Novel two‐phase sampling designs for studying binary outcomes

In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is—which subjects to select into the subgroup to increase statistical efficiency...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 76; no. 1; pp. 210 - 223
Main Authors Wang, Le, Williams, Matthew L., Chen, Yong, Chen, Jinbo
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2020
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.13140

Cover

Loading…
Abstract In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is—which subjects to select into the subgroup to increase statistical efficiency. When the outcome is binary, one may adopt a case‐control sampling design or a balanced case‐control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two‐phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available to relate the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness‐of‐fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real‐cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design.
AbstractList In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is—which subjects to select into the subgroup to increase statistical efficiency. When the outcome is binary, one may adopt a case‐control sampling design or a balanced case‐control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two‐phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available to relate the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness‐of‐fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real‐cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design.
In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is-which subjects to select into the subgroup to increase statistical efficiency. When the outcome is binary, one may adopt a case-control sampling design or a balanced case-control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two-phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available to relate the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness-of-fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real-cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design.In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is-which subjects to select into the subgroup to increase statistical efficiency. When the outcome is binary, one may adopt a case-control sampling design or a balanced case-control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two-phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available to relate the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness-of-fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real-cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design.
In a biomedical cohort study for assessing the association between an outcome variable and a set of covariates, it is common that some covariates can only be measured on a subgroup of study subjects. An important design question is which subjects to select into the subgroup towards increased statistical efficiency. When the outcome is binary, one may adopt a case-control sampling design or a balanced case-control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two-phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available relating the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness-of-fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design.
Author Chen, Jinbo
Williams, Matthew L.
Chen, Yong
Wang, Le
AuthorAffiliation 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
3 Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
2 Department of Mathematics and Statistics, Villanova University, Villanova, PA 19085, USA
AuthorAffiliation_xml – name: 2 Department of Mathematics and Statistics, Villanova University, Villanova, PA 19085, USA
– name: 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
– name: 3 Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
Author_xml – sequence: 1
  givenname: Le
  surname: Wang
  fullname: Wang, Le
  email: l.wang@villanova.edu
  organization: Villanova University
– sequence: 2
  givenname: Matthew L.
  surname: Williams
  fullname: Williams, Matthew L.
  organization: University of Pennsylvania
– sequence: 3
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  organization: University of Pennsylvania
– sequence: 4
  givenname: Jinbo
  surname: Chen
  fullname: Chen, Jinbo
  email: jinboche@mail.med.upenn.edu
  organization: University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31449330$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKcDGx4ARWKDkNJe_ybZgKCiUKnQDUjsLCe5nrpK7CFOWs2uj9Bn5EnqMC0qFQIvbF37u0fH9-yRHR88EvKcwj5N66B2od-nnAp4RBZUCpqDYLBDFgCgci7o912yF-N5KisJ7AnZTayoOIcFefslXGCXjZfh59X1-sxEzKLp153zq6zF6FY-ZjYMWRyndjNf1s6bYZOFaWxCj_EpeWxNF_HZ7bkk344-fD38lJ-cfjw-fHeSN6KkkKuyMIJh0UDVpM2ClbbllFtKlTFKYilrpgqGolQgERKDZQ2txZoXFC1fkjdb3fVU99g26MfBdHo9uD7Z0cE4_eeLd2d6FS50Mc9Clkng1a3AEH5MGEfdu9hg1xmPYYqaCQDJpOLV_1FWJlTx5H9JXj5Az8M0-DQJzXghywqEUol6cd_8b9d3MSQAtkAzhBgHtLpxoxldmP_iOk1Bz0nrOWn9K-nU8vpBy53qX2G6hS9dh5t_kPr98ennbc8NVbe5fg
CitedBy_id crossref_primary_10_1186_s12874_023_01950_4
crossref_primary_10_1007_s00180_024_01575_1
crossref_primary_10_1093_jrsssc_qlae028
crossref_primary_10_1214_24_AOAS1938
crossref_primary_10_2139_ssrn_4089589
crossref_primary_10_1093_biostatistics_kxab044
Cites_doi 10.1093/biomet/75.1.11
10.1093/oxfordjournals.aje.a008662
10.1093/biomet/84.1.57
10.1080/01621459.1938.10503378
10.1111/j.0006-341X.1999.01193.x
10.1080/01621459.2013.842172
10.1186/1742-5573-5-4
10.18637/jss.v043.i11
10.1093/oxfordjournals.aje.a113266
10.2307/2532141
10.1002/cjs.11207
10.1080/01621459.2015.1123157
10.1056/NEJMsa0803563
10.2165/00019053-200826060-00001
10.1111/1467-9868.00078
10.1111/1467-9868.00185
10.1093/biostatistics/kxi029
10.1007/978-3-642-04898-2_161
10.1214/14-AOS1220
10.1080/01621459.2017.1295864
ContentType Journal Article
Copyright 2019 The International Biometric Society
2019 The International Biometric Society.
2020 The International Biometric Society
Copyright_xml – notice: 2019 The International Biometric Society
– notice: 2019 The International Biometric Society.
– notice: 2020 The International Biometric Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
5PM
DOI 10.1111/biom.13140
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
MEDLINE - Academic

ProQuest Computer Science Collection

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 223
ExternalDocumentID PMC7042058
31449330
10_1111_biom_13140
BIOM13140
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01‐ES016626; R01‐CA164305
– fundername: NCI NIH HHS
  grantid: R01 CA164305
– fundername: NHLBI NIH HHS
  grantid: R01 HL138306
– fundername: NCI NIH HHS
  grantid: R01 CA236468
– fundername: NCI NIH HHS
  grantid: R01 CA207365
– fundername: NIEHS NIH HHS
  grantid: R01 ES016626
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFWVQ
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAWIL
AAYXX
ABAWQ
ABGNP
ACHJO
ADNBA
AEOTA
AGLNM
AGORE
AGQPQ
AHGBF
AIHAF
AJBYB
AJNCP
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
H13
NPM
PJZUB
PPXIY
PQGLB
JQ2
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4810-687a42e7c09c7c0f0f5fd313f116aa65e85b2672e48605e07c0e8b0dfeb371ef3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Thu Aug 21 14:12:26 EDT 2025
Fri Jul 11 18:27:34 EDT 2025
Fri Jul 11 09:15:44 EDT 2025
Wed Aug 13 08:18:03 EDT 2025
Mon Jul 21 05:59:59 EDT 2025
Tue Jul 01 00:58:09 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
Wed Jan 22 16:34:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords two-phase design
pseudolikelihood
relative efficiency
goodness-of-fit
odds ratio estimation
Language English
License 2019 The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4810-687a42e7c09c7c0f0f5fd313f116aa65e85b2672e48605e07c0e8b0dfeb371ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7042058
PMID 31449330
PQID 2375890466
PQPubID 35366
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7042058
proquest_miscellaneous_2400525639
proquest_miscellaneous_2280526331
proquest_journals_2375890466
pubmed_primary_31449330
crossref_citationtrail_10_1111_biom_13140
crossref_primary_10_1111_biom_13140
wiley_primary_10_1111_biom_13140_BIOM13140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1997; 84
1938; 33
1991; 47
2014; 109
2011
1997; 59
2008; 26
2016; 111
1999; 55
2011; 43
2005; 6
1982; 115
2008; 5
2009; 360
1996; 143
1980
1988; 75
1999; 61
2017; 112
2014; 42
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_21_1
e_1_2_10_11_1
e_1_2_10_22_1
e_1_2_10_20_1
Breslow N. (e_1_2_10_3_1) 1980
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
References_xml – year: 2011
– volume: 109
  start-page: 371
  year: 2014
  end-page: 383
  article-title: Efficient estimation of semiparametric transformation models for two‐phase cohort studies
  publication-title: Journal of the American Statistical Association
– volume: 5
  start-page: 4
  year: 2008
  article-title: Flexible two‐phase studies for rare exposures: feasibility, planning and efficiency issues of a new variant
  publication-title: Epidemiologic Perspectives & Innovations
– volume: 6
  start-page: 590
  year: 2005
  end-page: 603
  article-title: Optimal design and efficiency of two‐phase case‐control studies with error‐prone and error‐free exposure measures
  publication-title: Biostatistics
– volume: 143
  start-page: 92
  year: 1996
  end-page: 100
  article-title: Optimal sampling strategies for two‐stage studies
  publication-title: American Journal of Epidemiology
– volume: 75
  start-page: 11
  year: 1988
  end-page: 20
  article-title: Logistic regression for two‐stage case‐control data
  publication-title: Biometrika
– year: 1980
– volume: 42
  start-page: 268
  year: 2014
  end-page: 284
  article-title: Response‐dependent two‐phase sampling designs for biomarker studies
  publication-title: Canadian Journal of Statistics
– volume: 84
  start-page: 57
  year: 1997
  end-page: 71
  article-title: Fitting regression models to case‐control data by maximum likelihood
  publication-title: Biometrika
– volume: 61
  start-page: 413
  year: 1999
  end-page: 438
  article-title: Semiparametric methods for response‐selective and missing data problems in regression
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 47
  start-page: 497
  year: 1991
  end-page: 510
  article-title: Fitting regression models in stratified case‐control studies
  publication-title: Biometrics
– volume: 115
  start-page: 119
  year: 1982
  end-page: 128
  article-title: A two stage design for the study of the relationship between a rare exposure and a rare disease
  publication-title: American Journal of Epidemiology
– volume: 26
  start-page: 447
  year: 2008
  end-page: 462
  article-title: Economic burden of heart failure in the elderly
  publication-title: Pharmacoeconomics
– volume: 111
  start-page: 107
  year: 2016
  end-page: 117
  article-title: Constrained maximum likelihood estimation for model calibration using summary‐level information from external big data sources
  publication-title: Journal of the American Statistical Association
– volume: 55
  start-page: 1193
  year: 1999
  end-page: 1201
  article-title: Design of validation studies for estimating the odds ratio of exposure‐disease relationships when exposure is misclassified
  publication-title: Biometrics
– volume: 112
  start-page: 1468
  year: 2017
  end-page: 1476
  article-title: Efficient semiparametric inference under two‐phase sampling, with applications to genetic association studies
  publication-title: Journal of the American Statistical Association
– volume: 59
  start-page: 447
  year: 1997
  end-page: 461
  article-title: Maximum likelihood estimation of logistic regression parameters under two‐phase, outcome‐dependent sampling
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 33
  start-page: 101
  year: 1938
  end-page: 116
  article-title: Contribution to the theory of sampling from human populations
  publication-title: Journal of the American Statistical Association
– volume: 42
  start-page: 1693
  year: 2014
  end-page: 1724
  article-title: Local case‐control sampling: efficient sampling in unbalanced datasets
  publication-title: Annals of Statistics
– volume: 43
  year: 2011
  article-title: osDesign: an R package for the analysis, evaluation, and design of two‐phase and case‐control studies
  publication-title: Journal of Statistical Software
– volume: 360
  start-page: 1418
  year: 2009
  end-page: 1428
  article-title: Rehospitalizations among patients in the medicare fee‐for‐service program
  publication-title: New England Journal of Medicine
– ident: e_1_2_10_4_1
  doi: 10.1093/biomet/75.1.11
– ident: e_1_2_10_16_1
  doi: 10.1093/oxfordjournals.aje.a008662
– ident: e_1_2_10_18_1
  doi: 10.1093/biomet/84.1.57
– ident: e_1_2_10_15_1
  doi: 10.1080/01621459.1938.10503378
– ident: e_1_2_10_9_1
  doi: 10.1111/j.0006-341X.1999.01193.x
– ident: e_1_2_10_22_1
  doi: 10.1080/01621459.2013.842172
– ident: e_1_2_10_21_1
  doi: 10.1186/1742-5573-5-4
– ident: e_1_2_10_8_1
  doi: 10.18637/jss.v043.i11
– ident: e_1_2_10_20_1
  doi: 10.1093/oxfordjournals.aje.a113266
– ident: e_1_2_10_17_1
  doi: 10.2307/2532141
– volume-title: Statistical Methods in Cancer Research: The Analysis of Case‐control Studies
  year: 1980
  ident: e_1_2_10_3_1
– ident: e_1_2_10_13_1
  doi: 10.1002/cjs.11207
– ident: e_1_2_10_6_1
  doi: 10.1080/01621459.2015.1123157
– ident: e_1_2_10_10_1
  doi: 10.1056/NEJMsa0803563
– ident: e_1_2_10_12_1
  doi: 10.2165/00019053-200826060-00001
– ident: e_1_2_10_5_1
  doi: 10.1111/1467-9868.00078
– ident: e_1_2_10_11_1
  doi: 10.1111/1467-9868.00185
– ident: e_1_2_10_14_1
  doi: 10.1093/biostatistics/kxi029
– ident: e_1_2_10_2_1
  doi: 10.1007/978-3-642-04898-2_161
– ident: e_1_2_10_7_1
  doi: 10.1214/14-AOS1220
– ident: e_1_2_10_19_1
  doi: 10.1080/01621459.2017.1295864
SSID ssj0009502
Score 2.3380785
Snippet In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured...
In a biomedical cohort study for assessing the association between an outcome variable and a set of covariates, it is common that some covariates can only be...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 210
SubjectTerms biometry
Biometry - methods
Case-Control Studies
Cohort Studies
Computer Simulation
Estimation
goodness‐of‐fit
Humans
Likelihood Functions
Mathematical models
Models, Statistical
Odds Ratio
odds ratio estimation
Outcome Assessment, Health Care - statistics & numerical data
Parameter estimation
Patient Readmission - statistics & numerical data
Phase matching
pseudolikelihood
relative efficiency
Sampling
Sampling designs
Sampling Studies
Subgroups
two‐phase design
Title Novel two‐phase sampling designs for studying binary outcomes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13140
https://www.ncbi.nlm.nih.gov/pubmed/31449330
https://www.proquest.com/docview/2375890466
https://www.proquest.com/docview/2280526331
https://www.proquest.com/docview/2400525639
https://pubmed.ncbi.nlm.nih.gov/PMC7042058
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9UwEB6WBWF98HK8VVep6ItCD2mapA0IouKyCmcFceG8SGnaZFdc2sX2KPrkT_A3-kucSS-e48qCvpTSTGmSziTfJJNvAB4mjmumrYys0lkkqlRGOuNppBQqS-kqrRzt6C4O1P6heL2Uyy14Mp6F6fkhpgU3sgw_XpOBF6ZdM3I6nj6PE3QQcACmYC1CRG_5GuMu66nCKbhLxMuBm5TCeH6_ujkbnYGYZyMl1xGsn4L2LsP7sfJ95MnH-aoz8_LbH7yO_9u6K3BpwKbhs16ZrsKWrWdwoc9W-XUGFxcTxWs7gx2CqT3L8zV4etB8tidh96X5-f3H6THOjGFbUKx6fRRWPkakDREdh57Mlh4afww4bFYdVsy21-Fw7-W7F_vRkJohKkWGI7fK0kJwm5ZMl3hxzElXJXHi4lgVhZI2k4arlFvKcSUtQxmbGVY59N3T2LrkBmzXTW1vQehK9JG1MSUiU1E6q10qlbboxmVGGFYE8Gj8RXk58JZT-oyTfPRfqK9y31cBPJhkT3u2jr9K7Y5_Oh8sts15gp6TZkKpAO5PxWhrtIFS1LZZoQynBBAqSeJzZASttEsEfgHc7JVnqgp-XNACUgDphlpNAsT1vVlSfzj2nN8pDq5MZgE89lpzTuvy56_eLPzd7X8RvgM7nJYSfHjdLmx3n1b2LuKtztzzdvULXCUntw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BEaIc-FmgBAoEwYVKWTmJ7cQnBIhqC91FQq20tyhxbIpaJRXJguDEI_CMPAkzTjbsUlQJLlEUTxTHmbG_mYy_AXga20gxZURgpEoDXiYiUGmUBFKismhbKmnpj-50JieH_M1czPvcHNoL0_FDDAE3sgw3X5OBU0B6xcppf_o4jNFDuAiXqKS386jeRyucu6wjC6f0Lh7Oe3ZSSuT5fe_6enQGZJ7NlVzFsG4R2r3eVVptHHch5Z4cjxdtMdbf_mB2_O_3uwHXenjqv-j06SZcMNUILncFK7-O4Op0YHltRrBJSLUjer4Fz2f1Z3Pit1_qn99_nB7h4ug3OaWrVx_80qWJND4CZN_x2dLFwu0E9utFiz0zzW043H198GoS9NUZAs1TnLxlmuQ8MolmSuPBMitsGYexDUOZ51KYVBSRTCJDZa6EYShj0oKVFt33JDQ2vgMbVV2Zu-BbjW6yKgqN4JRra5RNhFQGPbm04AXLPXi2_EaZ7qnLqYLGSbZ0YWisMjdWHjwZZE87wo6_Sm0vP3XWG22TRTE6T4pxKT14PDSjudE_lLwy9QJlIqoBIeM4PEeGU7BdIPbzYKvTnqEr-HBOMSQPkjW9GgSI7nu9pfp45Gi_E5xfmUg92HFqc87bZS_33k3d2b1_EX4EVyYH0_1sf2_29j5sRhRZcNl227DRflqYBwi_2uKhM7Jfsjsr0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD6sK8r64GW8VVet6IsLHdI2SRsQRF2HXXVGERfmRUoviSsu7WA7ij75E_yN_hLPSS_OuLKgL6U0pzRJz0m-k5x8B-B-aALFlBaelir2eBEJT8VB5EmJypKbQklDO7rTmdw74M_nYr4BD_uzMC0_xLDgRpZhx2sy8EVhVoycjqeP_RAdhFNwmksWk07vvglWKHdZyxVO0V3cn3fkpBTH8_vd9enoGMY8Hiq5CmHtHDS5AO_62rehJx_HyyYb59_-IHb83-ZdhPMdOHUft9p0CTZ0OYIzbbrKryM4Nx04XusRbBFObWmeL8OjWfVZH7nNl-rn9x-LQ5wa3TqlYPXyvVvYIJHaRXjsWjZbepjZc8ButWywYrq-AgeTZ2-f7nldbgYv5zEO3TKOUh7oKGcqx4thRpgi9EPj-zJNpdCxyAIZBZqSXAnNUEbHGSsMOu-Rr014FTbLqtTXwTU5Oskqy3KEpjw3WplISKXRj4sznrHUgQf9L0ryjric8mccJb0DQ32V2L5y4N4gu2jpOv4qtd3_6aQz2ToJQnSdFONSOnB3KEZjox2UtNTVEmUCygAhw9A_QYbTUrtA5OfAtVZ5hqrgxzmtIDkQranVIEBk3-sl5YdDS_od4ejKROzAjtWaE1qXPNl_NbV3N_5F-A6cfb07SV7uz17chK2AlhVsqN02bDaflvoWYq8mu21N7Bc05iqK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+two%E2%80%90phase+sampling+designs+for+studying+binary+outcomes&rft.jtitle=Biometrics&rft.au=Wang%2C+Le&rft.au=Williams%2C+Matthew+L.&rft.au=Chen%2C+Yong&rft.au=Chen%2C+Jinbo&rft.date=2020-03-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=76&rft.issue=1&rft.spage=210&rft.epage=223&rft_id=info:doi/10.1111%2Fbiom.13140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_biom_13140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon