Redox- and Temperature-Controlled Drug Release from Hollow Mesoporous Silica Nanoparticles

A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross‐linked by the disulfide linker N,N′‐bis(acryloyl)cystamine is use...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 19; no. 45; pp. 15410 - 15420
Main Authors Jiao, Yunfeng, Sun, Yangfei, Chang, Baisong, Lu, Daru, Yang, Wuli
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 04.11.2013
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross‐linked by the disulfide linker N,N′‐bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual‐stimulus polymer shell exhibiting a volume phase transition temperature higher than 37 °C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on‐demand drug release systems for cancer therapy. Stand and deliver! A core/shell structure, the core being a mesoporous nanoparticle and the shell being a disulfide‐linked oligo(ethylene glycol) copolymer, can be used as a dual‐responsive drug carrier. Leakage of the drug cargo into the bloodstream is avoided owing to the carrier's high volume phase‐transition temperature (VPTT). After internalization into cells, the polymer shell comes off through cleavage of the disulfide bonds by glutathione (GSH), thus releasing the drug (see figure).
AbstractList A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross‐linked by the disulfide linker N,N′‐bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual‐stimulus polymer shell exhibiting a volume phase transition temperature higher than 37 °C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on‐demand drug release systems for cancer therapy. Stand and deliver! A core/shell structure, the core being a mesoporous nanoparticle and the shell being a disulfide‐linked oligo(ethylene glycol) copolymer, can be used as a dual‐responsive drug carrier. Leakage of the drug cargo into the bloodstream is avoided owing to the carrier's high volume phase‐transition temperature (VPTT). After internalization into cells, the polymer shell comes off through cleavage of the disulfide bonds by glutathione (GSH), thus releasing the drug (see figure).
Abstract A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross‐linked by the disulfide linker N , N ′‐bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual‐stimulus polymer shell exhibiting a volume phase transition temperature higher than 37 °C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on‐demand drug release systems for cancer therapy.
A controlled drug-delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross-linked by the disulfide linker N,N'-bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual-stimulus polymer shell exhibiting a volume phase transition temperature higher than 37 °C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on-demand drug release systems for cancer therapy.
A controlled drug-delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross-linked by the disulfide linker N,N'-bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual-stimulus polymer shell exhibiting a volume phase transition temperature higher than 37°C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on-demand drug release systems for cancer therapy. [PUBLICATION ABSTRACT]
A controlled drug-delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross-linked by the disulfide linker N,N'-bis(acryloyl)cystamin e is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual-stimulus polymer shell exhibiting a volume phase transition temperature higher than 37 degree C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on-demand drug release systems for cancer therapy. Stand and deliver! A core/shell structure, the core being a mesoporous nanoparticle and the shell being a disulfide-linked oligo(ethylene glycol) copolymer, can be used as a dual-responsive drug carrier. Leakage of the drug cargo into the bloodstream is avoided owing to the carrier's high volume phase-transition temperature (VPTT). After internalization into cells, the polymer shell comes off through cleavage of the disulfide bonds by glutathione (GSH), thus releasing the drug (see figure).
Author Chang, Baisong
Yang, Wuli
Jiao, Yunfeng
Sun, Yangfei
Lu, Daru
Author_xml – sequence: 1
  givenname: Yunfeng
  surname: Jiao
  fullname: Jiao, Yunfeng
  organization: Department of Macromolecular Science, Fudan University, State Key Laboratory of Molecular Engineering of Polymers, 200433 Shanghai (P. R. China), Fax: (+86) 21-65640291
– sequence: 2
  givenname: Yangfei
  surname: Sun
  fullname: Sun, Yangfei
  organization: School of Life Sciences, Fudan University, State Key Laboratory of Genetic Engineering, 200433 Shanghai (P. R. China)
– sequence: 3
  givenname: Baisong
  surname: Chang
  fullname: Chang, Baisong
  organization: Department of Macromolecular Science, Fudan University, State Key Laboratory of Molecular Engineering of Polymers, 200433 Shanghai (P. R. China), Fax: (+86) 21-65640291
– sequence: 4
  givenname: Daru
  surname: Lu
  fullname: Lu, Daru
  organization: School of Life Sciences, Fudan University, State Key Laboratory of Genetic Engineering, 200433 Shanghai (P. R. China)
– sequence: 5
  givenname: Wuli
  surname: Yang
  fullname: Yang, Wuli
  email: wlyang@fudan.edu.cn
  organization: Department of Macromolecular Science, Fudan University, State Key Laboratory of Molecular Engineering of Polymers, 200433 Shanghai (P. R. China), Fax: (+86) 21-65640291
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24105675$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFK0dkiQuXLOM4sZMjSksX6BapFFXiYnntCaQ4cbATtf33eNmyQlx6msN87-nNvCNyMPgBCXnJYMkA8rfmB_bLHBgHBgKekAUrc5ZxKcoDsoC6kJkoeX1IjmK8AYBacP6MHOYFg1LIckG-XaL1dxnVg6VX2I8Y9DQHzBo_TME7h5aehPk7vUSHOiJtg-_pKi38LV1j9KMPfo70S-c6o-mFHvyow9QZh_E5edpqF_HFwzwmX9-fXjWr7Pzz2Yfm3XlmiopBZlohLaK0FuUmpUpxK1vojRCctQZZKyurjWUCqtzwjQTeohR1ItFIgZYfkzc73zH4XzPGSfVdNOicHjBlU0zKCniefvI4WhRFJYBLmdDX_6E3fg5DOuQPBduXl4la7igTfIwBWzWGrtfhXjFQ24LUtiC1LygJXj3Yzpse7R7_20gC6h1w2zm8f8RONavT9b_m2U7bxQnv9lodfiohuSzV9cWZatjq08fqGtSa_wZl4qzm
CODEN CEUJED
CitedBy_id crossref_primary_10_1016_j_porgcoat_2019_105302
crossref_primary_10_1016_j_ccr_2019_04_006
crossref_primary_10_1016_j_jconrel_2022_08_005
crossref_primary_10_1016_j_jcis_2015_03_057
crossref_primary_10_1039_C6TB00987E
crossref_primary_10_1088_1361_6528_ab8b0e
crossref_primary_10_1080_01932691_2024_2348512
crossref_primary_10_1039_C6RA03543D
crossref_primary_10_1080_1061186X_2020_1720218
crossref_primary_10_1021_acsanm_3c00022
crossref_primary_10_1021_acs_jpclett_5b00118
crossref_primary_10_1039_c3ra47166g
crossref_primary_10_1021_cr5004634
crossref_primary_10_1021_acs_molpharmaceut_8b00215
crossref_primary_10_1039_C5NR02196K
crossref_primary_10_1007_s00216_014_7936_z
crossref_primary_10_1002_adhm_202001117
crossref_primary_10_1002_adtp_201900093
crossref_primary_10_1002_adbi_201800020
crossref_primary_10_1016_j_ymeth_2021_12_011
crossref_primary_10_1016_j_cclet_2015_08_005
crossref_primary_10_1021_acsami_6b04885
crossref_primary_10_1016_j_mtchem_2023_101780
crossref_primary_10_1039_C6PY00057F
crossref_primary_10_1016_j_colsurfa_2020_124927
crossref_primary_10_1039_C5NR02878G
crossref_primary_10_1021_acsami_3c07361
crossref_primary_10_1016_j_colsurfb_2019_110643
crossref_primary_10_1039_C5TB00354G
crossref_primary_10_1155_2017_2606271
crossref_primary_10_1080_1539445X_2022_2028831
crossref_primary_10_1016_j_ijbiomac_2019_12_265
crossref_primary_10_1016_j_micromeso_2016_03_040
crossref_primary_10_1039_C5CC08076B
crossref_primary_10_1002_admi_201400465
crossref_primary_10_1016_j_ccr_2016_04_019
crossref_primary_10_1039_C5CC01498K
crossref_primary_10_1016_j_micromeso_2016_08_038
crossref_primary_10_1021_acsami_6b00376
crossref_primary_10_1039_C4RA15574B
crossref_primary_10_1002_celc_202200897
crossref_primary_10_1016_j_ejphar_2020_173633
crossref_primary_10_1039_D1TB00362C
crossref_primary_10_1002_ppsc_201400092
crossref_primary_10_1016_j_ces_2014_08_007
crossref_primary_10_1016_j_micromeso_2014_09_049
crossref_primary_10_1007_s00396_018_4397_5
crossref_primary_10_1039_C7QI00251C
crossref_primary_10_1039_D1CS01022K
crossref_primary_10_1002_cphc_201501186
crossref_primary_10_1021_acs_chemrev_5b00456
crossref_primary_10_1016_j_fct_2017_05_054
crossref_primary_10_1039_C5RA16004A
crossref_primary_10_1039_C6TB03066A
crossref_primary_10_1016_j_matdes_2022_110850
crossref_primary_10_1039_C4TB01794C
crossref_primary_10_1002_jbm_a_36770
crossref_primary_10_1002_elan_201500252
crossref_primary_10_1016_j_colsurfb_2017_01_010
crossref_primary_10_1039_C5RA00701A
crossref_primary_10_1002_adma_202203890
crossref_primary_10_1016_j_biomaterials_2016_01_008
crossref_primary_10_1002_chem_201701524
crossref_primary_10_1016_j_ejps_2020_105428
crossref_primary_10_1002_pi_4913
crossref_primary_10_3390_ph15030357
Cites_doi 10.1002/adma.200800854
10.1021/ja904456d
10.1002/ange.201002639
10.1021/ja065324n
10.1016/j.biomaterials.2009.01.026
10.1002/cphc.200600483
10.1021/ja105371u
10.1039/c0jm00554a
10.1021/nn700008s
10.1002/ange.201102756
10.1351/pac198557040603
10.1002/anie.201002639
10.1016/j.micromeso.2005.05.001
10.1039/b902985k
10.1021/cm0483137
10.1021/ja200328s
10.1002/anie.201102756
10.1021/nn100918a
10.1021/ja065485r
10.1016/j.progpolymsci.2004.08.003
10.1016/j.addr.2006.09.020
10.1021/nn200876f
10.1002/anie.200803880
10.1002/anie.201100884
10.1021/ja0546424
10.1088/0957-4484/16/11/027
10.1002/anie.201005471
10.1002/adma.201001417
10.1002/ange.201100884
10.1021/ma0517042
10.1021/jz2013837
10.1002/adfm.201201316
10.1126/science.1226338
10.1002/ange.201005471
10.1016/S0168-3659(01)00309-1
10.1002/ange.200604488
10.1002/adma.201001497
10.1021/cm0210041
10.1021/ja9061085
10.1002/anie.201005061
10.1039/b900751b
10.1039/B510101H
10.1002/anie.200604488
10.1021/ja0772086
10.1021/la7024507
10.1002/adfm.200701116
10.1002/smll.200901789
10.1002/ange.200501819
10.1002/ange.201000827
10.1002/anie.201000827
10.1021/ja0645943
10.1021/la050710o
10.1002/ange.201005061
10.1021/ja807798g
10.1021/cm3037197
10.1016/S0169-409X(02)00179-5
10.1039/c1cs15246g
10.1039/c2jm31821k
10.1002/ange.200803880
10.1021/ja904982j
10.1021/cm801484r
10.1021/ja900025f
10.1039/c1cc11760b
10.1021/mp900015y
10.1002/adfm.201201191
10.1021/cm703363w
10.1002/anie.200501819
10.1002/smll.200801154
10.1021/la700923r
10.1038/nrd1957
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201301060
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE
Materials Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 15420
ExternalDocumentID 3106002991
10_1002_chem_201301060
24105675
CHEM201301060
ark_67375_WNG_C1HKJ8W0_M
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 20874015; 51273047
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABHUG
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4810-cf67dee7dde7b0565398d4ab6631fce1f78dacd16082c3b703fe769056ec76ed3
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Fri Aug 16 08:22:53 EDT 2024
Fri Aug 16 04:51:44 EDT 2024
Thu Oct 10 16:46:33 EDT 2024
Fri Aug 23 02:36:53 EDT 2024
Sat Sep 28 07:52:29 EDT 2024
Sat Aug 24 01:07:15 EDT 2024
Wed Jan 17 05:09:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords nanoparticles
drug delivery
core/shell materials
mesoporous materials
antitumor agents
Language English
License Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4810-cf67dee7dde7b0565398d4ab6631fce1f78dacd16082c3b703fe769056ec76ed3
Notes ArticleID:CHEM201301060
ark:/67375/WNG-C1HKJ8W0-M
istex:E31912D13E9D89D37B10FC278A474A0D3023AF37
National Science Foundation - No. 20874015; No. 51273047
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24105675
PQID 1444001305
PQPubID 986340
PageCount 11
ParticipantIDs proquest_miscellaneous_1778032376
proquest_miscellaneous_1444860377
proquest_journals_1444001305
crossref_primary_10_1002_chem_201301060
pubmed_primary_24105675
wiley_primary_10_1002_chem_201301060_CHEM201301060
istex_primary_ark_67375_WNG_C1HKJ8W0_M
PublicationCentury 2000
PublicationDate November 4, 2013
PublicationDateYYYYMMDD 2013-11-04
PublicationDate_xml – month: 11
  year: 2013
  text: November 4, 2013
  day: 04
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References M. Karg, I. Pastoriza-Santos, L. M. Liz-Marzan, T. A. Hellweg, ChemPhysChem 2006, 7, 2298-2301.
Y. Zhang, S. Furyk, D. E. Bergbreiter, P. S. Cremer, J. Am. Chem. Soc. 2005, 127, 14505-14510.
L. L. Li, F. Q. Tang, H. Y. Liu, T. L. Liu, N. J. Hao, D. Chen, X. Teng, J. Q. He, ACS Nano 2010, 4, 6874-6882.
Y. Z. You, K. K. Kalebaila, S. L. Brock, Chem. Mater. 2008, 20, 3354-3359.
E. S. Gil, S. M. Hudson, Prog. Polym. Sci. 2004, 29, 1173-1222.
Z. L. Cheng, A. A. Zaki, J. Z. Hui, V. R. Muzykantov, A. Tsourkas, Science 2012, 338, 903-910.
Z. Luo, K. Y. Cai, Y. Hu, L. Zhao, P. Liu, L. Duan, W. H. Yang, Angew. Chem. 2011, 123, 666-669
C. E. Chen, J. Geng, F. Pu, X. J. Yang, J. S. Ren, X. G. Qu, Angew. Chem. 2011, 123, 912-916
H. Maeda, T. Sawa, T. Konno, J. Controlled Release 2001, 74, 47-61.
I. I. Slowing, B. G. Trewyn, V. S.-Y. Lin, J. Am. Chem. Soc. 2006, 128, 14792-14793.
B. S. Chang, D. Chen, Y. Wang, Y. Z. Chen, Y. F. Jiao, X. Y. Sha, W. L. Yang, Chem. Mater. 2013, 25, 574-585.
K. J. Zhou, Y. G. Wang, X. N. Huang, K. Luby-Phelps, B. D. Sumer, J. M. Gao, Angew. Chem. 2011, 123, 6233-6238
J. Kecht, A. Schlossbauer, T. Bein, Chem. Mater. 2008, 20, 7207-7214.
Angew. Chem. Int. Ed. 2010, 49, 8214-8219.
D. P. Ferris, Y. L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2009, 131, 1686-1688.
C. H. Lee, S. H. Cheng, I. P. Huang, J. S. Souris, C. S. Yang, C. Y. Mou, L. W. Lo, Angew. Chem. 2010, 122, 8390-8395
Y. F. Jiao, J. Guo, S. Shen, B. S. Chang, Y. H. Zhang, X. G. Jiang, W. L. Yang, J. Mater. Chem. 2012, 22, 17636-17643.
J. Kobler, K. Moeller, T. Bein, ACS Nano 2008, 2, 791-799.
J. F. Lutz, A. Hoth, Macromolecules 2006, 39, 893-896.
J. W. Cui, Y. Yan, Y. J. Wang, F. Caruso, Adv. Funct. Mater. 2012, 22, 4718-4723.
J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn, V. S.-Y. Lin, Small 2010, 6, 1952-1967.
E. Aznar, L. Mondragón, J. V. Ros-Lis, F. Sancenón, M. D. Marcos, R. Martínez-Máñez, J. Soto, E. Pérez-Payá, P. Amorós, Angew. Chem. 2011, 123, 11368-11371
K. S. W. Sing, D. H. Everett, R. Haul, L. Moscou, R. A. Perotti, J. Rouquerol, Pure Appl. Chem. 1985, 57, 603-619.
S. Giri, B. G. Trewyn, M. P. Stellmaker, V. S.-Y. Lin, Angew. Chem. 2005, 117, 5166-5172
T. Hoare, R. Pelton, Langmuir 2008, 24, 1005-1012.
K. Patel, S. Angelos, W. R. Dichtel, A. Coskun, Y. W. Yang, J. I. Zink, J. F. Stoddart, J. Am. Chem. Soc. 2008, 130, 2382-2383.
Z. X. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, J. I. Zink, Chem. Soc. Rev. 2012, 41, 2590-2605.
Angew. Chem. Int. Ed. 2011, 50, 11172-11175.
A. Schlossbauer, S. Warncke, P. M. E. Gramlich, J. Kecht, A. Manetto, T. Carell, T. Bein, Angew. Chem. 2010, 122, 4842-4845
P. W. Chung, R. Kumar, M. Pruski, V. S.-Y. Lin, Adv. Funct. Mater. 2008, 18, 1390-1398.
J. C. Doadrio, E. M. B. Sousa, I. Izquierdo-Barba, A. L. Doadrio, J. Perez-Pariente, M. Vallet-Regi, J. Mater. Chem. 2006, 16, 462-466.
Y. L. Zhao, Z. X. Li, S. Kabehie, Y. Y. Botros, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2010, 132, 13016-13025.
F. Muhammad, M. Y. Guo, W. X. Qi, F. X. Sun, A. F. Wang, Y. J. Guo, G. S. Zhou, J. Am. Chem. Soc. 2011, 133, 8778-8781.
Angew. Chem. Int. Ed. 2011, 50, 882-886.
H. Kim, S. Kim, C. Park, H. Lee, H. J. Park, C. Kim, Adv. Mater. 2010, 22, 4280-4283.
Angew. Chem. Int. Ed. 2011, 50, 6109-6114.
Angew. Chem. Int. Ed. 2007, 46, 7548-7558.
Angew. Chem. Int. Ed. 2005, 44, 5038-5044.
Angew. Chem. Int. Ed. 2011, 50, 640-643.
E. Climent, A. Bernardos, R. Martínez-Máñez, A. Maquieira, M. D. Marcos, N. Pastor-Navarro, R. Puchades, F. Sancenon, J. Soto, P. Amorós, J. Am. Chem. Soc. 2009, 131, 14075-14080.
Y. F. Zhu, J. L. Shi, H. R. Chen, W. H. Shen, X. P. Dong, Microporous Mesoporous Mater. 2005, 84, 218-222.
Q. Zhang, F. Liu, K. T. Nguyen, X. Ma, X. J. Wang, B. G. Xing, Y. L. Zhao, Adv. Funct. Mater. 2012, 22, 5144-5156.
Y. F. Zhu, J. L. Shi, W. H. Shen, H. R. Chen, X. P. Dong, M. L. Ruan, Nanotechnology 2005, 16, 2633-2638.
I. I. Slowing, J. L. Vivero-Escoto, B. G. Trewyn, V. S.-Y. Lin, J. Mater. Chem. 2010, 20, 7924-7937.
D. Schmaljohann, Adv. Drug Delivery Rev. 2006, 58, 1655-1670.
J. L. Vivero-Escoto, I. I. Slowing, C. W. Wu, V. S.-Y. Lin, J. Am. Chem. Soc. 2009, 131, 3462-3463.
C. Park, H. Kim, S. Kim, C. Kim, J. Am. Chem. Soc. 2009, 131, 16614-16615.
L. B. Chen, F. Zhang, C. C. Wang, Small 2009, 5, 621-628.
X. W. Lou, L. A. Archer, Z. C. Yang, Adv. Mater. 2008, 20, 3987-4019.
C. Y. Liu, J. Guo, W. L. Yang, J. H. Hu, C. C. Wang, S. K. Fu, J. Mater. Chem. 2009, 19, 4764-4770.
T. D. Nguyen, Y. Liu, S. Saha, K. C. F. Leung, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2007, 129, 626-634.
Y. J. Wang, F. Caruso, Chem. Mater. 2005, 17, 953-961.
M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. 2007, 119, 7692-7703
C. Park, K. Lee, C. Kim, Angew. Chem. 2009, 121, 1301-1304
S. H. Wu, Y. Hung, C. Y. Mou, Chem. Commun. 2011, 47, 9972-9985.
A. Choucair, P. L. Soo, A. Eisenberg, Langmuir 2005, 21, 9308-9313.
S. Huh, J. W. Wiench, J. C. Yoo, M. Pruski, V. S.-Y. Lin, Chem. Mater. 2003, 15, 4247-4256.
G. Saito, J. A. Swanson, K. D. Lee, Adv. Drug Delivery Rev. 2003, 55, 199-215.
Z. Poon, D. Chang, X. Y. Zhao, P. T. Hammond, ACS Nano 2011, 5, 4284-4292.
D. Schrama, R. A. Reisfeld, J. C. Becker, Nat. Rev. Drug Discovery 2006, 5, 147-159.
Y. J. Wang, Y. Yan, J. W. Cui, L. Hosta-Rigau, J. K. Heath, E. C. Nice, F. Caruso, Adv. Mater. 2010, 22, 4293-4297.
M. E. Davis, Mol. Pharm. 2009, 6, 659-668.
Y. S. Lin, K. R. Hurley, C. L. Haynes, J. Phys. Chem. Lett. 2012, 3, 364-374.
Angew. Chem. Int. Ed. 2009, 48, 1275-1278.
E. Yan, Y. Ding, C. J. Chen, R. T. Li, Y. Hu, X. Q. Jiang, Chem. Commun. 2009, 2718-2720.
T. Cai, M. Marquez, Z. B. Hu, Langmuir 2007, 23, 8663-8666.
F. H. Meng, W. E. Hennink, Z. Y. Zhong, Biomaterials 2009, 30, 2180-2198.
Angew. Chem. Int. Ed. 2010, 49, 4734-4737.
L. Du, S. J. Liao, H. A. Khatib, S. Fraser, J. L. Zink, J. Am. Chem. Soc. 2009, 131, 15136-15142.
J. F. Lutz, O. Akdemir, A. Hoth, J. Am. Chem. Soc. 2006, 128, 13046-13047.
2007; 129
2013; 25
2004; 29
2006; 16
2008; 18
2006; 39
2006; 58
2010 2010; 122 49
2005; 84
2006; 7
2009
2003; 15
2006; 5
2005; 21
2011 2011; 123 50
2009; 131
2008; 2
2011; 5
2011; 133
2009 2009; 121 48
2003; 55
2010; 22
2010; 20
2009; 30
2012; 3
2005; 127
2010; 132
2008; 24
2009; 6
2009; 5
2011; 47
2008; 20
2007 2007; 119 46
2009; 19
2005; 16
2005; 17
2006; 128
2012; 22
2007; 23
2010; 4
2012; 338
2008; 130
2010; 6
2001; 74
2012; 41
2005 2005; 117 44
1985; 57
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_3
e_1_2_6_30_2
e_1_2_6_17_3
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_3
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_3
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_31_3
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_4_3
e_1_2_6_23_3
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_3
e_1_2_6_21_2
e_1_2_6_27_3
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 122 49
  start-page: 4842 4734
  year: 2010 2010
  end-page: 4845 4737
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 22
  start-page: 4280
  year: 2010
  end-page: 4283
  publication-title: Adv. Mater.
– volume: 22
  start-page: 4718
  year: 2012
  end-page: 4723
  publication-title: Adv. Funct. Mater.
– volume: 123 50
  start-page: 11368 11172
  year: 2011 2011
  end-page: 11371 11175
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 117 44
  start-page: 5166 5038
  year: 2005 2005
  end-page: 5172 5044
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 22
  start-page: 5144
  year: 2012
  end-page: 5156
  publication-title: Adv. Funct. Mater.
– volume: 121 48
  start-page: 1301 1275
  year: 2009 2009
  end-page: 1304 1278
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 19
  start-page: 4764
  year: 2009
  end-page: 4770
  publication-title: J. Mater. Chem.
– volume: 39
  start-page: 893
  year: 2006
  end-page: 896
  publication-title: Macromolecules
– volume: 84
  start-page: 218
  year: 2005
  end-page: 222
  publication-title: Microporous Mesoporous Mater.
– volume: 123 50
  start-page: 6233 6109
  year: 2011 2011
  end-page: 6238 6114
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 131
  start-page: 16614
  year: 2009
  end-page: 16615
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1952
  year: 2010
  end-page: 1967
  publication-title: Small
– volume: 16
  start-page: 2633
  year: 2005
  end-page: 2638
  publication-title: Nanotechnology
– volume: 129
  start-page: 626
  year: 2007
  end-page: 634
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 3462
  year: 2009
  end-page: 3463
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 7207
  year: 2008
  end-page: 7214
  publication-title: Chem. Mater.
– volume: 123 50
  start-page: 912 882
  year: 2011 2011
  end-page: 916 886
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 29
  start-page: 1173
  year: 2004
  end-page: 1222
  publication-title: Prog. Polym. Sci.
– volume: 22
  start-page: 4293
  year: 2010
  end-page: 4297
  publication-title: Adv. Mater.
– volume: 5
  start-page: 147
  year: 2006
  end-page: 159
  publication-title: Nat. Rev. Drug Discovery
– volume: 131
  start-page: 1686
  year: 2009
  end-page: 1688
  publication-title: J. Am. Chem. Soc.
– volume: 119 46
  start-page: 7692 7548
  year: 2007 2007
  end-page: 7703 7558
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 128
  start-page: 14792
  year: 2006
  end-page: 14793
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 7924
  year: 2010
  end-page: 7937
  publication-title: J. Mater. Chem.
– volume: 338
  start-page: 903
  year: 2012
  end-page: 910
  publication-title: Science
– volume: 128
  start-page: 13046
  year: 2006
  end-page: 13047
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 15136
  year: 2009
  end-page: 15142
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 574
  year: 2013
  end-page: 585
  publication-title: Chem. Mater.
– volume: 21
  start-page: 9308
  year: 2005
  end-page: 9313
  publication-title: Langmuir
– volume: 4
  start-page: 6874
  year: 2010
  end-page: 6882
  publication-title: ACS Nano
– volume: 18
  start-page: 1390
  year: 2008
  end-page: 1398
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  publication-title: Pure Appl. Chem.
– volume: 123 50
  start-page: 666 640
  year: 2011 2011
  end-page: 669 643
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 22
  start-page: 17636
  year: 2012
  end-page: 17643
  publication-title: J. Mater. Chem.
– volume: 20
  start-page: 3354
  year: 2008
  end-page: 3359
  publication-title: Chem. Mater.
– volume: 5
  start-page: 621
  year: 2009
  end-page: 628
  publication-title: Small
– start-page: 2718
  year: 2009
  end-page: 2720
  publication-title: Chem. Commun.
– volume: 20
  start-page: 3987
  year: 2008
  end-page: 4019
  publication-title: Adv. Mater.
– volume: 6
  start-page: 659
  year: 2009
  end-page: 668
  publication-title: Mol. Pharm.
– volume: 23
  start-page: 8663
  year: 2007
  end-page: 8666
  publication-title: Langmuir
– volume: 55
  start-page: 199
  year: 2003
  end-page: 215
  publication-title: Adv. Drug Delivery Rev.
– volume: 131
  start-page: 14075
  year: 2009
  end-page: 14080
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 2382
  year: 2008
  end-page: 2383
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 1655
  year: 2006
  end-page: 1670
  publication-title: Adv. Drug Delivery Rev.
– volume: 5
  start-page: 4284
  year: 2011
  end-page: 4292
  publication-title: ACS Nano
– volume: 3
  start-page: 364
  year: 2012
  end-page: 374
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 791
  year: 2008
  end-page: 799
  publication-title: ACS Nano
– volume: 127
  start-page: 14505
  year: 2005
  end-page: 14510
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 953
  year: 2005
  end-page: 961
  publication-title: Chem. Mater.
– volume: 16
  start-page: 462
  year: 2006
  end-page: 466
  publication-title: J. Mater. Chem.
– volume: 30
  start-page: 2180
  year: 2009
  end-page: 2198
  publication-title: Biomaterials
– volume: 47
  start-page: 9972
  year: 2011
  end-page: 9985
  publication-title: Chem. Commun.
– volume: 122 49
  start-page: 8390 8214
  year: 2010 2010
  end-page: 8395 8219
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 7
  start-page: 2298
  year: 2006
  end-page: 2301
  publication-title: ChemPhysChem
– volume: 133
  start-page: 8778
  year: 2011
  end-page: 8781
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 13016
  year: 2010
  end-page: 13025
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 2590
  year: 2012
  end-page: 2605
  publication-title: Chem. Soc. Rev.
– volume: 74
  start-page: 47
  year: 2001
  end-page: 61
  publication-title: J. Controlled Release
– volume: 15
  start-page: 4247
  year: 2003
  end-page: 4256
  publication-title: Chem. Mater.
– volume: 24
  start-page: 1005
  year: 2008
  end-page: 1012
  publication-title: Langmuir
– ident: e_1_2_6_9_2
  doi: 10.1002/adma.200800854
– ident: e_1_2_6_24_2
  doi: 10.1021/ja904456d
– ident: e_1_2_6_26_2
  doi: 10.1002/ange.201002639
– ident: e_1_2_6_40_2
  doi: 10.1021/ja065324n
– ident: e_1_2_6_36_2
  doi: 10.1016/j.biomaterials.2009.01.026
– ident: e_1_2_6_52_2
  doi: 10.1002/cphc.200600483
– ident: e_1_2_6_20_2
  doi: 10.1021/ja105371u
– ident: e_1_2_6_37_2
  doi: 10.1039/c0jm00554a
– ident: e_1_2_6_43_2
  doi: 10.1021/nn700008s
– ident: e_1_2_6_31_2
  doi: 10.1002/ange.201102756
– ident: e_1_2_6_42_2
  doi: 10.1351/pac198557040603
– ident: e_1_2_6_26_3
  doi: 10.1002/anie.201002639
– ident: e_1_2_6_8_2
  doi: 10.1016/j.micromeso.2005.05.001
– ident: e_1_2_6_29_2
  doi: 10.1039/b902985k
– ident: e_1_2_6_5_2
  doi: 10.1021/cm0483137
– ident: e_1_2_6_19_2
  doi: 10.1021/ja200328s
– ident: e_1_2_6_31_3
  doi: 10.1002/anie.201102756
– ident: e_1_2_6_58_2
  doi: 10.1021/nn100918a
– ident: e_1_2_6_16_2
  doi: 10.1021/ja065485r
– ident: e_1_2_6_39_2
  doi: 10.1016/j.progpolymsci.2004.08.003
– ident: e_1_2_6_50_2
  doi: 10.1016/j.addr.2006.09.020
– ident: e_1_2_6_2_2
  doi: 10.1021/nn200876f
– ident: e_1_2_6_21_3
  doi: 10.1002/anie.200803880
– ident: e_1_2_6_27_3
  doi: 10.1002/anie.201100884
– ident: e_1_2_6_49_2
  doi: 10.1021/ja0546424
– ident: e_1_2_6_53_2
  doi: 10.1088/0957-4484/16/11/027
– ident: e_1_2_6_30_3
  doi: 10.1002/anie.201005471
– ident: e_1_2_6_35_2
  doi: 10.1002/adma.201001417
– ident: e_1_2_6_27_2
  doi: 10.1002/ange.201100884
– ident: e_1_2_6_47_2
  doi: 10.1021/ma0517042
– ident: e_1_2_6_45_2
  doi: 10.1021/jz2013837
– ident: e_1_2_6_46_2
  doi: 10.1002/adfm.201201316
– ident: e_1_2_6_1_2
  doi: 10.1126/science.1226338
– ident: e_1_2_6_30_2
  doi: 10.1002/ange.201005471
– ident: e_1_2_6_57_2
  doi: 10.1016/S0168-3659(01)00309-1
– ident: e_1_2_6_4_2
  doi: 10.1002/ange.200604488
– ident: e_1_2_6_13_2
  doi: 10.1002/adma.201001497
– ident: e_1_2_6_10_2
  doi: 10.1021/cm0210041
– ident: e_1_2_6_33_2
  doi: 10.1021/ja9061085
– ident: e_1_2_6_22_3
  doi: 10.1002/anie.201005061
– ident: e_1_2_6_61_2
  doi: 10.1039/b900751b
– ident: e_1_2_6_12_2
  doi: 10.1039/B510101H
– ident: e_1_2_6_4_3
  doi: 10.1002/anie.200604488
– ident: e_1_2_6_32_2
  doi: 10.1021/ja0772086
– ident: e_1_2_6_56_2
  doi: 10.1021/la7024507
– ident: e_1_2_6_28_2
  doi: 10.1002/adfm.200701116
– ident: e_1_2_6_7_2
  doi: 10.1002/smll.200901789
– ident: e_1_2_6_17_2
  doi: 10.1002/ange.200501819
– ident: e_1_2_6_23_2
  doi: 10.1002/ange.201000827
– ident: e_1_2_6_23_3
  doi: 10.1002/anie.201000827
– ident: e_1_2_6_59_2
  doi: 10.1021/ja0645943
– ident: e_1_2_6_55_2
  doi: 10.1021/la050710o
– ident: e_1_2_6_22_2
  doi: 10.1002/ange.201005061
– ident: e_1_2_6_34_2
  doi: 10.1021/ja807798g
– ident: e_1_2_6_38_2
  doi: 10.1021/cm3037197
– ident: e_1_2_6_51_2
  doi: 10.1016/S0169-409X(02)00179-5
– ident: e_1_2_6_6_2
  doi: 10.1039/c1cs15246g
– ident: e_1_2_6_41_2
  doi: 10.1039/c2jm31821k
– ident: e_1_2_6_21_2
  doi: 10.1002/ange.200803880
– ident: e_1_2_6_25_2
  doi: 10.1021/ja904982j
– ident: e_1_2_6_11_2
  doi: 10.1021/cm801484r
– ident: e_1_2_6_18_2
  doi: 10.1021/ja900025f
– ident: e_1_2_6_3_2
  doi: 10.1039/c1cc11760b
– ident: e_1_2_6_14_2
  doi: 10.1021/mp900015y
– ident: e_1_2_6_60_2
  doi: 10.1002/adfm.201201191
– ident: e_1_2_6_44_2
  doi: 10.1021/cm703363w
– ident: e_1_2_6_17_3
  doi: 10.1002/anie.200501819
– ident: e_1_2_6_54_2
  doi: 10.1002/smll.200801154
– ident: e_1_2_6_48_2
  doi: 10.1021/la700923r
– ident: e_1_2_6_15_2
  doi: 10.1038/nrd1957
SSID ssj0009633
Score 2.433713
Snippet A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized...
A controlled drug-delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized...
Abstract A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 15410
SubjectTerms Antineoplastic Agents - chemistry
antitumor agents
Carriers
Chemistry
core/shell materials
Disulfides
drug delivery
Drug Delivery Systems
Drugs
Glycols
Humans
Leakage
mesoporous materials
Nanoparticles
Nanoparticles - chemistry
Oxidation-Reduction
Silicon dioxide
Temperature
Title Redox- and Temperature-Controlled Drug Release from Hollow Mesoporous Silica Nanoparticles
URI https://api.istex.fr/ark:/67375/WNG-C1HKJ8W0-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201301060
https://www.ncbi.nlm.nih.gov/pubmed/24105675
https://www.proquest.com/docview/1444001305
https://search.proquest.com/docview/1444860377
https://search.proquest.com/docview/1778032376
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9gAXKO_QUhkJwSltHk7sHtsty6poe1hatSes-BFUtUrQPkTFiZ_Ab-SXMGNvUhYhkOCWxLYUj8fj70vGnwFeWuIVOtHxHrKPmOd1GUvt6tjJVFhR2sR4ne7xcTk65UfnxflPu_iDPkT_wY1mho_XNMErPdu9EQ3FPtFOcozByGqItJOaHqGiyY1-FHpXOEuei5g0WDvVxiTbXW2-siqtk4Gvfwc5VxGsX4KG96DqXj5knlzuLOZ6x3z5Rdfxf3q3AXeX-JTtB4e6D7dc8wBuD7pj4R7Ch4mz7fX3r99Y1Vh24hB2B1lmfDQIee9XzrLD6eIjm-Cahqskoz0sbIQF7Wc2drMWMX-7mLH3F_TFkGGAR-a-TNB7BKfDNyeDUbw8pCE2XGIMN3UprHMCw6TQiKbQytLySiOSSWvj0lpIWxmblog1TK4xwNROICUvSmdE6Wz-GNaatnFPgRVCOLlnDUIoEsbPZGFtYWouMmT86DcRvO4GSX0KWhwqqC5niuylentF8MqPYV-tml5SBpso1NnxWzVIR--O5FmixhFsdYOslpN3hmyIc_9Ht4jgRV-MZqZ_KVXj0EK-jiyTXIg_1BFCJjmlHUXwJDhQ_0IZpdciWYsg827wlw4pEsjo7579S6NNuEPXfh8l34K1-XThniOgmuttWN8_ODwYbvvJ8wP49xlv
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9lAuUN6BAkZCcEqbt90j2lJC293DslU5YcWPINQqqfahVj31J_Ab-SXM2JtUixBIcIxjS_Z4ZvyNPf4M8NpQXKEiFe5i9BFmaV2EQtk6tCLmhhcm0o6nezgqyuPs4HPeZRPSXRjPD9FvuJFlOH9NBk4b0js3rKE4KLpKjk4YwxqM2tfR5nOyzb3xDYMU6pd_TT7jIbGwdryNUbKz2n5lXVonEV_-DnSuYli3CO3fBdV13-eenG4v5mpbX_3C7Phf49uEO0uIyt55nboHt2xzHzYG3ctwD-DL2Jr28sf1d1Y1hk0sIm_PzIxFA5_6fmYN25suvrIxLmu4UDK6xsJK_NFesKGdtQj728WMffpGm4YMfTwG78scvYdwvP9-MijD5TsNoc4EunFdF9xYy9FTcoWACsUsTFYpBDNxrW1cc2EqbeIC4YZOFfqY2nKMyvPCal5Ykz6CtaZt7BNgOedW7BqNKIq48RORG5PrOuMJBv2oOgG87WZJnns6DumJlxNJ8pK9vAJ44yaxr1ZNTymJjefyZPRBDuLy8ECcRHIYwFY3y3JpvzMMiLLMHermAbzqf6OY6TilaixKyNURRZRy_oc6nIsopcyjAB57Deo7lFCGLapsAInTg78MSBJHRv_19F8avYSNcjI8kkcfR4fP4DaVu2uV2RaszacL-xzx1Vy9cBb0E7aXHB0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bTxQxFD4hkKAvIl5wFLAmRp8G5tJpyyPZZVnB3ZgVAk82M23HGMwM2UsgPvkT_I38Ek_bncElRhN9nE4naU9PT7-vc_oV4LW2vKKIinAP2UdI05KFojBlaETMNWc6Uk6nezBk_VN6dJ6d_3KK3-tDtBtudma4eG0n-KUud29FQ7FP9iQ5xmBkNUjaVyhLE0u_uqNbASl0L3-ZPOWhFWFtZBujZHfx-4VlacVa-Pp3mHMRwro1qLcGedN6n3pysTObFjvq2x1hx__p3kN4MAeoZN971DosmeoR3Os098I9hk8jo-vrm-8_SF5pcmIQd3tdZizq-MT3r0aT7nj2mYxwUcNlkthDLKSPL-orMjCTGkF_PZuQj1_sliHBCI_UfZ6h9wROewcnnX44v6UhVFRgEFcl49oYjnGSFwin0MpC07xAKBOXysQlFzpXOmYINlRaYIQpDUdOnjGjODM6fQrLVV2ZZ0Ayzo3Y0woxlFXGT0SmdaZKyhOk_Og4AbxtBkleejEO6WWXE2ntJVt7BfDGjWFbLR9f2BQ2nsmz4aHsxP3jI3EWyUEAm80gy_nsnSAdotT90s0CeNW-RjPbnyl5ZdBCro5gUcr5H-pwLqLU5h0FsOEdqG1QYvNrka0FkDg3-EuHpFXIaJ-e_8tHL2H1Q7cn378bHr-A-7bYnamkm7A8Hc_MFoKrabHt5s9PSO8azA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox%E2%80%90+and+Temperature%E2%80%90Controlled+Drug+Release+from+Hollow+Mesoporous+Silica+Nanoparticles&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Jiao%2C+Yunfeng&rft.au=Sun%2C+Yangfei&rft.au=Chang%2C+Baisong&rft.au=Lu%2C+Daru&rft.date=2013-11-04&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=19&rft.issue=45&rft.spage=15410&rft.epage=15420&rft_id=info:doi/10.1002%2Fchem.201301060&rft.externalDBID=10.1002%252Fchem.201301060&rft.externalDocID=CHEM201301060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon