Solving the 2D SUSY Gross-Neveu-Yukawa model with conformal truncation

A bstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ 2 -symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless c...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 1; pp. 1 - 42
Main Authors Fitzpatrick, A. Liam, Katz, Emanuel, Walters, Matthew T., Xin, Yuan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
Springer Nature B.V
Springer Nature
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ 2 -symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling g ¯ , and is expected to have a critical point at a tuned value g ¯ ∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ 2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of g ¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C -function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning.
AbstractList We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a $\mathbb{Z}$2-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling $\overline{g}$, and is expected to have a critical point at a tuned value ${\overline{g}}_{\ast }$ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the $\mathbb{Z}$2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of $\overline{g}$ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning.
A bstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ 2 -symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling g ¯ , and is expected to have a critical point at a tuned value g ¯ ∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ 2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of g ¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C -function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning.
Abstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ2-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling g ¯ $$ \overline{g} $$ , and is expected to have a critical point at a tuned value g ¯ ∗ $$ {\overline{g}}_{\ast } $$ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of g ¯ $$ \overline{g} $$ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning.
We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ 2 -symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling $$ \overline{g} $$ g ¯ , and is expected to have a critical point at a tuned value $$ {\overline{g}}_{\ast } $$ g ¯ ∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ 2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of $$ \overline{g} $$ g ¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C -function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning.
We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a ℤ2-symmetric cubic superpotential, aka the 2d Wess-Zumino model. The theory depends on a single dimensionless coupling g¯, and is expected to have a critical point at a tuned value g¯∗ where it flows in the IR to the Tricritical Ising Model (TIM); the theory spontaneously breaks the ℤ2 symmetry on one side of this phase transition, and breaks SUSY on the other side. We calculate the spectrum of energies as a function of g¯ and see the gap close as the critical point is approached, and numerically read off the critical exponent ν in TIM. Beyond the critical point, the gap remains nearly zero, in agreement with the expectation of a massless Goldstino. We also study spectral functions of local operators on both sides of the phase transition and compare to analytic predictions where possible. In particular, we use the Zamolodchikov C-function to map the entire phase diagram of the theory. Crucial to this analysis is the fact that our truncation is able to preserve supersymmetry sufficiently to avoid any additional fine tuning.
ArticleNumber 182
Author Walters, Matthew T.
Katz, Emanuel
Xin, Yuan
Fitzpatrick, A. Liam
Author_xml – sequence: 1
  givenname: A. Liam
  surname: Fitzpatrick
  fullname: Fitzpatrick, A. Liam
  email: fitzpatr@bu.edu
  organization: Boston University
– sequence: 2
  givenname: Emanuel
  surname: Katz
  fullname: Katz, Emanuel
  organization: Boston University
– sequence: 3
  givenname: Matthew T.
  surname: Walters
  fullname: Walters, Matthew T.
  organization: Theoretical Physics Department, CERN, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 4
  givenname: Yuan
  surname: Xin
  fullname: Xin, Yuan
  organization: Boston University
BackLink https://www.osti.gov/servlets/purl/1833183$$D View this record in Osti.gov
BookMark eNp9UU1v1DAQtVCRaBfOXCO4wCF07DiOc0SlX6gCpKWHnqyJM9nNkrVb22nFvydpECAkOIxmNJr35s28I3bgvCPGXnJ4xwGq448Xp1-AvxEg-FuuxRN2yEHUuZZVffBH_YwdxbgD4CWv4ZCdrf1w37tNlraUiQ_Z-np9k50HH2P-ie5pzG_Gb_iA2d63NGQPfdpm1rvOhz0OWQqjs5h6756zpx0OkV78zCt2fXb69eQiv_p8fnny_iq3UkPKO6mUrhq0nW2UJaVrW9RC6alEaDVVVjRW6FJzrUAB16gakFohp4aTFcWKXS68rceduQ39HsN347E3jw0fNgZD6u1AxsoGBapSolWyJV03WBBWLZSi1Y0sJq5XC5ePqTfR9onsdjrOkU2G66KYY8VeL0O3wd-NFJPZ-TG46UYjZC1LBbWeZR0vU3b-XKDulzQOZnbHLO6Y2Z2Je0aUfyGm_Y-vTAH74T84WHBx2uA2FH7r-RfkB4Ikoq4
CitedBy_id crossref_primary_10_1007_JHEP07_2023_052
crossref_primary_10_21468_SciPostPhysCore_7_2_021
crossref_primary_10_1007_JHEP05_2023_197
crossref_primary_10_21468_SciPostPhys_13_2_011
crossref_primary_10_1007_JHEP05_2021_190
Cites_doi 10.1016/0550-3213(91)90102-4
10.1007/JHEP10(2017)213
10.1016/0550-3213(91)90423-U
10.1016/S0550-3213(99)00329-6
10.1023/A:1003677908095
10.1016/0550-3213(91)90206-D
10.1103/PhysRevD.63.105017
10.1016/S0370-2693(01)00410-5
10.1103/PhysRevD.47.4628
10.1016/S0370-2693(98)00432-8
10.1007/JHEP05(2014)143
10.1016/j.nuclphysb.2012.01.012
10.1103/PhysRevD.58.105024
10.1103/PhysRevD.58.125005
10.1016/j.aop.2011.11.015
10.1007/JHEP08(2018)120
10.1007/JHEP10(2020)095
10.1016/S0370-2693(98)01274-X
10.1007/JHEP10(2020)092
10.1103/PhysRevD.52.2446
10.1007/JHEP08(2017)056
10.1016/S0370-2693(00)00540-2
10.1063/1.1301663
10.1016/0550-3213(89)90060-6
10.1088/1126-6708/1999/07/029
10.1103/PhysRevD.60.115006
10.1016/0370-2693(85)90819-6
10.1016/j.physletb.2005.08.003
10.1007/JHEP07(2016)140
10.1016/S0370-2693(02)02270-0
10.1103/PhysRevD.58.125006
10.1103/PhysRevD.51.R6620
10.1103/PhysRevLett.113.231601
10.1016/0550-3213(91)90422-T
10.1088/1742-5468/2008/09/P09004
10.1103/PhysRevD.96.065024
10.1088/1742-5468/2008/03/P03011
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Boston Univ., MA (United States)
CorporateAuthor_xml – name: Boston Univ., MA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP01(2021)182
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList


CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 42
ExternalDocumentID oai_doaj_org_article_c4ba2a654ac64de89ba3ea7d052d8b43
1833183
10_1007_JHEP01_2021_182
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
AHBXF
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c480t-f46687bacfcb6ce689c39268ce6a0d8e7c2bc285818606018a6b0486a1eb1ec23
IEDL.DBID C6C
ISSN 1029-8479
IngestDate Wed Aug 27 01:27:27 EDT 2025
Fri May 19 00:39:26 EDT 2023
Sun Jul 13 04:10:23 EDT 2025
Tue Jul 01 00:59:00 EDT 2025
Thu Apr 24 23:06:50 EDT 2025
Fri Feb 21 02:48:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Conformal Field Theory
Nonperturbative Effects
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-f46687bacfcb6ce689c39268ce6a0d8e7c2bc285818606018a6b0486a1eb1ec23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0015845
USDOE Office of Science (SC), High Energy Physics (HEP)
OpenAccessLink https://doi.org/10.1007/JHEP01(2021)182
PQID 2494560982
PQPubID 2034718
PageCount 42
ParticipantIDs doaj_primary_oai_doaj_org_article_c4ba2a654ac64de89ba3ea7d052d8b43
osti_scitechconnect_1833183
proquest_journals_2494560982
crossref_primary_10_1007_JHEP01_2021_182
crossref_citationtrail_10_1007_JHEP01_2021_182
springer_journals_10_1007_JHEP01_2021_182
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Nature
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Nature
– name: SpringerOpen
References Friedan, Qiu, Shenker (CR36) 1985; 151
Elias-Miro, Rychkov, Vitale (CR59) 2017; 10
CR32
Cappelli, Friedan, Latorre (CR34) 1991; 352
CR31
Burkardt, Antonuccio, Tsujimaru (CR43) 1998; 58
Anand, Khandker, Walters (CR38) 2020; 10
Hiller, Pinsky, Trittmann (CR23) 2002; 541
Antonuccio, Lunin, Pinsky (CR12) 1998; 442
CR2
Lunin, Pinsky (CR17) 1999; 494
Matsumura, Sakai, Sakai (CR7) 1995; 52
CR6
Elias-Miro, Montull, Riembau (CR57) 2016; 04
CR5
Hiller, Pinsky, Trittmann (CR22) 2001; 63
Filippov, Pinsky (CR21) 2001; 506
Katz, Marques Tavares, Xu (CR1) 2014; 05
CR9
CR49
CR48
CR46
Zamolodchikov (CR64) 1991; 358
CR40
Delfino (CR37) 1999; 554
Antonuccio, Lunin, Pinsky, Pauli, Tsujimaru (CR10) 1998; 58
Hiller, Lunin, Pinsky, Trittmann (CR18) 2000; 482
Anand, Genest, Katz, Khandker, Walters (CR4) 2017; 08
Mussardo (CR67) 2010
Zamolodchikov (CR33) 1986; 43
Fitzpatrick, Katz, Walters (CR42) 2020; 10
Zamolodchikov (CR63) 1991; 358
Burkardt (CR39) 1993; 47
CR19
Katz, Khandker, Walters (CR3) 2016; 07
Watts (CR51) 2012; 859
CR14
CR58
CR56
CR55
CR54
CR53
CR52
CR50
Fitzpatrick, Kaplan, Katz, Vitale, Walters (CR41) 2018; 08
Wozar, Wipf (CR44) 2012; 327
Zamolodchikov (CR62) 1987; 46
Antonuccio, Pinsky, Tsujimaru (CR13) 2000; 30
Antonuccio, Lunin, Pinsky (CR8) 1998; 429
Hiller, Pinsky, Salwen, Trittmann (CR30) 2005; 624
Steinhauer, Wenger (CR45) 2014; 113
Antonuccio, Lunin, Pinsky, Tsujimaru (CR15) 1999; 60
Lassig, Mussardo, Cardy (CR65) 1991; 348
CR29
CR28
Antonuccio, Pauli, Pinsky, Tsujimaru (CR11) 1998; 58
CR27
CR26
CR25
CR24
CR66
CR20
Delfino, Mussardo, Simonetti (CR47) 1995; 51
Kastor, Martinec, Shenker (CR35) 1989; 316
CR61
Antonuccio, Hashimoto, Lunin, Pinsky (CR16) 1999; 07
CR60
14701_CR66
DA Kastor (14701_CR35) 1989; 316
14701_CR24
14701_CR25
JR Hiller (14701_CR23) 2002; 541
14701_CR26
14701_CR27
14701_CR28
N Anand (14701_CR38) 2020; 10
Y Matsumura (14701_CR7) 1995; 52
14701_CR60
14701_CR61
N Anand (14701_CR4) 2017; 08
14701_CR20
AL Fitzpatrick (14701_CR41) 2018; 08
AB Zamolodchikov (14701_CR33) 1986; 43
14701_CR19
G Delfino (14701_CR47) 1995; 51
14701_CR54
14701_CR55
14701_CR56
F Antonuccio (14701_CR8) 1998; 429
14701_CR14
14701_CR58
F Antonuccio (14701_CR12) 1998; 442
F Antonuccio (14701_CR15) 1999; 60
A Cappelli (14701_CR34) 1991; 352
14701_CR50
14701_CR52
D Friedan (14701_CR36) 1985; 151
14701_CR53
JR Hiller (14701_CR18) 2000; 482
G Delfino (14701_CR37) 1999; 554
M Burkardt (14701_CR43) 1998; 58
F Antonuccio (14701_CR16) 1999; 07
AB Zamolodchikov (14701_CR63) 1991; 358
G Mussardo (14701_CR67) 2010
AL Fitzpatrick (14701_CR42) 2020; 10
AB Zamolodchikov (14701_CR62) 1987; 46
JR Hiller (14701_CR30) 2005; 624
14701_CR46
F Antonuccio (14701_CR10) 1998; 58
14701_CR48
14701_CR49
14701_CR5
14701_CR6
14701_CR2
I Filippov (14701_CR21) 2001; 506
14701_CR40
JR Hiller (14701_CR22) 2001; 63
AB Zamolodchikov (14701_CR64) 1991; 358
M Burkardt (14701_CR39) 1993; 47
14701_CR32
M Lassig (14701_CR65) 1991; 348
F Antonuccio (14701_CR11) 1998; 58
J Elias-Miro (14701_CR57) 2016; 04
O Lunin (14701_CR17) 1999; 494
GMT Watts (14701_CR51) 2012; 859
J Elias-Miro (14701_CR59) 2017; 10
E Katz (14701_CR3) 2016; 07
C Wozar (14701_CR44) 2012; 327
14701_CR31
K Steinhauer (14701_CR45) 2014; 113
F Antonuccio (14701_CR13) 2000; 30
14701_CR9
14701_CR29
E Katz (14701_CR1) 2014; 05
References_xml – volume: 352
  start-page: 616
  year: 1991
  ident: CR34
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90102-4
– ident: CR49
– volume: 10
  start-page: 213
  year: 2017
  ident: CR59
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)213
– volume: 358
  start-page: 524
  year: 1991
  ident: CR63
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90423-U
– volume: 554
  start-page: 537
  year: 1999
  ident: CR37
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(99)00329-6
– ident: CR29
– ident: CR54
– ident: CR61
– volume: 30
  start-page: 475
  year: 2000
  ident: CR13
  article-title: (1 + 1)
  publication-title: Found. Phys.
  doi: 10.1023/A:1003677908095
– ident: CR58
– ident: CR25
– volume: 348
  start-page: 591
  year: 1991
  ident: CR65
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90206-D
– volume: 63
  start-page: 105017
  year: 2001
  ident: CR22
  article-title: = 1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.63.105017
– ident: CR46
– ident: CR19
– volume: 506
  start-page: 221
  year: 2001
  ident: CR21
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(01)00410-5
– ident: CR50
– volume: 47
  start-page: 4628
  year: 1993
  ident: CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.4628
– volume: 429
  start-page: 327
  year: 1998
  ident: CR8
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00432-8
– ident: CR9
– ident: CR32
– volume: 05
  start-page: 143
  year: 2014
  ident: CR1
  article-title: 2
  publication-title: JHEP
  doi: 10.1007/JHEP05(2014)143
– ident: CR60
– volume: 43
  start-page: 730
  year: 1986
  ident: CR33
  article-title: 2
  publication-title: JETP Lett.
– ident: CR5
– volume: 859
  start-page: 177
  year: 2012
  ident: CR51
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2012.01.012
– ident: CR26
– volume: 58
  start-page: 105024
  year: 1998
  ident: CR10
  article-title: = (8 8)
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.105024
– volume: 58
  start-page: 125005
  year: 1998
  ident: CR43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.125005
– volume: 327
  start-page: 774
  year: 2012
  ident: CR44
  publication-title: Annals Phys.
  doi: 10.1016/j.aop.2011.11.015
– volume: 08
  start-page: 120
  year: 2018
  ident: CR41
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)120
– ident: CR66
– volume: 10
  start-page: 095
  year: 2020
  ident: CR38
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)095
– volume: 442
  start-page: 173
  year: 1998
  ident: CR12
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)01274-X
– volume: 10
  start-page: 092
  year: 2020
  ident: CR42
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)092
– ident: CR14
– ident: CR2
– ident: CR53
– year: 2010
  ident: CR67
– volume: 52
  start-page: 2446
  year: 1995
  ident: CR7
  article-title: (1 + 1)
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.52.2446
– volume: 08
  start-page: 056
  year: 2017
  ident: CR4
  article-title: 2
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)056
– ident: CR6
– ident: CR56
– volume: 482
  start-page: 409
  year: 2000
  ident: CR18
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(00)00540-2
– volume: 494
  start-page: 140
  year: 1999
  ident: CR17
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.1301663
– ident: CR40
– ident: CR27
– volume: 316
  start-page: 590
  year: 1989
  ident: CR35
  article-title: = 1
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(89)90060-6
– volume: 07
  start-page: 029
  year: 1999
  ident: CR16
  publication-title: JHEP
  doi: 10.1088/1126-6708/1999/07/029
– volume: 60
  start-page: 115006
  year: 1999
  ident: CR15
  article-title: (1 + 1)
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.115006
– ident: CR48
– volume: 151
  start-page: 37
  year: 1985
  ident: CR36
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(85)90819-6
– ident: CR52
– volume: 624
  start-page: 105
  year: 2005
  ident: CR30
  article-title: = (8 8) 1 + 1
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2005.08.003
– ident: CR31
– volume: 46
  start-page: 1090
  year: 1987
  ident: CR62
  publication-title: Sov. J. Nucl. Phys.
– volume: 07
  start-page: 140
  year: 2016
  ident: CR3
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)140
– volume: 541
  start-page: 396
  year: 2002
  ident: CR23
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(02)02270-0
– volume: 58
  start-page: 125006
  year: 1998
  ident: CR11
  article-title: = (2 2)
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.125006
– ident: CR55
– volume: 04
  start-page: 144
  year: 2016
  ident: CR57
  publication-title: JHEP
– ident: CR28
– volume: 51
  start-page: 6620
  year: 1995
  ident: CR47
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.51.R6620
– ident: CR24
– ident: CR20
– volume: 113
  start-page: 231601
  year: 2014
  ident: CR45
  article-title: 2 = 1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.231601
– volume: 358
  start-page: 497
  year: 1991
  ident: CR64
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90422-T
– ident: 14701_CR14
– volume: 07
  start-page: 029
  year: 1999
  ident: 14701_CR16
  publication-title: JHEP
  doi: 10.1088/1126-6708/1999/07/029
– ident: 14701_CR66
  doi: 10.1088/1742-5468/2008/09/P09004
– volume: 316
  start-page: 590
  year: 1989
  ident: 14701_CR35
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(89)90060-6
– ident: 14701_CR9
– ident: 14701_CR5
– volume: 10
  start-page: 095
  year: 2020
  ident: 14701_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)095
– ident: 14701_CR20
– ident: 14701_CR24
– volume: 63
  start-page: 105017
  year: 2001
  ident: 14701_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.63.105017
– ident: 14701_CR27
– volume: 358
  start-page: 497
  year: 1991
  ident: 14701_CR64
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90422-T
– volume: 58
  start-page: 125006
  year: 1998
  ident: 14701_CR11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.125006
– ident: 14701_CR56
– volume: 442
  start-page: 173
  year: 1998
  ident: 14701_CR12
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)01274-X
– volume: 30
  start-page: 475
  year: 2000
  ident: 14701_CR13
  publication-title: Found. Phys.
  doi: 10.1023/A:1003677908095
– ident: 14701_CR52
– volume: 46
  start-page: 1090
  year: 1987
  ident: 14701_CR62
  publication-title: Sov. J. Nucl. Phys.
– volume: 60
  start-page: 115006
  year: 1999
  ident: 14701_CR15
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.60.115006
– ident: 14701_CR40
– volume: 859
  start-page: 177
  year: 2012
  ident: 14701_CR51
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2012.01.012
– volume: 554
  start-page: 537
  year: 1999
  ident: 14701_CR37
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(99)00329-6
– volume: 43
  start-page: 730
  year: 1986
  ident: 14701_CR33
  publication-title: JETP Lett.
– volume: 51
  start-page: 6620
  year: 1995
  ident: 14701_CR47
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.51.R6620
– volume: 624
  start-page: 105
  year: 2005
  ident: 14701_CR30
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2005.08.003
– ident: 14701_CR48
– volume: 04
  start-page: 144
  year: 2016
  ident: 14701_CR57
  publication-title: JHEP
– volume: 506
  start-page: 221
  year: 2001
  ident: 14701_CR21
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(01)00410-5
– ident: 14701_CR28
– ident: 14701_CR61
– volume: 47
  start-page: 4628
  year: 1993
  ident: 14701_CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.4628
– ident: 14701_CR55
– volume: 429
  start-page: 327
  year: 1998
  ident: 14701_CR8
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00432-8
– volume: 541
  start-page: 396
  year: 2002
  ident: 14701_CR23
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(02)02270-0
– volume: 08
  start-page: 056
  year: 2017
  ident: 14701_CR4
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)056
– volume-title: Statistical Field Theory
  year: 2010
  ident: 14701_CR67
– ident: 14701_CR60
– volume: 08
  start-page: 120
  year: 2018
  ident: 14701_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)120
– ident: 14701_CR29
– volume: 05
  start-page: 143
  year: 2014
  ident: 14701_CR1
  publication-title: JHEP
  doi: 10.1007/JHEP05(2014)143
– ident: 14701_CR25
– volume: 58
  start-page: 125005
  year: 1998
  ident: 14701_CR43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.125005
– ident: 14701_CR49
– volume: 58
  start-page: 105024
  year: 1998
  ident: 14701_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.58.105024
– volume: 10
  start-page: 213
  year: 2017
  ident: 14701_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)213
– volume: 10
  start-page: 092
  year: 2020
  ident: 14701_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP10(2020)092
– volume: 113
  start-page: 231601
  year: 2014
  ident: 14701_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.231601
– volume: 482
  start-page: 409
  year: 2000
  ident: 14701_CR18
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(00)00540-2
– ident: 14701_CR58
  doi: 10.1103/PhysRevD.96.065024
– ident: 14701_CR31
– volume: 07
  start-page: 140
  year: 2016
  ident: 14701_CR3
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)140
– volume: 494
  start-page: 140
  year: 1999
  ident: 14701_CR17
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.1301663
– volume: 52
  start-page: 2446
  year: 1995
  ident: 14701_CR7
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.52.2446
– ident: 14701_CR54
– ident: 14701_CR50
  doi: 10.1088/1742-5468/2008/03/P03011
– volume: 327
  start-page: 774
  year: 2012
  ident: 14701_CR44
  publication-title: Annals Phys.
  doi: 10.1016/j.aop.2011.11.015
– volume: 358
  start-page: 524
  year: 1991
  ident: 14701_CR63
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90423-U
– ident: 14701_CR6
– ident: 14701_CR46
– ident: 14701_CR26
– volume: 352
  start-page: 616
  year: 1991
  ident: 14701_CR34
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90102-4
– ident: 14701_CR2
– ident: 14701_CR32
– volume: 348
  start-page: 591
  year: 1991
  ident: 14701_CR65
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(91)90206-D
– volume: 151
  start-page: 37
  year: 1985
  ident: 14701_CR36
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(85)90819-6
– ident: 14701_CR19
– ident: 14701_CR53
SSID ssj0015190
Score 2.4055316
Snippet A bstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a...
We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar...
Abstract We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a...
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classical and Quantum Gravitation
Conformal Field Theory
Critical point
Elementary Particles
High energy physics
Ising model
Nonperturbative Effects
Operators (mathematics)
Phase diagrams
Phase transitions
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Supersymmetry
Symmetry
Two dimensional flow
Two dimensional models
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJKReqgJF3S4gH3qAQ8CJHcc58tquOCCk7UpwssZj76Wr3arswt9nJg9akFAvnBIljj2aie1vxqNvhPg-izWkqE1mrUIO3dQZaB2yGPQMUVWRoBJnW1zb8dRc3Za3_5T64pywlh64VdwJmgAF2NIAWhOTqwPoBFVUZRFdMA3PJ-15vTPVnR8QLlE9kY-qTq7GlzcqPyRHPz_KXfFiD2qo-umypCn1Ama-OhltNpzRZ_GpQ4rytJVwS3xIi22x2WRs4v2OGE2Wcw4GSEJwsriQk-nkTv7g8bLr9JDW2d36FzyCbErdSA63SnJ9G4g6l6s_60Ubq_sipqPLn-fjrCuKkKFxapXNjLWuCoAzDBaTdTUSxLGObkFFlyosAhauZKY65lpxYAPT6kFOq3LCQu-KjcVykb4KiTmYUOcGtHHGaQioVEyhrg0GyEsYiONeTR47xnAuXDH3Pddxq1fPevWk14E4fP7gd0uW8XbTM9b7czNmuW4ekO19Z3v_P9sPxJCt5gksMOMtcmoQrqh7zSvVQOz1xvTdxLz35G0SZFQ1S3DUG_jv6zek_fYe0g7FR-6vjd_siQ0yddonRLMKB83P-wQYSvFK
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVgKyQuiE8RWpAPHNqDqRM7jnNCFHZZ9bCqWFZqT9F47OXAalO6u_D38STOVkUqp0SJ86EZe_z8PHrD2PulryF4pYUxEom6qQUo5YR3aokoKx-hEmVbzMx0oc8vy8tEuG1SWuUQE7tA7Vskjvw0LhPiXC9rW3y8_iWoahTtrqYSGg_ZQQzB1o7Ywdl4dvFtv48Q8YkcBH1kdXo-HV_I_Dgu-POT3BZ35qJOsj8e2ji07sDNf3ZIu4ln8pQ9SYiRf-pd_Iw9COvn7FGXuYmbF2wyb1dECvCI5Hjxhc8X8yv-lb4nZuF32Imr3U_4A7wrecOJduVxCdxB1RXf3uzWPWf3ki0m4--fpyIVRxCordyKpTbGVg5wic5gMLbGCHWMjacgvQ0VFg4LW5JiHWmuWDCO5PUgj9E5YKFesdG6XYfXjGMO2tW5BqWttgocSumDq2uNDvISMvZhMFODSTmcClismkHzuLdrQ3Ztol0zdrx_4LoXzbi_6RnZfd-M1K67C-3NjyYNnga1gwJMqQGN9sHWDlSAysuy8NZplbFD8loTQQMp3yKlCOE2vl5RxMrY0eDMJg3QTXPbnTJ2Mjj49vY9f_vm_686ZI-pZc_QHLFRdGJ4GzHL1r1LHfMvwJrpHA
  priority: 102
  providerName: ProQuest
Title Solving the 2D SUSY Gross-Neveu-Yukawa model with conformal truncation
URI https://link.springer.com/article/10.1007/JHEP01(2021)182
https://www.proquest.com/docview/2494560982
https://www.osti.gov/servlets/purl/1833183
https://doaj.org/article/c4ba2a654ac64de89ba3ea7d052d8b43
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swECaaBAW6FH2iblKDQ4dkUEuJFEWNiWvHyGAEdQ0kE3E80ksNu2js9u_3Tg8XSZGhi0RJJEXcieR3R-o7IT4uYw0papNZq5BdN3UGWocsBr1EVFUkqMS7LWZ2ujBXN-VNR5LE_8I8WL__fDUdX6v8lEz0_Iyg8IE4KnNdcYyGkR3tlwsIhqiet-ffQvemnIaZn04b6kH3UOWDhdBmfpm8EM87YCjPW02-FE_S-pV42mzQxLvXYjLfrNj2lwTYZPFFzhfzW3nJ78tm6VfaZbe77_AbZBPZRrJ3VZKl2yDSldz-3K1b19wbsZiMv42mWRcDIUPj1DZbGmtdFQCXGCwm62okRGMdJUFFlyosAhauZGI6plZxYAOz6EFOg3DCQr8Vh-vNOr0TEnMwoc4NaOOM0xBQqZhCXRsMkJcwEJ96MXnsCMI5TsXK99TGrVw9y9WTXAfidF_gR8uN8XjWC5b7PhuTWjc3SNe-6yMeTYACbGkArYnJ1QF0giqqsoguGD0Qx6w1T9iACW6RdwLhlqrXPDANxEmvTN_1wztPxiUhRFVzC856Bf99_Ehr3_9H3mPxjJOtV-ZEHJJG0wfCKdswFAducjkURxfj2fVXuhoVZth8t8PG8qfjojj_A79p5Ew
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFOEFvABpPYQ6tiO4xwQAtrt9sEKabtSewr22MuB1W7p7lLxp_iNzOSxVZHKradEie1EM_bM57H9DWNvxqF0MSidGiOAQjdl6pTyafBqDCCKgFCJdlsMTH-kD0_z0zX2pzsLQ9sqO5tYG-owA4qR7-A0AX29KK38cP4zpaxRtLrapdBousVR_H2JU7b5-4Nd1O9bKXt7J5_7aZtVIAVtxSIda2Ns4R2MwRuIxpaAGMFYvHUi2FiA9CBtTlRvRFZinfHES-cyNGsRiOgATf4drdCT08n03v5q1QLRkOjog0Sxc9jf-yqyLYludDuz8prnqxME4GWGA_kauP1nPbZ2c72H7EGLT_nHpkM9Ymtx-pjdrfeJwvwJ6w1nEwpBcMSNXO7y4Wh4xvfpe-kg_orL9Gz5w106XifY4RTk5TjhroHxhC8ultMmQviUjW5FaM_Y-nQ2jc8Zh8xpX2baKW21Vc6DECH6stTgXZa7hL3rxFRBy1NO6TImVcew3Mi1IrlWKNeEba0qnDcUHTcX_URyXxUjbu36wezie9UO1Qq0d9KZXDswOkRbeqeiK4LIZbBeq4RtkNYqhCjEswu0IQkW2Lwi-5iwzU6ZVWsO5tVV503Ydqfgq9c3_O2L_zf1mt3rn3w5ro4PBkcb7D7VamJDm2wdFRpfIlpa-Fd1F-Xs222Pib_oqiTl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTiBeEJ8ibIAfQNoeQh3HdZwHhBht6TZUVZRK21OwLw4Pq5ptbZn41_jruMtHpyGNtz0lSuwkurPPvztffsfY2yJPrc9jFWotgEI3aWjj2IW5iwsAkeQIlSjbYqxHM3V00jvZYn_af2EorbK1iZWhzkugGHkX3QRc60VqZLdo0iIm_eHH84uQKkjRTmtbTqMeIsf-9xW6b8sPh33U9Tsph4Pvn0dhU2EgBGXEKiyU1iZxFgpwGrw2KSBe0AZPrciNT0A6kKZHtG9EXGKsdsRRZyM0cR6I9ADN_3ZCXlGHbR8MxpNvmz0MxEaiJRMSSfdoNJiIaE_iorofGXljHazKBeChxGl9A-r-sztbLXrDR-xhg1b5p3p4PWZbfvGE3auyRmH5lA2n5ZwCEhxRJJd9Pp1NT_kXel849r_8Ojxdn9kry6tyO5xCvhzd7womz_nqcr2o44XP2OxOxPacdRblwr9gHCKrXBopGyujTGwdCJF7l6YKnI16NmDvWzFl0LCWU_GMedbyLddyzUiuGco1YHubDuc1YcftTQ9I7ptmxLRdXSgvf2bNxM1AOSut7ikLWuXepM7G3ia56MncOBUHbIe0liFgIdZdoPQkWOHjY7KWAdttlZk1xmGZXQ_lgO23Cr6-fcvXvvz_o96w-zgfsq-H4-Md9oA61YGiXdZBffpXCJ1W7nUzRjn7cdfT4i-CoSp3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+the+2D+SUSY+Gross-Neveu-Yukawa+model+with+conformal+truncation&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fitzpatrick%2C+A.+Liam&rft.au=Katz%2C+Emanuel&rft.au=Walters%2C+Matthew+T.&rft.au=Xin%2C+Yuan&rft.date=2021-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1007%2FJHEP01%282021%29182&rft.externalDocID=10_1007_JHEP01_2021_182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon