Solving the 2D SUSY Gross-Neveu-Yukawa model with conformal truncation
A bstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ 2 -symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless c...
Saved in:
Published in | The journal of high energy physics Vol. 2021; no. 1; pp. 1 - 42 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2021
Springer Nature B.V Springer Nature SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ
2
-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling
g
¯
, and is expected to have a critical point at a tuned value
g
¯
∗
where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ
2
symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of
g
¯
and see the gap close as the critical point is approached, and numerically read off the critical exponent
ν
in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov
C
-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning. |
---|---|
AbstractList | We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a $\mathbb{Z}$2-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling $\overline{g}$, and is expected to have a critical point at a tuned value ${\overline{g}}_{\ast }$ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the $\mathbb{Z}$2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of $\overline{g}$ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning. A bstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ 2 -symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling g ¯ , and is expected to have a critical point at a tuned value g ¯ ∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ 2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of g ¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C -function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning. Abstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ2-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling g ¯ $$ \overline{g} $$ , and is expected to have a critical point at a tuned value g ¯ ∗ $$ {\overline{g}}_{\ast } $$ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of g ¯ $$ \overline{g} $$ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning. We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ 2 -symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling $$ \overline{g} $$ g ¯ , and is expected to have a critical point at a tuned value $$ {\overline{g}}_{\ast } $$ g ¯ ∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ 2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of $$ \overline{g} $$ g ¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C -function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning. We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ2-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling g¯, and is expected to have a critical point at a tuned value g¯∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of g¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning. |
ArticleNumber | 182 |
Author | Walters, Matthew T. Katz, Emanuel Xin, Yuan Fitzpatrick, A. Liam |
Author_xml | – sequence: 1 givenname: A. Liam surname: Fitzpatrick fullname: Fitzpatrick, A. Liam email: fitzpatr@bu.edu organization: Boston University – sequence: 2 givenname: Emanuel surname: Katz fullname: Katz, Emanuel organization: Boston University – sequence: 3 givenname: Matthew T. surname: Walters fullname: Walters, Matthew T. organization: Theoretical Physics Department, CERN, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 4 givenname: Yuan surname: Xin fullname: Xin, Yuan organization: Boston University |
BackLink | https://www.osti.gov/servlets/purl/1833183$$D View this record in Osti.gov |
BookMark | eNp9UU1v1DAQtVCRaBfOXCO4wCF07DiOc0SlX6gCpKWHnqyJM9nNkrVb22nFvydpECAkOIxmNJr35s28I3bgvCPGXnJ4xwGq448Xp1-AvxEg-FuuxRN2yEHUuZZVffBH_YwdxbgD4CWv4ZCdrf1w37tNlraUiQ_Z-np9k50HH2P-ie5pzG_Gb_iA2d63NGQPfdpm1rvOhz0OWQqjs5h6756zpx0OkV78zCt2fXb69eQiv_p8fnny_iq3UkPKO6mUrhq0nW2UJaVrW9RC6alEaDVVVjRW6FJzrUAB16gakFohp4aTFcWKXS68rceduQ39HsN347E3jw0fNgZD6u1AxsoGBapSolWyJV03WBBWLZSi1Y0sJq5XC5ePqTfR9onsdjrOkU2G66KYY8VeL0O3wd-NFJPZ-TG46UYjZC1LBbWeZR0vU3b-XKDulzQOZnbHLO6Y2Z2Je0aUfyGm_Y-vTAH74T84WHBx2uA2FH7r-RfkB4Ikoq4 |
CitedBy_id | crossref_primary_10_1007_JHEP07_2023_052 crossref_primary_10_21468_SciPostPhysCore_7_2_021 crossref_primary_10_1007_JHEP05_2023_197 crossref_primary_10_21468_SciPostPhys_13_2_011 crossref_primary_10_1007_JHEP05_2021_190 |
Cites_doi | 10.1016/0550-3213(91)90102-4 10.1007/JHEP10(2017)213 10.1016/0550-3213(91)90423-U 10.1016/S0550-3213(99)00329-6 10.1023/A:1003677908095 10.1016/0550-3213(91)90206-D 10.1103/PhysRevD.63.105017 10.1016/S0370-2693(01)00410-5 10.1103/PhysRevD.47.4628 10.1016/S0370-2693(98)00432-8 10.1007/JHEP05(2014)143 10.1016/j.nuclphysb.2012.01.012 10.1103/PhysRevD.58.105024 10.1103/PhysRevD.58.125005 10.1016/j.aop.2011.11.015 10.1007/JHEP08(2018)120 10.1007/JHEP10(2020)095 10.1016/S0370-2693(98)01274-X 10.1007/JHEP10(2020)092 10.1103/PhysRevD.52.2446 10.1007/JHEP08(2017)056 10.1016/S0370-2693(00)00540-2 10.1063/1.1301663 10.1016/0550-3213(89)90060-6 10.1088/1126-6708/1999/07/029 10.1103/PhysRevD.60.115006 10.1016/0370-2693(85)90819-6 10.1016/j.physletb.2005.08.003 10.1007/JHEP07(2016)140 10.1016/S0370-2693(02)02270-0 10.1103/PhysRevD.58.125006 10.1103/PhysRevD.51.R6620 10.1103/PhysRevLett.113.231601 10.1016/0550-3213(91)90422-T 10.1088/1742-5468/2008/09/P09004 10.1103/PhysRevD.96.065024 10.1088/1742-5468/2008/03/P03011 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Boston Univ., MA (United States) |
CorporateAuthor_xml | – name: Boston Univ., MA (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
DOI | 10.1007/JHEP01(2021)182 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 42 |
ExternalDocumentID | oai_doaj_org_article_c4ba2a654ac64de89ba3ea7d052d8b43 1833183 10_1007_JHEP01_2021_182 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS AHBXF OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c480t-f46687bacfcb6ce689c39268ce6a0d8e7c2bc285818606018a6b0486a1eb1ec23 |
IEDL.DBID | C6C |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:27:27 EDT 2025 Fri May 19 00:39:26 EDT 2023 Sun Jul 13 04:10:23 EDT 2025 Tue Jul 01 00:59:00 EDT 2025 Thu Apr 24 23:06:50 EDT 2025 Fri Feb 21 02:48:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Conformal Field Theory Nonperturbative Effects |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-f46687bacfcb6ce689c39268ce6a0d8e7c2bc285818606018a6b0486a1eb1ec23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0015845 USDOE Office of Science (SC), High Energy Physics (HEP) |
OpenAccessLink | https://doi.org/10.1007/JHEP01(2021)182 |
PQID | 2494560982 |
PQPubID | 2034718 |
PageCount | 42 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c4ba2a654ac64de89ba3ea7d052d8b43 osti_scitechconnect_1833183 proquest_journals_2494560982 crossref_primary_10_1007_JHEP01_2021_182 crossref_citationtrail_10_1007_JHEP01_2021_182 springer_journals_10_1007_JHEP01_2021_182 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Nature SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Nature – name: SpringerOpen |
References | Friedan, Qiu, Shenker (CR36) 1985; 151 Elias-Miro, Rychkov, Vitale (CR59) 2017; 10 CR32 Cappelli, Friedan, Latorre (CR34) 1991; 352 CR31 Burkardt, Antonuccio, Tsujimaru (CR43) 1998; 58 Anand, Khandker, Walters (CR38) 2020; 10 Hiller, Pinsky, Trittmann (CR23) 2002; 541 Antonuccio, Lunin, Pinsky (CR12) 1998; 442 CR2 Lunin, Pinsky (CR17) 1999; 494 Matsumura, Sakai, Sakai (CR7) 1995; 52 CR6 Elias-Miro, Montull, Riembau (CR57) 2016; 04 CR5 Hiller, Pinsky, Trittmann (CR22) 2001; 63 Filippov, Pinsky (CR21) 2001; 506 Katz, Marques Tavares, Xu (CR1) 2014; 05 CR9 CR49 CR48 CR46 Zamolodchikov (CR64) 1991; 358 CR40 Delfino (CR37) 1999; 554 Antonuccio, Lunin, Pinsky, Pauli, Tsujimaru (CR10) 1998; 58 Hiller, Lunin, Pinsky, Trittmann (CR18) 2000; 482 Anand, Genest, Katz, Khandker, Walters (CR4) 2017; 08 Mussardo (CR67) 2010 Zamolodchikov (CR33) 1986; 43 Fitzpatrick, Katz, Walters (CR42) 2020; 10 Zamolodchikov (CR63) 1991; 358 Burkardt (CR39) 1993; 47 CR19 Katz, Khandker, Walters (CR3) 2016; 07 Watts (CR51) 2012; 859 CR14 CR58 CR56 CR55 CR54 CR53 CR52 CR50 Fitzpatrick, Kaplan, Katz, Vitale, Walters (CR41) 2018; 08 Wozar, Wipf (CR44) 2012; 327 Zamolodchikov (CR62) 1987; 46 Antonuccio, Pinsky, Tsujimaru (CR13) 2000; 30 Antonuccio, Lunin, Pinsky (CR8) 1998; 429 Hiller, Pinsky, Salwen, Trittmann (CR30) 2005; 624 Steinhauer, Wenger (CR45) 2014; 113 Antonuccio, Lunin, Pinsky, Tsujimaru (CR15) 1999; 60 Lassig, Mussardo, Cardy (CR65) 1991; 348 CR29 CR28 Antonuccio, Pauli, Pinsky, Tsujimaru (CR11) 1998; 58 CR27 CR26 CR25 CR24 CR66 CR20 Delfino, Mussardo, Simonetti (CR47) 1995; 51 Kastor, Martinec, Shenker (CR35) 1989; 316 CR61 Antonuccio, Hashimoto, Lunin, Pinsky (CR16) 1999; 07 CR60 14701_CR66 DA Kastor (14701_CR35) 1989; 316 14701_CR24 14701_CR25 JR Hiller (14701_CR23) 2002; 541 14701_CR26 14701_CR27 14701_CR28 N Anand (14701_CR38) 2020; 10 Y Matsumura (14701_CR7) 1995; 52 14701_CR60 14701_CR61 N Anand (14701_CR4) 2017; 08 14701_CR20 AL Fitzpatrick (14701_CR41) 2018; 08 AB Zamolodchikov (14701_CR33) 1986; 43 14701_CR19 G Delfino (14701_CR47) 1995; 51 14701_CR54 14701_CR55 14701_CR56 F Antonuccio (14701_CR8) 1998; 429 14701_CR14 14701_CR58 F Antonuccio (14701_CR12) 1998; 442 F Antonuccio (14701_CR15) 1999; 60 A Cappelli (14701_CR34) 1991; 352 14701_CR50 14701_CR52 D Friedan (14701_CR36) 1985; 151 14701_CR53 JR Hiller (14701_CR18) 2000; 482 G Delfino (14701_CR37) 1999; 554 M Burkardt (14701_CR43) 1998; 58 F Antonuccio (14701_CR16) 1999; 07 AB Zamolodchikov (14701_CR63) 1991; 358 G Mussardo (14701_CR67) 2010 AL Fitzpatrick (14701_CR42) 2020; 10 AB Zamolodchikov (14701_CR62) 1987; 46 JR Hiller (14701_CR30) 2005; 624 14701_CR46 F Antonuccio (14701_CR10) 1998; 58 14701_CR48 14701_CR49 14701_CR5 14701_CR6 14701_CR2 I Filippov (14701_CR21) 2001; 506 14701_CR40 JR Hiller (14701_CR22) 2001; 63 AB Zamolodchikov (14701_CR64) 1991; 358 M Burkardt (14701_CR39) 1993; 47 14701_CR32 M Lassig (14701_CR65) 1991; 348 F Antonuccio (14701_CR11) 1998; 58 J Elias-Miro (14701_CR57) 2016; 04 O Lunin (14701_CR17) 1999; 494 GMT Watts (14701_CR51) 2012; 859 J Elias-Miro (14701_CR59) 2017; 10 E Katz (14701_CR3) 2016; 07 C Wozar (14701_CR44) 2012; 327 14701_CR31 K Steinhauer (14701_CR45) 2014; 113 F Antonuccio (14701_CR13) 2000; 30 14701_CR9 14701_CR29 E Katz (14701_CR1) 2014; 05 |
References_xml | – volume: 352 start-page: 616 year: 1991 ident: CR34 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(91)90102-4 – ident: CR49 – volume: 10 start-page: 213 year: 2017 ident: CR59 publication-title: JHEP doi: 10.1007/JHEP10(2017)213 – volume: 358 start-page: 524 year: 1991 ident: CR63 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(91)90423-U – volume: 554 start-page: 537 year: 1999 ident: CR37 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(99)00329-6 – ident: CR29 – ident: CR54 – ident: CR61 – volume: 30 start-page: 475 year: 2000 ident: CR13 article-title: (1 + 1) publication-title: Found. Phys. doi: 10.1023/A:1003677908095 – ident: CR58 – ident: CR25 – volume: 348 start-page: 591 year: 1991 ident: CR65 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(91)90206-D – volume: 63 start-page: 105017 year: 2001 ident: CR22 article-title: = 1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.63.105017 – ident: CR46 – ident: CR19 – volume: 506 start-page: 221 year: 2001 ident: CR21 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(01)00410-5 – ident: CR50 – volume: 47 start-page: 4628 year: 1993 ident: CR39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.4628 – volume: 429 start-page: 327 year: 1998 ident: CR8 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00432-8 – ident: CR9 – ident: CR32 – volume: 05 start-page: 143 year: 2014 ident: CR1 article-title: 2 publication-title: JHEP doi: 10.1007/JHEP05(2014)143 – ident: CR60 – volume: 43 start-page: 730 year: 1986 ident: CR33 article-title: 2 publication-title: JETP Lett. – ident: CR5 – volume: 859 start-page: 177 year: 2012 ident: CR51 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2012.01.012 – ident: CR26 – volume: 58 start-page: 105024 year: 1998 ident: CR10 article-title: = (8 8) publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.105024 – volume: 58 start-page: 125005 year: 1998 ident: CR43 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.125005 – volume: 327 start-page: 774 year: 2012 ident: CR44 publication-title: Annals Phys. doi: 10.1016/j.aop.2011.11.015 – volume: 08 start-page: 120 year: 2018 ident: CR41 publication-title: JHEP doi: 10.1007/JHEP08(2018)120 – ident: CR66 – volume: 10 start-page: 095 year: 2020 ident: CR38 publication-title: JHEP doi: 10.1007/JHEP10(2020)095 – volume: 442 start-page: 173 year: 1998 ident: CR12 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)01274-X – volume: 10 start-page: 092 year: 2020 ident: CR42 publication-title: JHEP doi: 10.1007/JHEP10(2020)092 – ident: CR14 – ident: CR2 – ident: CR53 – year: 2010 ident: CR67 – volume: 52 start-page: 2446 year: 1995 ident: CR7 article-title: (1 + 1) publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.52.2446 – volume: 08 start-page: 056 year: 2017 ident: CR4 article-title: 2 publication-title: JHEP doi: 10.1007/JHEP08(2017)056 – ident: CR6 – ident: CR56 – volume: 482 start-page: 409 year: 2000 ident: CR18 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(00)00540-2 – volume: 494 start-page: 140 year: 1999 ident: CR17 publication-title: AIP Conf. Proc. doi: 10.1063/1.1301663 – ident: CR40 – ident: CR27 – volume: 316 start-page: 590 year: 1989 ident: CR35 article-title: = 1 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(89)90060-6 – volume: 07 start-page: 029 year: 1999 ident: CR16 publication-title: JHEP doi: 10.1088/1126-6708/1999/07/029 – volume: 60 start-page: 115006 year: 1999 ident: CR15 article-title: (1 + 1) publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.115006 – ident: CR48 – volume: 151 start-page: 37 year: 1985 ident: CR36 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(85)90819-6 – ident: CR52 – volume: 624 start-page: 105 year: 2005 ident: CR30 article-title: = (8 8) 1 + 1 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2005.08.003 – ident: CR31 – volume: 46 start-page: 1090 year: 1987 ident: CR62 publication-title: Sov. J. Nucl. Phys. – volume: 07 start-page: 140 year: 2016 ident: CR3 publication-title: JHEP doi: 10.1007/JHEP07(2016)140 – volume: 541 start-page: 396 year: 2002 ident: CR23 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(02)02270-0 – volume: 58 start-page: 125006 year: 1998 ident: CR11 article-title: = (2 2) publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.125006 – ident: CR55 – volume: 04 start-page: 144 year: 2016 ident: CR57 publication-title: JHEP – ident: CR28 – volume: 51 start-page: 6620 year: 1995 ident: CR47 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.51.R6620 – ident: CR24 – ident: CR20 – volume: 113 start-page: 231601 year: 2014 ident: CR45 article-title: 2 = 1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.231601 – volume: 358 start-page: 497 year: 1991 ident: CR64 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(91)90422-T – ident: 14701_CR14 – volume: 07 start-page: 029 year: 1999 ident: 14701_CR16 publication-title: JHEP doi: 10.1088/1126-6708/1999/07/029 – ident: 14701_CR66 doi: 10.1088/1742-5468/2008/09/P09004 – volume: 316 start-page: 590 year: 1989 ident: 14701_CR35 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(89)90060-6 – ident: 14701_CR9 – ident: 14701_CR5 – volume: 10 start-page: 095 year: 2020 ident: 14701_CR38 publication-title: JHEP doi: 10.1007/JHEP10(2020)095 – ident: 14701_CR20 – ident: 14701_CR24 – volume: 63 start-page: 105017 year: 2001 ident: 14701_CR22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.63.105017 – ident: 14701_CR27 – volume: 358 start-page: 497 year: 1991 ident: 14701_CR64 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(91)90422-T – volume: 58 start-page: 125006 year: 1998 ident: 14701_CR11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.125006 – ident: 14701_CR56 – volume: 442 start-page: 173 year: 1998 ident: 14701_CR12 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)01274-X – volume: 30 start-page: 475 year: 2000 ident: 14701_CR13 publication-title: Found. Phys. doi: 10.1023/A:1003677908095 – ident: 14701_CR52 – volume: 46 start-page: 1090 year: 1987 ident: 14701_CR62 publication-title: Sov. J. Nucl. Phys. – volume: 60 start-page: 115006 year: 1999 ident: 14701_CR15 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.115006 – ident: 14701_CR40 – volume: 859 start-page: 177 year: 2012 ident: 14701_CR51 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2012.01.012 – volume: 554 start-page: 537 year: 1999 ident: 14701_CR37 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(99)00329-6 – volume: 43 start-page: 730 year: 1986 ident: 14701_CR33 publication-title: JETP Lett. – volume: 51 start-page: 6620 year: 1995 ident: 14701_CR47 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.51.R6620 – volume: 624 start-page: 105 year: 2005 ident: 14701_CR30 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2005.08.003 – ident: 14701_CR48 – volume: 04 start-page: 144 year: 2016 ident: 14701_CR57 publication-title: JHEP – volume: 506 start-page: 221 year: 2001 ident: 14701_CR21 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(01)00410-5 – ident: 14701_CR28 – ident: 14701_CR61 – volume: 47 start-page: 4628 year: 1993 ident: 14701_CR39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.4628 – ident: 14701_CR55 – volume: 429 start-page: 327 year: 1998 ident: 14701_CR8 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00432-8 – volume: 541 start-page: 396 year: 2002 ident: 14701_CR23 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(02)02270-0 – volume: 08 start-page: 056 year: 2017 ident: 14701_CR4 publication-title: JHEP doi: 10.1007/JHEP08(2017)056 – volume-title: Statistical Field Theory year: 2010 ident: 14701_CR67 – ident: 14701_CR60 – volume: 08 start-page: 120 year: 2018 ident: 14701_CR41 publication-title: JHEP doi: 10.1007/JHEP08(2018)120 – ident: 14701_CR29 – volume: 05 start-page: 143 year: 2014 ident: 14701_CR1 publication-title: JHEP doi: 10.1007/JHEP05(2014)143 – ident: 14701_CR25 – volume: 58 start-page: 125005 year: 1998 ident: 14701_CR43 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.125005 – ident: 14701_CR49 – volume: 58 start-page: 105024 year: 1998 ident: 14701_CR10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.105024 – volume: 10 start-page: 213 year: 2017 ident: 14701_CR59 publication-title: JHEP doi: 10.1007/JHEP10(2017)213 – volume: 10 start-page: 092 year: 2020 ident: 14701_CR42 publication-title: JHEP doi: 10.1007/JHEP10(2020)092 – volume: 113 start-page: 231601 year: 2014 ident: 14701_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.231601 – volume: 482 start-page: 409 year: 2000 ident: 14701_CR18 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(00)00540-2 – ident: 14701_CR58 doi: 10.1103/PhysRevD.96.065024 – ident: 14701_CR31 – volume: 07 start-page: 140 year: 2016 ident: 14701_CR3 publication-title: JHEP doi: 10.1007/JHEP07(2016)140 – volume: 494 start-page: 140 year: 1999 ident: 14701_CR17 publication-title: AIP Conf. Proc. doi: 10.1063/1.1301663 – volume: 52 start-page: 2446 year: 1995 ident: 14701_CR7 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.52.2446 – ident: 14701_CR54 – ident: 14701_CR50 doi: 10.1088/1742-5468/2008/03/P03011 – volume: 327 start-page: 774 year: 2012 ident: 14701_CR44 publication-title: Annals Phys. doi: 10.1016/j.aop.2011.11.015 – volume: 358 start-page: 524 year: 1991 ident: 14701_CR63 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(91)90423-U – ident: 14701_CR6 – ident: 14701_CR46 – ident: 14701_CR26 – volume: 352 start-page: 616 year: 1991 ident: 14701_CR34 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(91)90102-4 – ident: 14701_CR2 – ident: 14701_CR32 – volume: 348 start-page: 591 year: 1991 ident: 14701_CR65 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(91)90206-D – volume: 151 start-page: 37 year: 1985 ident: 14701_CR36 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(85)90819-6 – ident: 14701_CR19 – ident: 14701_CR53 |
SSID | ssj0015190 |
Score | 2.4055316 |
Snippet | A
bstract
We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a... We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar... Abstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Classical and Quantum Gravitation Conformal Field Theory Critical point Elementary Particles High energy physics Ising model Nonperturbative Effects Operators (mathematics) Phase diagrams Phase transitions Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Supersymmetry Symmetry Two dimensional flow Two dimensional models |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJKReqgJF3S4gH3qAQ8CJHcc58tquOCCk7UpwssZj76Wr3arswt9nJg9akFAvnBIljj2aie1vxqNvhPg-izWkqE1mrUIO3dQZaB2yGPQMUVWRoBJnW1zb8dRc3Za3_5T64pywlh64VdwJmgAF2NIAWhOTqwPoBFVUZRFdMA3PJ-15vTPVnR8QLlE9kY-qTq7GlzcqPyRHPz_KXfFiD2qo-umypCn1Ama-OhltNpzRZ_GpQ4rytJVwS3xIi22x2WRs4v2OGE2Wcw4GSEJwsriQk-nkTv7g8bLr9JDW2d36FzyCbErdSA63SnJ9G4g6l6s_60Ubq_sipqPLn-fjrCuKkKFxapXNjLWuCoAzDBaTdTUSxLGObkFFlyosAhauZKY65lpxYAPT6kFOq3LCQu-KjcVykb4KiTmYUOcGtHHGaQioVEyhrg0GyEsYiONeTR47xnAuXDH3Pddxq1fPevWk14E4fP7gd0uW8XbTM9b7czNmuW4ekO19Z3v_P9sPxJCt5gksMOMtcmoQrqh7zSvVQOz1xvTdxLz35G0SZFQ1S3DUG_jv6zek_fYe0g7FR-6vjd_siQ0yddonRLMKB83P-wQYSvFK priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVgKyQuiE8RWpAPHNqDqRM7jnNCFHZZ9bCqWFZqT9F47OXAalO6u_D38STOVkUqp0SJ86EZe_z8PHrD2PulryF4pYUxEom6qQUo5YR3aokoKx-hEmVbzMx0oc8vy8tEuG1SWuUQE7tA7Vskjvw0LhPiXC9rW3y8_iWoahTtrqYSGg_ZQQzB1o7Ywdl4dvFtv48Q8YkcBH1kdXo-HV_I_Dgu-POT3BZ35qJOsj8e2ji07sDNf3ZIu4ln8pQ9SYiRf-pd_Iw9COvn7FGXuYmbF2wyb1dECvCI5Hjxhc8X8yv-lb4nZuF32Imr3U_4A7wrecOJduVxCdxB1RXf3uzWPWf3ki0m4--fpyIVRxCordyKpTbGVg5wic5gMLbGCHWMjacgvQ0VFg4LW5JiHWmuWDCO5PUgj9E5YKFesdG6XYfXjGMO2tW5BqWttgocSumDq2uNDvISMvZhMFODSTmcClismkHzuLdrQ3Ztol0zdrx_4LoXzbi_6RnZfd-M1K67C-3NjyYNnga1gwJMqQGN9sHWDlSAysuy8NZplbFD8loTQQMp3yKlCOE2vl5RxMrY0eDMJg3QTXPbnTJ2Mjj49vY9f_vm_686ZI-pZc_QHLFRdGJ4GzHL1r1LHfMvwJrpHA priority: 102 providerName: ProQuest |
Title | Solving the 2D SUSY Gross-Neveu-Yukawa model with conformal truncation |
URI | https://link.springer.com/article/10.1007/JHEP01(2021)182 https://www.proquest.com/docview/2494560982 https://www.osti.gov/servlets/purl/1833183 https://doaj.org/article/c4ba2a654ac64de89ba3ea7d052d8b43 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swECaaBAW6FH2iblKDQ4dkUEuJFEWNiWvHyGAEdQ0kE3E80ksNu2js9u_3Tg8XSZGhi0RJJEXcieR3R-o7IT4uYw0papNZq5BdN3UGWocsBr1EVFUkqMS7LWZ2ujBXN-VNR5LE_8I8WL__fDUdX6v8lEz0_Iyg8IE4KnNdcYyGkR3tlwsIhqiet-ffQvemnIaZn04b6kH3UOWDhdBmfpm8EM87YCjPW02-FE_S-pV42mzQxLvXYjLfrNj2lwTYZPFFzhfzW3nJ78tm6VfaZbe77_AbZBPZRrJ3VZKl2yDSldz-3K1b19wbsZiMv42mWRcDIUPj1DZbGmtdFQCXGCwm62okRGMdJUFFlyosAhauZGI6plZxYAOz6EFOg3DCQr8Vh-vNOr0TEnMwoc4NaOOM0xBQqZhCXRsMkJcwEJ96MXnsCMI5TsXK99TGrVw9y9WTXAfidF_gR8uN8XjWC5b7PhuTWjc3SNe-6yMeTYACbGkArYnJ1QF0giqqsoguGD0Qx6w1T9iACW6RdwLhlqrXPDANxEmvTN_1wztPxiUhRFVzC856Bf99_Ehr3_9H3mPxjJOtV-ZEHJJG0wfCKdswFAducjkURxfj2fVXuhoVZth8t8PG8qfjojj_A79p5Ew |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFOEFvABpPYQ6tiO4xwQAtrt9sEKabtSewr22MuB1W7p7lLxp_iNzOSxVZHKradEie1EM_bM57H9DWNvxqF0MSidGiOAQjdl6pTyafBqDCCKgFCJdlsMTH-kD0_z0zX2pzsLQ9sqO5tYG-owA4qR7-A0AX29KK38cP4zpaxRtLrapdBousVR_H2JU7b5-4Nd1O9bKXt7J5_7aZtVIAVtxSIda2Ns4R2MwRuIxpaAGMFYvHUi2FiA9CBtTlRvRFZinfHES-cyNGsRiOgATf4drdCT08n03v5q1QLRkOjog0Sxc9jf-yqyLYludDuz8prnqxME4GWGA_kauP1nPbZ2c72H7EGLT_nHpkM9Ymtx-pjdrfeJwvwJ6w1nEwpBcMSNXO7y4Wh4xvfpe-kg_orL9Gz5w106XifY4RTk5TjhroHxhC8ultMmQviUjW5FaM_Y-nQ2jc8Zh8xpX2baKW21Vc6DECH6stTgXZa7hL3rxFRBy1NO6TImVcew3Mi1IrlWKNeEba0qnDcUHTcX_URyXxUjbu36wezie9UO1Qq0d9KZXDswOkRbeqeiK4LIZbBeq4RtkNYqhCjEswu0IQkW2Lwi-5iwzU6ZVWsO5tVV503Ydqfgq9c3_O2L_zf1mt3rn3w5ro4PBkcb7D7VamJDm2wdFRpfIlpa-Fd1F-Xs222Pib_oqiTl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTiBeEJ8ibIAfQNoeQh3HdZwHhBht6TZUVZRK21OwLw4Pq5ptbZn41_jruMtHpyGNtz0lSuwkurPPvztffsfY2yJPrc9jFWotgEI3aWjj2IW5iwsAkeQIlSjbYqxHM3V00jvZYn_af2EorbK1iZWhzkugGHkX3QRc60VqZLdo0iIm_eHH84uQKkjRTmtbTqMeIsf-9xW6b8sPh33U9Tsph4Pvn0dhU2EgBGXEKiyU1iZxFgpwGrw2KSBe0AZPrciNT0A6kKZHtG9EXGKsdsRRZyM0cR6I9ADN_3ZCXlGHbR8MxpNvmz0MxEaiJRMSSfdoNJiIaE_iorofGXljHazKBeChxGl9A-r-sztbLXrDR-xhg1b5p3p4PWZbfvGE3auyRmH5lA2n5ZwCEhxRJJd9Pp1NT_kXel849r_8Ojxdn9kry6tyO5xCvhzd7womz_nqcr2o44XP2OxOxPacdRblwr9gHCKrXBopGyujTGwdCJF7l6YKnI16NmDvWzFl0LCWU_GMedbyLddyzUiuGco1YHubDuc1YcftTQ9I7ptmxLRdXSgvf2bNxM1AOSut7ikLWuXepM7G3ia56MncOBUHbIe0liFgIdZdoPQkWOHjY7KWAdttlZk1xmGZXQ_lgO23Cr6-fcvXvvz_o96w-zgfsq-H4-Md9oA61YGiXdZBffpXCJ1W7nUzRjn7cdfT4i-CoSp3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+the+2D+SUSY+Gross-Neveu-Yukawa+model+with+conformal+truncation&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fitzpatrick%2C+A.+Liam&rft.au=Katz%2C+Emanuel&rft.au=Walters%2C+Matthew+T.&rft.au=Xin%2C+Yuan&rft.date=2021-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282021%29182&rft.externalDocID=10_1007_JHEP01_2021_182 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |