Levels and function of regulatory T cells in patients with polymorphic light eruption: relation to photohardening

Summary Background We hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light eruption (PLE). Objectives To investigate the number and suppressive function of peripheral Tregs in patients with PLE compared with healthy cont...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of dermatology (1951) Vol. 173; no. 2; pp. 519 - 526
Main Authors Schweintzger, N., Gruber-Wackernagel, A., Reginato, E., Bambach, I., Quehenberger, F., Byrne, S.N., Wolf, P.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.08.2015
Oxford University Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Background We hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light eruption (PLE). Objectives To investigate the number and suppressive function of peripheral Tregs in patients with PLE compared with healthy controls. Methods Blood sampling was done in 30 patients with PLE [seeking or not seeking 311‐nm ultraviolet (UV)B photohardening] as well as 19 healthy controls at two time points: TP1, March to June (before phototherapy); and TP2, May to August (after phototherapy). We compared the number of CD4+CD25highCD127−FoxP3+ Tregs by flow cytometry and their function by assessing FoxP3 mRNA levels and effector T cell/Treg suppression assays. Results Tregs isolated from healthy controls significantly suppressed the proliferation of effector T cells at TP1 by 68% (P = 0·0156). In contrast, Tregs from patients with PLE entirely lacked the capacity to suppress effector T‐cell proliferation at that time point. The medical photohardening seen in 23 patients with PLE resulted in a significant increase in the median percentage of circulating Tregs [both as a proportion of all lymphocytes; 65 6% increase (P = 0·0049), and as a proportion of CD4+ T cells; 32.5% increase (P = 0·0049)]. This was accompanied by an increase in the expression of FoxP3 mRNA (P = 0·0083) and relative immunosuppressive function of Tregs (P = 0·083) comparing the two time points in representative subsets of patients with healthy controls tested. Seven patients with PLE not receiving 311‐nm UVB also exhibited an increase in the number of Tregs but this was not statistically significant. No significant differences in Treg numbers were observed in healthy subjects between the two time points. Conclusions An impaired Treg function is likely to play a role in PLE pathogenesis. A UV‐induced increase in the number of Tregs (either naturally or therapeutically) may be a compensatory mechanism by which the immune system counteracts the susceptibility to PLE. What's already known about this topic? Patients with polymorphic light eruption (PLE) display immunological abnormalities. Previous studies have shown that they are resistant to the immune suppressive effects of sunlight. What does this study add? We found that the number and suppressive function of regulatory T cells (Tregs) are crucial in the pathogenesis of PLE. An increase in Treg levels (after photohardening) might be a compensatory mechanism by which the immune system intends to counteract the susceptibility to PLE formation.
AbstractList We hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light eruption (PLE). To investigate the number and suppressive function of peripheral Tregs in patients with PLE compared with healthy controls. Blood sampling was done in 30 patients with PLE [seeking or not seeking 311-nm ultraviolet (UV)B photohardening] as well as 19 healthy controls at two time points: TP1, March to June (before phototherapy); and TP2, May to August (after phototherapy). We compared the number of CD4(+) CD25(high) CD127(-) FoxP3(+) Tregs by flow cytometry and their function by assessing FoxP3 mRNA levels and effector T cell/Treg suppression assays. Tregs isolated from healthy controls significantly suppressed the proliferation of effector T cells at TP1 by 68% (P = 0·0156). In contrast, Tregs from patients with PLE entirely lacked the capacity to suppress effector T-cell proliferation at that time point. The medical photohardening seen in 23 patients with PLE resulted in a significant increase in the median percentage of circulating Tregs [both as a proportion of all lymphocytes; 65 6% increase (P = 0·0049), and as a proportion of CD4(+) T cells; 32.5% increase (P = 0·0049)]. This was accompanied by an increase in the expression of FoxP3 mRNA (P = 0·0083) and relative immunosuppressive function of Tregs (P = 0·083) comparing the two time points in representative subsets of patients with healthy controls tested. Seven patients with PLE not receiving 311-nm UVB also exhibited an increase in the number of Tregs but this was not statistically significant. No significant differences in Treg numbers were observed in healthy subjects between the two time points. An impaired Treg function is likely to play a role in PLE pathogenesis. A UV-induced increase in the number of Tregs (either naturally or therapeutically) may be a compensatory mechanism by which the immune system counteracts the susceptibility to PLE.
Summary Background We hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light eruption (PLE). Objectives To investigate the number and suppressive function of peripheral Tregs in patients with PLE compared with healthy controls. Methods Blood sampling was done in 30 patients with PLE [seeking or not seeking 311‐nm ultraviolet (UV)B photohardening] as well as 19 healthy controls at two time points: TP1, March to June (before phototherapy); and TP2, May to August (after phototherapy). We compared the number of CD4+CD25highCD127−FoxP3+ Tregs by flow cytometry and their function by assessing FoxP3 mRNA levels and effector T cell/Treg suppression assays. Results Tregs isolated from healthy controls significantly suppressed the proliferation of effector T cells at TP1 by 68% (P = 0·0156). In contrast, Tregs from patients with PLE entirely lacked the capacity to suppress effector T‐cell proliferation at that time point. The medical photohardening seen in 23 patients with PLE resulted in a significant increase in the median percentage of circulating Tregs [both as a proportion of all lymphocytes; 65 6% increase (P = 0·0049), and as a proportion of CD4+ T cells; 32.5% increase (P = 0·0049)]. This was accompanied by an increase in the expression of FoxP3 mRNA (P = 0·0083) and relative immunosuppressive function of Tregs (P = 0·083) comparing the two time points in representative subsets of patients with healthy controls tested. Seven patients with PLE not receiving 311‐nm UVB also exhibited an increase in the number of Tregs but this was not statistically significant. No significant differences in Treg numbers were observed in healthy subjects between the two time points. Conclusions An impaired Treg function is likely to play a role in PLE pathogenesis. A UV‐induced increase in the number of Tregs (either naturally or therapeutically) may be a compensatory mechanism by which the immune system counteracts the susceptibility to PLE. What's already known about this topic? Patients with polymorphic light eruption (PLE) display immunological abnormalities. Previous studies have shown that they are resistant to the immune suppressive effects of sunlight. What does this study add? We found that the number and suppressive function of regulatory T cells (Tregs) are crucial in the pathogenesis of PLE. An increase in Treg levels (after photohardening) might be a compensatory mechanism by which the immune system intends to counteract the susceptibility to PLE formation.
BackgroundWe hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light eruption (PLE).ObjectivesTo investigate the number and suppressive function of peripheral Tregs in patients with PLE compared with healthy controls.MethodsBlood sampling was done in 30 patients with PLE [seeking or not seeking 311‐nm ultraviolet (UV)B photohardening] as well as 19 healthy controls at two time points: TP1, March to June (before phototherapy); and TP2, May to August (after phototherapy). We compared the number of CD4+CD25highCD127−FoxP3+ Tregs by flow cytometry and their function by assessing FoxP3 mRNA levels and effector T cell/Treg suppression assays.ResultsTregs isolated from healthy controls significantly suppressed the proliferation of effector T cells at TP1 by 68% (P = 0·0156). In contrast, Tregs from patients with PLE entirely lacked the capacity to suppress effector T‐cell proliferation at that time point. The medical photohardening seen in 23 patients with PLE resulted in a significant increase in the median percentage of circulating Tregs [both as a proportion of all lymphocytes; 65 6% increase (P = 0·0049), and as a proportion of CD4+ T cells; 32.5% increase (P = 0·0049)]. This was accompanied by an increase in the expression of FoxP3 mRNA (P = 0·0083) and relative immunosuppressive function of Tregs (P = 0·083) comparing the two time points in representative subsets of patients with healthy controls tested. Seven patients with PLE not receiving 311‐nm UVB also exhibited an increase in the number of Tregs but this was not statistically significant. No significant differences in Treg numbers were observed in healthy subjects between the two time points.ConclusionsAn impaired Treg function is likely to play a role in PLE pathogenesis. A UV‐induced increase in the number of Tregs (either naturally or therapeutically) may be a compensatory mechanism by which the immune system counteracts the susceptibility to PLE.
BACKGROUNDWe hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light eruption (PLE). OBJECTIVESTo investigate the number and suppressive function of peripheral Tregs in patients with PLE compared with healthy controls. METHODSBlood sampling was done in 30 patients with PLE [seeking or not seeking 311-nm ultraviolet (UV)B photohardening] as well as 19 healthy controls at two time points: TP1, March to June (before phototherapy); and TP2, May to August (after phototherapy). We compared the number of CD4(+) CD25(high) CD127(-) FoxP3(+) Tregs by flow cytometry and their function by assessing FoxP3 mRNA levels and effector T cell/Treg suppression assays. RESULTSTregs isolated from healthy controls significantly suppressed the proliferation of effector T cells at TP1 by 68% (P = 0·0156). In contrast, Tregs from patients with PLE entirely lacked the capacity to suppress effector T-cell proliferation at that time point. The medical photohardening seen in 23 patients with PLE resulted in a significant increase in the median percentage of circulating Tregs [both as a proportion of all lymphocytes; 65 6% increase (P = 0·0049), and as a proportion of CD4(+) T cells; 32.5% increase (P = 0·0049)]. This was accompanied by an increase in the expression of FoxP3 mRNA (P = 0·0083) and relative immunosuppressive function of Tregs (P = 0·083) comparing the two time points in representative subsets of patients with healthy controls tested. Seven patients with PLE not receiving 311-nm UVB also exhibited an increase in the number of Tregs but this was not statistically significant. No significant differences in Treg numbers were observed in healthy subjects between the two time points. CONCLUSIONSAn impaired Treg function is likely to play a role in PLE pathogenesis. A UV-induced increase in the number of Tregs (either naturally or therapeutically) may be a compensatory mechanism by which the immune system counteracts the susceptibility to PLE.
What's already known about this topic? Patients with polymorphic light eruption (PLE) display immunological abnormalities. Previous studies have shown that they are resistant to the immune suppressive effects of sunlight. What does this study add? We found that the number and suppressive function of regulatory T cells (Tregs) are crucial in the pathogenesis of PLE. An increase in Treg levels (after photohardening) might be a compensatory mechanism by which the immune system intends to counteract the susceptibility to PLE formation.
Author Reginato, E.
Bambach, I.
Wolf, P.
Schweintzger, N.
Gruber-Wackernagel, A.
Byrne, S.N.
Quehenberger, F.
AuthorAffiliation 4 Cellular Photoimmunology Group Infectious Diseases and Immunology Sydney Medical School The Charles Perkins Centre Hub at The University of Sydney Australia
3 Institute for Medical Informatics, Statistics and Documentation Medical University of Graz Auenbrugger Platz 8 A‐8036 Graz Austria
1 Research Unit for Photodermatology Department of Dermatology Medical University of Graz Auenbrugger Platz 8 A‐8036 Graz Austria
2 Center for Medical Research Medical University of Graz Auenbrugger Platz 8 A‐8036 Graz Austria
AuthorAffiliation_xml – name: 1 Research Unit for Photodermatology Department of Dermatology Medical University of Graz Auenbrugger Platz 8 A‐8036 Graz Austria
– name: 2 Center for Medical Research Medical University of Graz Auenbrugger Platz 8 A‐8036 Graz Austria
– name: 4 Cellular Photoimmunology Group Infectious Diseases and Immunology Sydney Medical School The Charles Perkins Centre Hub at The University of Sydney Australia
– name: 3 Institute for Medical Informatics, Statistics and Documentation Medical University of Graz Auenbrugger Platz 8 A‐8036 Graz Austria
Author_xml – sequence: 1
  givenname: N.
  surname: Schweintzger
  fullname: Schweintzger, N.
  organization: Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Auenbrugger Platz 8, A-8036, Graz, Austria
– sequence: 2
  givenname: A.
  surname: Gruber-Wackernagel
  fullname: Gruber-Wackernagel, A.
  organization: Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Auenbrugger Platz 8, A-8036, Graz, Austria
– sequence: 3
  givenname: E.
  surname: Reginato
  fullname: Reginato, E.
  organization: Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Auenbrugger Platz 8, A-8036, Graz, Austria
– sequence: 4
  givenname: I.
  surname: Bambach
  fullname: Bambach, I.
  organization: Center for Medical Research, Medical University of Graz, Auenbrugger Platz 8, A-8036, Graz, Austria
– sequence: 5
  givenname: F.
  surname: Quehenberger
  fullname: Quehenberger, F.
  organization: Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbrugger Platz 8, A-8036, Graz, Austria
– sequence: 6
  givenname: S.N.
  surname: Byrne
  fullname: Byrne, S.N.
  organization: Cellular Photoimmunology Group, Infectious Diseases and Immunology, Sydney Medical School, The Charles Perkins Centre Hub at The University of Sydney, Australia
– sequence: 7
  givenname: P.
  surname: Wolf
  fullname: Wolf, P.
  email: peter.wolf@medunigraz.at
  organization: Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Auenbrugger Platz 8, A-8036, Graz, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26032202$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1URKeFBS-ALLGBRVr_JM6EBRIt0IJGsCmqxMZy7JuJh4yd2k7LvD0eph0BEvbClvydo3N9jtCB8w4Qek7JCc3rtF2ZE8obTh6hGeWiKhjl_ADNCCF1QRrBD9FRjCtCKCcVeYIOmSCcMcJm6GYBtzBErJzB3eR0st5h3-EAy2lQyYcNvsIahoxYh0eVLLgU8Z1NPR79sFn7MPZW48Eu-4QhTOPW4U3WZ_XWK3k89j75XgUDzrrlU_S4U0OEZ_fnMfr28cPV-WWx-Hrx6fzdotDlnJKCkdqwtukaAfO21ZqB0PlmKFQVgJlzIAAaiMmzKCOYYqKstSJEs5Yb0_Fj9HbnO07tGozOuYMa5BjsWoWN9MrKv1-c7eXS38qyEmVTzrPBq3uD4G8miEmubdx-hXLgpyhpTYmoat5UGX35D7ryU3B5PMl4bqhkeWfq9Y7SwccYoNuHoURui5S5SPm7yMy--DP9nnxoLgOnO-DODrD5v5M8-_z-wbLYKWxM8HOvUOGHFDWvK3n95UKeNQsq2OW1_M5_AQpUu9M
CitedBy_id crossref_primary_10_1097_JDN_0000000000000571
crossref_primary_10_1111_exd_15034
crossref_primary_10_1111_jdv_15115
crossref_primary_10_1111_jdv_15314
crossref_primary_10_1146_annurev_pathmechdis_012418_012809
crossref_primary_10_1111_jdv_14866
crossref_primary_10_3390_antibiotics12121676
crossref_primary_10_1111_exd_13137
crossref_primary_10_1039_c7pp00142h
crossref_primary_10_1111_bjd_14341
crossref_primary_10_1111_phpp_12355
crossref_primary_10_1177_2055217318773112
crossref_primary_10_3389_fmed_2018_00232
crossref_primary_10_4049_jimmunol_2001261
crossref_primary_10_3389_fmed_2021_694281
crossref_primary_10_1016_j_adengl_2017_04_009
crossref_primary_10_3389_fimmu_2017_00003
crossref_primary_10_25208_vdv1293
crossref_primary_10_1007_s11882_017_0705_2
crossref_primary_10_1111_bjd_13996
crossref_primary_10_1111_phpp_12514
crossref_primary_10_1007_s00281_019_00766_z
crossref_primary_10_1016_j_pharmthera_2020_107784
crossref_primary_10_3389_fmed_2022_908047
crossref_primary_10_1186_s12903_017_0382_5
crossref_primary_10_1080_1744666X_2020_1672537
crossref_primary_10_1089_derm_2023_0360
crossref_primary_10_1038_s41598_019_44488_6
crossref_primary_10_3389_fimmu_2021_694086
crossref_primary_10_3390_ijms24054348
crossref_primary_10_1111_exd_12990
crossref_primary_10_3389_fmicb_2016_01235
crossref_primary_10_1111_bjd_15200
crossref_primary_10_1007_s00105_020_04744_7
crossref_primary_10_1016_j_det_2019_08_004
crossref_primary_10_1016_j_ad_2017_04_004
crossref_primary_10_1016_j_biotechadv_2017_07_006
crossref_primary_10_1111_phpp_12429
crossref_primary_10_1039_d0pp90011g
crossref_primary_10_1111_imm_13128
crossref_primary_10_1039_c5pp00398a
Cites_doi 10.1016/j.jaci.2011.06.005
10.1046/j.1523-1747.2000.00080.x
10.1111/bjd.13479
10.4049/jimmunol.0903719
10.1111/j.1600-0781.2008.00343.x
10.1038/jid.2010.181
10.1046/j.1523-1747.2000.00079.x
10.1039/c2pp25188d
10.1046/j.0022-202X.2004.22201.x
10.1084/jem.187.12.2045
10.1111/j.1365-2133.2011.10333.x
10.1039/c1pp05009e
10.1111/bjd.13325
10.1046/j.1365-2133.2001.03897.x
10.1046/j.0022-202X.2004.22213.x
10.1111/exd.12687
10.1016/S0091-6749(03)01869-4
10.1191/096120301678416024
10.1046/j.1468-3083.2002.00443.x
10.1038/nri2785
10.1038/jid.2010.59
10.1111/bjd.12608
10.1002/dmrr.1276
10.1046/j.1529-8019.2003.01605.x
10.1073/pnas.0603642103
10.1038/jid.2008.14
10.1016/j.immuni.2009.05.002
10.4049/jimmunol.174.1.164
10.1046/j.1365-2133.2001.04339.x
10.1039/C2PP25187F
10.4049/jimmunol.175.12.8392
10.1016/j.jaci.2012.03.001
10.4049/jimmunol.178.4.2579
10.4049/jimmunol.1001657
10.1007/s00403-004-0508-x
10.1038/ni1503
10.1111/j.1600-0781.2011.00644.x
10.1111/j.1468-3083.2011.04431.x
10.1016/j.jaci.2004.01.772
10.4049/jimmunol.180.7.4648
10.1007/s00403-003-0437-0
10.1111/j.1600-0625.2009.00859.x
10.1038/nature05010
10.2340/00015555-0229
10.1046/j.1365-4362.2002.01467.x
10.1111/j.1365-2133.2004.06128.x
10.4049/jimmunol.180.5.3065
10.1111/exd.12427
10.1111/j.1600-0625.2011.01264.x
10.1016/j.det.2014.03.012
10.1038/jid.2009.250
ContentType Journal Article
Copyright 2015 The Authors. published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.
2015 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.
Copyright © 2015 British Association of Dermatologists
Copyright_xml – notice: 2015 The Authors. published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.
– notice: 2015 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.
– notice: Copyright © 2015 British Association of Dermatologists
DBID BSCLL
24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T5
H94
K9.
NAPCQ
7X8
5PM
DOI 10.1111/bjd.13930
DatabaseName Istex
Wiley Online Library Open Access
Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Immunology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

AIDS and Cancer Research Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate N. Schweintzger et al
EISSN 1365-2133
EndPage 526
ExternalDocumentID 10_1111_bjd_13930
26032202
BJD13930
ark_67375_WNG_B9L162HW_Z
Genre article
Research Support, Non-U.S. Gov't
Controlled Clinical Trial
Journal Article
GrantInformation_xml – fundername: Medical University of Graz
– fundername: FWF Austrian Science Fund
  funderid: KLI 132‐B00
– fundername: Österreichische Nationalbank Anniversary Fund
– fundername: Austrian Science Fund FWF
  grantid: KLI 132
– fundername: FWF Austrian Science Fund
  grantid: KLI 132‐B00
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23N
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
5WD
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AABZA
AACZT
AAESR
AAEVG
AAHHS
AAONW
AAPGJ
AAPXW
AASGY
AAVAP
AAVGM
AAWDT
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABOCM
ABPTD
ABPTK
ABPVW
ABWRO
ABWST
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACFRR
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACSMX
ACUTJ
ACXBN
ACXME
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADOZA
ADQBN
ADVEK
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFFNX
AFGKR
AFPWT
AFVGU
AFYAG
AFZJQ
AGJLS
AGQXC
AGUTN
AHEFC
AIACR
AIURR
AIWBW
AJAOE
AJBDE
AJEEA
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AMBMR
AMYDB
APJGH
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
J5H
K48
KBYEO
KOP
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OAUYM
OBFPC
OCZFY
OJZSN
OPAEJ
OVD
OWPYF
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
ROX
RX1
SAMSI
SUPJJ
TEORI
TMA
UB1
V9Y
VVN
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
Y6R
YFH
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AARHZ
AAUAY
ABNHQ
ABQNK
ABXVV
ACXQS
ACZBC
ADZMN
AGMDO
ALUQN
ATGXG
AVNTJ
H13
OIG
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T5
H94
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c4810-207d2b9f96e8bbcc2e6ce8bd1e55eed83e0eece0d260ad62a2647ca00c2b3ddf3
IEDL.DBID DR2
ISSN 0007-0963
IngestDate Tue Sep 17 21:25:54 EDT 2024
Fri Aug 16 00:57:24 EDT 2024
Fri Sep 13 09:02:16 EDT 2024
Fri Aug 23 00:47:45 EDT 2024
Sat Sep 28 08:23:17 EDT 2024
Sat Aug 24 01:01:45 EDT 2024
Wed Jan 17 04:59:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
2015 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4810-207d2b9f96e8bbcc2e6ce8bd1e55eed83e0eece0d260ad62a2647ca00c2b3ddf3
Notes ArticleID:BJD13930
FWF Austrian Science Fund - No. KLI 132-B00
Österreichische Nationalbank Anniversary Fund
Medical University of Graz
istex:ACA46C1A0FB55380DB400987F5682BB73BA43282
ark:/67375/WNG-B9L162HW-Z
Fig S1. Flow diagram showing numbers of patients with polymorphic light eruption and healthy controls at each stage of the study.Fig S2. Peripheral blood mononuclear cells of patients and healthy controls were stained with antibodies for CD4, CD127, CD25 and FoxP3.Table S1. Characteristics of PLE patients.Table S2. Median percentages of CD4+CD25highCD127-FoxP3+ Tregs in PLE patients and healthy controls, as assessed by flow cytometry.
Conflicts of interest
Funding sources
This work was supported by the Österreichische Nationalbank Anniversary Fund project no. 13279 and Austrian Science Fund (FWF): project number KLI 132‐B00. N.S. and E.R. were supported through the PhD programme of the Medical University of Graz, Graz, Austria.
None declared.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
N.S. and A.G.‐W. contributed equally to this work.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbjd.13930
PMID 26032202
PQID 2311142424
PQPubID 36393
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4564948
proquest_miscellaneous_1710657395
proquest_journals_2311142424
crossref_primary_10_1111_bjd_13930
pubmed_primary_26032202
wiley_primary_10_1111_bjd_13930_BJD13930
istex_primary_ark_67375_WNG_B9L162HW_Z
PublicationCentury 2000
PublicationDate August 2015
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle British journal of dermatology (1951)
PublicationTitleAlternate Br J Dermatol
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Oxford University Press
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Oxford University Press
– name: John Wiley and Sons Inc
References Hart PH, Grimbaldeston MA, Swift GJ et al. Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med 1998; 187:2045-53.
Schwarz A, Schwarz T. UVR-induced regulatory T cells switch antigen-presenting cells from a stimulatory to a regulatory phenotype. J Invest Dermatol 2010; 130:1914-21.
Gruber-Wackernagel A, Heinemann A, Konya V et al. Photohardening restores the impaired neutrophil responsiveness to chemoattractants leukotriene B4 and formyl-methionyl-leucyl-phenylalanin in patients with polymorphic light eruption. Exp Dermatol 2011; 20:473-6.
Aubin F. Why is polymorphous light eruption so common in young women? Arch Dermatol Res 2004; 296:240-1.
Widyarini S, Domanski D, Painter N et al. Estrogen receptor signaling protects against immune suppression by UV radiation exposure. Proc Natl Acad Sci U S A 2006; 103:12837-42.
Miyara M, Amoura Z, Parizot C et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol 2005; 175:8392-400.
Milliken SVI, Wassall H, Lewis BJ et al. Effects of ultraviolet light on human serum 25-hydroxyvitamin D and systemic immune function. J Allergy Clin Immunol 2012; 129:1554-61.
Chacón-Salinas R, Limón-Flores AY, Chávez-Blanco AD et al. Mast cell-derived IL-10 suppresses germinal center formation by affecting T follicular helper cell function. J Immunol 2011; 186:25-31.
Millard TP, Kondeatis E, Cox A et al. A candidate gene analysis of three related photosensitivity disorders: cutaneous lupus erythematosus, polymorphic light eruption and actinic prurigo. Br J Dermatol 2001; 145:229-36.
Millard TP, Lewis CM, Khamashta MA et al. Familial clustering of polymorphic light eruption in relatives of patients with lupus erythematosus: evidence of a shared pathogenesis. Br J Dermatol 2001; 144:334-8.
Byrne SN, Limón-Flores AY, Ullrich SE. Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J Immunol 2008; 180:4648-55.
McGregor JM, Grabczynska S, Vaughan R et al. Genetic modeling of abnormal photosensitivity in families with polymorphic light eruption and actinic prurigo. J Invest Dermatol 2000; 115:471-6.
Bock G, Prietl B, Mader JK et al. The effect of vitamin D supplementation on peripheral regulatory T cells and β cell function in healthy humans: a randomized controlled trial. Diabetes Metab Res Rev 2011; 27:942-5.
Tutrone WD, Spann CT, Scheinfeld N et al. Polymorphic light eruption. Dermatol Ther 2003; 16:28-39.
Zirbs M, Pürner C, Buters JTM et al. GSTM1, GSTT1 and GSTP1 gene polymorphism in polymorphous light eruption. J Eur Acad Dermatol Venereol 2013; 27:157-62.
Wolf P, Byrne SN, Gruber-Wackernagel A. New insights into the mechanisms of polymorphic light eruption: resistance to ultraviolet radiation-induced immune suppression as an aetiological factor. Exp Dermatol 2009; 18:350-6.
Stratigos A, Antoniou C, Katsambas A. Polymorphous light eruption. J Eur Acad Dermatol Venereol 2002; 16:193-206.
Hofer A, Legat FJ, Gruber-Wackernagel A et al. Topical liposomal DNA-repair enzymes in polymorphic light eruption. Photochem Photobiol Sci 2011; 10:1118-28.
Millard TP, Bataille V, Snieder H et al. The heritability of polymorphic light eruption. J Invest Dermatol 2000; 115:467-70.
Lu L-F, Lind EF, Gondek DC et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006; 442:997-1002.
Ibbotson SH, Bilsland D, Cox NH et al. An update and guidance on narrowband ultraviolet B phototherapy: a British Photodermatology Group Workshop Report. Br J Dermatol 2004; 151:283-97.
Singh TP, Schön MP, Wallbrecht K et al. 8-methoxypsoralen plus ultraviolet A therapy acts via inhibition of the IL-23/Th17 axis and induction of Foxp3+ regulatory T cells involving CTLA4 signaling in a psoriasis-like skin disorder. J Immunol 2010; 184:7257-67.
Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009; 30:626-35.
Rhodes LE, Bock M, Janssens AS et al. Polymorphic light eruption occurs in 18% of Europeans and does not show higher prevalence with increasing latitude: multicenter survey of 6,895 individuals residing from the Mediterranean to Scandinavia. J Invest Dermatol 2010; 130:626-8.
Hönigsmann H. Polymorphous light eruption. Photodermatol Photoimmunol Photomed 2008; 24:155-61.
Ou L-S, Goleva E, Hall C et al. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol 2004; 113:756-63.
Palmer RA, Friedmann PS. Ultraviolet radiation causes less immunosuppression in patients with polymorphic light eruption than in controls. J Invest Dermatol 2004; 122:291-4.
Millard TP, Kondeatis E, Vaughan RW et al. Polymorphic light eruption and the HLA DRB1*0301 extended haplotype are independent risk factors for cutaneous lupus erythematosus. Lupus 2001; 10:473-9.
Grimbaldeston MA, Nakae S, Kalesnikoff J et al. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 2007; 8:1095-104.
Rhodes LE, Webb AR, Berry JL et al. Sunlight exposure behaviour and vitamin D status in photosensitive patients: longitudinal comparative study with healthy individuals at U.K. latitude. Br J Dermatol 2014; 171:1478-86.
Wolf P, Gruber-Wackernagel A, Rinner B et al. Phototherapeutic hardening modulates systemic cytokine levels in patients with polymorphic light eruption. Photochem Photobiol Sci 2013; 12:166-73.
Umetsu DT, Akbari O, Dekruyff RH. Regulatory T cells control the development of allergic disease and asthma. J Allergy Clin Immunol 2003; 112:480-7.
Hiramoto K, Tanaka H, Yanagihara N et al. Effect of 17beta-estradiol on immunosuppression induced by ultraviolet B irradiation. Arch Dermatol Res 2004; 295:307-11.
Wolf P, Gruber-Wackernagel A, Bambach I et al. Photohardening of polymorphic light eruption patients decreases baseline epidermal Langerhans cell density while increasing mast cell numbers in the papillary dermis. Exp Dermatol 2014; 23:428-30.
Koulu LM, Laihia JK, Peltoniemi H-H et al. UV-induced tolerance to a contact allergen is impaired in polymorphic light eruption. J Invest Dermatol 2010; 130:2578-82.
Prietl B, Pilz S, Wolf M et al. Vitamin D supplementation and regulatory T cells in apparently healthy subjects: vitamin D treatment for autoimmune diseases? Isr Med Assoc J 2010; 12:136-9.
Lim HW, Snauwaert JJL. Vitamin D and photodermatoses. Br J Dermatol 2014; 171:1297-8.
Guarrera M, Rebora A. Serum antioxidant capacity in polymorphic light eruption. Acta Derm Venereol 2007; 87:228-30.
Naleway AL. Polymorphous light eruption. Int J Dermatol 2002; 41:377-83.
Gruber-Wackernagel A, Obermayer-Pietsch B, Byrne SN et al. Patients with polymorphic light eruption have decreased serum levels of 25-hydroxyvitamin-D3 that increase upon 311 nm UVB photohardening. Photochem Photobiol Sci 2012; 11:1831-6.
Schwarz A, Navid F, Sparwasser T et al. In vivo reprogramming of UV radiation-induced regulatory T-cell migration to inhibit the elicitation of contact hypersensitivity. J Allergy Clin Immunol 2011; 128:826-33.
Sugiyama H, Gyulai R, Toichi E et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 2005; 174:164-73.
Millard TP, Fryer AA, McGregor JM. A protective effect of glutathione-S-transferase GSTP1*Val(105) against polymorphic light eruption. J Invest Dermatol 2008; 128:1901-5.
Valencia X, Yarboro C, Illei G et al. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 2007; 178:2579-88.
Reid SM, Robinson M, Kerr AC et al. Prevalence and predictors of low vitamin D status in patients referred to a tertiary photodiagnostic service: a retrospective study. Photodermatol Photoimmunol Photomed 2012; 28:91-6.
Gruber-Wackernagel A, Bambach I, Legat FJ et al. Randomized double-blinded placebo-controlled intra-individual trial on topical treatment with a 1,25-dihydroxyvitamin D₃ analogue in polymorphic light eruption. Br J Dermatol 2011; 165:152-63.
Maeda A, Beissert S, Schwarz T et al. Phenotypic and functional characterization of ultraviolet radiation-induced regulatory T cells. J Immunol 2008; 180:3065-71.
Gruber-Wackernagel A, Byrne SN, Wolf P. Polymorphous light eruption: clinic aspects and pathogenesis. Dermatol Clin 2014; 32:315-34.
Van de Pas CB, Kelly DA, Seed PT et al. Ultraviolet-radiation-induced erythema and suppression of contact hypersensitivity responses in patients with polymorphic light eruption. J Invest Dermatol 2004; 122:295-9.
Sakaguchi S, Miyara M, Costantino CM et al. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 2010; 10:490-500.
Schweintzger N, BambachI, Reginato E et al. Mast cells are required for phototolerance induction and scratching abatement. Exp Dermatol 2015; 24:491-30.
Gambichler T, Terras S, Kampilafkos P et al. T regulatory cells and related immunoregulatory factors in polymorphic light eruption following ultraviolet al challenge. Br J Dermatol 2013; 169:1288-94.
2002; 16
2001; 144
2010; 12
2004; 122
2010; 10
2001; 145
2005; 174
2005; 175
2013; 27
2000; 115
2013; 169
2003; 16
2011; 10
2008; 128
2010; 184
2014; 171
2003; 112
2012; 11
2014; 23
2012; 129
2015; 24
2008; 180
2007; 178
2004; 296
2009; 30
2011; 128
2004; 113
2002; 41
2013; 12
2004; 295
2004; 151
2007; 8
2011; 20
2010; 130
2008; 24
2012; 28
2007; 87
1998; 187
2011; 27
2006; 442
2014; 32
2009; 18
2006; 103
2011; 165
2001; 10
2011; 186
26346086 - Br J Dermatol. 2015 Aug;173(2):330-1
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
Guarrera M (e_1_2_6_34_1) 2007; 87
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Prietl B (e_1_2_6_49_1) 2010; 12
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 12
  start-page: 136
  year: 2010
  end-page: 9
  article-title: Vitamin D supplementation and regulatory T cells in apparently healthy subjects: vitamin D treatment for autoimmune diseases?
  publication-title: Isr Med Assoc J
– volume: 295
  start-page: 307
  year: 2004
  end-page: 11
  article-title: Effect of 17beta‐estradiol on immunosuppression induced by ultraviolet B irradiation
  publication-title: Arch Dermatol Res
– volume: 130
  start-page: 1914
  year: 2010
  end-page: 21
  article-title: UVR‐induced regulatory T cells switch antigen‐presenting cells from a stimulatory to a regulatory phenotype
  publication-title: J Invest Dermatol
– volume: 10
  start-page: 490
  year: 2010
  end-page: 500
  article-title: FOXP3+ regulatory T cells in the human immune system
  publication-title: Nat Rev Immunol
– volume: 27
  start-page: 942
  year: 2011
  end-page: 5
  article-title: The effect of vitamin D supplementation on peripheral regulatory T cells and β cell function in healthy humans: a randomized controlled trial
  publication-title: Diabetes Metab Res Rev
– volume: 16
  start-page: 193
  year: 2002
  end-page: 206
  article-title: Polymorphous light eruption
  publication-title: J Eur Acad Dermatol Venereol
– volume: 115
  start-page: 467
  year: 2000
  end-page: 70
  article-title: The heritability of polymorphic light eruption
  publication-title: J Invest Dermatol
– volume: 122
  start-page: 291
  year: 2004
  end-page: 4
  article-title: Ultraviolet radiation causes less immunosuppression in patients with polymorphic light eruption than in controls
  publication-title: J Invest Dermatol
– volume: 128
  start-page: 1901
  year: 2008
  end-page: 5
  article-title: A protective effect of glutathione‐S‐transferase GSTP1*Val(105) against polymorphic light eruption
  publication-title: J Invest Dermatol
– volume: 169
  start-page: 1288
  year: 2013
  end-page: 94
  article-title: T regulatory cells and related immunoregulatory factors in polymorphic light eruption following ultraviolet al challenge
  publication-title: Br J Dermatol
– volume: 10
  start-page: 1118
  year: 2011
  end-page: 28
  article-title: Topical liposomal DNA‐repair enzymes in polymorphic light eruption
  publication-title: Photochem Photobiol Sci
– volume: 11
  start-page: 1831
  year: 2012
  end-page: 6
  article-title: Patients with polymorphic light eruption have decreased serum levels of 25‐hydroxyvitamin‐D3 that increase upon 311 nm UVB photohardening
  publication-title: Photochem Photobiol Sci
– volume: 165
  start-page: 152
  year: 2011
  end-page: 63
  article-title: Randomized double‐blinded placebo‐controlled intra‐individual trial on topical treatment with a 1,25‐dihydroxyvitamin D₃ analogue in polymorphic light eruption
  publication-title: Br J Dermatol
– volume: 23
  start-page: 428
  year: 2014
  end-page: 30
  article-title: Photohardening of polymorphic light eruption patients decreases baseline epidermal Langerhans cell density while increasing mast cell numbers in the papillary dermis
  publication-title: Exp Dermatol
– volume: 103
  start-page: 12837
  year: 2006
  end-page: 42
  article-title: Estrogen receptor signaling protects against immune suppression by UV radiation exposure
  publication-title: Proc Natl Acad Sci U S A
– volume: 174
  start-page: 164
  year: 2005
  end-page: 73
  article-title: Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation
  publication-title: J Immunol
– volume: 442
  start-page: 997
  year: 2006
  end-page: 1002
  article-title: Mast cells are essential intermediaries in regulatory T‐cell tolerance
  publication-title: Nature
– volume: 180
  start-page: 4648
  year: 2008
  end-page: 55
  article-title: Mast cell migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression
  publication-title: J Immunol
– volume: 20
  start-page: 473
  year: 2011
  end-page: 6
  article-title: Photohardening restores the impaired neutrophil responsiveness to chemoattractants leukotriene B4 and formyl‐methionyl‐leucyl‐phenylalanin in patients with polymorphic light eruption
  publication-title: Exp Dermatol
– volume: 296
  start-page: 240
  year: 2004
  end-page: 1
  article-title: Why is polymorphous light eruption so common in young women?
  publication-title: Arch Dermatol Res
– volume: 30
  start-page: 626
  year: 2009
  end-page: 35
  article-title: Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor?
  publication-title: Immunity
– volume: 187
  start-page: 2045
  year: 1998
  end-page: 53
  article-title: Dermal mast cells determine susceptibility to ultraviolet B‐induced systemic suppression of contact hypersensitivity responses in mice
  publication-title: J Exp Med
– volume: 112
  start-page: 480
  year: 2003
  end-page: 7
  article-title: Regulatory T cells control the development of allergic disease and asthma
  publication-title: J Allergy Clin Immunol
– volume: 115
  start-page: 471
  year: 2000
  end-page: 6
  article-title: Genetic modeling of abnormal photosensitivity in families with polymorphic light eruption and actinic prurigo
  publication-title: J Invest Dermatol
– volume: 12
  start-page: 166
  year: 2013
  end-page: 73
  article-title: Phototherapeutic hardening modulates systemic cytokine levels in patients with polymorphic light eruption
  publication-title: Photochem Photobiol Sci
– volume: 122
  start-page: 295
  year: 2004
  end-page: 9
  article-title: Ultraviolet‐radiation‐induced erythema and suppression of contact hypersensitivity responses in patients with polymorphic light eruption
  publication-title: J Invest Dermatol
– volume: 32
  start-page: 315
  year: 2014
  end-page: 34
  article-title: Polymorphous light eruption: clinic aspects and pathogenesis
  publication-title: Dermatol Clin
– volume: 145
  start-page: 229
  year: 2001
  end-page: 36
  article-title: A candidate gene analysis of three related photosensitivity disorders: cutaneous lupus erythematosus, polymorphic light eruption and actinic prurigo
  publication-title: Br J Dermatol
– volume: 113
  start-page: 756
  year: 2004
  end-page: 63
  article-title: T regulatory cells in atopic dermatitis and subversion of their activity by superantigens
  publication-title: J Allergy Clin Immunol
– volume: 24
  start-page: 155
  year: 2008
  end-page: 61
  article-title: Polymorphous light eruption
  publication-title: Photodermatol Photoimmunol Photomed
– volume: 28
  start-page: 91
  year: 2012
  end-page: 6
  article-title: Prevalence and predictors of low vitamin D status in patients referred to a tertiary photodiagnostic service: a retrospective study
  publication-title: Photodermatol Photoimmunol Photomed
– volume: 171
  start-page: 1297
  year: 2014
  end-page: 8
  article-title: Vitamin D and photodermatoses
  publication-title: Br J Dermatol
– volume: 151
  start-page: 283
  year: 2004
  end-page: 97
  article-title: An update and guidance on narrowband ultraviolet B phototherapy: a British Photodermatology Group Workshop Report
  publication-title: Br J Dermatol
– volume: 27
  start-page: 157
  year: 2013
  end-page: 62
  article-title: GSTM1, GSTT1 and GSTP1 gene polymorphism in polymorphous light eruption
  publication-title: J Eur Acad Dermatol Venereol
– volume: 178
  start-page: 2579
  year: 2007
  end-page: 88
  article-title: Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus
  publication-title: J Immunol
– volume: 175
  start-page: 8392
  year: 2005
  end-page: 400
  article-title: Global natural regulatory T cell depletion in active systemic lupus erythematosus
  publication-title: J Immunol
– volume: 18
  start-page: 350
  year: 2009
  end-page: 6
  article-title: New insights into the mechanisms of polymorphic light eruption: resistance to ultraviolet radiation‐induced immune suppression as an aetiological factor
  publication-title: Exp Dermatol
– volume: 171
  start-page: 1478
  year: 2014
  end-page: 86
  article-title: Sunlight exposure behaviour and vitamin D status in photosensitive patients: longitudinal comparative study with healthy individuals at U.K. latitude
  publication-title: Br J Dermatol
– volume: 144
  start-page: 334
  year: 2001
  end-page: 8
  article-title: Familial clustering of polymorphic light eruption in relatives of patients with lupus erythematosus: evidence of a shared pathogenesis
  publication-title: Br J Dermatol
– volume: 10
  start-page: 473
  year: 2001
  end-page: 9
  article-title: Polymorphic light eruption and the HLA DRB1*0301 extended haplotype are independent risk factors for cutaneous lupus erythematosus
  publication-title: Lupus
– volume: 8
  start-page: 1095
  year: 2007
  end-page: 104
  article-title: Mast cell‐derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B
  publication-title: Nat Immunol
– volume: 41
  start-page: 377
  year: 2002
  end-page: 83
  article-title: Polymorphous light eruption
  publication-title: Int J Dermatol
– volume: 130
  start-page: 626
  year: 2010
  end-page: 8
  article-title: Polymorphic light eruption occurs in 18% of Europeans and does not show higher prevalence with increasing latitude: multicenter survey of 6,895 individuals residing from the Mediterranean to Scandinavia
  publication-title: J Invest Dermatol
– volume: 87
  start-page: 228
  year: 2007
  end-page: 30
  article-title: Serum antioxidant capacity in polymorphic light eruption
  publication-title: Acta Derm Venereol
– volume: 24
  start-page: 491
  year: 2015
  end-page: 30
  article-title: Mast cells are required for phototolerance induction and scratching abatement
  publication-title: Exp Dermatol
– volume: 180
  start-page: 3065
  year: 2008
  end-page: 71
  article-title: Phenotypic and functional characterization of ultraviolet radiation‐induced regulatory T cells
  publication-title: J Immunol
– volume: 129
  start-page: 1554
  year: 2012
  end-page: 61
  article-title: Effects of ultraviolet light on human serum 25‐hydroxyvitamin D and systemic immune function
  publication-title: J Allergy Clin Immunol
– volume: 16
  start-page: 28
  year: 2003
  end-page: 39
  article-title: Polymorphic light eruption
  publication-title: Dermatol Ther
– volume: 186
  start-page: 25
  year: 2011
  end-page: 31
  article-title: Mast cell‐derived IL‐10 suppresses germinal center formation by affecting T follicular helper cell function
  publication-title: J Immunol
– volume: 128
  start-page: 826
  year: 2011
  end-page: 33
  article-title: reprogramming of UV radiation‐induced regulatory T‐cell migration to inhibit the elicitation of contact hypersensitivity
  publication-title: J Allergy Clin Immunol
– volume: 184
  start-page: 7257
  year: 2010
  end-page: 67
  article-title: 8‐methoxypsoralen plus ultraviolet A therapy acts via inhibition of the IL‐23/Th17 axis and induction of Foxp3+ regulatory T cells involving CTLA4 signaling in a psoriasis‐like skin disorder
  publication-title: J Immunol
– volume: 130
  start-page: 2578
  year: 2010
  end-page: 82
  article-title: UV‐induced tolerance to a contact allergen is impaired in polymorphic light eruption
  publication-title: J Invest Dermatol
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jaci.2011.06.005
– ident: e_1_2_6_28_1
  doi: 10.1046/j.1523-1747.2000.00080.x
– ident: e_1_2_6_53_1
  doi: 10.1111/bjd.13479
– ident: e_1_2_6_25_1
  doi: 10.4049/jimmunol.0903719
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1600-0781.2008.00343.x
– ident: e_1_2_6_21_1
  doi: 10.1038/jid.2010.181
– ident: e_1_2_6_27_1
  doi: 10.1046/j.1523-1747.2000.00079.x
– ident: e_1_2_6_23_1
  doi: 10.1039/c2pp25188d
– ident: e_1_2_6_20_1
  doi: 10.1046/j.0022-202X.2004.22201.x
– ident: e_1_2_6_38_1
  doi: 10.1084/jem.187.12.2045
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1365-2133.2011.10333.x
– ident: e_1_2_6_15_1
  doi: 10.1039/c1pp05009e
– ident: e_1_2_6_52_1
  doi: 10.1111/bjd.13325
– ident: e_1_2_6_31_1
  doi: 10.1046/j.1365-2133.2001.03897.x
– ident: e_1_2_6_19_1
  doi: 10.1046/j.0022-202X.2004.22213.x
– ident: e_1_2_6_43_1
  doi: 10.1111/exd.12687
– ident: e_1_2_6_10_1
  doi: 10.1016/S0091-6749(03)01869-4
– ident: e_1_2_6_29_1
  doi: 10.1191/096120301678416024
– ident: e_1_2_6_4_1
  doi: 10.1046/j.1468-3083.2002.00443.x
– ident: e_1_2_6_26_1
  doi: 10.1038/nri2785
– ident: e_1_2_6_13_1
  doi: 10.1038/jid.2010.59
– ident: e_1_2_6_46_1
  doi: 10.1111/bjd.12608
– ident: e_1_2_6_50_1
  doi: 10.1002/dmrr.1276
– ident: e_1_2_6_6_1
  doi: 10.1046/j.1529-8019.2003.01605.x
– ident: e_1_2_6_37_1
  doi: 10.1073/pnas.0603642103
– ident: e_1_2_6_32_1
  doi: 10.1038/jid.2008.14
– ident: e_1_2_6_11_1
  doi: 10.1016/j.immuni.2009.05.002
– ident: e_1_2_6_18_1
  doi: 10.4049/jimmunol.174.1.164
– ident: e_1_2_6_30_1
  doi: 10.1046/j.1365-2133.2001.04339.x
– ident: e_1_2_6_24_1
  doi: 10.1039/C2PP25187F
– ident: e_1_2_6_22_1
  doi: 10.4049/jimmunol.175.12.8392
– ident: e_1_2_6_48_1
  doi: 10.1016/j.jaci.2012.03.001
– ident: e_1_2_6_16_1
  doi: 10.4049/jimmunol.178.4.2579
– ident: e_1_2_6_41_1
  doi: 10.4049/jimmunol.1001657
– ident: e_1_2_6_35_1
  doi: 10.1007/s00403-004-0508-x
– ident: e_1_2_6_40_1
  doi: 10.1038/ni1503
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1600-0781.2011.00644.x
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1468-3083.2011.04431.x
– ident: e_1_2_6_17_1
  doi: 10.1016/j.jaci.2004.01.772
– ident: e_1_2_6_39_1
  doi: 10.4049/jimmunol.180.7.4648
– ident: e_1_2_6_36_1
  doi: 10.1007/s00403-003-0437-0
– volume: 12
  start-page: 136
  year: 2010
  ident: e_1_2_6_49_1
  article-title: Vitamin D supplementation and regulatory T cells in apparently healthy subjects: vitamin D treatment for autoimmune diseases?
  publication-title: Isr Med Assoc J
  contributor:
    fullname: Prietl B
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1600-0625.2009.00859.x
– ident: e_1_2_6_42_1
  doi: 10.1038/nature05010
– volume: 87
  start-page: 228
  year: 2007
  ident: e_1_2_6_34_1
  article-title: Serum antioxidant capacity in polymorphic light eruption
  publication-title: Acta Derm Venereol
  doi: 10.2340/00015555-0229
  contributor:
    fullname: Guarrera M
– ident: e_1_2_6_8_1
  doi: 10.1046/j.1365-4362.2002.01467.x
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-2133.2004.06128.x
– ident: e_1_2_6_14_1
  doi: 10.4049/jimmunol.180.5.3065
– ident: e_1_2_6_44_1
  doi: 10.1111/exd.12427
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1600-0625.2011.01264.x
– ident: e_1_2_6_2_1
  doi: 10.1016/j.det.2014.03.012
– ident: e_1_2_6_5_1
  doi: 10.1038/jid.2009.250
SSID ssj0013050
Score 2.3787782
Snippet Summary Background We hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light...
We hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light eruption (PLE). To...
BackgroundWe hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light eruption...
BACKGROUNDWe hypothesized that regulatory T cells (Tregs) are involved in the immunological abnormalities seen in patients with polymorphic light eruption...
What's already known about this topic? Patients with polymorphic light eruption (PLE) display immunological abnormalities. Previous studies have shown that...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 519
SubjectTerms Adolescent
Adult
Aged
CD25 antigen
CD4 antigen
Cell proliferation
Cell Proliferation - physiology
Effector cells
Female
Flow cytometry
Forkhead Transcription Factors - metabolism
Foxp3 protein
Gene expression
Humans
Immune system
Immunoregulation
Light therapy
Lymphocytes
Lymphocytes T
Male
Middle Aged
mRNA
Original
Photobiology
Photosensitivity Disorders - immunology
Photosensitivity Disorders - metabolism
Photosensitivity Disorders - radiotherapy
Phototherapy
Seasons
Skin eruptions
Statistical analysis
T-Lymphocytes, Regulatory - metabolism
T-Lymphocytes, Regulatory - physiology
Ultraviolet Therapy - methods
Up-Regulation - physiology
Young Adult
Title Levels and function of regulatory T cells in patients with polymorphic light eruption: relation to photohardening
URI https://api.istex.fr/ark:/67375/WNG-B9L162HW-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbjd.13930
https://www.ncbi.nlm.nih.gov/pubmed/26032202
https://www.proquest.com/docview/2311142424/abstract/
https://search.proquest.com/docview/1710657395
https://pubmed.ncbi.nlm.nih.gov/PMC4564948
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5qBfHF-yVayyoivuSw2WSTjT5ZtR5KW0RaWkRY9hZ6bE2OSQ5Yf707SU7s8QIieQnshmV3Zna_mZ35AvBUUGF4xnSorRNh4rI0zJnRITWp4FQVihZY4Ly3n04Pk51jfrwGL5e1MD0_xBhwQ8vo9ms0cKWbC0auP9uJhy8x-utIpIeA6AP7eYNAeV9-gqE4r2UDqxBm8YxfrpxFl3FZv_0JaP6eL3kRx3YH0fZ1-LScQp9_cjpZtHpivv_C7vifc7wB1waASl71GnUT1lx5C67sDVfwt-HrLqYZNUSVluChiIIlVUHq_qf2VX1ODgheBzRkVpKBtrUhGO8l8-rs_EvlJTsz5AyjAsTVi27PekHqISuPtBWZn1RtheVgDqM2d-Bw--3B62k4_LchNInw2zqjmWU6L_LUCa2NYS41_s1GjnN_JIvYUeeMo9b7UsqmTHlQlhlFqWE6traI78J6WZXuPhBttUtz5iLvSidcFLkxzrvOkdIiE7HQATxZSlDOe3oOuXRr_OLJbvECeNbJduyh6lPMZ8u4PNp_J7fy3Shl0yP5MYCNpfDlYMqN9KNhvbF_Ang8NnsjxKVUpasWjYw8Tks53nkGcK_XlXEwP0m_aVIWQLaiRWMHJPhebSlnJx3RN1L95IkI4HmnJH-fodzaedO9PPj3rg_hqgd_vE9m3ID1tl64Rx5gtXoTLrHk_WZnTz8AchIlcQ
link.rule.ids 230,315,786,790,891,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3bbtMw9GjaJOCF-yVjgEEI8ZLKdevEQbwwYJTR9gF12oSErNhxtLItKWkqMb6ec3Jj5SIhlBdLdmT53HzuBniquLIyFMY3iVP-0IWBHwlrfG4DJXmcxjylAufJNBgdDPeP5NEGvGxrYer-EJ3DjTijktfE4OSQvsDl5kvSQ_1lgAb7FrK7rAyqj-JnDIHLugCFnHFIZ01fIcrj6X5du422CLDf_qRq_p4xeVGTra6ivWvwuT1EnYFy0luVpme__9Lf8X9PeR2uNjoqe1UT1Q3YcNlNuDRpovC34OuYMo2WLM4SRvci4ZblKSvqd-3z4pzNGEUElmyesaZz65KRy5ct8tPzsxyRO7fslBwDzBWrSmy9YEWTmMfKnC2O8zKnijBHjpvbcLD3dvZ65DdPN_h2qFCyCx4mwkRpFDhljLXCBRZHSd9JibeyGjjunHU8QXMqTgIRo14W2phzK8wgSdLBHdjM8szdA2YS44JIuD5a00Op0shah9ZzPzYqVANlPHjSolAv6g4durVsEHi6Ap4Hzyrkdivi4oRS2kKpD6fv9G407gdidKg_ebDTYl833LzUuBuVHOPnweNuGvmQQBlnLl8tdR9VtUBS2NODuzWxdJvhIVFucuFBuEZG3QLq8b0-k82Pq17f1O0nGioPnldU8vcT6t39N9Vg-9-XPoLLo9lkrMfvpx_uwxXUBWWd27gDm2Wxcg9Q3yrNw4qtfgDLnSi8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLemTZp4QXzTMSAghHgpStMmTeGJMY5j3E572LSJl6j5qHZsa4_2TmL_PXHbKzsBEupLpKSKYsfOz47tALySVBqeMh1q62SYuFSEGTM6pEZITvMipwUmOB9OxfgkOTjjZxvwfpUL09WHGBxuKBmtvkYBn9vihpDr7_athy-xt9e3EkElWl4sOfp9hUB5l3-Cvji_zfqyQhjGM_y6dhhtIV1__g1p_hkweRPItifR6A7c7iEk-dDx_C5suPIebB_2l-T34ccEA4EakpeW4LGFpCdVQeru2fmqvibHBB32DZmVpC-s2hD0yJJ5dXl9VXnazwy5RLuduHrZapV3pO7j5siiIvPzalFhwpZDv8oDOBl9Ov44DvuXFUKTSK94GU0t01mRCSe1NoY5YXzLRo5zf2jK2FHnjKPWWzu5FSz3sCk1OaWG6djaIn4Im2VVusdAtNVOZMxF3thNuCwyY5w3bqNcy1TGUgfwckViNe8KaKiV4eH5oFo-BPC6Jf4wIq8vMOIs5ep0-lntZZNIsPGp-hbA7oo7qhe2RvnZMCPYfwG8GLq9mCAp89JVy0ZFHkkJjreSATzqmDlM5hfp1RplAaRrbB4GYAnu9Z5ydt6W4sZiPFkiA3jTboh_r1DtHey3jZ3_H_octo_2R2ryZfr1CdzySI13kYe7sLmol-6pR0ML_azd9b8AbY0HQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Levels+and+function+of+regulatory+T+cells+in+patients+with+polymorphic+light+eruption%3A+relation+to+photohardening&rft.jtitle=British+journal+of+dermatology+%281951%29&rft.au=Schweintzger%2C+N&rft.au=Gruber-Wackernagel%2C+A&rft.au=Reginato%2C+E&rft.au=Bambach%2C+I&rft.date=2015-08-01&rft.eissn=1365-2133&rft.volume=173&rft.issue=2&rft.spage=519&rft_id=info:doi/10.1111%2Fbjd.13930&rft_id=info%3Apmid%2F26032202&rft.externalDocID=26032202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0963&client=summon