Joint economic optimization of heat exchanger design and maintenance policy

In this paper a new approach to shell and tube heat exchanger optimization is presented based on the minimization of the life cycle cost. The method allows the joint optimization of both the equipment design and the cleaning policy. Economic savings resulting from the proposed design procedure are r...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 31; no. 8; pp. 1381 - 1392
Main Authors Caputo, Antonio C., Pelagagge, Pacifico M., Salini, Paolo
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper a new approach to shell and tube heat exchanger optimization is presented based on the minimization of the life cycle cost. The method allows the joint optimization of both the equipment design and the cleaning policy. Economic savings resulting from the proposed design procedure are relevant especially when large sized equipment is involved or when many small sized units are installed. At first, a thermal design procedure defines the heat transfer area as well as flow velocities and the fouling rate, given the heat duty of the equipment. The capital investment, pressure losses and the cleaning interval required to reach a maximum allowed fouling resistance are thus calculated. An optimization algorithm is then utilized to determine the optimal values of both geometric design parameters and maximum allowable fouling resistance by pursuing the minimization of a total cost function. The objective function includes capital investment, operational costs related to friction losses, and maintenance costs deriving from the cleaning schedule. The research contribution comes from integrating two optimization tasks which traditionally are carried out in separate ways. In fact, during the design phase the heat exchanger architecture is usually optimized neglecting maintenance expenses, while during the operational phase the heat exchanger architecture is already finalized and maintenance optimization approaches allow only to determine a minimum cost cleaning schedule based on the existing exchanger. In this work, instead, the problems of equipment sizing and cleaning schedule determination are solved simultaneously so that the entire life cycle cost is minimized. Optimization of the objective function is carried out resorting to a genetic algorithm. In the paper the optimal design approach is described and an application example is provided to show the capability of the method.
AbstractList In this paper a new approach to shell and tube heat exchanger optimization is presented based on the minimization of the life cycle cost. The method allows the joint optimization of both the equipment design and the cleaning policy. Economic savings resulting from the proposed design procedure are relevant especially when large sized equipment is involved or when many small sized units are installed. At first, a thermal design procedure defines the heat transfer area as well as flow velocities and the fouling rate, given the heat duty of the equipment. The capital investment, pressure losses and the cleaning interval required to reach a maximum allowed fouling resistance are thus calculated. An optimization algorithm is then utilized to determine the optimal values of both geometric design parameters and maximum allowable fouling resistance by pursuing the minimization of a total cost function. The objective function includes capital investment, operational costs related to friction losses, and maintenance costs deriving from the cleaning schedule. The research contribution comes from integrating two optimization tasks which traditionally are carried out in separate ways. In fact, during the design phase the heat exchanger architecture is usually optimized neglecting maintenance expenses, while during the operational phase the heat exchanger architecture is already finalized and maintenance optimization approaches allow only to determine a minimum cost cleaning schedule based on the existing exchanger. In this work, instead, the problems of equipment sizing and cleaning schedule determination are solved simultaneously so that the entire life cycle cost is minimized. Optimization of the objective function is carried out resorting to a genetic algorithm. In the paper the optimal design approach is described and an application example is provided to show the capability of the method.
In this paper a new approach to shell and tube heat exchanger optimization is presented based on the minimization of the life-cycle cost. The method allows the joint optimization of both the equipment design and the cleaning policy. Economic savings resulting from the proposed design procedure are relevant especially when large sized equipment is involved or when a large number of small sized units are installed. At first, a thermal design procedure defines the heat transfer area as well as flow velocities and the fouling rate, given the heat duty of the equipment. The capital investment, pressure losses and the cleaning interval required to reach a maximum allowed fouling resistance are thus calculated. An optimization algorithm is then utilized to determine the optimal values of both geometric design parameters and maximum allowable fouling resistance by pursuing the minimization of a total cost function. The objective function includes capital investment, operational costs related to friction losses, and maintenance costs deriving fromthe cleaning schedule. The research contribution comes from integrating two optimization tasks which traditionally are carried out in separate ways. In fact, during the design phase the heat exchanger architecture is usually optimized neglecting maintenance expenses, while during the operational phase the heat exchanger architecture is already finalized and maintenance optimization approaches allow only to determine a minimum cost cleaning schedule based on the existing exchanger. In this work, instead, the problems of equipment sizing and cleaning schedule determination are solved simultaneously so that the entire life cycle cost is minimized. Optimization of the objective function is carried out resorting to a genetic algorithm. In the paper the optimal design approach is described and an application example is provided to show the capability of the method.
Author Pelagagge, Pacifico M.
Salini, Paolo
Caputo, Antonio C.
Author_xml – sequence: 1
  givenname: Antonio C.
  surname: Caputo
  fullname: Caputo, Antonio C.
  email: acaputo@uniroma3.it
  organization: Department of Mechanical and Industrial Engineering, University of Roma Tre, Italy
– sequence: 2
  givenname: Pacifico M.
  surname: Pelagagge
  fullname: Pelagagge, Pacifico M.
  email: pacifico.pelagagge@univaq.it
  organization: Department of Mechanical, Energy and Management Engineering, University of L’Aquila, Italy
– sequence: 3
  givenname: Paolo
  surname: Salini
  fullname: Salini, Paolo
  email: paolo.salini@univaq.it
  organization: Department of Mechanical, Energy and Management Engineering, University of L’Aquila, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23965112$$DView record in Pascal Francis
https://hal.science/hal-00730289$$DView record in HAL
BookMark eNqNkU1v1DAQhi1UJPrBf8gBhDhk8XcSiUupKIWuxKU9W44z3vXKsYPtVi2_Hi9bVYJTTzOaed5XmnlP0FGIARB6R_CKYCI_7VZ6WXzZQpq1h7BZUbxf0RVm7BU6Jn3HWiGxPKo9E0PLGSFv0EnOO4wJ7Tt-jK5_RBdKAyaGODvTxKW42f3WxcXQRNtsQdftg9nqsIHUTJDdJjQ6TM2sqxCCDgaaJXpnHs_Qa6t9hrdP9RTdXn69ubhq1z-_fb84X7eG97i0Voxcd0ZaZgdbR4KzUdgeiJAcqMbd2GFsBR95D8OE8cS56IaRD1KOzEjOTtHHg-9We7UkN-v0qKJ26up8rfYzjDuGaT_ck8p-OLBLir_uIBc1u2zAex0g3mXVy6FngtOuku-fSJ2N9jbVy1x-9qdskIIQWrnPB86kmHMC-4wQrPaxqJ36Nxa1j0URqmosVf7lP7lx5e-7S9LOv9Tk8mAC9c33DpLKxkFNYnIJTFFTdC8z-gMLdLbe
CitedBy_id crossref_primary_10_1016_j_renene_2022_04_130
crossref_primary_10_1016_j_applthermaleng_2015_05_010
crossref_primary_10_1016_j_applthermaleng_2017_07_066
crossref_primary_10_1021_acs_iecr_7b05306
crossref_primary_10_1016_j_compchemeng_2011_12_012
crossref_primary_10_1016_j_est_2022_105264
crossref_primary_10_1007_s10973_023_12544_z
crossref_primary_10_1016_j_cherd_2016_07_013
crossref_primary_10_19113_sdufenbed_678736
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119716
crossref_primary_10_1016_j_renene_2020_05_176
crossref_primary_10_1017_S089006041600024X
crossref_primary_10_1109_TIE_2012_2190957
crossref_primary_10_1080_08927014_2013_790014
crossref_primary_10_1016_j_applthermaleng_2015_10_066
crossref_primary_10_1002_aic_17586
crossref_primary_10_1007_s00231_016_1769_6
crossref_primary_10_1016_j_energy_2012_06_010
crossref_primary_10_22517_23447214_23621
crossref_primary_10_3390_w13060789
crossref_primary_10_3390_en14206484
crossref_primary_10_1016_j_applthermaleng_2013_03_058
crossref_primary_10_1016_j_applthermaleng_2022_118801
crossref_primary_10_1016_j_energy_2017_02_002
crossref_primary_10_1016_j_applthermaleng_2022_118541
crossref_primary_10_1080_01457632_2019_1640487
crossref_primary_10_1021_acs_iecr_6b03564
crossref_primary_10_1007_s11831_020_09476_4
crossref_primary_10_1016_j_energy_2013_07_066
crossref_primary_10_1016_j_tsep_2022_101384
crossref_primary_10_3390_en14185674
crossref_primary_10_1016_j_applthermaleng_2021_116609
crossref_primary_10_1016_j_applthermaleng_2012_03_022
crossref_primary_10_15673_atbp_v9i2_559
Cites_doi 10.1002/cjce.5450660405
10.1080/01457639108939750
10.2202/1934-2659.1073
10.1016/j.applthermaleng.2007.06.040
10.1002/er.1272
10.1205/026387600527194
10.1002/er.1080
10.1115/1.2824144
10.1080/01457630490486300
10.1177/014233129501700406
10.1021/ie990166c
10.1243/0954408011530532
10.1021/ie00080a035
10.1080/00986440214999
10.1016/S1359-4311(02)00025-X
10.1016/j.applthermaleng.2007.08.010
10.1002/jctb.1198
10.1016/j.applthermaleng.2005.12.001
10.1016/j.applthermaleng.2005.05.021
10.1021/ie034178g
10.1021/ie980308n
10.1016/j.ces.2008.04.008
10.1016/S1359-4311(02)00021-2
10.1021/ie051371x
10.1021/ie050319y
10.1016/j.applthermaleng.2004.06.025
10.1021/ef010052p
10.1016/j.applthermaleng.2004.04.005
10.1205/026387602760312764
10.1002/er.1109
10.1016/j.cep.2005.07.004
10.1080/014576302753249589
10.1080/01457630601064397
10.1016/j.applthermaleng.2007.11.009
10.1016/S1359-4311(03)00136-4
10.1016/S0360-5442(99)00080-8
10.1016/j.ces.2007.03.039
10.1111/j.1745-4530.2005.00473.x
10.1115/1.2793878
10.1016/j.enconman.2006.12.006
10.1021/ie0503186
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
KR7
1XC
VOOES
DOI 10.1016/j.applthermaleng.2010.12.033
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Economics
Physics
EISSN 1873-5606
EndPage 1392
ExternalDocumentID oai_HAL_hal_00730289v1
23965112
10_1016_j_applthermaleng_2010_12_033
S1359431111000020
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7TB
8FD
FR3
KR7
1XC
VOOES
ID FETCH-LOGICAL-c480t-f5b4a7c6f3f9fc48543b5f8e1564e2a07b700f54b48e9d00d44579b4966b3c643
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Fri May 09 12:15:01 EDT 2025
Fri Jul 11 07:48:10 EDT 2025
Mon Jul 21 09:18:24 EDT 2025
Tue Jul 01 03:09:29 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Fri Feb 23 02:18:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Cleaning
Fouling
Heat exchangers
Genetic algorithm
Optimization
Economic optimization
Maintenance cost
Minimization
Maintenance
Heat exchanger
Life cycle cost
Flow velocity
Cost analysis
Pressure loss
Investment cost
Heat transfer
Investment
genetic algorithm
cleaning
heat exchangers
fouling
optimization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-f5b4a7c6f3f9fc48543b5f8e1564e2a07b700f54b48e9d00d44579b4966b3c643
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://hal.science/hal-00730289
PQID 869835427
PQPubID 23500
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_00730289v1
proquest_miscellaneous_869835427
pascalfrancis_primary_23965112
crossref_primary_10_1016_j_applthermaleng_2010_12_033
crossref_citationtrail_10_1016_j_applthermaleng_2010_12_033
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2010_12_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied thermal engineering
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Brahim, Augustin, Bohnet (bib54) 2004; vol. 17
Ludwig (bib52) 2001; vol. 3
Zabiri, Radhakrishnan, Ramasamy, Ramli, Do Thanh, Wah (bib51) 2007; 2
Lavaja, Bagajewicz (bib26) 2004; 43
Zubair, Sheikh, Budair, Badar (bib22) 1997; 119
Babu, Munawar (bib12) 2007; 62
A.C. Caputo, P.M. Pelagagge, P. Salini, Optimal cost-based design of shell and tube heat exchangers, In: Proc. 12th Brazilian Congress on Thermal Engineering and Sciences ENCIT 2008, November 10–14 2008, Belo Horizonte, Brasil.
Kuppan (bib1) 2000
Garrett-Price, Smith, Watts, Knudsen (bib41) 1985
Costa, Queiroz (bib10) 2008; 28
Saxon, Putman (bib65) 2004; vol. 28
Shah, Sekulic (bib66) 2003
Jun, Puri (bib44) 2005; 28
Smaili, Vassiliadis, Wilson (bib32) 2002; 80
Abdul-Latif, Al-Madfai, Ghanim (bib62) 1988; 27
Branch, Müller-Steinhagen (bib38) 1991; 12
Georgiadis, Papageorgiou, Macchietto (bib25) 2000; 39
Taal, Bulatov, Klemes, Stehlik (bib15) 2003; 23
Putman (bib18) 2001; 64
Georgiadis, Papageorgiou (bib24) 2000; 78
Tayal, Fu, Diwekar (bib11) 1999; 38
Howell, Saxon (bib69) 2005; 7
Casado (bib67) 1980
Muller-Steinhagen (bib42) 2000
McGurn, Thompson (bib48) 1995; 17
Ishiyama, Paterson, Wilson (bib56) 2008; 63
Lavaja, Bagajewicz (bib28) 2005; 44
Muller-Steinhagen, Malayeri, Watkinson (bib43) 2007; 28
Selbas, Kizilkan, Reppich (bib7) 2006; 45
Caputo, Pelagagge, Salini (bib13) 2008; 28
Zubair, Shah (bib23) 2004; 5
Ponce-Ortega, Sena-Gonzalez, Jimenez-Gutierrez (bib9) 2009; 29
Wildi-Tremblay, Gosselin (bib34) 2007
(bib2) 1998
Markowski, Urbaniec (bib29) 2005; 25
Zubair, Qureshi (bib61) 2006; 30
R.E. Putman, The Economics of Regular Condenser Maintenance, Corporate Publication, Conco Consulting Corp. Verona, PA, USA. Available at the URL
Kern (bib70) 1950
Bott (bib39) 1995
Bell (bib14) 2000; 21
Fryer, Hobin, Mawer (bib37) 1988; 66
Bryers (bib40) 1983
Smaili, Vassiliadis, Wilson (bib31) 2001; 15
R.E. Putman, Optimizing the Cleaning of Heat Exchangers, Corporate publication, Conco Consulting Corp. Verona, PA, USA. Available at the URL
Srinivasan, Watkinson (bib53) 2004; vol. 26
Unuvar, Kargici (bib6) 2004
Jafari Nasr, Majidi Givi (bib46) 2006; 26
Zubair, Sheikh, Younas, Budair (bib60) 2000; 25
O’Donnell, Barna, Gosling (bib20) 2001; 97
Khalifeh Soltan, Saffar-Avval, Damargin (bib5) 2004; 24
Wilson (bib64) 2004; vol. 21
Sena-Gonzalez, Ponce-Ortega, Castro-Montoya, Jimenez-Gutierrez (bib8) 2007; 46
Sanatgar, Somerscales (bib58) 1991; 87
Wilson, Polley, Pugh (bib36) 2002; 23
Smaili, Vassiliadis, Wilson (bib33) 2002; 189
Mwaba, Golriz, Gu (bib49) 2006; 26
Riverol, Napolitano (bib50) 2005; 80
Khan, Zubair (bib19) 2004; 25
Sheikh, Zubair, Haq, Budair (bib21) 1996; 118
LeClercq-Perlat, Lalande (bib47) 1991; 31
Sanaye, Niroomand (bib30) 2007; 48
Zubair, Sheikh, Younas, Budair (bib59) 2000; 25
Butterworth (bib35) 2002; 22
Caputo, Pelagagge, Salini (bib17) September 8–10, 2009
Frenier, Barber (bib63) 1998; 94
Lavaja, Bagajewicz (bib27) 2005; 44
Polley, Wilson, Yeap, Pugh (bib3) 2002; 22
Yeap, Wilson, Polley, Pugh (bib55) 2004; vol. 28
Pak, Groll, Braun (bib57) 2005; 111
[accessed October 2010].
Sheikh, Zubair, Younas, Budair (bib45) 2001; 215
Tayal (10.1016/j.applthermaleng.2010.12.033_bib11) 1999; 38
Lavaja (10.1016/j.applthermaleng.2010.12.033_bib27) 2005; 44
Selbas (10.1016/j.applthermaleng.2010.12.033_bib7) 2006; 45
Brahim (10.1016/j.applthermaleng.2010.12.033_bib54) 2004; vol. 17
Garrett-Price (10.1016/j.applthermaleng.2010.12.033_bib41) 1985
10.1016/j.applthermaleng.2010.12.033_bib68
Ludwig (10.1016/j.applthermaleng.2010.12.033_bib52) 2001; vol. 3
Yeap (10.1016/j.applthermaleng.2010.12.033_bib55) 2004; vol. 28
Sheikh (10.1016/j.applthermaleng.2010.12.033_bib45) 2001; 215
Smaili (10.1016/j.applthermaleng.2010.12.033_bib32) 2002; 80
Kuppan (10.1016/j.applthermaleng.2010.12.033_bib1) 2000
Butterworth (10.1016/j.applthermaleng.2010.12.033_bib35) 2002; 22
Zubair (10.1016/j.applthermaleng.2010.12.033_bib23) 2004; 5
Georgiadis (10.1016/j.applthermaleng.2010.12.033_bib25) 2000; 39
Wilson (10.1016/j.applthermaleng.2010.12.033_bib36) 2002; 23
McGurn (10.1016/j.applthermaleng.2010.12.033_bib48) 1995; 17
Lavaja (10.1016/j.applthermaleng.2010.12.033_bib28) 2005; 44
Casado (10.1016/j.applthermaleng.2010.12.033_bib67) 1980
Fryer (10.1016/j.applthermaleng.2010.12.033_bib37) 1988; 66
Muller-Steinhagen (10.1016/j.applthermaleng.2010.12.033_bib42) 2000
Sena-Gonzalez (10.1016/j.applthermaleng.2010.12.033_bib8) 2007; 46
10.1016/j.applthermaleng.2010.12.033_bib16
Abdul-Latif (10.1016/j.applthermaleng.2010.12.033_bib62) 1988; 27
Bott (10.1016/j.applthermaleng.2010.12.033_bib39) 1995
Sanatgar (10.1016/j.applthermaleng.2010.12.033_bib58) 1991; 87
Zubair (10.1016/j.applthermaleng.2010.12.033_bib59) 2000; 25
(10.1016/j.applthermaleng.2010.12.033_bib2) 1998
Wildi-Tremblay (10.1016/j.applthermaleng.2010.12.033_bib34) 2007
Bell (10.1016/j.applthermaleng.2010.12.033_bib14) 2000; 21
Costa (10.1016/j.applthermaleng.2010.12.033_bib10) 2008; 28
Sanaye (10.1016/j.applthermaleng.2010.12.033_bib30) 2007; 48
Zabiri (10.1016/j.applthermaleng.2010.12.033_bib51) 2007; 2
Taal (10.1016/j.applthermaleng.2010.12.033_bib15) 2003; 23
Shah (10.1016/j.applthermaleng.2010.12.033_bib66) 2003
Riverol (10.1016/j.applthermaleng.2010.12.033_bib50) 2005; 80
Frenier (10.1016/j.applthermaleng.2010.12.033_bib63) 1998; 94
O’Donnell (10.1016/j.applthermaleng.2010.12.033_bib20) 2001; 97
Howell (10.1016/j.applthermaleng.2010.12.033_bib69) 2005; 7
LeClercq-Perlat (10.1016/j.applthermaleng.2010.12.033_bib47) 1991; 31
Saxon (10.1016/j.applthermaleng.2010.12.033_bib65) 2004; vol. 28
Zubair (10.1016/j.applthermaleng.2010.12.033_bib60) 2000; 25
Polley (10.1016/j.applthermaleng.2010.12.033_bib3) 2002; 22
Mwaba (10.1016/j.applthermaleng.2010.12.033_bib49) 2006; 26
Putman (10.1016/j.applthermaleng.2010.12.033_bib18) 2001; 64
Jun (10.1016/j.applthermaleng.2010.12.033_bib44) 2005; 28
Khan (10.1016/j.applthermaleng.2010.12.033_bib19) 2004; 25
Caputo (10.1016/j.applthermaleng.2010.12.033_bib13) 2008; 28
Wilson (10.1016/j.applthermaleng.2010.12.033_bib64) 2004; vol. 21
Kern (10.1016/j.applthermaleng.2010.12.033_bib70) 1950
Zubair (10.1016/j.applthermaleng.2010.12.033_bib22) 1997; 119
10.1016/j.applthermaleng.2010.12.033_bib4
Zubair (10.1016/j.applthermaleng.2010.12.033_bib61) 2006; 30
Unuvar (10.1016/j.applthermaleng.2010.12.033_bib6) 2004
Ponce-Ortega (10.1016/j.applthermaleng.2010.12.033_bib9) 2009; 29
Smaili (10.1016/j.applthermaleng.2010.12.033_bib33) 2002; 189
Caputo (10.1016/j.applthermaleng.2010.12.033_bib17) 2009
Smaili (10.1016/j.applthermaleng.2010.12.033_bib31) 2001; 15
Muller-Steinhagen (10.1016/j.applthermaleng.2010.12.033_bib43) 2007; 28
Srinivasan (10.1016/j.applthermaleng.2010.12.033_bib53) 2004; vol. 26
Markowski (10.1016/j.applthermaleng.2010.12.033_bib29) 2005; 25
Babu (10.1016/j.applthermaleng.2010.12.033_bib12) 2007; 62
Khalifeh Soltan (10.1016/j.applthermaleng.2010.12.033_bib5) 2004; 24
Pak (10.1016/j.applthermaleng.2010.12.033_bib57) 2005; 111
Bryers (10.1016/j.applthermaleng.2010.12.033_bib40) 1983
Lavaja (10.1016/j.applthermaleng.2010.12.033_bib26) 2004; 43
Branch (10.1016/j.applthermaleng.2010.12.033_bib38) 1991; 12
Jafari Nasr (10.1016/j.applthermaleng.2010.12.033_bib46) 2006; 26
Sheikh (10.1016/j.applthermaleng.2010.12.033_bib21) 1996; 118
Georgiadis (10.1016/j.applthermaleng.2010.12.033_bib24) 2000; 78
Ishiyama (10.1016/j.applthermaleng.2010.12.033_bib56) 2008; 63
References_xml – volume: 39
  start-page: 441
  year: 2000
  end-page: 454
  ident: bib25
  article-title: Optimal cleaning policies in heat exchanger networks under rapid fouling
  publication-title: Industrial and Engineering Chemistry Research
– volume: 25
  start-page: 445
  year: 2000
  end-page: 461
  ident: bib60
  article-title: A risk based heat exchanger analysis subject to fouling. Part II: economics of heat exchangers cleaning
  publication-title: Energy
– year: 2000
  ident: bib42
  article-title: Heat Exchanger Fouling: Mitigation and Cleaning Techniques
– volume: 215
  start-page: 331
  year: 2001
  end-page: 354
  ident: bib45
  article-title: Statistical aspects of fouling processes
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
– volume: 38
  start-page: 456
  year: 1999
  end-page: 467
  ident: bib11
  article-title: Optimal design of heat exchangers: a genetic algorithm framework
  publication-title: Industrial and Engineering Chemical Research
– reference: R.E. Putman, Optimizing the Cleaning of Heat Exchangers, Corporate publication, Conco Consulting Corp. Verona, PA, USA. Available at the URL
– volume: 64
  start-page: 39
  year: 2001
  end-page: 41
  ident: bib18
  article-title: Timing cleanings to boost heat exchanger performance: cutting costs, facilitating production
  publication-title: Chemical Processing
– start-page: 1379
  year: 2004
  end-page: 1392
  ident: bib6
  article-title: An approach for the optimum design of heat exchangers
  publication-title: International Journal of Energy Research
– volume: 26
  start-page: 1572
  year: 2006
  end-page: 1577
  ident: bib46
  article-title: Modeling of crude oil fouling in preheat exchangers of refinery distillation units
  publication-title: Applied Thermal Engineering
– volume: 189
  start-page: 1517
  year: 2002
  end-page: 1549
  ident: bib33
  article-title: Optimization of cleaning schedules in heat exchanger networks subject to fouling
  publication-title: Chemical Engineering Communications
– volume: 94
  start-page: 37
  year: 1998
  end-page: 44
  ident: bib63
  article-title: Choose the best heat exchanger cleaning method
  publication-title: Chemical Engineering Progress
– volume: 25
  start-page: 1019
  year: 2005
  end-page: 1032
  ident: bib29
  article-title: Optimal cleaning schedule for heat exchangers in a heat exchanger network
  publication-title: Applied Thermal Engineering
– year: 1983
  ident: bib40
  article-title: Fouling of heat exchanger surfaces
  publication-title: Engineering Foundation
– volume: vol. 17
  start-page: 121
  year: 2004
  end-page: 129
  ident: bib54
  article-title: Numerical simulation of the fouling on, structured heat transfer surfaces (fouling)
  publication-title: 2003 ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications
– volume: 28
  start-page: 1
  year: 2005
  end-page: 34
  ident: bib44
  article-title: Fouling models for heat exchangers in dairy processing: a review
  publication-title: Journal of Food Process Engineering
– volume: 97
  start-page: 56
  year: 2001
  end-page: 60
  ident: bib20
  article-title: Optimize heat exchanger cleaning schedules
  publication-title: Chemical Engineering Progress
– volume: 22
  start-page: 763
  year: 2002
  end-page: 776
  ident: bib3
  article-title: Use of crude oil fouling threshold data in heat exchanger design
  publication-title: Applied Thermal Engineering
– volume: 28
  start-page: 173
  year: 2007
  end-page: 176
  ident: bib43
  article-title: Recent advances in heat exchanger fouling research, mitigation, and cleaning techniques
  publication-title: Heat Transfer Engineering
– volume: 80
  start-page: 594
  year: 2005
  end-page: 600
  ident: bib50
  article-title: Estimation of fouling in a plate heat exchanger through the application on neural networks
  publication-title: Journal of Chemical Technology and Biotechnology
– volume: 7
  start-page: 708
  year: 2005
  end-page: 716
  ident: bib69
  article-title: Condenser tube fouling and failures: causes and mitigation
  publication-title: Power Plant Chemistry
– volume: 5
  start-page: 129
  year: 2004
  end-page: 156
  ident: bib23
  article-title: Fouling of plate-and-frame heat exchangers and cleaning strategies
  publication-title: International Journal of Heat Exchangers
– volume: 118
  start-page: 306
  year: 1996
  end-page: 312
  ident: bib21
  article-title: Reliability-based maintenance strategies for heat exchangers subject to fouling
  publication-title: Journal of Energy Resources Technology, Transactions of the ASME
– volume: 21
  start-page: 1
  year: 2000
  end-page: 2
  ident: bib14
  article-title: On the pessimization of heat exchangers
  publication-title: Heat Transfer Engineering
– volume: 46
  start-page: 143
  year: 2007
  end-page: 155
  ident: bib8
  article-title: Feasible design space for shell and tube heat exchangers using Bell-Delaware method
  publication-title: Industrial and Engineering Chemical Research
– volume: 66
  start-page: 558
  year: 1988
  end-page: 562
  ident: bib37
  article-title: Optimal design of a heat exchanger undergoing reaction fouling
  publication-title: Canadian Journal of Chemical Engineering
– volume: 24
  start-page: 2801
  year: 2004
  end-page: 2810
  ident: bib5
  article-title: Minimizing capital and operating costs of shell and tube condensers using optimum baffle spacing
  publication-title: Applied Thermal Engineering
– volume: 29
  start-page: 203
  year: 2009
  end-page: 209
  ident: bib9
  article-title: Use of genetic algorithm for the optimal design of shell-and-tube heat exchangers
  publication-title: Applied Thermal Engineering
– year: 1985
  ident: bib41
  article-title: Fouling of Heat Exchangers: Characteristics, Costs, Prevention, Control, and Removal”
– reference: A.C. Caputo, P.M. Pelagagge, P. Salini, Optimal cost-based design of shell and tube heat exchangers, In: Proc. 12th Brazilian Congress on Thermal Engineering and Sciences ENCIT 2008, November 10–14 2008, Belo Horizonte, Brasil.
– volume: 87
  start-page: 53
  year: 1991
  end-page: 59
  ident: bib58
  article-title: Account for fouling in heat exchanger design
  publication-title: Chemical Engineering Progress
– volume: 78
  start-page: 168
  year: 2000
  end-page: 179
  ident: bib24
  article-title: Optimal energy and cleaning management in heat exchanger networks under fouling
  publication-title: Chemical Engineering Research and Design
– volume: 25
  start-page: 87
  year: 2004
  end-page: 100
  ident: bib19
  article-title: A risk-based performance analysis of plate-and-frame heat exchangers subject to fouling: economics of heat exchanger cleaning
  publication-title: Heat Transfer Engineering
– volume: 63
  start-page: 3400
  year: 2008
  end-page: 3410
  ident: bib56
  article-title: Thermo-hydraulic channeling in parallel heat exchangers subject to fouling
  publication-title: Chemical Engineering Science
– volume: 62
  start-page: 3720
  year: 2007
  end-page: 3739
  ident: bib12
  article-title: Differential evolution strategies for optimum design of shell and tube heat exchangers
  publication-title: Chemical Engineering Science
– volume: 31
  start-page: 74
  year: 1991
  end-page: 93
  ident: bib47
  article-title: Review on the modeling of the removal of porous contaminants deposited on heat transfer surfaces
  publication-title: International Chemical Engineering
– volume: 2
  year: 2007
  ident: bib51
  article-title: Development of heat exchanger fouling model and preventive maintenance diagnostic tool
  publication-title: Chemical Product and Process Modeling
– volume: 45
  start-page: 268
  year: 2006
  end-page: 275
  ident: bib7
  article-title: A new design approach for shell and tube heat exchangers using genetic algorithms from economic point of view
  publication-title: Chemical Engineering and Processing
– volume: 25
  start-page: 427
  year: 2000
  end-page: 443
  ident: bib59
  article-title: A risk based heat exchanger analysis subject to fouling. Part I: performance evaluation
  publication-title: Energy
– volume: 26
  start-page: 440
  year: 2006
  end-page: 447
  ident: bib49
  article-title: A semi-empirical correlation for crystallization fouling on heat exchange surfaces
  publication-title: Applied Thermal Engineering
– volume: 12
  start-page: 36
  year: 1991
  end-page: 45
  ident: bib38
  article-title: Influence of scaling on the performance of shell-and-tube heat exchangers
  publication-title: Heat Transfer Engineering
– volume: vol. 3
  year: 2001
  ident: bib52
  publication-title: Applied Process Design for Chemical and Petrochemical Plants
– volume: 22
  start-page: 789
  year: 2002
  end-page: 801
  ident: bib35
  article-title: Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity
  publication-title: Applied Thermal Engineering
– year: 1950
  ident: bib70
  article-title: Process Heat Transfer
– volume: 111
  start-page: 496
  year: 2005
  end-page: 504
  ident: bib57
  article-title: Impact of fouling and cleaning on plate fin and spine fin heat exchanger performance
  publication-title: ASHRAE Transactions
– year: September 8–10, 2009
  ident: bib17
  article-title: A manufacturing-based cost model for shell and tube heat exchangers
  publication-title: Proc. 7th International Conference on Manufacturing Research (ICMR09)
– volume: 23
  start-page: 1819
  year: 2003
  end-page: 1835
  ident: bib15
  article-title: Cost estimation and energy price forecast for economic evaluation of retrofit projects
  publication-title: Applied Thermal Engineering
– year: 2003
  ident: bib66
  article-title: Fundamentals of Heat Exchanger Design
– start-page: 71
  year: 1980
  end-page: 76
  ident: bib67
  article-title: Model optimizes exchanger cleaning
  publication-title: Hydrocarbon Processing
– volume: 28
  start-page: 1151
  year: 2008
  end-page: 1159
  ident: bib13
  article-title: Heat exchangers design based on economic optimization
  publication-title: Applied Thermal Engineering
– volume: 27
  start-page: 1548
  year: 1988
  end-page: 1551
  ident: bib62
  article-title: Removal of scale deposited on heat-transfer surfaces using chemical methods
  publication-title: Industrial and Engineering Chemistry Research
– volume: 28
  start-page: 1798
  year: 2008
  end-page: 1805
  ident: bib10
  article-title: Design optimization of shell and tube heat exchangers
  publication-title: Applied Thermal Engineering
– reference: [accessed October 2010].
– volume: 80
  start-page: 561
  year: 2002
  end-page: 578
  ident: bib32
  article-title: Long-term scheduling of cleaning of heat exchanger networks: comparison of outer approximation-based solutions with a backtracking threshold accepting algorithm
  publication-title: Chemical Engineering Research and Design
– volume: 44
  start-page: 8136
  year: 2005
  end-page: 8146
  ident: bib28
  article-title: On a new MILP model for the planning of heat-exchanger network cleaning. Part III: multiperiod cleaning under uncertainty with financial risk management
  publication-title: Industrial and Engineering Chemistry Research
– year: 1995
  ident: bib39
  article-title: Fouling of Heat Exchangers
– volume: 119
  start-page: 575
  year: 1997
  end-page: 580
  ident: bib22
  article-title: A maintenance strategy for heat transfer equipment subject to fouling: a probabilistic approach
  publication-title: Journal of Heat Transfer
– start-page: 867
  year: 2007
  end-page: 885
  ident: bib34
  article-title: Minimizing shell and tube heat exchanger cost with genetic algorithms and considering maintenance
  publication-title: International Journal of Energy Research
– year: 1998
  ident: bib2
  publication-title: Heat Exchanger Design Handbook
– volume: 17
  start-page: 212
  year: 1995
  end-page: 222
  ident: bib48
  article-title: Heat transfer models for boiler fouling monitoring
  publication-title: Transactions of the Institute of Measurement and Control
– year: 2000
  ident: bib1
  article-title: Heat Exchanger Design Handbook
– volume: 15
  start-page: 1038
  year: 2001
  end-page: 1056
  ident: bib31
  article-title: Mitigation of fouling in refinery heat exchanger networks by optimal management of cleaning
  publication-title: Energy and Fuels
– volume: vol. 28
  start-page: 211
  year: 2004
  end-page: 218
  ident: bib55
  article-title: Retrofitting crude oil refinery heat exchanger networks to minimise fouling while maximising heat recovery
  publication-title: 2003 ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications
– volume: vol. 28
  start-page: 211
  year: 2004
  end-page: 218
  ident: bib65
  article-title: The practical application and innovation of cleaning technology for heat exchangers
  publication-title: 2003 ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications
– volume: 48
  start-page: 1450
  year: 2007
  end-page: 1461
  ident: bib30
  article-title: Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule
  publication-title: Energy Conversion and Management
– volume: 43
  start-page: 3924
  year: 2004
  end-page: 3938
  ident: bib26
  article-title: On a new MILP model for the planning of heat-exchanger network cleaning
  publication-title: Industrial and Engineering Chemistry Research
– reference: . [accessed October 2010].
– volume: vol. 21
  start-page: 148
  year: 2004
  end-page: 157
  ident: bib64
  article-title: Challenges in cleaning: recent developments and future prospects
  publication-title: 2003 ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications
– volume: 30
  start-page: 1
  year: 2006
  end-page: 17
  ident: bib61
  article-title: A probabilistic fouling and cost model for plate-and-frame heat exchangers
  publication-title: International Journal of Energy Research
– volume: vol. 26
  start-page: 192
  year: 2004
  end-page: 199
  ident: bib53
  article-title: Fouling of some Canadian crude oils
  publication-title: 2003 ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications
– volume: 23
  start-page: 24
  year: 2002
  end-page: 37
  ident: bib36
  article-title: Mitigation of crude oil preheat train fouling by design
  publication-title: Heat Transfer Engineering
– reference: R.E. Putman, The Economics of Regular Condenser Maintenance, Corporate Publication, Conco Consulting Corp. Verona, PA, USA. Available at the URL
– volume: 44
  start-page: 8045
  year: 2005
  end-page: 8056
  ident: bib27
  article-title: A new MILP model for the planning of heat exchanger network cleaning. Part II: throughput loss considerations
  publication-title: Industrial and Engineering Chemistry Research
– volume: vol. 28
  start-page: 211
  year: 2004
  ident: 10.1016/j.applthermaleng.2010.12.033_bib65
  article-title: The practical application and innovation of cleaning technology for heat exchangers
– volume: 66
  start-page: 558
  year: 1988
  ident: 10.1016/j.applthermaleng.2010.12.033_bib37
  article-title: Optimal design of a heat exchanger undergoing reaction fouling
  publication-title: Canadian Journal of Chemical Engineering
  doi: 10.1002/cjce.5450660405
– volume: 12
  start-page: 36
  issue: 2
  year: 1991
  ident: 10.1016/j.applthermaleng.2010.12.033_bib38
  article-title: Influence of scaling on the performance of shell-and-tube heat exchangers
  publication-title: Heat Transfer Engineering
  doi: 10.1080/01457639108939750
– volume: 2
  year: 2007
  ident: 10.1016/j.applthermaleng.2010.12.033_bib51
  article-title: Development of heat exchanger fouling model and preventive maintenance diagnostic tool
  publication-title: Chemical Product and Process Modeling
  doi: 10.2202/1934-2659.1073
– start-page: 71
  year: 1980
  ident: 10.1016/j.applthermaleng.2010.12.033_bib67
  article-title: Model optimizes exchanger cleaning
  publication-title: Hydrocarbon Processing
– volume: 29
  start-page: 203
  year: 2009
  ident: 10.1016/j.applthermaleng.2010.12.033_bib9
  article-title: Use of genetic algorithm for the optimal design of shell-and-tube heat exchangers
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2007.06.040
– year: 1998
  ident: 10.1016/j.applthermaleng.2010.12.033_bib2
– start-page: 867
  year: 2007
  ident: 10.1016/j.applthermaleng.2010.12.033_bib34
  article-title: Minimizing shell and tube heat exchanger cost with genetic algorithms and considering maintenance
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.1272
– volume: 78
  start-page: 168
  year: 2000
  ident: 10.1016/j.applthermaleng.2010.12.033_bib24
  article-title: Optimal energy and cleaning management in heat exchanger networks under fouling
  publication-title: Chemical Engineering Research and Design
  doi: 10.1205/026387600527194
– start-page: 1379
  year: 2004
  ident: 10.1016/j.applthermaleng.2010.12.033_bib6
  article-title: An approach for the optimum design of heat exchangers
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.1080
– year: 1985
  ident: 10.1016/j.applthermaleng.2010.12.033_bib41
– volume: 119
  start-page: 575
  year: 1997
  ident: 10.1016/j.applthermaleng.2010.12.033_bib22
  article-title: A maintenance strategy for heat transfer equipment subject to fouling: a probabilistic approach
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.2824144
– volume: 25
  start-page: 87
  year: 2004
  ident: 10.1016/j.applthermaleng.2010.12.033_bib19
  article-title: A risk-based performance analysis of plate-and-frame heat exchangers subject to fouling: economics of heat exchanger cleaning
  publication-title: Heat Transfer Engineering
  doi: 10.1080/01457630490486300
– volume: 17
  start-page: 212
  year: 1995
  ident: 10.1016/j.applthermaleng.2010.12.033_bib48
  article-title: Heat transfer models for boiler fouling monitoring
  publication-title: Transactions of the Institute of Measurement and Control
  doi: 10.1177/014233129501700406
– ident: 10.1016/j.applthermaleng.2010.12.033_bib68
– volume: vol. 28
  start-page: 211
  year: 2004
  ident: 10.1016/j.applthermaleng.2010.12.033_bib55
  article-title: Retrofitting crude oil refinery heat exchanger networks to minimise fouling while maximising heat recovery
– volume: 39
  start-page: 441
  year: 2000
  ident: 10.1016/j.applthermaleng.2010.12.033_bib25
  article-title: Optimal cleaning policies in heat exchanger networks under rapid fouling
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie990166c
– volume: 215
  start-page: 331
  year: 2001
  ident: 10.1016/j.applthermaleng.2010.12.033_bib45
  article-title: Statistical aspects of fouling processes
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
  doi: 10.1243/0954408011530532
– year: 2003
  ident: 10.1016/j.applthermaleng.2010.12.033_bib66
– volume: vol. 26
  start-page: 192
  year: 2004
  ident: 10.1016/j.applthermaleng.2010.12.033_bib53
  article-title: Fouling of some Canadian crude oils
– volume: 97
  start-page: 56
  year: 2001
  ident: 10.1016/j.applthermaleng.2010.12.033_bib20
  article-title: Optimize heat exchanger cleaning schedules
  publication-title: Chemical Engineering Progress
– volume: 64
  start-page: 39
  year: 2001
  ident: 10.1016/j.applthermaleng.2010.12.033_bib18
  article-title: Timing cleanings to boost heat exchanger performance: cutting costs, facilitating production
  publication-title: Chemical Processing
– volume: 27
  start-page: 1548
  year: 1988
  ident: 10.1016/j.applthermaleng.2010.12.033_bib62
  article-title: Removal of scale deposited on heat-transfer surfaces using chemical methods
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie00080a035
– volume: 7
  start-page: 708
  year: 2005
  ident: 10.1016/j.applthermaleng.2010.12.033_bib69
  article-title: Condenser tube fouling and failures: causes and mitigation
  publication-title: Power Plant Chemistry
– volume: 189
  start-page: 1517
  year: 2002
  ident: 10.1016/j.applthermaleng.2010.12.033_bib33
  article-title: Optimization of cleaning schedules in heat exchanger networks subject to fouling
  publication-title: Chemical Engineering Communications
  doi: 10.1080/00986440214999
– ident: 10.1016/j.applthermaleng.2010.12.033_bib16
– volume: 22
  start-page: 789
  year: 2002
  ident: 10.1016/j.applthermaleng.2010.12.033_bib35
  article-title: Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity
  publication-title: Applied Thermal Engineering
  doi: 10.1016/S1359-4311(02)00025-X
– volume: 28
  start-page: 1151
  year: 2008
  ident: 10.1016/j.applthermaleng.2010.12.033_bib13
  article-title: Heat exchangers design based on economic optimization
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2007.08.010
– volume: 80
  start-page: 594
  year: 2005
  ident: 10.1016/j.applthermaleng.2010.12.033_bib50
  article-title: Estimation of fouling in a plate heat exchanger through the application on neural networks
  publication-title: Journal of Chemical Technology and Biotechnology
  doi: 10.1002/jctb.1198
– volume: vol. 3
  year: 2001
  ident: 10.1016/j.applthermaleng.2010.12.033_bib52
– volume: 26
  start-page: 1572
  year: 2006
  ident: 10.1016/j.applthermaleng.2010.12.033_bib46
  article-title: Modeling of crude oil fouling in preheat exchangers of refinery distillation units
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2005.12.001
– volume: 26
  start-page: 440
  year: 2006
  ident: 10.1016/j.applthermaleng.2010.12.033_bib49
  article-title: A semi-empirical correlation for crystallization fouling on heat exchange surfaces
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2005.05.021
– year: 1995
  ident: 10.1016/j.applthermaleng.2010.12.033_bib39
– volume: 43
  start-page: 3924
  year: 2004
  ident: 10.1016/j.applthermaleng.2010.12.033_bib26
  article-title: On a new MILP model for the planning of heat-exchanger network cleaning
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie034178g
– volume: vol. 17
  start-page: 121
  year: 2004
  ident: 10.1016/j.applthermaleng.2010.12.033_bib54
  article-title: Numerical simulation of the fouling on, structured heat transfer surfaces (fouling)
– volume: 94
  start-page: 37
  year: 1998
  ident: 10.1016/j.applthermaleng.2010.12.033_bib63
  article-title: Choose the best heat exchanger cleaning method
  publication-title: Chemical Engineering Progress
– volume: 38
  start-page: 456
  year: 1999
  ident: 10.1016/j.applthermaleng.2010.12.033_bib11
  article-title: Optimal design of heat exchangers: a genetic algorithm framework
  publication-title: Industrial and Engineering Chemical Research
  doi: 10.1021/ie980308n
– year: 2000
  ident: 10.1016/j.applthermaleng.2010.12.033_bib42
– volume: 87
  start-page: 53
  year: 1991
  ident: 10.1016/j.applthermaleng.2010.12.033_bib58
  article-title: Account for fouling in heat exchanger design
  publication-title: Chemical Engineering Progress
– volume: 63
  start-page: 3400
  year: 2008
  ident: 10.1016/j.applthermaleng.2010.12.033_bib56
  article-title: Thermo-hydraulic channeling in parallel heat exchangers subject to fouling
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2008.04.008
– volume: 22
  start-page: 763
  year: 2002
  ident: 10.1016/j.applthermaleng.2010.12.033_bib3
  article-title: Use of crude oil fouling threshold data in heat exchanger design
  publication-title: Applied Thermal Engineering
  doi: 10.1016/S1359-4311(02)00021-2
– volume: 46
  start-page: 143
  year: 2007
  ident: 10.1016/j.applthermaleng.2010.12.033_bib8
  article-title: Feasible design space for shell and tube heat exchangers using Bell-Delaware method
  publication-title: Industrial and Engineering Chemical Research
  doi: 10.1021/ie051371x
– volume: 44
  start-page: 8136
  year: 2005
  ident: 10.1016/j.applthermaleng.2010.12.033_bib28
  article-title: On a new MILP model for the planning of heat-exchanger network cleaning. Part III: multiperiod cleaning under uncertainty with financial risk management
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie050319y
– volume: 25
  start-page: 1019
  year: 2005
  ident: 10.1016/j.applthermaleng.2010.12.033_bib29
  article-title: Optimal cleaning schedule for heat exchangers in a heat exchanger network
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2004.06.025
– volume: 15
  start-page: 1038
  year: 2001
  ident: 10.1016/j.applthermaleng.2010.12.033_bib31
  article-title: Mitigation of fouling in refinery heat exchanger networks by optimal management of cleaning
  publication-title: Energy and Fuels
  doi: 10.1021/ef010052p
– year: 2009
  ident: 10.1016/j.applthermaleng.2010.12.033_bib17
  article-title: A manufacturing-based cost model for shell and tube heat exchangers
– volume: vol. 21
  start-page: 148
  year: 2004
  ident: 10.1016/j.applthermaleng.2010.12.033_bib64
  article-title: Challenges in cleaning: recent developments and future prospects
– volume: 24
  start-page: 2801
  year: 2004
  ident: 10.1016/j.applthermaleng.2010.12.033_bib5
  article-title: Minimizing capital and operating costs of shell and tube condensers using optimum baffle spacing
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2004.04.005
– volume: 80
  start-page: 561
  year: 2002
  ident: 10.1016/j.applthermaleng.2010.12.033_bib32
  article-title: Long-term scheduling of cleaning of heat exchanger networks: comparison of outer approximation-based solutions with a backtracking threshold accepting algorithm
  publication-title: Chemical Engineering Research and Design
  doi: 10.1205/026387602760312764
– year: 1983
  ident: 10.1016/j.applthermaleng.2010.12.033_bib40
  article-title: Fouling of heat exchanger surfaces
  publication-title: Engineering Foundation
– volume: 30
  start-page: 1
  year: 2006
  ident: 10.1016/j.applthermaleng.2010.12.033_bib61
  article-title: A probabilistic fouling and cost model for plate-and-frame heat exchangers
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.1109
– volume: 45
  start-page: 268
  year: 2006
  ident: 10.1016/j.applthermaleng.2010.12.033_bib7
  article-title: A new design approach for shell and tube heat exchangers using genetic algorithms from economic point of view
  publication-title: Chemical Engineering and Processing
  doi: 10.1016/j.cep.2005.07.004
– volume: 23
  start-page: 24
  year: 2002
  ident: 10.1016/j.applthermaleng.2010.12.033_bib36
  article-title: Mitigation of crude oil preheat train fouling by design
  publication-title: Heat Transfer Engineering
  doi: 10.1080/014576302753249589
– volume: 28
  start-page: 173
  year: 2007
  ident: 10.1016/j.applthermaleng.2010.12.033_bib43
  article-title: Recent advances in heat exchanger fouling research, mitigation, and cleaning techniques
  publication-title: Heat Transfer Engineering
  doi: 10.1080/01457630601064397
– volume: 28
  start-page: 1798
  year: 2008
  ident: 10.1016/j.applthermaleng.2010.12.033_bib10
  article-title: Design optimization of shell and tube heat exchangers
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2007.11.009
– volume: 23
  start-page: 1819
  year: 2003
  ident: 10.1016/j.applthermaleng.2010.12.033_bib15
  article-title: Cost estimation and energy price forecast for economic evaluation of retrofit projects
  publication-title: Applied Thermal Engineering
  doi: 10.1016/S1359-4311(03)00136-4
– volume: 25
  start-page: 445
  year: 2000
  ident: 10.1016/j.applthermaleng.2010.12.033_bib60
  article-title: A risk based heat exchanger analysis subject to fouling. Part II: economics of heat exchangers cleaning
  publication-title: Energy
  doi: 10.1016/S0360-5442(99)00080-8
– year: 2000
  ident: 10.1016/j.applthermaleng.2010.12.033_bib1
– volume: 62
  start-page: 3720
  year: 2007
  ident: 10.1016/j.applthermaleng.2010.12.033_bib12
  article-title: Differential evolution strategies for optimum design of shell and tube heat exchangers
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2007.03.039
– volume: 28
  start-page: 1
  year: 2005
  ident: 10.1016/j.applthermaleng.2010.12.033_bib44
  article-title: Fouling models for heat exchangers in dairy processing: a review
  publication-title: Journal of Food Process Engineering
  doi: 10.1111/j.1745-4530.2005.00473.x
– volume: 25
  start-page: 427
  year: 2000
  ident: 10.1016/j.applthermaleng.2010.12.033_bib59
  article-title: A risk based heat exchanger analysis subject to fouling. Part I: performance evaluation
  publication-title: Energy
  doi: 10.1016/S0360-5442(99)00080-8
– ident: 10.1016/j.applthermaleng.2010.12.033_bib4
– volume: 111
  start-page: 496
  issue: 1
  year: 2005
  ident: 10.1016/j.applthermaleng.2010.12.033_bib57
  article-title: Impact of fouling and cleaning on plate fin and spine fin heat exchanger performance
  publication-title: ASHRAE Transactions
– volume: 118
  start-page: 306
  year: 1996
  ident: 10.1016/j.applthermaleng.2010.12.033_bib21
  article-title: Reliability-based maintenance strategies for heat exchangers subject to fouling
  publication-title: Journal of Energy Resources Technology, Transactions of the ASME
  doi: 10.1115/1.2793878
– volume: 21
  start-page: 1
  year: 2000
  ident: 10.1016/j.applthermaleng.2010.12.033_bib14
  article-title: On the pessimization of heat exchangers
  publication-title: Heat Transfer Engineering
– year: 1950
  ident: 10.1016/j.applthermaleng.2010.12.033_bib70
– volume: 5
  start-page: 129
  year: 2004
  ident: 10.1016/j.applthermaleng.2010.12.033_bib23
  article-title: Fouling of plate-and-frame heat exchangers and cleaning strategies
  publication-title: International Journal of Heat Exchangers
– volume: 31
  start-page: 74
  year: 1991
  ident: 10.1016/j.applthermaleng.2010.12.033_bib47
  article-title: Review on the modeling of the removal of porous contaminants deposited on heat transfer surfaces
  publication-title: International Chemical Engineering
– volume: 48
  start-page: 1450
  year: 2007
  ident: 10.1016/j.applthermaleng.2010.12.033_bib30
  article-title: Simulation of heat exchanger network (HEN) and planning the optimum cleaning schedule
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2006.12.006
– volume: 44
  start-page: 8045
  year: 2005
  ident: 10.1016/j.applthermaleng.2010.12.033_bib27
  article-title: A new MILP model for the planning of heat exchanger network cleaning. Part II: throughput loss considerations
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie0503186
SSID ssj0012874
Score 2.1984808
Snippet In this paper a new approach to shell and tube heat exchanger optimization is presented based on the minimization of the life cycle cost. The method allows the...
In this paper a new approach to shell and tube heat exchanger optimization is presented based on the minimization of the life-cycle cost. The method allows the...
SourceID hal
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1381
SubjectTerms Applied sciences
Cleaning
Devices using thermal energy
Economics
Energy
Energy. Thermal use of fuels
Engineering Sciences
Equipment costs
Exact sciences and technology
Fouling
Genetic algorithm
Heat exchangers
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat transfer
Maintenance
Mechanics
Optimization
Physics
Policies
Schedules
Theoretical studies. Data and constants. Metering
Thermics
Title Joint economic optimization of heat exchanger design and maintenance policy
URI https://dx.doi.org/10.1016/j.applthermaleng.2010.12.033
https://www.proquest.com/docview/869835427
https://hal.science/hal-00730289
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_8gMPjEPXuuD11CeJrb5smaRvu4VhEWT9fVPAtJG2CK267nOtxT_e3X6ZNVxcRBF9D2obJdL7nNwD7CTpc0sRRycok4mksI2kpi4zJNbVlrrnA5uTzi3R0zU9uxM0SHHS9MFhWGWR_K9MbaR1WBoGag-l4PLikTEiv_ihtQtQJ-u2cZ8jlP_7Nyzwo4rk3TpeQEe7-APtPNV6YJEY7a6JxbElb6IXBQcZeU1PLt1gv-WmqHzwJXTv74oUYb3TT0QasB6OSDNtzb8KSrbbg4zOowc9welKPqxmxoQ-Z1F5UTEIPJqkdQZlM7N_QB0zKprCD6KokE42QEojLYcm0QRH-AtdHh1cHoygMUogKnsezyAnDdVakjjnp_JLgzAiXWwSKsYmOM5PFsRPc8NzKMo5LzkUmDfeukGGFt1m-wkpVV_YbEG0Lb7EZaWTauDKy8DR2VOdSl5n3fnrws6ObKgLKOA67uFddOdmdWqS6QqormihP9R6I-dPTFm3jjc_96q5ILXCP8orhjW_Y8zc7_yiCbo-GZwrXMJmJ-dg_tAf9hYufb0-YTNFy7QHpOEH53xRzL7qy9eODylOJIbYk-_7uo27DWhvYxlDQDqzMfj_aXW8ZzUy_Yf0-rA6PT0cX_wEIfw-q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_S9wwFH_oCXMiY18cnm4uiL-Wa5ukbfCHccikeuf9ooK_haRN8MRrD-8c-_PNa9PbjjEQ9mto0vCSvO_v8wBOYjS4hA6DkpZxwJJQBMJENNA6U5EpM8U4FidfTZL8ll3e8bsNOOtqYTCt0vP-lqc33NqPDDw1B_PpdHAdUS6c-IuixkUdO7t9C9GpeA-2hhejfLIKJiCke2N3cRHghDdw8jvNC-PEqGrNFHYuaXO90D9I6b8k1eY9pkzuztXCUdG27S_-4uSNeDp_D--8XkmG7dY_wIapPsLOH2iDn2B0WU-rJTG-FJnUjlvMfBkmqS1BtkzML18KTMomt4OoqiQzhagSCM1hyLwBEt6D2_MfN2d54HspBAXLwmVguWYqLRJLrbBuiDOquc0MYsWYWIWpTsPQcqZZZkQZhiVjPBWaOWtI08KpLZ-hV9WV2QeiTOGUNi20SBprRhSOxjZSmVBl6gygPpx2dJOFBxrHfhePsssoe5DrVJdIdRnF0lG9D3w1e94Cbrxy3vfuiOTaBZJONrxyhWN3squfIu52PhxLHMN4JoZkf0Z9OFo7-NXnMRUJKq99IN1NkO6lYvhFVaZ-XsgsEehli9OD_97qN9jOb67GcnwxGR3C29bPjZ6hL9BbPj2br05RWuoj_xBeAEUoEls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+economic+optimization+of+heat+exchanger+design+and+maintenance+policy&rft.jtitle=Applied+thermal+engineering&rft.au=Caputo%2C+Antonio+C.&rft.au=Pelagagge%2C+Pacifico+M.&rft.au=Salini%2C+Paolo&rft.date=2011-06-01&rft.issn=1359-4311&rft.volume=31&rft.issue=8-9&rft.spage=1381&rft.epage=1392&rft_id=info:doi/10.1016%2Fj.applthermaleng.2010.12.033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2010_12_033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon