Joint Spatial-Spectral Feature Space Clustering for Speech Activity Detection from ECoG Signals
Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 61; no. 4; pp. 1241 - 1250 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication. |
---|---|
AbstractList | Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication. Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication. Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication.Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication. Brain machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines (SVM) as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and non-speech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllable repetition tasks and may contribute to the development of portable ECoG-based communication. |
Author | Benz, Heather L. Kanas, Vasileios G. Bezerianos, Anastasios Mporas, Iosif Sgarbas, Kyriakos N. Crone, Nathan E. |
Author_xml | – sequence: 1 givenname: Vasileios G. surname: Kanas fullname: Kanas, Vasileios G. email: vaskanas@upatras.gr organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece – sequence: 2 givenname: Iosif surname: Mporas fullname: Mporas, Iosif email: imporas@upatras.gr organization: Department of Mechanical Engineering , Technological and Educational Institute of Western Greece, Patras, Greece – sequence: 3 givenname: Heather L. surname: Benz fullname: Benz, Heather L. email: benz@jhu.edu organization: Department of Biomedical Engineering , Johns Hopkins University, Baltimore, USA – sequence: 4 givenname: Kyriakos N. surname: Sgarbas fullname: Sgarbas, Kyriakos N. email: sgarbas@upatras.gr organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece – sequence: 5 givenname: Anastasios surname: Bezerianos fullname: Bezerianos, Anastasios email: tassos.bezerianos@nus.edu.sg organization: Singapore Institute for Neurotechnology, National University of Singapore, Singapore – sequence: 6 givenname: Nathan E. surname: Crone fullname: Crone, Nathan E. email: ncrone@jhmi.edu organization: Department of Neurology, Johns Hopkins University, Baltimore, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24658248$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUl2LEzEUDbLidld_gAgy4IsvU5NMPl-EtXZXZcWH9j2kmZtulumkZjIL--_N0Fp0H0QIXHLvOffzXKCzPvaA0GuC54Rg_WH96ftyTjFhc0q1Ulo-QzPCuaopb8gZmmFMVK2pZufoYhjuy5cpJl6gc8oEV5SpGTLfYuhztdrbHGxXr_bgcrJddQ02jwmmgINq0Y1DhhT6beVjKk4Ad1dduRweQn6sPkMutBD7yqe4q5aLeFOtwra33fASPffFwKujvUTr6-V68aW-_XHzdXF1WzumcK59y4TTnghg3mvAjjLXcuqpbYWUVGKLW7eh0uNGSsU3BGSDmXJEay8tby7Rx0Pa_bjZQeugn6Yw-xR2Nj2aaIP5O9KHO7OND4ZhzAWWJcH7Y4IUf44wZLMLg4Ousz3EcTCEEyG5Lsv-HygmWIpGFOi7J9D7OKZpLwWFNZHlTbXf_tn8qevfVyoAcgC4FIchgT9BCDaTEsykBDMpwRyVUDjyCceFbKcjlflD90_mmwMzAMCpkpBlUYw0vwA0HsAA |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1007_s13534_015_0175_1 crossref_primary_10_1016_j_jphysparis_2017_07_002 crossref_primary_10_1044_2024_JSLHR_24_00046 crossref_primary_10_4015_S1016237215500209 crossref_primary_10_1142_S0129065721500258 crossref_primary_10_1016_j_neuroimage_2023_119913 crossref_primary_10_1007_s13311_018_00692_2 crossref_primary_10_3389_fnhum_2016_00165 crossref_primary_10_3389_fnhum_2022_867281 crossref_primary_10_3389_fnhum_2020_00111 crossref_primary_10_1109_TIM_2023_3277930 crossref_primary_10_1109_TNSRE_2022_3207624 crossref_primary_10_1088_1741_2552_ad663c crossref_primary_10_1016_j_isci_2018_09_016 crossref_primary_10_1038_s41598_024_60277_2 crossref_primary_10_1080_2326263X_2017_1330611 |
Cites_doi | 10.1088/1741-2560/8/4/046028 10.1007/BF00153759 10.1016/j.clinph.2005.06.027 10.1088/1741-2560/4/3/018 10.1109/TBME.2002.803536 10.1088/1741-2560/6/6/066001 10.1016/S1388-2457(02)00411-X 10.1109/86.847812 10.1016/j.jneumeth.2007.07.017 10.1016/j.neuroimage.2009.12.035 10.1371/journal.pcbi.1002655 10.1109/TBME.2004.827062 10.1371/journal.pone.0022368 10.1109/JPROC.2012.2184829 10.3389/fneng.2010.00003 10.1109/MPUL.2011.2175636 10.1016/j.eplepsyres.2010.12.003 10.1109/RBME.2011.2172408 10.1007/s10994-005-0466-3 10.1016/j.neuron.2013.03.007 10.1088/1741-2560/4/3/012 10.1038/scientificamerican0689-86 10.1109/86.847808 10.1109/MSP.2011.941880 10.1088/1741-2560/4/2/R03 10.1109/CNE.2007.369683 10.1016/j.neunet.2009.05.008 10.1016/j.neuroimage.2011.03.030 10.1093/brain/awn147 10.1109/TNSRE.2006.875577 10.1109/IEMBS.2011.6091553 10.3389/neuro.01.1.1.014.2007 10.1109/MPUL.2011.2175637 10.1016/j.clinph.2008.03.034 10.1136/bmj.330.7488.406 10.1038/18581 10.1109/2.485891 10.1016/j.neuroimage.2004.07.027 10.1088/1741-2560/4/2/R01 10.1212/WNL.57.11.2045 10.1088/1741-2560/7/5/056007 10.1109/ACCESS.2013.2260791 10.1109/86.895948 10.1109/TNSRE.2003.814439 10.1109/34.824819 10.1016/S1388-2457(00)00545-9 10.1371/journal.pbio.1001251 10.1523/JNEUROSCI.2848-08.2008 10.1007/s10548-007-0020-7 10.1109/TNSRE.2011.2175309 10.1109/MSP.2008.4408439 10.1016/0013-4694(50)90039-3 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014 Copyright (c) 2013 IEEE. 2013 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014 – notice: Copyright (c) 2013 IEEE. 2013 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2014.2298897 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 1250 |
ExternalDocumentID | PMC4005607 3252913711 24658248 10_1109_TBME_2014_2298897 6705641 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Union (European Social Fund ¿ ESF) – fundername: National Strategic Reference Framework (NSRF) - Research Funding Program: Thales – fundername: NINDS NIH HHS grantid: R01 NS040596 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c480t-fd46c9f16e4ff9e0c24cd52f2ad677270a0dcb27f037785b1e73048c199f7a53 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 14:35:39 EDT 2025 Fri Jul 11 01:09:41 EDT 2025 Fri Jul 11 02:50:53 EDT 2025 Mon Jun 30 08:14:34 EDT 2025 Thu Apr 03 07:09:11 EDT 2025 Thu Apr 24 22:55:42 EDT 2025 Tue Jul 01 02:15:50 EDT 2025 Wed Aug 27 02:53:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-fd46c9f16e4ff9e0c24cd52f2ad677270a0dcb27f037785b1e73048c199f7a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1109/TBME.2014.2298897 |
PMID | 24658248 |
PQID | 1509179177 |
PQPubID | 85474 |
PageCount | 10 |
ParticipantIDs | ieee_primary_6705641 proquest_miscellaneous_1516759201 pubmed_primary_24658248 crossref_primary_10_1109_TBME_2014_2298897 proquest_journals_1509179177 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4005607 crossref_citationtrail_10_1109_TBME_2014_2298897 proquest_miscellaneous_1510107636 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 henle (ref30) 2013 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref17 ref19 leuthardt (ref64) 2011; 8 36004 11 pp ref51 ref50 ref46 ref48 ref47 ref44 ref43 ref7 ref9 ref4 ref3 ref6 ref5 guenther (ref10) 2009; 4 e8218 11 pp ref40 ref35 neuper (ref22) 2006 ref34 nijboer (ref16) 2008; 119 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 kononenko (ref49) 1994 platt (ref54) 1998 oppenheim (ref41) 1989 ref24 ref23 ref26 sellers (ref18) 2006; 117 ref25 ref20 ref63 ref21 ref28 ref27 niedermeyer (ref29) 2011 quinlan (ref57) 1993 duda (ref42) 2012 boersma (ref45) 2001; 5 ref60 ref62 ref61 hinterberger (ref11) 2003; 114 carmena (ref8) 2003; 1 e42 16 pp 22344950 - IEEE Pulse. 2012 Jan;3(1):38-42 17873435 - J Neural Eng. 2007 Sep;4(3):336-47 17409472 - J Neural Eng. 2007 Jun;4(2):R1-R13 21419227 - Neuroimage. 2011 Jun 15;56(4):2218-37 10896183 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):190-3 18987189 - J Neurosci. 2008 Nov 5;28(45):11526-36 15188868 - IEEE Trans Biomed Eng. 2004 Jun;51(6):979-84 18982128 - Front Neurosci. 2007 Oct 15;1(1):185-96 12374343 - IEEE Trans Biomed Eng. 2002 Oct;49(10):1181-6 21215597 - Epilepsy Res. 2011 Feb;93(2-3):155-63 2727659 - Sci Am. 1989 Jun;260(6):86-9, 92-5 21750369 - J Neural Eng. 2011 Aug;8(4):046028 17587169 - Brain Topogr. 2007 Spring;19(3):137-45 19497710 - Neural Netw. 2009 Nov;22(9):1334-9 16461003 - Clin Neurophysiol. 2006 Mar;117(3):538-48 21829619 - PLoS One. 2011;6(8):e22368 23522038 - Neuron. 2013 Mar 20;77(6):1002-16 18571984 - Clin Neurophysiol. 2008 Aug;119(8):1909-16 17071244 - Prog Brain Res. 2006;159:393-409 22344951 - IEEE Pulse. 2012 Jan;3(1):43-6 11739824 - Neurology. 2001 Dec 11;57(11):2045-53 15421286 - Electroencephalogr Clin Neurophysiol. 1950 May;2(2):209-12 20011034 - PLoS One. 2009;4(12):e8218 18669510 - Brain. 2008 Aug;131(Pt 8):2013-27 22969416 - PLoS Comput Biol. 2012;8(9):e1002655 10192330 - Nature. 1999 Mar 25;398(6725):297-8 14624244 - PLoS Biol. 2003 Nov;1(2):E42 15718541 - BMJ. 2005 Feb 19;330(7488):406-9 22084052 - IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):143-52 10896179 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):174-9 22303281 - PLoS Biol. 2012 Jan;10(1):e1001251 22255777 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6294-8 11275528 - Clin Neurophysiol. 2001 Apr;112(4):565-82 16792301 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):229-33 21471638 - J Neural Eng. 2011 Jun;8(3):036004 19794237 - J Neural Eng. 2009 Dec;6(6):066001 17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21 15501099 - Neuroimage. 2004;23 Suppl 1:S34-45 17409474 - J Neural Eng. 2007 Jun;4(2):R32-57 11204036 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):457-63 12899251 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):120-3 20811093 - J Neural Eng. 2010 Oct;7(5):056007 20407639 - Front Neuroeng. 2010 Mar 30;3:3 12705422 - Clin Neurophysiol. 2003 Mar;114(3):416-25 20026224 - Neuroimage. 2010 Mar;50(1):291-301 17873429 - J Neural Eng. 2007 Sep;4(3):264-75 22273796 - IEEE Rev Biomed Eng. 2011;4:140-54 |
References_xml | – ident: ref25 doi: 10.1088/1741-2560/8/4/046028 – ident: ref56 doi: 10.1007/BF00153759 – volume: 117 start-page: 538 year: 2006 ident: ref18 article-title: A P300-based brain-computer interface: Initial tests by patients ALS publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.06.027 – ident: ref35 doi: 10.1088/1741-2560/4/3/018 – ident: ref19 doi: 10.1109/TBME.2002.803536 – ident: ref7 doi: 10.1088/1741-2560/6/6/066001 – volume: 114 start-page: 416 year: 2003 ident: ref11 article-title: A brain?computer interface (BCI) for the locked-in: Comparison of different EEG classifications for the thought translation device publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00411-X – volume: 8 36004 11 pp year: 2011 ident: ref64 article-title: Using the electrocorticographic speech network to control a brain?computer interface in humans publication-title: J Neural Eng – ident: ref13 doi: 10.1109/86.847812 – ident: ref17 doi: 10.1016/j.jneumeth.2007.07.017 – ident: ref59 doi: 10.1016/j.neuroimage.2009.12.035 – ident: ref39 doi: 10.1371/journal.pcbi.1002655 – start-page: 171 year: 1994 ident: ref49 article-title: Estimating attributes: Analysis and extensions of relief publication-title: Proc Eur Conf Mach Learning – year: 2012 ident: ref42 publication-title: Pattern Classification – ident: ref23 doi: 10.1109/TBME.2004.827062 – ident: ref61 doi: 10.1371/journal.pone.0022368 – year: 2011 ident: ref29 publication-title: Electroencephalography Basic Principles and Related Fields – ident: ref1 doi: 10.1109/JPROC.2012.2184829 – ident: ref32 doi: 10.3389/fneng.2010.00003 – ident: ref5 doi: 10.1109/MPUL.2011.2175636 – ident: ref62 doi: 10.1016/j.eplepsyres.2010.12.003 – ident: ref31 doi: 10.1109/RBME.2011.2172408 – ident: ref58 doi: 10.1007/s10994-005-0466-3 – ident: ref40 doi: 10.1016/j.neuron.2013.03.007 – ident: ref4 doi: 10.1088/1741-2560/4/3/012 – ident: ref46 doi: 10.1038/scientificamerican0689-86 – ident: ref15 doi: 10.1109/86.847808 – year: 1989 ident: ref41 publication-title: Discrete-Time Signal Processing – ident: ref33 doi: 10.1109/MSP.2011.941880 – ident: ref50 doi: 10.1088/1741-2560/4/2/R03 – ident: ref20 doi: 10.1109/CNE.2007.369683 – volume: 4 e8218 11 pp year: 2009 ident: ref10 article-title: A wireless brain?machine interface for real-time speech synthesis publication-title: PLoS Biol – volume: 5 start-page: 341 year: 2001 ident: ref45 article-title: Praat, a system for doing phonetics by computer publication-title: Glot Int – ident: ref24 doi: 10.1016/j.neunet.2009.05.008 – ident: ref36 doi: 10.1016/j.neuroimage.2011.03.030 – ident: ref60 doi: 10.1093/brain/awn147 – ident: ref21 doi: 10.1109/TNSRE.2006.875577 – ident: ref63 doi: 10.1109/IEMBS.2011.6091553 – ident: ref48 doi: 10.3389/neuro.01.1.1.014.2007 – ident: ref9 doi: 10.1109/MPUL.2011.2175637 – volume: 119 start-page: 1909 year: 2008 ident: ref16 article-title: A P300-based brain-computer interface for people with amyotrophic lateral sclerosis publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.03.034 – ident: ref28 doi: 10.1136/bmj.330.7488.406 – ident: ref12 doi: 10.1038/18581 – ident: ref55 doi: 10.1109/2.485891 – ident: ref43 doi: 10.1016/j.neuroimage.2004.07.027 – ident: ref51 doi: 10.1088/1741-2560/4/2/R01 – volume: 1 e42 16 pp year: 2003 ident: ref8 article-title: Learning to control a brain?machine interface for reaching and grasping by primates publication-title: PLoS Biol – year: 1993 ident: ref57 publication-title: C4 5 Programs for Machine Learning – ident: ref47 doi: 10.1212/WNL.57.11.2045 – ident: ref26 doi: 10.1088/1741-2560/7/5/056007 – ident: ref2 doi: 10.1109/ACCESS.2013.2260791 – ident: ref52 doi: 10.1109/86.895948 – ident: ref14 doi: 10.1109/TNSRE.2003.814439 – ident: ref53 doi: 10.1109/34.824819 – ident: ref37 doi: 10.1016/S1388-2457(00)00545-9 – year: 1998 ident: ref54 publication-title: Advances in Kernel Methods Support Vector Learning – ident: ref27 doi: 10.1371/journal.pbio.1001251 – ident: ref38 doi: 10.1523/JNEUROSCI.2848-08.2008 – ident: ref6 doi: 10.1007/s10548-007-0020-7 – start-page: 85 year: 2013 ident: ref30 publication-title: Towards Practical Brain-Computer Interfaces – ident: ref3 doi: 10.1109/TNSRE.2011.2175309 – ident: ref34 doi: 10.1109/MSP.2008.4408439 – ident: ref44 doi: 10.1016/0013-4694(50)90039-3 – start-page: 393 year: 2006 ident: ref22 publication-title: Progress in Brain Research vol 159 – reference: 16461003 - Clin Neurophysiol. 2006 Mar;117(3):538-48 – reference: 21829619 - PLoS One. 2011;6(8):e22368 – reference: 17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21 – reference: 22303281 - PLoS Biol. 2012 Jan;10(1):e1001251 – reference: 15718541 - BMJ. 2005 Feb 19;330(7488):406-9 – reference: 2727659 - Sci Am. 1989 Jun;260(6):86-9, 92-5 – reference: 12705422 - Clin Neurophysiol. 2003 Mar;114(3):416-25 – reference: 18571984 - Clin Neurophysiol. 2008 Aug;119(8):1909-16 – reference: 20026224 - Neuroimage. 2010 Mar;50(1):291-301 – reference: 22344950 - IEEE Pulse. 2012 Jan;3(1):38-42 – reference: 21215597 - Epilepsy Res. 2011 Feb;93(2-3):155-63 – reference: 11275528 - Clin Neurophysiol. 2001 Apr;112(4):565-82 – reference: 16792301 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):229-33 – reference: 18987189 - J Neurosci. 2008 Nov 5;28(45):11526-36 – reference: 22255777 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6294-8 – reference: 14624244 - PLoS Biol. 2003 Nov;1(2):E42 – reference: 22273796 - IEEE Rev Biomed Eng. 2011;4:140-54 – reference: 17587169 - Brain Topogr. 2007 Spring;19(3):137-45 – reference: 17873429 - J Neural Eng. 2007 Sep;4(3):264-75 – reference: 22969416 - PLoS Comput Biol. 2012;8(9):e1002655 – reference: 22344951 - IEEE Pulse. 2012 Jan;3(1):43-6 – reference: 11739824 - Neurology. 2001 Dec 11;57(11):2045-53 – reference: 15188868 - IEEE Trans Biomed Eng. 2004 Jun;51(6):979-84 – reference: 21419227 - Neuroimage. 2011 Jun 15;56(4):2218-37 – reference: 17409472 - J Neural Eng. 2007 Jun;4(2):R1-R13 – reference: 19497710 - Neural Netw. 2009 Nov;22(9):1334-9 – reference: 17873435 - J Neural Eng. 2007 Sep;4(3):336-47 – reference: 23522038 - Neuron. 2013 Mar 20;77(6):1002-16 – reference: 10192330 - Nature. 1999 Mar 25;398(6725):297-8 – reference: 20811093 - J Neural Eng. 2010 Oct;7(5):056007 – reference: 15421286 - Electroencephalogr Clin Neurophysiol. 1950 May;2(2):209-12 – reference: 21750369 - J Neural Eng. 2011 Aug;8(4):046028 – reference: 18982128 - Front Neurosci. 2007 Oct 15;1(1):185-96 – reference: 20407639 - Front Neuroeng. 2010 Mar 30;3:3 – reference: 11204036 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):457-63 – reference: 17071244 - Prog Brain Res. 2006;159:393-409 – reference: 12899251 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):120-3 – reference: 10896179 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):174-9 – reference: 19794237 - J Neural Eng. 2009 Dec;6(6):066001 – reference: 22084052 - IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):143-52 – reference: 15501099 - Neuroimage. 2004;23 Suppl 1:S34-45 – reference: 20011034 - PLoS One. 2009;4(12):e8218 – reference: 21471638 - J Neural Eng. 2011 Jun;8(3):036004 – reference: 18669510 - Brain. 2008 Aug;131(Pt 8):2013-27 – reference: 17409474 - J Neural Eng. 2007 Jun;4(2):R32-57 – reference: 12374343 - IEEE Trans Biomed Eng. 2002 Oct;49(10):1181-6 – reference: 10896183 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):190-3 |
SSID | ssj0014846 |
Score | 2.22362 |
Snippet | Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on... Brain machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1241 |
SubjectTerms | Brain-Computer Interfaces Brain-machine interfaces (BMIs) Cluster Analysis electrocorticography (ECoG) Electrodes Electroencephalography - methods Epilepsy - physiopathology Feature extraction feature space clustering Humans Male Production Signal Processing, Computer-Assisted Speech Speech - physiology speech activity detection Speech processing Training Vectors |
Title | Joint Spatial-Spectral Feature Space Clustering for Speech Activity Detection from ECoG Signals |
URI | https://ieeexplore.ieee.org/document/6705641 https://www.ncbi.nlm.nih.gov/pubmed/24658248 https://www.proquest.com/docview/1509179177 https://www.proquest.com/docview/1510107636 https://www.proquest.com/docview/1516759201 https://pubmed.ncbi.nlm.nih.gov/PMC4005607 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLfGDggOAzY-CgMFiROib2maNM1xPN6YJj0uPKTdqiRNtyemFm3thb8eu-2r3qZpQuqhShw1kR3Hqe2fAT6V2C51lcSp1DpGhcdj50QeW-U0mrdGyR5iY_kjO_0lz87V-Q58mXJhQgh98FmY0Wvvyy8b39GvsqNM43FNWeqP8OI25GpNHgOZD0k5PMENLIwcPZgJN0err8sFBXHJmRAmzw0V3hMSj15BVX-2jqO-vsp9pubdiMmtI-jkGSw3kx8iT37PutbN_N87uI7_u7rnsDfaoux4EJ4XsBPqfXi6hVC4D4-Xo-_9AIqzZl23jGoYo8zGVLieJsnIiOyuA3X4wOZXHUEv4GCG5jA2huAv2bEfilSwb6HtY79qRnktbDFvvrOf6wsCcX4Jq5PFan4aj-UZYi9z3sZVKTNvqiQLsqpM4F5IXypRCVtmaLNrbnnpndAVT7XOlUsCahOZ-8SYSluVvoLduqnDG2BSpcaRfgm5kklurfIlXtoNL62zIqQR8A2TCj9Cl1MFjauiv8JwUxCLC2JxMbI4gs_TkD8DbsdDxAfEjolw5EQEhxtJKMadfVMkZGFpfHDUx6kb9yQ5Wmwdmo5oUNFx1NzZgzR4VzM4jQheD8I1fX8jnBHoW2I3ERAm-O2een3ZY4NLwnbl-u39K3oHT2jdQ-TRIey21114j0ZV6z70u-kfmGsbgA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLemIQF74GODrTAgSDwhekvTpGkex3HjGOteOKS9VW2astOmFo32ZX_97LZX3aZpQrqHqnF0ae3YTm3_DPCpwPtSl4EfSq19VHjcz3MR-5nKNbq3RskOYiM5jea_5fGZOtuAL2MtjHOuSz5zE7rsYvlFbVv6VHYQaTTXVKX-CO2-CvpqrTFmIOO-LIcHuIWFkUMMM-DmYPE1mVEal5wIYeLYUOs9IdH4Cur7s2aQug4r9zmbd3Mm14zQ0XNIVsvvc08uJm2TT-z1HWTH_32-F_Bs8EbZYS8-L2HDVduwtYZRuA2PkyH6vgPpcb2sGkZdjFFqfWpdT4tk5Ea2V44GrGPTy5bAF3AyQ4cYbzpnz9mh7dtUsG-u6bK_KkaVLWw2rb-zX8s_BOP8ChZHs8V07g8NGnwrY974ZSEja8ogcrIsjeNWSFsoUYqsiNBr1zzjhc2FLnmodazywKE-kbENjCl1psLXsFnVldsDJlVoctIwLlYyiLNM2QKP7YYXWZ4JF3rAV0xK7QBeTj00LtPuEMNNSixOicXpwGIPPo9T_vbIHQ8R7xA7RsKBEx7sryQhHfb2vzQgH0vjD2d9HIdxV1KoJatc3RINqjqOujt6kAZPawaX4cFuL1zj_6-E0wN9S-xGAkIFvz1SLc87dHBJ6K5cv7n_iT7Ak_kiOUlPfpz-fAtP6R30eUj7sNlcte4dulhN_r7bWTd87h7J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+spatial-spectral+feature+space+clustering+for+speech+activity+detection+from+ECoG+signals&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kanas%2C+Vasileios+G&rft.au=Mporas%2C+Iosif&rft.au=Benz%2C+Heather+L&rft.au=Sgarbas%2C+Kyriakos+N&rft.date=2014-04-01&rft.eissn=1558-2531&rft.volume=61&rft.issue=4&rft.spage=1241&rft_id=info:doi/10.1109%2FTBME.2014.2298897&rft_id=info%3Apmid%2F24658248&rft.externalDocID=24658248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |