Novel two‐phase sampling designs for studying binary outcomes
In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is—which subjects to select into the subgroup to increase statistical efficiency...
Saved in:
Published in | Biometrics Vol. 76; no. 1; pp. 210 - 223 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 1541-0420 |
DOI | 10.1111/biom.13140 |
Cover
Loading…
Abstract | In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is—which subjects to select into the subgroup to increase statistical efficiency. When the outcome is binary, one may adopt a case‐control sampling design or a balanced case‐control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two‐phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available to relate the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness‐of‐fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real‐cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design. |
---|---|
AbstractList | In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is—which subjects to select into the subgroup to increase statistical efficiency. When the outcome is binary, one may adopt a case‐control sampling design or a balanced case‐control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two‐phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available to relate the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness‐of‐fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real‐cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design. In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is-which subjects to select into the subgroup to increase statistical efficiency. When the outcome is binary, one may adopt a case-control sampling design or a balanced case-control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two-phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available to relate the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness-of-fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real-cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design.In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is-which subjects to select into the subgroup to increase statistical efficiency. When the outcome is binary, one may adopt a case-control sampling design or a balanced case-control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two-phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available to relate the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness-of-fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real-cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design. In a biomedical cohort study for assessing the association between an outcome variable and a set of covariates, it is common that some covariates can only be measured on a subgroup of study subjects. An important design question is which subjects to select into the subgroup towards increased statistical efficiency. When the outcome is binary, one may adopt a case-control sampling design or a balanced case-control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two-phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available relating the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness-of-fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design. |
Author | Chen, Jinbo Williams, Matthew L. Chen, Yong Wang, Le |
AuthorAffiliation | 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA 2 Department of Mathematics and Statistics, Villanova University, Villanova, PA 19085, USA |
AuthorAffiliation_xml | – name: 2 Department of Mathematics and Statistics, Villanova University, Villanova, PA 19085, USA – name: 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA – name: 3 Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA |
Author_xml | – sequence: 1 givenname: Le surname: Wang fullname: Wang, Le email: l.wang@villanova.edu organization: Villanova University – sequence: 2 givenname: Matthew L. surname: Williams fullname: Williams, Matthew L. organization: University of Pennsylvania – sequence: 3 givenname: Yong surname: Chen fullname: Chen, Yong organization: University of Pennsylvania – sequence: 4 givenname: Jinbo surname: Chen fullname: Chen, Jinbo email: jinboche@mail.med.upenn.edu organization: University of Pennsylvania |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31449330$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKcDGx4ARWKDkNJe_ybZgKCiUKnQDUjsLCe5nrpK7CFOWs2uj9Bn5EnqMC0qFQIvbF37u0fH9-yRHR88EvKcwj5N66B2od-nnAp4RBZUCpqDYLBDFgCgci7o912yF-N5KisJ7AnZTayoOIcFefslXGCXjZfh59X1-sxEzKLp153zq6zF6FY-ZjYMWRyndjNf1s6bYZOFaWxCj_EpeWxNF_HZ7bkk344-fD38lJ-cfjw-fHeSN6KkkKuyMIJh0UDVpM2ClbbllFtKlTFKYilrpgqGolQgERKDZQ2txZoXFC1fkjdb3fVU99g26MfBdHo9uD7Z0cE4_eeLd2d6FS50Mc9Clkng1a3AEH5MGEfdu9hg1xmPYYqaCQDJpOLV_1FWJlTx5H9JXj5Az8M0-DQJzXghywqEUol6cd_8b9d3MSQAtkAzhBgHtLpxoxldmP_iOk1Bz0nrOWn9K-nU8vpBy53qX2G6hS9dh5t_kPr98ennbc8NVbe5fg |
CitedBy_id | crossref_primary_10_1186_s12874_023_01950_4 crossref_primary_10_1007_s00180_024_01575_1 crossref_primary_10_1093_jrsssc_qlae028 crossref_primary_10_1214_24_AOAS1938 crossref_primary_10_2139_ssrn_4089589 crossref_primary_10_1093_biostatistics_kxab044 |
Cites_doi | 10.1093/biomet/75.1.11 10.1093/oxfordjournals.aje.a008662 10.1093/biomet/84.1.57 10.1080/01621459.1938.10503378 10.1111/j.0006-341X.1999.01193.x 10.1080/01621459.2013.842172 10.1186/1742-5573-5-4 10.18637/jss.v043.i11 10.1093/oxfordjournals.aje.a113266 10.2307/2532141 10.1002/cjs.11207 10.1080/01621459.2015.1123157 10.1056/NEJMsa0803563 10.2165/00019053-200826060-00001 10.1111/1467-9868.00078 10.1111/1467-9868.00185 10.1093/biostatistics/kxi029 10.1007/978-3-642-04898-2_161 10.1214/14-AOS1220 10.1080/01621459.2017.1295864 |
ContentType | Journal Article |
Copyright | 2019 The International Biometric Society 2019 The International Biometric Society. 2020 The International Biometric Society |
Copyright_xml | – notice: 2019 The International Biometric Society – notice: 2019 The International Biometric Society. – notice: 2020 The International Biometric Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 5PM |
DOI | 10.1111/biom.13140 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE - Academic ProQuest Computer Science Collection MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 223 |
ExternalDocumentID | PMC7042058 31449330 10_1111_biom_13140 BIOM13140 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R01‐ES016626; R01‐CA164305 – fundername: NCI NIH HHS grantid: R01 CA164305 – fundername: NHLBI NIH HHS grantid: R01 HL138306 – fundername: NCI NIH HHS grantid: R01 CA236468 – fundername: NCI NIH HHS grantid: R01 CA207365 – fundername: NIEHS NIH HHS grantid: R01 ES016626 |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR AAZSN ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVYC AFWVQ AFZJQ AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAWIL AAYXX ABAWQ ABGNP ACHJO ADNBA AEOTA AGLNM AGORE AGQPQ AHGBF AIHAF AJBYB AJNCP CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF H13 NPM PJZUB PPXIY PQGLB JQ2 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4810-687a42e7c09c7c0f0f5fd313f116aa65e85b2672e48605e07c0e8b0dfeb371ef3 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Thu Aug 21 14:12:26 EDT 2025 Fri Jul 11 18:27:34 EDT 2025 Fri Jul 11 09:15:44 EDT 2025 Wed Aug 13 08:18:03 EDT 2025 Mon Jul 21 05:59:59 EDT 2025 Tue Jul 01 00:58:09 EDT 2025 Thu Apr 24 23:02:28 EDT 2025 Wed Jan 22 16:34:04 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | two-phase design pseudolikelihood relative efficiency goodness-of-fit odds ratio estimation |
Language | English |
License | 2019 The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4810-687a42e7c09c7c0f0f5fd313f116aa65e85b2672e48605e07c0e8b0dfeb371ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7042058 |
PMID | 31449330 |
PQID | 2375890466 |
PQPubID | 35366 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7042058 proquest_miscellaneous_2400525639 proquest_miscellaneous_2280526331 proquest_journals_2375890466 pubmed_primary_31449330 crossref_citationtrail_10_1111_biom_13140 crossref_primary_10_1111_biom_13140 wiley_primary_10_1111_biom_13140_BIOM13140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1997; 84 1938; 33 1991; 47 2014; 109 2011 1997; 59 2008; 26 2016; 111 1999; 55 2011; 43 2005; 6 1982; 115 2008; 5 2009; 360 1996; 143 1980 1988; 75 1999; 61 2017; 112 2014; 42 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_21_1 e_1_2_10_11_1 e_1_2_10_22_1 e_1_2_10_20_1 Breslow N. (e_1_2_10_3_1) 1980 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 |
References_xml | – year: 2011 – volume: 109 start-page: 371 year: 2014 end-page: 383 article-title: Efficient estimation of semiparametric transformation models for two‐phase cohort studies publication-title: Journal of the American Statistical Association – volume: 5 start-page: 4 year: 2008 article-title: Flexible two‐phase studies for rare exposures: feasibility, planning and efficiency issues of a new variant publication-title: Epidemiologic Perspectives & Innovations – volume: 6 start-page: 590 year: 2005 end-page: 603 article-title: Optimal design and efficiency of two‐phase case‐control studies with error‐prone and error‐free exposure measures publication-title: Biostatistics – volume: 143 start-page: 92 year: 1996 end-page: 100 article-title: Optimal sampling strategies for two‐stage studies publication-title: American Journal of Epidemiology – volume: 75 start-page: 11 year: 1988 end-page: 20 article-title: Logistic regression for two‐stage case‐control data publication-title: Biometrika – year: 1980 – volume: 42 start-page: 268 year: 2014 end-page: 284 article-title: Response‐dependent two‐phase sampling designs for biomarker studies publication-title: Canadian Journal of Statistics – volume: 84 start-page: 57 year: 1997 end-page: 71 article-title: Fitting regression models to case‐control data by maximum likelihood publication-title: Biometrika – volume: 61 start-page: 413 year: 1999 end-page: 438 article-title: Semiparametric methods for response‐selective and missing data problems in regression publication-title: Journal of the Royal Statistical Society, Series B – volume: 47 start-page: 497 year: 1991 end-page: 510 article-title: Fitting regression models in stratified case‐control studies publication-title: Biometrics – volume: 115 start-page: 119 year: 1982 end-page: 128 article-title: A two stage design for the study of the relationship between a rare exposure and a rare disease publication-title: American Journal of Epidemiology – volume: 26 start-page: 447 year: 2008 end-page: 462 article-title: Economic burden of heart failure in the elderly publication-title: Pharmacoeconomics – volume: 111 start-page: 107 year: 2016 end-page: 117 article-title: Constrained maximum likelihood estimation for model calibration using summary‐level information from external big data sources publication-title: Journal of the American Statistical Association – volume: 55 start-page: 1193 year: 1999 end-page: 1201 article-title: Design of validation studies for estimating the odds ratio of exposure‐disease relationships when exposure is misclassified publication-title: Biometrics – volume: 112 start-page: 1468 year: 2017 end-page: 1476 article-title: Efficient semiparametric inference under two‐phase sampling, with applications to genetic association studies publication-title: Journal of the American Statistical Association – volume: 59 start-page: 447 year: 1997 end-page: 461 article-title: Maximum likelihood estimation of logistic regression parameters under two‐phase, outcome‐dependent sampling publication-title: Journal of the Royal Statistical Society, Series B – volume: 33 start-page: 101 year: 1938 end-page: 116 article-title: Contribution to the theory of sampling from human populations publication-title: Journal of the American Statistical Association – volume: 42 start-page: 1693 year: 2014 end-page: 1724 article-title: Local case‐control sampling: efficient sampling in unbalanced datasets publication-title: Annals of Statistics – volume: 43 year: 2011 article-title: osDesign: an R package for the analysis, evaluation, and design of two‐phase and case‐control studies publication-title: Journal of Statistical Software – volume: 360 start-page: 1418 year: 2009 end-page: 1428 article-title: Rehospitalizations among patients in the medicare fee‐for‐service program publication-title: New England Journal of Medicine – ident: e_1_2_10_4_1 doi: 10.1093/biomet/75.1.11 – ident: e_1_2_10_16_1 doi: 10.1093/oxfordjournals.aje.a008662 – ident: e_1_2_10_18_1 doi: 10.1093/biomet/84.1.57 – ident: e_1_2_10_15_1 doi: 10.1080/01621459.1938.10503378 – ident: e_1_2_10_9_1 doi: 10.1111/j.0006-341X.1999.01193.x – ident: e_1_2_10_22_1 doi: 10.1080/01621459.2013.842172 – ident: e_1_2_10_21_1 doi: 10.1186/1742-5573-5-4 – ident: e_1_2_10_8_1 doi: 10.18637/jss.v043.i11 – ident: e_1_2_10_20_1 doi: 10.1093/oxfordjournals.aje.a113266 – ident: e_1_2_10_17_1 doi: 10.2307/2532141 – volume-title: Statistical Methods in Cancer Research: The Analysis of Case‐control Studies year: 1980 ident: e_1_2_10_3_1 – ident: e_1_2_10_13_1 doi: 10.1002/cjs.11207 – ident: e_1_2_10_6_1 doi: 10.1080/01621459.2015.1123157 – ident: e_1_2_10_10_1 doi: 10.1056/NEJMsa0803563 – ident: e_1_2_10_12_1 doi: 10.2165/00019053-200826060-00001 – ident: e_1_2_10_5_1 doi: 10.1111/1467-9868.00078 – ident: e_1_2_10_11_1 doi: 10.1111/1467-9868.00185 – ident: e_1_2_10_14_1 doi: 10.1093/biostatistics/kxi029 – ident: e_1_2_10_2_1 doi: 10.1007/978-3-642-04898-2_161 – ident: e_1_2_10_7_1 doi: 10.1214/14-AOS1220 – ident: e_1_2_10_19_1 doi: 10.1080/01621459.2017.1295864 |
SSID | ssj0009502 |
Score | 2.3380785 |
Snippet | In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured... In a biomedical cohort study for assessing the association between an outcome variable and a set of covariates, it is common that some covariates can only be... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 210 |
SubjectTerms | biometry Biometry - methods Case-Control Studies Cohort Studies Computer Simulation Estimation goodness‐of‐fit Humans Likelihood Functions Mathematical models Models, Statistical Odds Ratio odds ratio estimation Outcome Assessment, Health Care - statistics & numerical data Parameter estimation Patient Readmission - statistics & numerical data Phase matching pseudolikelihood relative efficiency Sampling Sampling designs Sampling Studies Subgroups two‐phase design |
Title | Novel two‐phase sampling designs for studying binary outcomes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13140 https://www.ncbi.nlm.nih.gov/pubmed/31449330 https://www.proquest.com/docview/2375890466 https://www.proquest.com/docview/2280526331 https://www.proquest.com/docview/2400525639 https://pubmed.ncbi.nlm.nih.gov/PMC7042058 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9UwEB6WBWF98HK8VVep6ItCD2mapA0IouKyCmcFceG8SGnaZFdc2sX2KPrkT_A3-kucSS-e48qCvpTSTGmSziTfJJNvAB4mjmumrYys0lkkqlRGOuNppBQqS-kqrRzt6C4O1P6heL2Uyy14Mp6F6fkhpgU3sgw_XpOBF6ZdM3I6nj6PE3QQcACmYC1CRG_5GuMu66nCKbhLxMuBm5TCeH6_ujkbnYGYZyMl1xGsn4L2LsP7sfJ95MnH-aoz8_LbH7yO_9u6K3BpwKbhs16ZrsKWrWdwoc9W-XUGFxcTxWs7gx2CqT3L8zV4etB8tidh96X5-f3H6THOjGFbUKx6fRRWPkakDREdh57Mlh4afww4bFYdVsy21-Fw7-W7F_vRkJohKkWGI7fK0kJwm5ZMl3hxzElXJXHi4lgVhZI2k4arlFvKcSUtQxmbGVY59N3T2LrkBmzXTW1vQehK9JG1MSUiU1E6q10qlbboxmVGGFYE8Gj8RXk58JZT-oyTfPRfqK9y31cBPJhkT3u2jr9K7Y5_Oh8sts15gp6TZkKpAO5PxWhrtIFS1LZZoQynBBAqSeJzZASttEsEfgHc7JVnqgp-XNACUgDphlpNAsT1vVlSfzj2nN8pDq5MZgE89lpzTuvy56_eLPzd7X8RvgM7nJYSfHjdLmx3n1b2LuKtztzzdvULXCUntw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BEaIc-FmgBAoEwYVKWTmJ7cQnBIhqC91FQq20tyhxbIpaJRXJguDEI_CMPAkzTjbsUlQJLlEUTxTHmbG_mYy_AXga20gxZURgpEoDXiYiUGmUBFKismhbKmnpj-50JieH_M1czPvcHNoL0_FDDAE3sgw3X5OBU0B6xcppf_o4jNFDuAiXqKS386jeRyucu6wjC6f0Lh7Oe3ZSSuT5fe_6enQGZJ7NlVzFsG4R2r3eVVptHHch5Z4cjxdtMdbf_mB2_O_3uwHXenjqv-j06SZcMNUILncFK7-O4Op0YHltRrBJSLUjer4Fz2f1Z3Pit1_qn99_nB7h4ug3OaWrVx_80qWJND4CZN_x2dLFwu0E9utFiz0zzW043H198GoS9NUZAs1TnLxlmuQ8MolmSuPBMitsGYexDUOZ51KYVBSRTCJDZa6EYShj0oKVFt33JDQ2vgMbVV2Zu-BbjW6yKgqN4JRra5RNhFQGPbm04AXLPXi2_EaZ7qnLqYLGSbZ0YWisMjdWHjwZZE87wo6_Sm0vP3XWG22TRTE6T4pxKT14PDSjudE_lLwy9QJlIqoBIeM4PEeGU7BdIPbzYKvTnqEr-HBOMSQPkjW9GgSI7nu9pfp45Gi_E5xfmUg92HFqc87bZS_33k3d2b1_EX4EVyYH0_1sf2_29j5sRhRZcNl227DRflqYBwi_2uKhM7Jfsjsr0g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD6sK8r64GW8VVet6IsLHdI2SRsQRF2HXXVGERfmRUoviSsu7WA7ij75E_yN_hLPSS_OuLKgL6U0pzRJz0m-k5x8B-B-aALFlBaelir2eBEJT8VB5EmJypKbQklDO7rTmdw74M_nYr4BD_uzMC0_xLDgRpZhx2sy8EVhVoycjqeP_RAdhFNwmksWk07vvglWKHdZyxVO0V3cn3fkpBTH8_vd9enoGMY8Hiq5CmHtHDS5AO_62rehJx_HyyYb59_-IHb83-ZdhPMdOHUft9p0CTZ0OYIzbbrKryM4Nx04XusRbBFObWmeL8OjWfVZH7nNl-rn9x-LQ5wa3TqlYPXyvVvYIJHaRXjsWjZbepjZc8ButWywYrq-AgeTZ2-f7nldbgYv5zEO3TKOUh7oKGcqx4thRpgi9EPj-zJNpdCxyAIZBZqSXAnNUEbHGSsMOu-Rr014FTbLqtTXwTU5Oskqy3KEpjw3WplISKXRj4sznrHUgQf9L0ryjric8mccJb0DQ32V2L5y4N4gu2jpOv4qtd3_6aQz2ToJQnSdFONSOnB3KEZjox2UtNTVEmUCygAhw9A_QYbTUrtA5OfAtVZ5hqrgxzmtIDkQranVIEBk3-sl5YdDS_od4ejKROzAjtWaE1qXPNl_NbV3N_5F-A6cfb07SV7uz17chK2AlhVsqN02bDaflvoWYq8mu21N7Bc05iqK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+two%E2%80%90phase+sampling+designs+for+studying+binary+outcomes&rft.jtitle=Biometrics&rft.au=Wang%2C+Le&rft.au=Williams%2C+Matthew+L.&rft.au=Chen%2C+Yong&rft.au=Chen%2C+Jinbo&rft.date=2020-03-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=76&rft.issue=1&rft.spage=210&rft.epage=223&rft_id=info:doi/10.1111%2Fbiom.13140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_biom_13140 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |