliver a list of examples of common taxa from Australia and England that are strongly related to specific plant traits, such as specific leaf area index, leaf nitrogen and nitrogen fixation. Together, our work provides new evidence that plant attributes, especially plant functional traits, can predict the distribution of soil microbial communities at the regional scale and across two hemispheres. Summary We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial communities at large spatial scales. Using datasets from two contrasting regions and ecosystem types in Australia and England, we report that aboveground plant community attributes, such as diversity (species richness) and cover, and functional traits can predict a unique portion of the variation in the diversity (number of phylotypes) and community composition of soil bacteria and fungi that cannot be explained by soil abiotic properties and climate. We further identify the relative importance and evaluate the potential direct and indirect effects of climate, soil properties and plant attributes in regulating the diversity and community composition of soil microbial communities. Finally, we deliver a list of examples of common taxa from Australia and England that are strongly related to specific plant traits, such as specific leaf area index, leaf nitrogen and nitrogen fixation. Together, our work provides new evidence that plant attributes, especially plant functional traits, can predict the distribution of soil microbial communities at the regional scale and across two hemispheres. We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial communities at large spatial scales. Using datasets from two contrasting regions and ecosystem types in Australia and England, we report that aboveground plant community attributes, such as diversity (species richness) and cover, and functional traits can predict a unique portion of the variation in the diversity (number of phylotypes) and community composition of soil bacteria and fungi that cannot be explained by soil abiotic properties and climate. We further identify the relative importance and evaluate the potential direct and indirect effects of climate, soil properties and plant attributes in regulating the diversity and community composition of soil microbial communities. Finally, we deliver a list of examples of common taxa from Australia and England that are strongly related to specific plant traits, such as specific leaf area index, leaf nitrogen and nitrogen fixation. Together, our work provides new evidence that plant attributes, especially plant functional traits, can predict the distribution of soil microbial communities at the regional scale and across two hemispheres.We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial communities at large spatial scales. Using datasets from two contrasting regions and ecosystem types in Australia and England, we report that aboveground plant community attributes, such as diversity (species richness) and cover, and functional traits can predict a unique portion of the variation in the diversity (number of phylotypes) and community composition of soil bacteria and fungi that cannot be explained by soil abiotic properties and climate. We further identify the relative importance and evaluate the potential direct and indirect effects of climate, soil properties and plant attributes in regulating the diversity and community composition of soil microbial communities. Finally, we deliver a list of examples of common taxa from Australia and England that are strongly related to specific plant traits, such as specific leaf area index, leaf nitrogen and nitrogen fixation. Together, our work provides new evidence that plant attributes, especially plant functional traits, can predict the distribution of soil microbial communities at the regional scale and across two hemispheres. |
Author | Jens Kattge David J. Eldridge Peter Manning Gerhard Boenisch Richard D. Bardgett Ellen L. Fry Kelly Hamonts Franciska T. de Vries Manuel Delgado-Baquerizo Brajesh K. Singh |
Author_xml | – sequence: 1 givenname: Manuel orcidid: 0000-0002-6499-576X surname: Delgado‐Baquerizo fullname: Delgado‐Baquerizo, Manuel email: m.delgadobaquerizo@gmail.com organization: Universidad Rey Juan Carlos – sequence: 2 givenname: Ellen L. surname: Fry fullname: Fry, Ellen L. organization: The University of Manchester – sequence: 3 givenname: David J. surname: Eldridge fullname: Eldridge, David J. organization: University of New South Wales – sequence: 4 givenname: Franciska T. surname: Vries fullname: Vries, Franciska T. organization: The University of Manchester – sequence: 5 givenname: Peter surname: Manning fullname: Manning, Peter organization: Senckenberg Biodiversity and Climate Research Centre – sequence: 6 givenname: Kelly surname: Hamonts fullname: Hamonts, Kelly organization: Western Sydney University – sequence: 7 givenname: Jens surname: Kattge fullname: Kattge, Jens organization: Max Planck Institute for Biogeochemistry – sequence: 8 givenname: Gerhard surname: Boenisch fullname: Boenisch, Gerhard organization: Max Planck Institute for Biogeochemistry – sequence: 9 givenname: Brajesh K. surname: Singh fullname: Singh, Brajesh K. organization: Western Sydney University – sequence: 10 givenname: Richard D. surname: Bardgett fullname: Bardgett, Richard D. email: richard.bardgett@manchester.ac.uk organization: The University of Manchester |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29672854$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkFvFCEYhompsdvqwR-g4aiHafmYgWWOplFr0mgPmngjwMCWhhlWYNL238u4ux6aGrmQfHmeN-H9OEFHU5wsQq-BnEE959P25gwYcHiGVtDxvhHQro_QihAqGt7xn8foJOdbQkjPOH2BjmnP11SwboXidVBTwaqU5PVcbMb2fhuUn3C5sXjweTf3ccLR4Rx9wKM3KWqvAjZxHOfJF1-1xbiLdTSVpHLx0wYnu6leXsQlbBOiti_Rc6dCtq_29yn68enj94vL5urb5y8XH64a0wmAZrCGMVB0IGvVi84pLggbBu5sq8E5JzhoRdqBgQFnLOmYdqplvdHMUM1Fe4re7XK3Kf6abS5y9NnYUF9r45wlBeBiDZzS_6O1xdpbC6Sib_forEc7yG3yo0oP8tBnBc53QK0o52SdNL6opb7aig8SiFw2JuvG5J-NVeP9I-MQ-hS7T7_zwT78G5Rfry8PxpudcZtLTH-Nvv4Mynra_gbZOrDJ |
CitedBy_id | crossref_primary_10_1038_s42003_021_02244_5 crossref_primary_10_1111_1462_2920_16027 crossref_primary_10_3390_plants9050600 crossref_primary_10_1016_j_jenvman_2023_118920 crossref_primary_10_3390_jof9040399 crossref_primary_10_1016_j_ecolind_2021_107625 crossref_primary_10_1016_j_ecolind_2021_107989 crossref_primary_10_1016_j_scitotenv_2022_160154 crossref_primary_10_3389_fagro_2024_1446404 crossref_primary_10_1111_1440_1703_12552 crossref_primary_10_1002_ldr_4145 crossref_primary_10_1007_s11356_024_35441_w crossref_primary_10_3389_fmicb_2022_996305 crossref_primary_10_1016_j_catena_2022_106202 crossref_primary_10_1111_1462_2920_15466 crossref_primary_10_1128_mSystems_00803_19 crossref_primary_10_1016_j_ecolind_2024_111575 crossref_primary_10_1007_s42832_020_0041_7 crossref_primary_10_3390_agronomy12081751 crossref_primary_10_1016_j_scitotenv_2020_142942 crossref_primary_10_1111_1365_2745_13731 crossref_primary_10_1016_j_ecolind_2021_108307 crossref_primary_10_1016_j_ejsobi_2023_103479 crossref_primary_10_3389_fmicb_2021_633751 crossref_primary_10_1002_ldr_3600 crossref_primary_10_1016_j_scitotenv_2023_167454 crossref_primary_10_1002_sae2_12119 crossref_primary_10_1016_j_chemosphere_2023_138485 crossref_primary_10_1016_j_apsoil_2023_104890 crossref_primary_10_1360_TB_2024_0330 crossref_primary_10_1002_ldr_4526 crossref_primary_10_1002_ece3_11030 crossref_primary_10_1016_j_soilbio_2022_108635 crossref_primary_10_1002_ajb2_1497 crossref_primary_10_1016_j_soilbio_2024_109644 crossref_primary_10_1016_j_soilbio_2024_109405 crossref_primary_10_1007_s11104_022_05320_9 crossref_primary_10_1016_j_foreco_2021_119857 crossref_primary_10_3390_agronomy14122779 crossref_primary_10_1111_nph_16754 crossref_primary_10_1007_s11104_021_05016_6 crossref_primary_10_1111_geb_13373 crossref_primary_10_1111_nph_20047 crossref_primary_10_3390_plants8110479 crossref_primary_10_3390_f16020367 crossref_primary_10_1111_nph_17433 crossref_primary_10_1016_j_apsoil_2024_105515 crossref_primary_10_1007_s00248_021_01901_w crossref_primary_10_1016_j_soilbio_2021_108207 crossref_primary_10_3390_f14122428 crossref_primary_10_1016_j_scitotenv_2024_169915 crossref_primary_10_1007_s11104_023_06292_0 crossref_primary_10_1029_2021GB007069 crossref_primary_10_1038_s41598_020_78483_z crossref_primary_10_1128_msystems_00783_19 crossref_primary_10_1111_1365_2745_14324 crossref_primary_10_1002_mlf2_12116 crossref_primary_10_1002_ldr_3300 crossref_primary_10_1016_j_soilbio_2019_107536 crossref_primary_10_1111_geb_13362 crossref_primary_10_1016_j_scitotenv_2020_136976 crossref_primary_10_2139_ssrn_3962897 crossref_primary_10_3389_fmicb_2022_938574 crossref_primary_10_3390_jof10110770 crossref_primary_10_3389_fpls_2022_957336 crossref_primary_10_3390_land11050731 crossref_primary_10_1007_s00709_021_01647_9 crossref_primary_10_1007_s10021_021_00655_3 crossref_primary_10_3390_f12060805 crossref_primary_10_1111_1462_2920_15090 crossref_primary_10_1094_PBIOMES_07_20_0056_FI crossref_primary_10_1038_s41598_019_43305_4 crossref_primary_10_1111_jbi_14235 crossref_primary_10_3390_plants11233391 crossref_primary_10_1016_j_funeco_2019_03_001 crossref_primary_10_1007_s11273_022_09869_1 crossref_primary_10_3389_fmicb_2024_1505916 crossref_primary_10_1038_s41396_019_0543_4 crossref_primary_10_1111_oik_10474 crossref_primary_10_3390_plants8120612 crossref_primary_10_1016_j_apsoil_2024_105855 crossref_primary_10_1016_j_apsoil_2022_104767 crossref_primary_10_1016_j_geoderma_2025_117232 crossref_primary_10_1071_SR20055 crossref_primary_10_1094_PBIOMES_5_1 crossref_primary_10_1111_1365_2745_13378 crossref_primary_10_1016_j_envint_2025_109272 crossref_primary_10_1098_rstb_2021_0387 crossref_primary_10_1186_s12866_022_02601_2 crossref_primary_10_1111_geb_13462 crossref_primary_10_1016_j_agsy_2023_103646 crossref_primary_10_1111_1365_2435_13459 crossref_primary_10_3389_fmicb_2021_660749 crossref_primary_10_1093_femsec_fiz020 crossref_primary_10_1016_j_apsoil_2024_105386 crossref_primary_10_1016_j_scitotenv_2020_140919 crossref_primary_10_3390_microorganisms10122376 crossref_primary_10_1111_mec_16585 crossref_primary_10_1016_j_fecs_2022_100039 crossref_primary_10_1007_s00248_022_02151_0 crossref_primary_10_1016_j_ecss_2021_107621 crossref_primary_10_1111_gcb_14904 crossref_primary_10_1016_j_soilbio_2022_108715 crossref_primary_10_1007_s11104_023_06408_6 crossref_primary_10_1111_1365_2745_14012 crossref_primary_10_1111_geb_13178 crossref_primary_10_1111_1365_2435_14314 crossref_primary_10_1016_j_chemosphere_2023_139272 crossref_primary_10_2139_ssrn_4153311 crossref_primary_10_3390_microorganisms9081677 crossref_primary_10_1038_s41598_021_03937_x crossref_primary_10_1016_j_scitotenv_2022_160654 crossref_primary_10_1007_s10021_022_00812_2 crossref_primary_10_1007_s11104_020_04788_7 crossref_primary_10_2139_ssrn_4052481 crossref_primary_10_7717_peerj_10902 crossref_primary_10_1016_j_geoderma_2020_114646 crossref_primary_10_1016_j_ejsobi_2024_103599 crossref_primary_10_1016_j_scitotenv_2022_159439 crossref_primary_10_1007_s10021_019_00448_9 crossref_primary_10_1016_j_geoderma_2023_116409 |
Cites_doi | 10.1111/1365-2664.12869 10.1111/nph.14323 10.1038/ncomms12083 10.3318/bioe.2017.03 10.1111/j.1365-2745.2010.01679.x 10.1111/ele.12536 10.1111/j.1469-8137.2006.01931.x 10.1111/ele.12529 10.5962/bhl.title.6517 10.1002/ecm.1216 10.1007/s00442-014-3091-7 10.1890/14-1761.1 10.1111/1365-2745.12735 10.1093/femsec/fiw091 10.1111/ele.12652 10.1111/1365-2745.12014 10.1111/mec.14403 10.1128/AEM.00335-09 10.1038/s41396‐018‐0089‐x 10.1038/ismej.2012.11 10.1093/aob/mcu169 10.1111/j.1461-0248.2007.01139.x 10.1111/j.1461-0248.2012.01844.x 10.1111/ele.12590 10.1111/ele.12469 10.1038/nature13855 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 10.3389/fmicb.2016.00505 10.1071/BT02124 10.1890/03-0799 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 10.1111/ele.12826 10.1038/nclimate2837 10.1126/science.1256688 10.1007/978-0-387-87458-6 10.1126/science.1094875 10.1007/s11104-014-2254-y 10.1111/1365-2745.12031 10.1128/AEM.02294-08 10.1002/ecy.1879 10.1016/j.soilbio.2016.12.003 10.1111/1365-2664.12478 10.1073/pnas.1516684112 |
ContentType | Journal Article |
Copyright | 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
Copyright_xml | – notice: 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust – notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1111/nph.15161 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 587 |
ExternalDocumentID | 29672854 10_1111_nph_15161 NPH15161 90022592 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | England Australia |
GeographicLocations_xml | – name: England – name: Australia |
GrantInformation_xml | – fundername: Hermon Slade Foundation – fundername: Biotechnology and Biological Sciences Research Council (BBSRC) funderid: BB/I009000/2 – fundername: QUEST – fundername: NERC – fundername: UK Department for Environment, Food and Rural Affairs (DEFRA) funderid: BD1451 – fundername: FRB – fundername: British Ecological Society funderid: LRB17\1019(MUSGONET) – fundername: NERC Biodiversity and Ecosystem Services and Sustainability programme funderid: NE/J014680/1 – fundername: GLP – fundername: IGBP |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4811-dec551a2d07a984fa6805dd6fe3b1fff861ba03d51c1fce045bfa359cb5c2b683 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:30:03 EDT 2025 Fri Jul 11 03:20:30 EDT 2025 Thu Apr 03 07:04:44 EDT 2025 Tue Jul 01 03:09:28 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Wed Jan 22 17:07:39 EST 2025 Thu Jul 03 22:17:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | biodiversity terrestrial ecosystems bacteria plant functional traits fungi |
Language | English |
License | 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4811-dec551a2d07a984fa6805dd6fe3b1fff861ba03d51c1fce045bfa359cb5c2b683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6499-576X |
OpenAccessLink | https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.15161 |
PMID | 29672854 |
PQID | 2028956310 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2116871622 proquest_miscellaneous_2028956310 pubmed_primary_29672854 crossref_citationtrail_10_1111_nph_15161 crossref_primary_10_1111_nph_15161 wiley_primary_10_1111_nph_15161_NPH15161 jstor_primary_90022592 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2018 |
Publisher | New Phytologist Trust |
Publisher_xml | – name: New Phytologist Trust |
References | 2014; 515 2017; 20 2004; 85 2010; 98 2015; 18 2016; 19 2017; 26 2015; 52 2015; 96 2015; 386 2013; 101 2000; 50 2009 1930 2005 2008; 11 1992 2016; 92 2002 2012; 15 2014; 176 2003; 51 2004; 304 2017; 214 2014; 114 2017; 117 2016a; 86 2016; 6 2001; 82 2016; 7 2009; 75 2007; 173 2017; 98 2017; 54 2015; 112 2018 2016 2015 2012; 6 2016b; 7 2017; 105 2014; 346 2017; 107 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 Wardle D (e_1_2_7_45_1) 2005 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 Burnham KP (e_1_2_7_7_1) 2002 Rodwell JS (e_1_2_7_39_1) 1992 |
References_xml | – volume: 346 start-page: 1256688 year: 2014 article-title: Fungal biogeography. Global diversity and geography of soil fungi publication-title: Science – volume: 173 start-page: 600 year: 2007 end-page: 610 article-title: Rhizodeposition shapes rhizosphere microbial community structure in organic soil publication-title: New Phytologist – year: 2009 – volume: 105 start-page: 1058 year: 2017 end-page: 1069 article-title: Testing the environmental filtering concept in global drylands publication-title: Journal of Ecology – volume: 304 start-page: 1629 year: 2004 article-title: Ecological linkages between aboveground and belowground biota publication-title: Science – year: 2005 – volume: 75 start-page: 2046 year: 2009 end-page: 2056 article-title: Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils publication-title: Applied and Environmental Microbiology – volume: 515 start-page: 505 year: 2014 end-page: 511 article-title: Belowground biodiversity and ecosystem functioning publication-title: Nature – volume: 19 start-page: 1140 year: 2016 end-page: 1149 article-title: Plant diversity and root traits benefit physical properties key to soil function in grasslands publication-title: Ecology Letters – volume: 176 start-page: 1075 year: 2014 end-page: 1086 article-title: The interactions between plant life form and fungal traits of arbuscular mycorrhizal fungi determine the symbiotic community publication-title: Oecologia – volume: 6 start-page: 1749 year: 2012 end-page: 1762 article-title: Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions publication-title: The ISME Journal – volume: 50 start-page: 1049 year: 2000 end-page: 1061 article-title: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks publication-title: BioScience – volume: 18 start-page: 1346 year: 2015 end-page: 1355 article-title: Functional trait diversity across trophic levels determines herbivore impact on plant community biomass publication-title: Ecology Letters – volume: 98 start-page: 1922 year: 2017 end-page: 1931 article-title: Competition drives the response of soil microbial diversity to increased grazing by vertebrate herbivores publication-title: Ecology – volume: 92 start-page: 7 year: 2016 article-title: Plant nitrogen‐use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance publication-title: FEMS Microbiology Ecology – volume: 114 start-page: 1011 year: 2014 end-page: 1021 article-title: Contribution of above‐ and below‐ground plant traits to the structure and function of grassland soil microbial communities publication-title: Annals of Botany – volume: 214 start-page: 412 year: 2017 end-page: 423 article-title: Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, publication-title: New Phytologist – year: 2016 – volume: 98 start-page: 1074 year: 2010 end-page: 1083 article-title: Linkages of plant traits to soil properties and the functioning of temperate grassland publication-title: Journal of Ecology – volume: 7 start-page: 12083 year: 2016 article-title: Temperature mediates continental‐scale diversity of microbes in forest soils publication-title: Nature Communications – volume: 52 start-page: 1188 year: 2015 end-page: 1196 article-title: Simple measures of climate, soil properties and plant traits predict national‐scale grassland soil carbon stocks publication-title: Journal of Applied Ecology – year: 1992 – volume: 86 start-page: 373 year: 2016a end-page: 390 article-title: Carbon content and climate variability drive global soil bacterial diversity patterns publication-title: Ecological Monographs – volume: 112 start-page: 15684 year: 2015 end-page: 15689 article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands publication-title: Proceedings of the National Academy of Sciences, USA – volume: 96 start-page: 2300 year: 2015 end-page: 2310 article-title: Plant traits related to nitrogen uptake influence plant–microbe competition publication-title: Ecology – year: 2018 article-title: Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits publication-title: The ISME Journal – volume: 18 start-page: 1397 year: 2015 end-page: 1405 article-title: Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest publication-title: Ecology Letters – volume: 26 start-page: 6948 year: 2017 end-page: 6959 article-title: Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities publication-title: Molecular Ecology – year: 1930 – volume: 101 start-page: 4 year: 2013 end-page: 8 article-title: Plant functional effects on ecosystem services publication-title: Journal of Ecology – volume: 7 start-page: 505 year: 2016b article-title: Microsite differentiation drives the abundance of soil ammonia oxidizing bacteria along aridity gradients publication-title: Frontiers in Microbiology – volume: 85 start-page: 2630 year: 2004 end-page: 2637 article-title: Plant functional markers capture ecosystem properties during secondary succession publication-title: Ecology – volume: 107 start-page: 208 year: 2017 end-page: 217 article-title: Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change publication-title: Soil Biology and Biochemistry – year: 2002 – volume: 101 start-page: 47 year: 2013 end-page: 57 article-title: Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services publication-title: Journal of Ecology – volume: 117 start-page: 1 year: 2017 end-page: 13 article-title: Plant trait‐based approaches for interrogating belowground function publication-title: Biology and Environment: Proceedings of the Royal Irish Academy – volume: 20 start-page: 1295 year: 2017 end-page: 1305 article-title: Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe publication-title: Ecology Letters – volume: 11 start-page: 296 year: 2008 end-page: 310 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecology Letters – volume: 51 start-page: 335 year: 2003 end-page: 380 article-title: A handbook of protocols for standardised and easy measurement of plant functional traits publication-title: Australian Journal of Botany – volume: 15 start-page: 1230 year: 2012 end-page: 1239 article-title: Abiotic drivers and plant traits explain landscape‐scale patterns in soil microbial communities publication-title: Ecology Letters – volume: 6 start-page: 166 year: 2016 end-page: 171 article-title: Accelerated dryland expansion under climate change publication-title: Nature Climate Change – volume: 18 start-page: 834 year: 2015 end-page: 843 article-title: Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition publication-title: Ecology Letters – volume: 386 start-page: 171 year: 2015 end-page: 183 article-title: Litter decomposition and soil microbial community composition in three Korean pine ( ) forests along an altitudinal gradient publication-title: Plant and Soil – volume: 54 start-page: 1320 year: 2017 end-page: 1330 article-title: Plant, soil and microbial controls on grassland diversity restoration: a long‐term, multi‐site mesocosm experiment publication-title: Journal of Applied Ecology – volume: 75 start-page: 5111 year: 2009 end-page: 5120 article-title: Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing‐based assessment publication-title: Applied Environmental Microbiology – volume: 82 start-page: 290 year: 2001 end-page: 297 article-title: Fitting multivariate models to community data, a comment on distance‐based redundancy analysis publication-title: Ecology – year: 2015 – volume: 19 start-page: 554 year: 2016 end-page: 563 article-title: Temporal dynamics of biotic and abiotic drivers of litter decomposition publication-title: Ecology Letters – ident: e_1_2_7_15_1 doi: 10.1111/1365-2664.12869 – ident: e_1_2_7_27_1 doi: 10.1111/nph.14323 – ident: e_1_2_7_47_1 doi: 10.1038/ncomms12083 – volume-title: How plant communities influence decomposer communities. Biological diversity and function in soils year: 2005 ident: e_1_2_7_45_1 – ident: e_1_2_7_5_1 doi: 10.3318/bioe.2017.03 – ident: e_1_2_7_37_1 doi: 10.1111/j.1365-2745.2010.01679.x – ident: e_1_2_7_4_1 doi: 10.1111/ele.12536 – ident: e_1_2_7_38_1 doi: 10.1111/j.1469-8137.2006.01931.x – ident: e_1_2_7_12_1 doi: 10.1111/ele.12529 – ident: e_1_2_7_14_1 doi: 10.5962/bhl.title.6517 – ident: e_1_2_7_11_1 doi: 10.1002/ecm.1216 – ident: e_1_2_7_3_1 – ident: e_1_2_7_30_1 doi: 10.1007/s00442-014-3091-7 – ident: e_1_2_7_35_1 doi: 10.1890/14-1761.1 – ident: e_1_2_7_25_1 doi: 10.1111/1365-2745.12735 – ident: e_1_2_7_42_1 doi: 10.1093/femsec/fiw091 – ident: e_1_2_7_18_1 doi: 10.1111/ele.12652 – ident: e_1_2_7_36_1 – ident: e_1_2_7_19_1 doi: 10.1111/1365-2745.12014 – ident: e_1_2_7_31_1 doi: 10.1111/mec.14403 – volume-title: Model selection and multimodel inference. A practical information‐theoretical approach year: 2002 ident: e_1_2_7_7_1 – ident: e_1_2_7_23_1 doi: 10.1128/AEM.00335-09 – ident: e_1_2_7_26_1 doi: 10.1038/s41396‐018‐0089‐x – ident: e_1_2_7_40_1 doi: 10.1038/ismej.2012.11 – ident: e_1_2_7_28_1 doi: 10.1093/aob/mcu169 – ident: e_1_2_7_20_1 doi: 10.1111/j.1461-0248.2007.01139.x – ident: e_1_2_7_43_1 doi: 10.1111/j.1461-0248.2012.01844.x – ident: e_1_2_7_16_1 doi: 10.1111/ele.12590 – ident: e_1_2_7_2_1 doi: 10.1111/ele.12469 – ident: e_1_2_7_6_1 doi: 10.1038/nature13855 – ident: e_1_2_7_21_1 doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 – ident: e_1_2_7_10_1 doi: 10.3389/fmicb.2016.00505 – ident: e_1_2_7_8_1 doi: 10.1071/BT02124 – ident: e_1_2_7_17_1 doi: 10.1890/03-0799 – ident: e_1_2_7_34_1 doi: 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 – ident: e_1_2_7_9_1 doi: 10.1111/ele.12826 – ident: e_1_2_7_22_1 doi: 10.1038/nclimate2837 – ident: e_1_2_7_41_1 doi: 10.1126/science.1256688 – ident: e_1_2_7_49_1 doi: 10.1007/978-0-387-87458-6 – ident: e_1_2_7_46_1 doi: 10.1126/science.1094875 – ident: e_1_2_7_48_1 doi: 10.1007/s11104-014-2254-y – volume-title: British plant communities, volume 3. Grasslands and montane communities year: 1992 ident: e_1_2_7_39_1 – ident: e_1_2_7_24_1 doi: 10.1111/1365-2745.12031 – ident: e_1_2_7_44_1 doi: 10.1128/AEM.02294-08 – ident: e_1_2_7_13_1 doi: 10.1002/ecy.1879 – ident: e_1_2_7_29_1 doi: 10.1016/j.soilbio.2016.12.003 – ident: e_1_2_7_33_1 doi: 10.1111/1365-2664.12478 – ident: e_1_2_7_32_1 doi: 10.1073/pnas.1516684112 |
SSID | ssj0009562 |
Score | 2.5891292 |
Snippet | We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial... Summary We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 574 |
SubjectTerms | Australia bacteria biodiversity climate community structure data collection ecosystems England fungi geographical distribution leaf area index leaves nitrogen nitrogen fixation phylotype plant communities plant functional traits soil bacteria soil properties species diversity terrestrial ecosystems |
Title | Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe |
URI | https://www.jstor.org/stable/90022592 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15161 https://www.ncbi.nlm.nih.gov/pubmed/29672854 https://www.proquest.com/docview/2028956310 https://www.proquest.com/docview/2116871622 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQ4sCFAi3t8pJbceglq9iJvYk4AQKtKhWhCqQ9IEV-qiu2yarJisevx2MnESBAVS9RDmPHj5n4sz3zDUIHMbGjWOUqyqXQUZoqHUmdxpFUkE0k49YyiB3-ec7HV-mPCZssocMuFibwQ_QHbmAZ_n8NBi5k_cTIy_nvoVuu_NYHfLUAEP2iTwh3Oe0YmHnKJy2rEHjx9CWfrUXBHfE1oPkct_qF5-wDuu6aHPxNboaLRg7Vwws2x__s0zpaawEpPgoatIGWTLmJVo4rBxrvP6IKkho1WDQhMZapsbmbz8S0xA44Yg2su23CLFxZXFfTGf4z9dxOrk4Vgk-AshVDidsKe894UYOvNYacEE7noSBUBtQk5hO6Oju9PBlHbY6GSKUZIZE2MKmC6ngk8iy1gmcx05pbk0hirc04kSJONCOKWGUcgJRWJCxXkikqeZZsoeWyKs0XhIWVDlsoZjkRac61Z0aynLunoSoZDdD3brYK1RKYQx6NWdFtZNzwFX74BuhbLzoPrB2vCW35Ke8lcgA0LKcD9LXTgcIZG9ygiNJUi7qgcC_LuIPE78gQwmEXSl09n4MC9V-gOR9ByKrrileDtxtXnF-M_cv2v4vuoFUH57LgTLyLlpu_C7PnIFMj971tPAJirBNL |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VBQkuvFuWp0EcuGQVO7E3kXrhVS3QrhBqpb2gyE-xYklWbFa0_Pp67CRqUUGIS5TD2PFjJv5sz3wD8CKlbpLqUielkibJc20SZfI0URqziRTCOY6xw4czMT3OP8z5fAv2-liYyA8xHLihZYT_NRo4Hkifs_J69XXs1yvc-1zBjN7InP_2MztHuStYz8EscjHveIXQj2coemE1ig6Jl0HNi8g1LD37N-FL3-jocfJtvGnVWP_6jc_xf3t1C250mJS8ikp0G7ZsfQeuvm48bjy9Cw3mNWqJbGNuLLsm9mS1lIuaeOxIDBLvdjmzSOPIulksyfdFoHfydeoYf4KsrQRL_GxIcI6Xa3S3JpgWwqs9FsTKkJ3E3oPj_XdHb6ZJl6Yh0XlBaWIszqtkJp3IssidFEXKjRHOZoo65wpBlUwzw6mmTluPIZWTGS-14popUWQ7sF03tb0PRDrl4YXmTlCZl8IEciQnhH9aprPJCF7201XpjsMcU2ksq34v44evCsM3gueD6CoSd1wmtBPmfJAoEdPwko3gWa8Elbc3vESRtW0264rh1SwXHhX_RYZSgRtR5uvZjRo0fIGVYoJRq74rQQ_-3Lhq9mkaXh78u-hTuDY9OjyoDt7PPj6E6x7dFdG3-BFstz829rFHUK16EgzlDIG2F2c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaqghAX9tJhNYgDl4xix_bE6qlQRsM2qhCV5oAUeRWjDsmIyYjl1-NnJ1GLCkJcohyendh-L_4cP38fQs9y4ie5kSaTWtmMMWMzbVmeaQNqIqXwnsPZ4fdzMTthbxZ8sYMO-rMwiR9i-OEGkRG_1xDga-vPBHm9_jwO0xUsfS4xkUvQbTj6QM8w7graUzALJhYdrRCk8QxFz01GKR_xIqR5HrjGmWd6HX3q3zklnJyOt60em5-_0Tn-Z6NuoGsdIsWHyYVuoh1X30KXXzQBNf64jRpQNWqxapMylttg9329UssaB-SILdDudopZuPF40yxX-MsykjuFOk06fQKcrRhKfGtwTI1XG0i2xiAKEZweCkJlwE3i7qCT6auPL2dZJ9KQGVYSklkHo6qozSdKlswrUebcWuFdoYn3vhREq7ywnBjijQsIUntVcGk0N1SLsthDu3VTu32EldcBXBjuBVFMChupkbwQ4eqoKSYj9Lwfrcp0DOYgpLGq-pVM6L4qdt8IPR1M14m24yKjvTjkg4UERMMlHaEnvQ9UIdpgC0XVrtluKgobs1wETPwXG0IELENpqOducqDhCVSKCZxZDU2JbvDnl6vmx7N4c-_fTR-jK8dH0-rd6_nb--hqgHZlSix-gHbbr1v3MMCnVj-KYfILMXsWFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+attributes+explain+the+distribution+of+soil+microbial+communities+in+two+contrasting+regions+of+the+globe&rft.jtitle=The+New+phytologist&rft.au=Delgado-Baquerizo%2C+Manuel&rft.au=Fry%2C+Ellen+L&rft.au=Eldridge%2C+David+J&rft.au=de+Vries%2C+Franciska+T&rft.date=2018-07-01&rft.eissn=1469-8137&rft.volume=219&rft.issue=2&rft.spage=574&rft_id=info:doi/10.1111%2Fnph.15161&rft_id=info%3Apmid%2F29672854&rft.externalDocID=29672854 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |