Joint Spatial-Spectral Feature Space Clustering for Speech Activity Detection from ECoG Signals
Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 61; no. 4; pp. 1241 - 1250 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2014.2298897 |