Joint Spatial-Spectral Feature Space Clustering for Speech Activity Detection from ECoG Signals

Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 61; no. 4; pp. 1241 - 1250
Main Authors Kanas, Vasileios G., Mporas, Iosif, Benz, Heather L., Sgarbas, Kyriakos N., Bezerianos, Anastasios, Crone, Nathan E.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication.
AbstractList Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication.
Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication.
Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication.Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and nonspeech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllables repetition tasks and may contribute to the development of portable ECoG-based communication.
Brain machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines (SVM) as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and non-speech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllable repetition tasks and may contribute to the development of portable ECoG-based communication.
Author Benz, Heather L.
Kanas, Vasileios G.
Bezerianos, Anastasios
Mporas, Iosif
Sgarbas, Kyriakos N.
Crone, Nathan E.
Author_xml – sequence: 1
  givenname: Vasileios G.
  surname: Kanas
  fullname: Kanas, Vasileios G.
  email: vaskanas@upatras.gr
  organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
– sequence: 2
  givenname: Iosif
  surname: Mporas
  fullname: Mporas, Iosif
  email: imporas@upatras.gr
  organization: Department of Mechanical Engineering , Technological and Educational Institute of Western Greece, Patras, Greece
– sequence: 3
  givenname: Heather L.
  surname: Benz
  fullname: Benz, Heather L.
  email: benz@jhu.edu
  organization: Department of Biomedical Engineering , Johns Hopkins University, Baltimore, USA
– sequence: 4
  givenname: Kyriakos N.
  surname: Sgarbas
  fullname: Sgarbas, Kyriakos N.
  email: sgarbas@upatras.gr
  organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
– sequence: 5
  givenname: Anastasios
  surname: Bezerianos
  fullname: Bezerianos, Anastasios
  email: tassos.bezerianos@nus.edu.sg
  organization: Singapore Institute for Neurotechnology, National University of Singapore, Singapore
– sequence: 6
  givenname: Nathan E.
  surname: Crone
  fullname: Crone, Nathan E.
  email: ncrone@jhmi.edu
  organization: Department of Neurology, Johns Hopkins University, Baltimore, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24658248$$D View this record in MEDLINE/PubMed
BookMark eNqNUl2LEzEUDbLidld_gAgy4IsvU5NMPl-EtXZXZcWH9j2kmZtulumkZjIL--_N0Fp0H0QIXHLvOffzXKCzPvaA0GuC54Rg_WH96ftyTjFhc0q1Ulo-QzPCuaopb8gZmmFMVK2pZufoYhjuy5cpJl6gc8oEV5SpGTLfYuhztdrbHGxXr_bgcrJddQ02jwmmgINq0Y1DhhT6beVjKk4Ad1dduRweQn6sPkMutBD7yqe4q5aLeFOtwra33fASPffFwKujvUTr6-V68aW-_XHzdXF1WzumcK59y4TTnghg3mvAjjLXcuqpbYWUVGKLW7eh0uNGSsU3BGSDmXJEay8tby7Rx0Pa_bjZQeugn6Yw-xR2Nj2aaIP5O9KHO7OND4ZhzAWWJcH7Y4IUf44wZLMLg4Ousz3EcTCEEyG5Lsv-HygmWIpGFOi7J9D7OKZpLwWFNZHlTbXf_tn8qevfVyoAcgC4FIchgT9BCDaTEsykBDMpwRyVUDjyCceFbKcjlflD90_mmwMzAMCpkpBlUYw0vwA0HsAA
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s13534_015_0175_1
crossref_primary_10_1016_j_jphysparis_2017_07_002
crossref_primary_10_1044_2024_JSLHR_24_00046
crossref_primary_10_4015_S1016237215500209
crossref_primary_10_1142_S0129065721500258
crossref_primary_10_1016_j_neuroimage_2023_119913
crossref_primary_10_1007_s13311_018_00692_2
crossref_primary_10_3389_fnhum_2016_00165
crossref_primary_10_3389_fnhum_2022_867281
crossref_primary_10_3389_fnhum_2020_00111
crossref_primary_10_1109_TIM_2023_3277930
crossref_primary_10_1109_TNSRE_2022_3207624
crossref_primary_10_1088_1741_2552_ad663c
crossref_primary_10_1016_j_isci_2018_09_016
crossref_primary_10_1038_s41598_024_60277_2
crossref_primary_10_1080_2326263X_2017_1330611
Cites_doi 10.1088/1741-2560/8/4/046028
10.1007/BF00153759
10.1016/j.clinph.2005.06.027
10.1088/1741-2560/4/3/018
10.1109/TBME.2002.803536
10.1088/1741-2560/6/6/066001
10.1016/S1388-2457(02)00411-X
10.1109/86.847812
10.1016/j.jneumeth.2007.07.017
10.1016/j.neuroimage.2009.12.035
10.1371/journal.pcbi.1002655
10.1109/TBME.2004.827062
10.1371/journal.pone.0022368
10.1109/JPROC.2012.2184829
10.3389/fneng.2010.00003
10.1109/MPUL.2011.2175636
10.1016/j.eplepsyres.2010.12.003
10.1109/RBME.2011.2172408
10.1007/s10994-005-0466-3
10.1016/j.neuron.2013.03.007
10.1088/1741-2560/4/3/012
10.1038/scientificamerican0689-86
10.1109/86.847808
10.1109/MSP.2011.941880
10.1088/1741-2560/4/2/R03
10.1109/CNE.2007.369683
10.1016/j.neunet.2009.05.008
10.1016/j.neuroimage.2011.03.030
10.1093/brain/awn147
10.1109/TNSRE.2006.875577
10.1109/IEMBS.2011.6091553
10.3389/neuro.01.1.1.014.2007
10.1109/MPUL.2011.2175637
10.1016/j.clinph.2008.03.034
10.1136/bmj.330.7488.406
10.1038/18581
10.1109/2.485891
10.1016/j.neuroimage.2004.07.027
10.1088/1741-2560/4/2/R01
10.1212/WNL.57.11.2045
10.1088/1741-2560/7/5/056007
10.1109/ACCESS.2013.2260791
10.1109/86.895948
10.1109/TNSRE.2003.814439
10.1109/34.824819
10.1016/S1388-2457(00)00545-9
10.1371/journal.pbio.1001251
10.1523/JNEUROSCI.2848-08.2008
10.1007/s10548-007-0020-7
10.1109/TNSRE.2011.2175309
10.1109/MSP.2008.4408439
10.1016/0013-4694(50)90039-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014
Copyright (c) 2013 IEEE. 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014
– notice: Copyright (c) 2013 IEEE. 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2014.2298897
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE
MEDLINE - Academic


Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1250
ExternalDocumentID PMC4005607
3252913711
24658248
10_1109_TBME_2014_2298897
6705641
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union (European Social Fund ¿ ESF)
– fundername: National Strategic Reference Framework (NSRF) - Research Funding Program: Thales
– fundername: NINDS NIH HHS
  grantid: R01 NS040596
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c480t-fd46c9f16e4ff9e0c24cd52f2ad677270a0dcb27f037785b1e73048c199f7a53
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 14:35:39 EDT 2025
Fri Jul 11 01:09:41 EDT 2025
Fri Jul 11 02:50:53 EDT 2025
Mon Jun 30 08:14:34 EDT 2025
Thu Apr 03 07:09:11 EDT 2025
Thu Apr 24 22:55:42 EDT 2025
Tue Jul 01 02:15:50 EDT 2025
Wed Aug 27 02:53:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-fd46c9f16e4ff9e0c24cd52f2ad677270a0dcb27f037785b1e73048c199f7a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1109/TBME.2014.2298897
PMID 24658248
PQID 1509179177
PQPubID 85474
PageCount 10
ParticipantIDs ieee_primary_6705641
proquest_miscellaneous_1516759201
pubmed_primary_24658248
crossref_primary_10_1109_TBME_2014_2298897
proquest_journals_1509179177
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4005607
crossref_citationtrail_10_1109_TBME_2014_2298897
proquest_miscellaneous_1510107636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
henle (ref30) 2013
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref17
ref19
leuthardt (ref64) 2011; 8 36004 11 pp
ref51
ref50
ref46
ref48
ref47
ref44
ref43
ref7
ref9
ref4
ref3
ref6
ref5
guenther (ref10) 2009; 4 e8218 11 pp
ref40
ref35
neuper (ref22) 2006
ref34
nijboer (ref16) 2008; 119
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
kononenko (ref49) 1994
platt (ref54) 1998
oppenheim (ref41) 1989
ref24
ref23
ref26
sellers (ref18) 2006; 117
ref25
ref20
ref63
ref21
ref28
ref27
niedermeyer (ref29) 2011
quinlan (ref57) 1993
duda (ref42) 2012
boersma (ref45) 2001; 5
ref60
ref62
ref61
hinterberger (ref11) 2003; 114
carmena (ref8) 2003; 1 e42 16 pp
22344950 - IEEE Pulse. 2012 Jan;3(1):38-42
17873435 - J Neural Eng. 2007 Sep;4(3):336-47
17409472 - J Neural Eng. 2007 Jun;4(2):R1-R13
21419227 - Neuroimage. 2011 Jun 15;56(4):2218-37
10896183 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):190-3
18987189 - J Neurosci. 2008 Nov 5;28(45):11526-36
15188868 - IEEE Trans Biomed Eng. 2004 Jun;51(6):979-84
18982128 - Front Neurosci. 2007 Oct 15;1(1):185-96
12374343 - IEEE Trans Biomed Eng. 2002 Oct;49(10):1181-6
21215597 - Epilepsy Res. 2011 Feb;93(2-3):155-63
2727659 - Sci Am. 1989 Jun;260(6):86-9, 92-5
21750369 - J Neural Eng. 2011 Aug;8(4):046028
17587169 - Brain Topogr. 2007 Spring;19(3):137-45
19497710 - Neural Netw. 2009 Nov;22(9):1334-9
16461003 - Clin Neurophysiol. 2006 Mar;117(3):538-48
21829619 - PLoS One. 2011;6(8):e22368
23522038 - Neuron. 2013 Mar 20;77(6):1002-16
18571984 - Clin Neurophysiol. 2008 Aug;119(8):1909-16
17071244 - Prog Brain Res. 2006;159:393-409
22344951 - IEEE Pulse. 2012 Jan;3(1):43-6
11739824 - Neurology. 2001 Dec 11;57(11):2045-53
15421286 - Electroencephalogr Clin Neurophysiol. 1950 May;2(2):209-12
20011034 - PLoS One. 2009;4(12):e8218
18669510 - Brain. 2008 Aug;131(Pt 8):2013-27
22969416 - PLoS Comput Biol. 2012;8(9):e1002655
10192330 - Nature. 1999 Mar 25;398(6725):297-8
14624244 - PLoS Biol. 2003 Nov;1(2):E42
15718541 - BMJ. 2005 Feb 19;330(7488):406-9
22084052 - IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):143-52
10896179 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):174-9
22303281 - PLoS Biol. 2012 Jan;10(1):e1001251
22255777 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6294-8
11275528 - Clin Neurophysiol. 2001 Apr;112(4):565-82
16792301 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):229-33
21471638 - J Neural Eng. 2011 Jun;8(3):036004
19794237 - J Neural Eng. 2009 Dec;6(6):066001
17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21
15501099 - Neuroimage. 2004;23 Suppl 1:S34-45
17409474 - J Neural Eng. 2007 Jun;4(2):R32-57
11204036 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):457-63
12899251 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):120-3
20811093 - J Neural Eng. 2010 Oct;7(5):056007
20407639 - Front Neuroeng. 2010 Mar 30;3:3
12705422 - Clin Neurophysiol. 2003 Mar;114(3):416-25
20026224 - Neuroimage. 2010 Mar;50(1):291-301
17873429 - J Neural Eng. 2007 Sep;4(3):264-75
22273796 - IEEE Rev Biomed Eng. 2011;4:140-54
References_xml – ident: ref25
  doi: 10.1088/1741-2560/8/4/046028
– ident: ref56
  doi: 10.1007/BF00153759
– volume: 117
  start-page: 538
  year: 2006
  ident: ref18
  article-title: A P300-based brain-computer interface: Initial tests by patients ALS
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.06.027
– ident: ref35
  doi: 10.1088/1741-2560/4/3/018
– ident: ref19
  doi: 10.1109/TBME.2002.803536
– ident: ref7
  doi: 10.1088/1741-2560/6/6/066001
– volume: 114
  start-page: 416
  year: 2003
  ident: ref11
  article-title: A brain?computer interface (BCI) for the locked-in: Comparison of different EEG classifications for the thought translation device
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00411-X
– volume: 8 36004 11 pp
  year: 2011
  ident: ref64
  article-title: Using the electrocorticographic speech network to control a brain?computer interface in humans
  publication-title: J Neural Eng
– ident: ref13
  doi: 10.1109/86.847812
– ident: ref17
  doi: 10.1016/j.jneumeth.2007.07.017
– ident: ref59
  doi: 10.1016/j.neuroimage.2009.12.035
– ident: ref39
  doi: 10.1371/journal.pcbi.1002655
– start-page: 171
  year: 1994
  ident: ref49
  article-title: Estimating attributes: Analysis and extensions of relief
  publication-title: Proc Eur Conf Mach Learning
– year: 2012
  ident: ref42
  publication-title: Pattern Classification
– ident: ref23
  doi: 10.1109/TBME.2004.827062
– ident: ref61
  doi: 10.1371/journal.pone.0022368
– year: 2011
  ident: ref29
  publication-title: Electroencephalography Basic Principles and Related Fields
– ident: ref1
  doi: 10.1109/JPROC.2012.2184829
– ident: ref32
  doi: 10.3389/fneng.2010.00003
– ident: ref5
  doi: 10.1109/MPUL.2011.2175636
– ident: ref62
  doi: 10.1016/j.eplepsyres.2010.12.003
– ident: ref31
  doi: 10.1109/RBME.2011.2172408
– ident: ref58
  doi: 10.1007/s10994-005-0466-3
– ident: ref40
  doi: 10.1016/j.neuron.2013.03.007
– ident: ref4
  doi: 10.1088/1741-2560/4/3/012
– ident: ref46
  doi: 10.1038/scientificamerican0689-86
– ident: ref15
  doi: 10.1109/86.847808
– year: 1989
  ident: ref41
  publication-title: Discrete-Time Signal Processing
– ident: ref33
  doi: 10.1109/MSP.2011.941880
– ident: ref50
  doi: 10.1088/1741-2560/4/2/R03
– ident: ref20
  doi: 10.1109/CNE.2007.369683
– volume: 4 e8218 11 pp
  year: 2009
  ident: ref10
  article-title: A wireless brain?machine interface for real-time speech synthesis
  publication-title: PLoS Biol
– volume: 5
  start-page: 341
  year: 2001
  ident: ref45
  article-title: Praat, a system for doing phonetics by computer
  publication-title: Glot Int
– ident: ref24
  doi: 10.1016/j.neunet.2009.05.008
– ident: ref36
  doi: 10.1016/j.neuroimage.2011.03.030
– ident: ref60
  doi: 10.1093/brain/awn147
– ident: ref21
  doi: 10.1109/TNSRE.2006.875577
– ident: ref63
  doi: 10.1109/IEMBS.2011.6091553
– ident: ref48
  doi: 10.3389/neuro.01.1.1.014.2007
– ident: ref9
  doi: 10.1109/MPUL.2011.2175637
– volume: 119
  start-page: 1909
  year: 2008
  ident: ref16
  article-title: A P300-based brain-computer interface for people with amyotrophic lateral sclerosis
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.03.034
– ident: ref28
  doi: 10.1136/bmj.330.7488.406
– ident: ref12
  doi: 10.1038/18581
– ident: ref55
  doi: 10.1109/2.485891
– ident: ref43
  doi: 10.1016/j.neuroimage.2004.07.027
– ident: ref51
  doi: 10.1088/1741-2560/4/2/R01
– volume: 1 e42 16 pp
  year: 2003
  ident: ref8
  article-title: Learning to control a brain?machine interface for reaching and grasping by primates
  publication-title: PLoS Biol
– year: 1993
  ident: ref57
  publication-title: C4 5 Programs for Machine Learning
– ident: ref47
  doi: 10.1212/WNL.57.11.2045
– ident: ref26
  doi: 10.1088/1741-2560/7/5/056007
– ident: ref2
  doi: 10.1109/ACCESS.2013.2260791
– ident: ref52
  doi: 10.1109/86.895948
– ident: ref14
  doi: 10.1109/TNSRE.2003.814439
– ident: ref53
  doi: 10.1109/34.824819
– ident: ref37
  doi: 10.1016/S1388-2457(00)00545-9
– year: 1998
  ident: ref54
  publication-title: Advances in Kernel Methods Support Vector Learning
– ident: ref27
  doi: 10.1371/journal.pbio.1001251
– ident: ref38
  doi: 10.1523/JNEUROSCI.2848-08.2008
– ident: ref6
  doi: 10.1007/s10548-007-0020-7
– start-page: 85
  year: 2013
  ident: ref30
  publication-title: Towards Practical Brain-Computer Interfaces
– ident: ref3
  doi: 10.1109/TNSRE.2011.2175309
– ident: ref34
  doi: 10.1109/MSP.2008.4408439
– ident: ref44
  doi: 10.1016/0013-4694(50)90039-3
– start-page: 393
  year: 2006
  ident: ref22
  publication-title: Progress in Brain Research vol 159
– reference: 16461003 - Clin Neurophysiol. 2006 Mar;117(3):538-48
– reference: 21829619 - PLoS One. 2011;6(8):e22368
– reference: 17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21
– reference: 22303281 - PLoS Biol. 2012 Jan;10(1):e1001251
– reference: 15718541 - BMJ. 2005 Feb 19;330(7488):406-9
– reference: 2727659 - Sci Am. 1989 Jun;260(6):86-9, 92-5
– reference: 12705422 - Clin Neurophysiol. 2003 Mar;114(3):416-25
– reference: 18571984 - Clin Neurophysiol. 2008 Aug;119(8):1909-16
– reference: 20026224 - Neuroimage. 2010 Mar;50(1):291-301
– reference: 22344950 - IEEE Pulse. 2012 Jan;3(1):38-42
– reference: 21215597 - Epilepsy Res. 2011 Feb;93(2-3):155-63
– reference: 11275528 - Clin Neurophysiol. 2001 Apr;112(4):565-82
– reference: 16792301 - IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):229-33
– reference: 18987189 - J Neurosci. 2008 Nov 5;28(45):11526-36
– reference: 22255777 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:6294-8
– reference: 14624244 - PLoS Biol. 2003 Nov;1(2):E42
– reference: 22273796 - IEEE Rev Biomed Eng. 2011;4:140-54
– reference: 17587169 - Brain Topogr. 2007 Spring;19(3):137-45
– reference: 17873429 - J Neural Eng. 2007 Sep;4(3):264-75
– reference: 22969416 - PLoS Comput Biol. 2012;8(9):e1002655
– reference: 22344951 - IEEE Pulse. 2012 Jan;3(1):43-6
– reference: 11739824 - Neurology. 2001 Dec 11;57(11):2045-53
– reference: 15188868 - IEEE Trans Biomed Eng. 2004 Jun;51(6):979-84
– reference: 21419227 - Neuroimage. 2011 Jun 15;56(4):2218-37
– reference: 17409472 - J Neural Eng. 2007 Jun;4(2):R1-R13
– reference: 19497710 - Neural Netw. 2009 Nov;22(9):1334-9
– reference: 17873435 - J Neural Eng. 2007 Sep;4(3):336-47
– reference: 23522038 - Neuron. 2013 Mar 20;77(6):1002-16
– reference: 10192330 - Nature. 1999 Mar 25;398(6725):297-8
– reference: 20811093 - J Neural Eng. 2010 Oct;7(5):056007
– reference: 15421286 - Electroencephalogr Clin Neurophysiol. 1950 May;2(2):209-12
– reference: 21750369 - J Neural Eng. 2011 Aug;8(4):046028
– reference: 18982128 - Front Neurosci. 2007 Oct 15;1(1):185-96
– reference: 20407639 - Front Neuroeng. 2010 Mar 30;3:3
– reference: 11204036 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):457-63
– reference: 17071244 - Prog Brain Res. 2006;159:393-409
– reference: 12899251 - IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):120-3
– reference: 10896179 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):174-9
– reference: 19794237 - J Neural Eng. 2009 Dec;6(6):066001
– reference: 22084052 - IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):143-52
– reference: 15501099 - Neuroimage. 2004;23 Suppl 1:S34-45
– reference: 20011034 - PLoS One. 2009;4(12):e8218
– reference: 21471638 - J Neural Eng. 2011 Jun;8(3):036004
– reference: 18669510 - Brain. 2008 Aug;131(Pt 8):2013-27
– reference: 17409474 - J Neural Eng. 2007 Jun;4(2):R32-57
– reference: 12374343 - IEEE Trans Biomed Eng. 2002 Oct;49(10):1181-6
– reference: 10896183 - IEEE Trans Rehabil Eng. 2000 Jun;8(2):190-3
SSID ssj0014846
Score 2.22362
Snippet Brain-machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on...
Brain machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1241
SubjectTerms Brain-Computer Interfaces
Brain-machine interfaces (BMIs)
Cluster Analysis
electrocorticography (ECoG)
Electrodes
Electroencephalography - methods
Epilepsy - physiopathology
Feature extraction
feature space clustering
Humans
Male
Production
Signal Processing, Computer-Assisted
Speech
Speech - physiology
speech activity detection
Speech processing
Training
Vectors
Title Joint Spatial-Spectral Feature Space Clustering for Speech Activity Detection from ECoG Signals
URI https://ieeexplore.ieee.org/document/6705641
https://www.ncbi.nlm.nih.gov/pubmed/24658248
https://www.proquest.com/docview/1509179177
https://www.proquest.com/docview/1510107636
https://www.proquest.com/docview/1516759201
https://pubmed.ncbi.nlm.nih.gov/PMC4005607
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9UwDLfGDggOAzY-CgMFiROib2maNM1xPN6YJj0uPKTdqiRNtyemFm3thb8eu-2r3qZpQuqhShw1kR3Hqe2fAT6V2C51lcSp1DpGhcdj50QeW-U0mrdGyR5iY_kjO_0lz87V-Q58mXJhQgh98FmY0Wvvyy8b39GvsqNM43FNWeqP8OI25GpNHgOZD0k5PMENLIwcPZgJN0err8sFBXHJmRAmzw0V3hMSj15BVX-2jqO-vsp9pubdiMmtI-jkGSw3kx8iT37PutbN_N87uI7_u7rnsDfaoux4EJ4XsBPqfXi6hVC4D4-Xo-_9AIqzZl23jGoYo8zGVLieJsnIiOyuA3X4wOZXHUEv4GCG5jA2huAv2bEfilSwb6HtY79qRnktbDFvvrOf6wsCcX4Jq5PFan4aj-UZYi9z3sZVKTNvqiQLsqpM4F5IXypRCVtmaLNrbnnpndAVT7XOlUsCahOZ-8SYSluVvoLduqnDG2BSpcaRfgm5kklurfIlXtoNL62zIqQR8A2TCj9Cl1MFjauiv8JwUxCLC2JxMbI4gs_TkD8DbsdDxAfEjolw5EQEhxtJKMadfVMkZGFpfHDUx6kb9yQ5Wmwdmo5oUNFx1NzZgzR4VzM4jQheD8I1fX8jnBHoW2I3ERAm-O2een3ZY4NLwnbl-u39K3oHT2jdQ-TRIey21114j0ZV6z70u-kfmGsbgA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLemIQF74GODrTAgSDwhekvTpGkex3HjGOteOKS9VW2astOmFo32ZX_97LZX3aZpQrqHqnF0ae3YTm3_DPCpwPtSl4EfSq19VHjcz3MR-5nKNbq3RskOYiM5jea_5fGZOtuAL2MtjHOuSz5zE7rsYvlFbVv6VHYQaTTXVKX-CO2-CvpqrTFmIOO-LIcHuIWFkUMMM-DmYPE1mVEal5wIYeLYUOs9IdH4Cur7s2aQug4r9zmbd3Mm14zQ0XNIVsvvc08uJm2TT-z1HWTH_32-F_Bs8EbZYS8-L2HDVduwtYZRuA2PkyH6vgPpcb2sGkZdjFFqfWpdT4tk5Ea2V44GrGPTy5bAF3AyQ4cYbzpnz9mh7dtUsG-u6bK_KkaVLWw2rb-zX8s_BOP8ChZHs8V07g8NGnwrY974ZSEja8ogcrIsjeNWSFsoUYqsiNBr1zzjhc2FLnmodazywKE-kbENjCl1psLXsFnVldsDJlVoctIwLlYyiLNM2QKP7YYXWZ4JF3rAV0xK7QBeTj00LtPuEMNNSixOicXpwGIPPo9T_vbIHQ8R7xA7RsKBEx7sryQhHfb2vzQgH0vjD2d9HIdxV1KoJatc3RINqjqOujt6kAZPawaX4cFuL1zj_6-E0wN9S-xGAkIFvz1SLc87dHBJ6K5cv7n_iT7Ak_kiOUlPfpz-fAtP6R30eUj7sNlcte4dulhN_r7bWTd87h7J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+spatial-spectral+feature+space+clustering+for+speech+activity+detection+from+ECoG+signals&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kanas%2C+Vasileios+G&rft.au=Mporas%2C+Iosif&rft.au=Benz%2C+Heather+L&rft.au=Sgarbas%2C+Kyriakos+N&rft.date=2014-04-01&rft.eissn=1558-2531&rft.volume=61&rft.issue=4&rft.spage=1241&rft_id=info:doi/10.1109%2FTBME.2014.2298897&rft_id=info%3Apmid%2F24658248&rft.externalDocID=24658248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon