Dry fractionation for production of functional pea protein concentrates
Dry milling in combination with air classification was evaluated as an alternative to conventional wet extraction of protein from yellow field peas (Pisum sativum). Major advantages of dry fractionation are retention of native functionality of proteins and its lower energy and water use. Peas were g...
Saved in:
Published in | Food research international Vol. 53; no. 1; pp. 232 - 239 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dry milling in combination with air classification was evaluated as an alternative to conventional wet extraction of protein from yellow field peas (Pisum sativum). Major advantages of dry fractionation are retention of native functionality of proteins and its lower energy and water use. Peas were ground by impact (ZPS50) and jet milling (AFG100) at various classifier wheel speeds to provide pea flours with different particle size distributions, protein contents and damaged starch levels. Peas were milled under various conditions to maximally disentangle starch granules from the surrounding protein bodies. The optimal milling conditions were confirmed by particle size analysis and scanning electron microscope imaging. Too extensive milling, e.g. using ultrafine impact or jet milling, resulted in very fine flours (with D0.5<10μm) with poor flowability, whereas ultrafine jet milling led to an increased percentage of damaged starch. Subsequently, air classification was applied to separate small fragments (primarily protein bodies) from the coarse fraction (starch granules) to obtain enriched protein concentrates. Protein concentrates were obtained with protein contents between 51% and 55% (w/dw) and a maximum protein recovery of 77%. Deviating cut-off size for air classification could be ascribed to build-up of material between the vanes of the classifier wheel. Finally, water holding capacity (WHC) tests were used to evaluate the functional properties of the pea protein concentrates. A liquid pea concentrate comprising 26% (w/w) of protein could be prepared from dry pea concentrates containing more than 30% (w/dw) of pea protein. This was explained by the high solubility of pea protein in its native state. After heat treatment of pea protein concentrates, a gel with a high WHC of 4.8g water (w/w) was obtained, which decreased with increasing protein content. Functional properties of the pea protein concentrates are interesting for preparation of high-protein foods or for replacement of egg protein functionality.
•Impact and jet milling were used to detach protein bodies and starch granules.•Air classification yielded pea protein concentrates with 55 % (w/dw) protein.•Fouling explained the difference between theoretical and experimental cut points.•Pea protein concentrate yielded a concentrated liquid with 26 % (w/w) protein.•A high Water Holding Capacity was obtained for pea flour after heat treatment. |
---|---|
AbstractList | Dry milling in combination with air classification was evaluated as an alternative to conventional wet extraction of protein from yellow field peas (Pisum sativum). Major advantages of dry fractionation are retention of native functionality of proteins and its lower energy and water use. Peas were ground by impact (ZPS50) and jet milling (AFG100) at various classifier wheel speeds to provide pea flours with different particle size distributions, protein contents and damaged starch levels. Peas were milled under various conditions to maximally disentangle starch granules from the surrounding protein bodies. The optimal milling conditions were confirmed by particle size analysis and scanning electron microscope imaging. Too extensive milling, e.g. using ultrafine impact or jet milling, resulted in very fine flours (with D0.5 < 10 mu m) with poor flowability, whereas ultrafine jet milling led to an increased percentage of damaged starch. Subsequently, air classification was applied to separate small fragments (primarily protein bodies) from the coarse fraction (starch granules) to obtain enriched protein concentrates. Protein concentrates were obtained with protein contents between 51% and 55% (w/dw) and a maximum protein recovery of 77%. Deviating cut-off size for air classification could be ascribed to build-up of material between the vanes of the classifier wheel. Finally, water holding capacity (WHC) tests were used to evaluate the functional properties of the pea protein concentrates. A liquid pea concentrate comprising 26% (w/w) of protein could be prepared from dry pea concentrates containing more than 30% (w/dw) of pea protein. This was explained by the high solubility of pea protein in its native state. After heat treatment of pea protein concentrates, a gel with a high WHC of 4.8 g water (w/w) was obtained, which decreased with increasing protein content. Functional properties of the pea protein concentrates are interesting for preparation of high-protein foods or for replacement of egg protein functionality. Dry milling in combination with air classification was evaluated as an alternative to conventional wet extraction of protein from yellow field peas (Pisum sativum). Major advantages of dry fractionation are retention of native functionality of proteins and its lower energy and water use. Peas were ground by impact (ZPS50) and jet milling (AFG100) at various classifier wheel speeds to provide pea flours with different particle size distributions, protein contents and damaged starch levels. Peas were milled under various conditions to maximally disentangle starch granules from the surrounding protein bodies. The optimal milling conditions were confirmed by particle size analysis and scanning electron microscope imaging. Too extensive milling, e.g. using ultrafine impact or jet milling, resulted in very fine flours (with D0.5 <10 µm) with poor flowability, whereas ultrafine jet milling led to an increased percentage of damaged starch. Subsequently, air classification was applied to separate small fragments (primarily protein bodies) from the coarse fraction (starch granules) to obtain enriched protein concentrates. Protein concentrates were obtained with protein contents between 51% and 55% (w/dw) and a maximum protein recovery of 77%. Deviating cut-off size for air classification could be ascribed to build-up of material between the vanes of the classifier wheel. Finally, water holding capacity (WHC) tests were used to evaluate the functional properties of the pea protein concentrates. A liquid pea concentrate comprising 26% (w/w) of protein could be prepared from dry pea concentrates containing more than 30% (w/dw) of pea protein. This was explained by the high solubility of pea protein in its native state. After heat treatment of pea protein concentrates, a gel with a high WHC of 4.8 g water (w/w) was obtained, which decreased with increasing protein content. Functional properties of the pea protein concentrates are interesting for preparation of high-protein foods or for replacement of egg protein functionality Dry milling in combination with air classification was evaluated as an alternative to conventional wet extraction of protein from yellow field peas (Pisum sativum). Major advantages of dry fractionation are retention of native functionality of proteins and its lower energy and water use. Peas were ground by impact (ZPS50) and jet milling (AFG100) at various classifier wheel speeds to provide pea flours with different particle size distributions, protein contents and damaged starch levels. Peas were milled under various conditions to maximally disentangle starch granules from the surrounding protein bodies. The optimal milling conditions were confirmed by particle size analysis and scanning electron microscope imaging. Too extensive milling, e.g. using ultrafine impact or jet milling, resulted in very fine flours (with D0.5<10μm) with poor flowability, whereas ultrafine jet milling led to an increased percentage of damaged starch. Subsequently, air classification was applied to separate small fragments (primarily protein bodies) from the coarse fraction (starch granules) to obtain enriched protein concentrates. Protein concentrates were obtained with protein contents between 51% and 55% (w/dw) and a maximum protein recovery of 77%. Deviating cut-off size for air classification could be ascribed to build-up of material between the vanes of the classifier wheel. Finally, water holding capacity (WHC) tests were used to evaluate the functional properties of the pea protein concentrates. A liquid pea concentrate comprising 26% (w/w) of protein could be prepared from dry pea concentrates containing more than 30% (w/dw) of pea protein. This was explained by the high solubility of pea protein in its native state. After heat treatment of pea protein concentrates, a gel with a high WHC of 4.8g water (w/w) was obtained, which decreased with increasing protein content. Functional properties of the pea protein concentrates are interesting for preparation of high-protein foods or for replacement of egg protein functionality. •Impact and jet milling were used to detach protein bodies and starch granules.•Air classification yielded pea protein concentrates with 55 % (w/dw) protein.•Fouling explained the difference between theoretical and experimental cut points.•Pea protein concentrate yielded a concentrated liquid with 26 % (w/w) protein.•A high Water Holding Capacity was obtained for pea flour after heat treatment. Dry milling in combination with air classification was evaluated as an alternative to conventional wet extraction of protein from yellow field peas (Pisum sativum). Major advantages of dry fractionation are retention of native functionality of proteins and its lower energy and water use. Peas were ground by impact (ZPS50) and jet milling (AFG100) at various classifier wheel speeds to provide pea flours with different particle size distributions, protein contents and damaged starch levels. Peas were milled under various conditions to maximally disentangle starch granules from the surrounding protein bodies. The optimal milling conditions were confirmed by particle size analysis and scanning electron microscope imaging. Too extensive milling, e.g. using ultrafine impact or jet milling, resulted in very fine flours (with D₀.₅<10μm) with poor flowability, whereas ultrafine jet milling led to an increased percentage of damaged starch. Subsequently, air classification was applied to separate small fragments (primarily protein bodies) from the coarse fraction (starch granules) to obtain enriched protein concentrates. Protein concentrates were obtained with protein contents between 51% and 55% (w/dw) and a maximum protein recovery of 77%. Deviating cut-off size for air classification could be ascribed to build-up of material between the vanes of the classifier wheel. Finally, water holding capacity (WHC) tests were used to evaluate the functional properties of the pea protein concentrates. A liquid pea concentrate comprising 26% (w/w) of protein could be prepared from dry pea concentrates containing more than 30% (w/dw) of pea protein. This was explained by the high solubility of pea protein in its native state. After heat treatment of pea protein concentrates, a gel with a high WHC of 4.8g water (w/w) was obtained, which decreased with increasing protein content. Functional properties of the pea protein concentrates are interesting for preparation of high-protein foods or for replacement of egg protein functionality. |
Author | Vissers, Anne M. Schutyser, Maarten A.I. Boom, Remko M. Pelgrom, Pascalle J.M. |
Author_xml | – sequence: 1 givenname: Pascalle J.M. surname: Pelgrom fullname: Pelgrom, Pascalle J.M. email: pascalle.pelgrom@wur.nl – sequence: 2 givenname: Anne M. surname: Vissers fullname: Vissers, Anne M. – sequence: 3 givenname: Remko M. surname: Boom fullname: Boom, Remko M. – sequence: 4 givenname: Maarten A.I. surname: Schutyser fullname: Schutyser, Maarten A.I. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27605176$$DView record in Pascal Francis |
BookMark | eNqFkU1v1DAQhiNUJLaFn4DIBYlLwvg75oJQoQWpEgfo2fI648qr1F7shKr_HqdZzr3MSJ7nnQ-_581ZTBGb5i2BngCRHw-9T2nMWHoKhPUgegD-otmRQbFOES7Omh1oyTqtpX7VnJdyAAAplN4111_zY-uzdXNI0a6h9Sm3x5zG5emtTb71S9zqU3tEuxZnDLF1KTqMc7YzltfNS2-ngm9O-aK5vfr2-_J7d_Pz-sfll5vO8QHmDqkb5d65kSgYqLUjk5I7cG4g1jsmgFFUZFSIRHA6UE3qpkRpzyRH7T27aD5tfR_sHcYQazDRZheKSTaYKeyzzY_mYckmTms6LvtiOKdSkyr-sInrBX8WLLO5D8XhNNmIaSmGKAYEuBb8eVQQxjVVlFVUbKjLqZSM3hxzuF-3IGBWg8zBnAwyq0EGhKkGVd370whbnJ2qCXE947-YKgmCKFm5dxvnbTL2Llfm9ldtJFYTQWmoxOeNwPrzfwNmU1zAas4YMrrZjCk8s8s_wPS1qg |
CitedBy_id | crossref_primary_10_1016_j_foodres_2018_01_020 crossref_primary_10_1016_j_afres_2023_100262 crossref_primary_10_1016_j_anifeedsci_2018_01_017 crossref_primary_10_1039_C9FO01160A crossref_primary_10_1002_cche_10439 crossref_primary_10_1016_j_powtec_2024_119470 crossref_primary_10_1016_j_tifs_2021_01_090 crossref_primary_10_1016_j_foodhyd_2022_108142 crossref_primary_10_1016_j_foodhyd_2019_105533 crossref_primary_10_1016_j_foodhyd_2023_108541 crossref_primary_10_1016_j_ifset_2022_103242 crossref_primary_10_1080_10408398_2023_2222179 crossref_primary_10_1016_j_tifs_2021_05_033 crossref_primary_10_1016_j_tifs_2023_01_011 crossref_primary_10_1111_jfpe_13261 crossref_primary_10_3390_foods12081694 crossref_primary_10_1002_leg3_120 crossref_primary_10_1016_j_jfoodeng_2015_01_005 crossref_primary_10_1016_j_powtec_2018_11_107 crossref_primary_10_1051_ocl_2016020 crossref_primary_10_1016_j_jfoodeng_2020_110198 crossref_primary_10_1016_j_foostr_2022_100298 crossref_primary_10_3390_en14061600 crossref_primary_10_1016_j_jfoodeng_2014_11_005 crossref_primary_10_1016_j_jfoodeng_2023_111663 crossref_primary_10_1016_j_crfs_2024_100744 crossref_primary_10_1016_j_foodres_2020_109773 crossref_primary_10_1016_j_ifset_2017_03_009 crossref_primary_10_1016_j_jfoodeng_2022_111048 crossref_primary_10_1016_j_jclepro_2024_142298 crossref_primary_10_1016_j_crfs_2023_100601 crossref_primary_10_1007_s11483_018_9518_7 crossref_primary_10_3390_toxins13080572 crossref_primary_10_1002_fsn3_3421 crossref_primary_10_1016_j_ifset_2022_103199 crossref_primary_10_1002_fft2_389 crossref_primary_10_1016_j_powtec_2023_118674 crossref_primary_10_1016_j_foodhyd_2021_107427 crossref_primary_10_1080_10942912_2015_1123269 crossref_primary_10_1016_j_jfoodeng_2020_110321 crossref_primary_10_3390_gels10050309 crossref_primary_10_1016_j_foodchem_2019_01_182 crossref_primary_10_1016_j_tifs_2021_04_049 crossref_primary_10_1002_aocs_12825 crossref_primary_10_3390_plants10112258 crossref_primary_10_1016_j_tifs_2021_04_044 crossref_primary_10_1016_j_lwt_2021_112718 crossref_primary_10_1007_s00217_021_03883_y crossref_primary_10_1016_j_jfutfo_2023_03_005 crossref_primary_10_1002_leg3_97 crossref_primary_10_1016_j_ifset_2018_08_014 crossref_primary_10_1016_j_ifset_2021_102894 crossref_primary_10_3390_app14093740 crossref_primary_10_1016_j_seppur_2016_02_035 crossref_primary_10_1007_s11947_019_02307_w crossref_primary_10_1016_j_jfoodeng_2022_111175 crossref_primary_10_1111_1541_4337_12413 crossref_primary_10_1016_j_foodchem_2018_10_064 crossref_primary_10_1016_j_jfoodeng_2021_110916 crossref_primary_10_3390_polym14112215 crossref_primary_10_1016_j_powtec_2024_119374 crossref_primary_10_1080_10408398_2023_2199338 crossref_primary_10_1002_jsfa_13168 crossref_primary_10_1016_j_foodres_2021_110889 crossref_primary_10_1016_j_jfca_2018_09_009 crossref_primary_10_1016_j_jfoodeng_2021_110759 crossref_primary_10_1016_j_lwt_2021_112784 crossref_primary_10_1016_j_ifset_2021_102668 crossref_primary_10_1002_cche_10234 crossref_primary_10_1016_j_lwt_2015_10_032 crossref_primary_10_1016_j_ifset_2022_103018 crossref_primary_10_1002_cche_10514 crossref_primary_10_1080_10942912_2023_2286895 crossref_primary_10_1016_j_foodhyd_2014_09_001 crossref_primary_10_1016_j_heliyon_2021_e06177 crossref_primary_10_1002_cche_10506 crossref_primary_10_1016_j_ifset_2020_102480 crossref_primary_10_1016_j_ifset_2022_103098 crossref_primary_10_1080_10408398_2021_1982860 crossref_primary_10_1111_1541_4337_13237 crossref_primary_10_3390_foods8100451 crossref_primary_10_1016_j_jclepro_2018_02_158 crossref_primary_10_1016_j_lwt_2014_06_007 crossref_primary_10_1080_10408398_2020_1791048 crossref_primary_10_1080_87559129_2023_2245036 crossref_primary_10_3390_foods11020178 crossref_primary_10_1111_jfpp_12824 crossref_primary_10_1016_j_seppur_2016_11_050 crossref_primary_10_1016_j_foodchem_2018_10_003 crossref_primary_10_1016_j_powtec_2020_06_007 crossref_primary_10_21603_2308_4057_2019_2_255_263 crossref_primary_10_1016_j_tifs_2019_02_006 crossref_primary_10_1016_j_tifs_2022_10_016 crossref_primary_10_1007_s11947_015_1513_0 crossref_primary_10_1002_cche_10248 crossref_primary_10_1088_1755_1315_659_1_012139 crossref_primary_10_1016_j_foodhyd_2019_105332 crossref_primary_10_3390_foods12213978 crossref_primary_10_1111_1541_4337_13123 crossref_primary_10_1080_10408398_2022_2139223 crossref_primary_10_1016_j_ifset_2015_12_020 crossref_primary_10_1111_jfpp_14334 crossref_primary_10_1002_leg3_161 crossref_primary_10_1016_j_lwt_2020_110234 crossref_primary_10_1080_07352689_2014_897907 crossref_primary_10_1016_j_lwt_2024_116178 crossref_primary_10_3390_foods9030322 crossref_primary_10_1016_j_lwt_2021_112087 crossref_primary_10_1016_j_seppur_2021_119486 crossref_primary_10_1016_j_jfoodeng_2016_04_012 crossref_primary_10_1002_cche_10258 crossref_primary_10_1002_cche_10774 crossref_primary_10_1007_s11947_016_1731_0 crossref_primary_10_1016_j_powtec_2022_117803 crossref_primary_10_3390_pr10122586 crossref_primary_10_1016_j_foodres_2020_109971 crossref_primary_10_1016_j_ifset_2014_06_011 crossref_primary_10_1016_j_ijfoodmicro_2014_10_012 crossref_primary_10_3390_foods11223608 crossref_primary_10_3390_foods10030600 crossref_primary_10_1016_j_agsy_2015_04_004 crossref_primary_10_1002_jsfa_10081 crossref_primary_10_1007_s00217_017_2953_8 crossref_primary_10_1007_s12393_015_9125_z crossref_primary_10_1016_j_ijbiomac_2023_124249 crossref_primary_10_1111_ijfs_14537 crossref_primary_10_1016_j_foodchem_2016_03_102 crossref_primary_10_3390_molecules25061383 crossref_primary_10_1016_j_powtec_2022_118169 crossref_primary_10_1039_D0RA09302E crossref_primary_10_1016_j_jfoodeng_2023_111857 crossref_primary_10_1111_are_15394 crossref_primary_10_1002_cche_10146 crossref_primary_10_1016_j_lwt_2021_111702 crossref_primary_10_1111_1541_4337_12735 crossref_primary_10_1007_s13197_017_2714_5 crossref_primary_10_1002_sfp2_1035 crossref_primary_10_1111_ijfs_16467 crossref_primary_10_1016_j_jfoodeng_2020_109937 crossref_primary_10_1016_j_foodchem_2019_01_031 crossref_primary_10_1002_aic_14928 crossref_primary_10_1016_j_lwt_2021_110961 crossref_primary_10_1111_1541_4337_12986 crossref_primary_10_1016_j_ifset_2021_102747 crossref_primary_10_1016_j_jfoodeng_2022_111265 crossref_primary_10_1016_j_tifs_2015_04_013 crossref_primary_10_1016_j_powtec_2020_07_023 crossref_primary_10_1146_annurev_food_060721_024052 crossref_primary_10_3390_foods10081967 crossref_primary_10_1016_j_tifs_2019_04_007 crossref_primary_10_3389_fpls_2019_01213 crossref_primary_10_1016_j_fufo_2022_100152 crossref_primary_10_1016_j_foodhyd_2022_107708 crossref_primary_10_1038_s41598_022_12017_7 crossref_primary_10_1016_j_jafr_2023_100927 crossref_primary_10_1007_s13197_019_03818_2 |
Cites_doi | 10.1016/j.foodres.2009.09.003 10.1111/j.1365-2621.1991.tb14627.x 10.1007/BF02539676 10.1080/10408397609527208 10.1016/j.foodhyd.2011.05.015 10.1016/j.tifs.2010.11.006 10.1002/ppsc.19840010115 10.1016/j.foodchem.2006.06.060 10.1111/j.1365-2621.1988.tb07840.x 10.1080/87559129109540903 10.1002/jsfa.2740490412 10.1111/j.1365-2621.1999.tb15073.x 10.1016/j.powtec.2006.10.039 10.1007/BF02671477 10.1002/star.200500419 10.1016/j.foodres.2010.12.017 10.1016/S0260-8774(02)00332-1 10.1111/j.1365-2621.1982.tb07662.x 10.1111/j.1365-2621.1994.tb05580.x 10.1080/03602547808066053 10.1111/j.1365-2621.1987.tb14263.x 10.1094/CC-82-0341 10.18174/njas.v37i3.16639 10.1021/ja01208a049 10.1002/jsfa.2740370212 10.1002/1521-3803(20011001)45:6<390::AID-FOOD390>3.0.CO;2-# 10.1002/jsfa.2740350510 10.1016/j.minpro.2004.07.035 10.1016/S0031-9422(00)94623-5 10.1002/1097-0010(200002)80:3<397::AID-JSFA542>3.0.CO;2-3 10.1016/0958-6946(94)00012-E |
ContentType | Journal Article |
Copyright | 2013 2014 INIST-CNRS Wageningen University & Research |
Copyright_xml | – notice: 2013 – notice: 2014 INIST-CNRS – notice: Wageningen University & Research |
DBID | FBQ IQODW AAYXX CITATION 8FD F28 FR3 QVL |
DOI | 10.1016/j.foodres.2013.05.004 |
DatabaseName | AGRIS Pascal-Francis CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database NARCIS:Publications |
DatabaseTitle | CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1873-7145 |
EndPage | 239 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_442691 10_1016_j_foodres_2013_05_004 27605176 US201500060790 S0963996913002779 |
GroupedDBID | --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALCJ AALRI AAMNW AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABMAC ABXDB ABYKQ ACDAQ ACGFO ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSZ T5K WUQ Y6R ~G- ~KM ABPIF ABPTK FBQ AALMO AAPBV ABQIS ADALY IPNFZ IQODW AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION 8FD F28 FR3 0R 1 8P ABUFD AFRUD G- GJ HZ K KM M QVL UNR |
ID | FETCH-LOGICAL-c480t-e2cd6bccd17082aad3664c0cc81afc35032e71d7ee15428291000179f364e9ff3 |
IEDL.DBID | AIKHN |
ISSN | 0963-9969 |
IngestDate | Tue Jan 05 18:02:47 EST 2021 Thu Oct 24 23:27:50 EDT 2024 Fri Oct 25 01:04:34 EDT 2024 Thu Sep 26 17:17:17 EDT 2024 Fri Nov 25 01:08:14 EST 2022 Wed Dec 27 19:05:54 EST 2023 Fri Feb 23 02:37:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cut point Water holding capacity Air classification Pea protein concentrates Milling Fractionation Vegetables Pea Protein Grain legume Production Concentrate Grain milling |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-e2cd6bccd17082aad3664c0cc81afc35032e71d7ee15428291000179f364e9ff3 |
Notes | http://dx.doi.org/10.1016/j.foodres.2013.05.004 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1513492723 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_442691 proquest_miscellaneous_1730104954 proquest_miscellaneous_1513492723 crossref_primary_10_1016_j_foodres_2013_05_004 pascalfrancis_primary_27605176 fao_agris_US201500060790 elsevier_sciencedirect_doi_10_1016_j_foodres_2013_05_004 |
ProviderPackageCode | QVL |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Food research international |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Owusu-Ansah, McCurdy (bb0115) 1991; 7 Damodaran (bb0060) 2008 Pelgrom, Schutyser, Boom (bb0120) 2012 Shand, Ya, Pietrasik, Wanasundara (bb0155) 2007; 102 Boye, Alli, Ismail, Gibbs, Konish (bb0035) 1995; 5 Dijkink, Speranza, Paltsidis, Vereijken (bb0070) 2007; 172 Pernollet (bb0125) 1978; 17 Abbey, Ibeh (bb0005) 1988; 53 Sosulski, Youngs (bb0165) 1979; 56 Bauder, Müller, Polke (bb0025) 2004; 74 Horvath, Ormai-Cserhalmi, Czukor (bb0095) 1989; 49 Sosulski, McCurdy (bb0160) 1987; 52 Boye, Zare, Pletch (bb0040) 2010; 43 Dahl, Villota (bb0055) 1991; 56 González–Pérez, Arellano (bb0080) 2009 Chen (bb0045) 2003; 58 Leschonski (bb0105) 1984; 1 Fox, Condon (bb0075) 1982 Guggenheim (bb0085) 1966 Schutyser, van der Goot (bb0150) 2011; 22 van der Poel, Aarts, Stolp (bb0185) 1989; 37 Ma, Boye, Simpson, Prasher, Monpetit, Malcolmson (bb0110) 2011; 44 Purwanti, Moerkens, van der Goot, Boom (bb0130) 2012; 26 Wu, Nichols (bb0210) 2005; 82 Reichtert, Youngs (bb0140) 1978; 55 Sandberg (bb0145) 2000 Reichtert (bb0135) 1982; 47 Tyler, Youngs, Sosulski (bb0180) 1981; 58 Cloutt, Walker, Pike (bb0050) 1986; 37 Wang, Bhirud, Tyler (bb0200) 1999; 64 Anderson (bb0020) 1946; 68 Tyler, Panchuk (bb0175) 1982; 59 Bergthaller, Dijkink, Langelaan, Vereijken (bb0030) 2001; 45 Vose, Basterrechea, Gorin, Finlayson, Youngs (bb0195) 1976; 56 Vose (bb0190) 1978; 7 Al-Abbas, Bogracheva, Topliff, Crosley, Hedley (bb0010) 2006; 58 Alonso, Orue, Zabalza, Grant, Marzo (bb0015) 2000; 80 De Boer (bb0065) 1953 Gujska, Reinhard, Khan (bb0090) 1994; 59 Kinsella, Melachouris (bb0100) 1976; 7 Wright, Bumstead, Coxon, Ellis, DuPont, Chan (bb0205) 1984; 35 Swanson (bb0170) 1990; 67 Al-Abbas (10.1016/j.foodres.2013.05.004_bb0010) 2006; 58 Ma (10.1016/j.foodres.2013.05.004_bb0110) 2011; 44 Sosulski (10.1016/j.foodres.2013.05.004_bb0165) 1979; 56 Wu (10.1016/j.foodres.2013.05.004_bb0210) 2005; 82 Wright (10.1016/j.foodres.2013.05.004_bb0205) 1984; 35 Shand (10.1016/j.foodres.2013.05.004_bb0155) 2007; 102 Swanson (10.1016/j.foodres.2013.05.004_bb0170) 1990; 67 Schutyser (10.1016/j.foodres.2013.05.004_bb0150) 2011; 22 Damodaran (10.1016/j.foodres.2013.05.004_bb0060) 2008 De Boer (10.1016/j.foodres.2013.05.004_bb0065) 1953 Pelgrom (10.1016/j.foodres.2013.05.004_bb0120) 2012 Bauder (10.1016/j.foodres.2013.05.004_bb0025) 2004; 74 Tyler (10.1016/j.foodres.2013.05.004_bb0180) 1981; 58 Pernollet (10.1016/j.foodres.2013.05.004_bb0125) 1978; 17 Wang (10.1016/j.foodres.2013.05.004_bb0200) 1999; 64 Owusu-Ansah (10.1016/j.foodres.2013.05.004_bb0115) 1991; 7 Bergthaller (10.1016/j.foodres.2013.05.004_bb0030) 2001; 45 Cloutt (10.1016/j.foodres.2013.05.004_bb0050) 1986; 37 Vose (10.1016/j.foodres.2013.05.004_bb0190) 1978; 7 Anderson (10.1016/j.foodres.2013.05.004_bb0020) 1946; 68 Dahl (10.1016/j.foodres.2013.05.004_bb0055) 1991; 56 Leschonski (10.1016/j.foodres.2013.05.004_bb0105) 1984; 1 Gujska (10.1016/j.foodres.2013.05.004_bb0090) 1994; 59 Boye (10.1016/j.foodres.2013.05.004_bb0040) 2010; 43 González–Pérez (10.1016/j.foodres.2013.05.004_bb0080) 2009 Reichtert (10.1016/j.foodres.2013.05.004_bb0135) 1982; 47 Purwanti (10.1016/j.foodres.2013.05.004_bb0130) 2012; 26 Alonso (10.1016/j.foodres.2013.05.004_bb0015) 2000; 80 Kinsella (10.1016/j.foodres.2013.05.004_bb0100) 1976; 7 Reichtert (10.1016/j.foodres.2013.05.004_bb0140) 1978; 55 Sandberg (10.1016/j.foodres.2013.05.004_bb0145) 2000 van der Poel (10.1016/j.foodres.2013.05.004_bb0185) 1989; 37 Abbey (10.1016/j.foodres.2013.05.004_bb0005) 1988; 53 Dijkink (10.1016/j.foodres.2013.05.004_bb0070) 2007; 172 Tyler (10.1016/j.foodres.2013.05.004_bb0175) 1982; 59 Guggenheim (10.1016/j.foodres.2013.05.004_bb0085) 1966 Fox (10.1016/j.foodres.2013.05.004_bb0075) 1982 Vose (10.1016/j.foodres.2013.05.004_bb0195) 1976; 56 Boye (10.1016/j.foodres.2013.05.004_bb0035) 1995; 5 Chen (10.1016/j.foodres.2013.05.004_bb0045) 2003; 58 Horvath (10.1016/j.foodres.2013.05.004_bb0095) 1989; 49 Sosulski (10.1016/j.foodres.2013.05.004_bb0160) 1987; 52 |
References_xml | – year: 2009 ident: bb0080 article-title: Handbook of Hydrocolloids contributor: fullname: Arellano – volume: 56 start-page: 292 year: 1979 end-page: 295 ident: bb0165 article-title: Yield and functional properties of air-classified protein and starch fractions from eight legume flours publication-title: Journal of the American Oil Chemists' Society contributor: fullname: Youngs – volume: 43 start-page: 414 year: 2010 end-page: 431 ident: bb0040 article-title: Pulse proteins: Processing, characterization, functional properties and applications in food and feed publication-title: Food Research International contributor: fullname: Pletch – volume: 55 start-page: 469 year: 1978 end-page: 480 ident: bb0140 article-title: Nature of the residual protein associated with starch fractions from air-classified field peas publication-title: Cereal Chemistry contributor: fullname: Youngs – volume: 22 start-page: 154 year: 2011 end-page: 164 ident: bb0150 article-title: The potential of dry fractionation processes for sustainable plant protein production publication-title: Trends in Food Science & Technology contributor: fullname: van der Goot – volume: 172 start-page: 113 year: 2007 end-page: 119 ident: bb0070 article-title: Air dispersion of starch–protein mixtures: A predictive tool for air classification performance publication-title: Powder Technology contributor: fullname: Vereijken – volume: 58 start-page: 6 year: 2006 end-page: 17 ident: bb0010 article-title: Separation and characterisation of starch-rich fractions from wild-type and mutant pea seeds publication-title: Starch-Starke contributor: fullname: Hedley – volume: 67 start-page: 276 year: 1990 end-page: 280 ident: bb0170 article-title: Pea and lentil protein extraction and functionality publication-title: Journal of the American Oil Chemists' Society contributor: fullname: Swanson – volume: 74 start-page: 147 year: 2004 end-page: 154 ident: bb0025 article-title: Investigations concerning the separation mechanism in deflector wheel classifiers publication-title: International Journal of Mineral Processing contributor: fullname: Polke – volume: 59 start-page: 634 year: 1994 end-page: 636 ident: bb0090 article-title: Physicochemical properties of field pea, pinto and navy bean starches publication-title: Journal of Food Science contributor: fullname: Khan – volume: 59 start-page: 31 year: 1982 end-page: 33 ident: bb0175 article-title: Effect of seed moisture content on the air classification of field peas and Faba beans publication-title: Cereal Chemistry contributor: fullname: Panchuk – year: 2008 ident: bb0060 article-title: Amino acids, peptides, and proteins. Fennema's Food Chemistry contributor: fullname: Damodaran – volume: 47 start-page: 1263 year: 1982 end-page: 1267 ident: bb0135 article-title: Air classification of peas ( publication-title: Journal of Food Science contributor: fullname: Reichtert – volume: 7 start-page: 219 year: 1976 end-page: 280 ident: bb0100 article-title: Functional properties of proteins in foods: A survey publication-title: C R C Critical Reviews in Food Science and Nutrition contributor: fullname: Melachouris – volume: 7 start-page: 103 year: 1991 end-page: 134 ident: bb0115 article-title: Pea proteins: A review of chemistry, technology of production, and utilization publication-title: Food Reviews International contributor: fullname: McCurdy – volume: 17 start-page: 1473 year: 1978 end-page: 1480 ident: bb0125 article-title: Protein bodies of seeds: ultrastructure, biochemistry, biosynthesis and degradation publication-title: Phytochemistry contributor: fullname: Pernollet – volume: 52 start-page: 1010 year: 1987 end-page: 1014 ident: bb0160 article-title: Functionality of flours, protein fractions and isolates from field peas and faba bean publication-title: Journal of Food Science contributor: fullname: McCurdy – volume: 58 start-page: 144 year: 1981 end-page: 148 ident: bb0180 article-title: Air classification of legumes. I. Separation efficiency, yield, and composition of the starch and protein fractions publication-title: Cereal Chemistry contributor: fullname: Sosulski – volume: 53 start-page: 1775 year: 1988 end-page: 1777 ident: bb0005 article-title: Functional properties of raw and heat processed cowpea (vigna unguiculata, walp) flour publication-title: Journal of Food Science contributor: fullname: Ibeh – volume: 49 start-page: 493 year: 1989 end-page: 497 ident: bb0095 article-title: Functional properties of air-classified yellow pea ( publication-title: Journal of the Science of Food and Agriculture contributor: fullname: Czukor – volume: 58 start-page: 45 year: 2003 end-page: 51 ident: bb0045 article-title: Moisture sorption isotherms of pea seeds publication-title: Journal of Food Engineering contributor: fullname: Chen – year: 1953 ident: bb0065 article-title: The Dynamical Character of Adsorption contributor: fullname: De Boer – volume: 102 start-page: 1119 year: 2007 end-page: 1130 ident: bb0155 article-title: Physicochemical and textural properties of heat-induced pea protein isolate gels publication-title: Food Chemistry contributor: fullname: Wanasundara – volume: 1 start-page: 89 year: 1984 end-page: 95 ident: bb0105 article-title: Representation and evaluation of particle size analysis data publication-title: Particle & Particle Systems Characterization contributor: fullname: Leschonski – volume: 26 start-page: 240 year: 2012 end-page: 248 ident: bb0130 article-title: Reducing the stiffness of concentrated whey protein isolate (WPI) gels by using WPI microparticles publication-title: Food Hydrocolloids contributor: fullname: Boom – volume: 44 start-page: 2534 year: 2011 end-page: 2544 ident: bb0110 article-title: Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours publication-title: Food Research International contributor: fullname: Malcolmson – volume: 37 start-page: 273 year: 1989 end-page: 278 ident: bb0185 article-title: Milling and air classification of two different types of peas—effects on the distribution of antinutritional factors publication-title: Netherlands Journal of Agricultural Science contributor: fullname: Stolp – volume: 68 start-page: 686 year: 1946 ident: bb0020 article-title: Modifications of the BET equation publication-title: Journal of the American Chemical Society contributor: fullname: Anderson – volume: 64 start-page: 509 year: 1999 end-page: 513 ident: bb0200 article-title: Extrusion texturization of air-classified pea protein publication-title: Journal of Food Science contributor: fullname: Tyler – year: 1966 ident: bb0085 article-title: Applications of Statistical Mechanics contributor: fullname: Guggenheim – volume: 56 start-page: 928 year: 1976 end-page: 936 ident: bb0195 article-title: Air classification of field peas and horsebean flours: chemical studies of starch and protein fractions publication-title: Cereal Chemistry contributor: fullname: Youngs – volume: 82 start-page: 341 year: 2005 end-page: 344 ident: bb0210 article-title: Fine grinding and air classification of field pea publication-title: Cereal Chemistry contributor: fullname: Nichols – volume: 5 start-page: 337 year: 1995 end-page: 353 ident: bb0035 article-title: Factors affecting molecular characteristics of whey protein gelation publication-title: International Dairy Journal contributor: fullname: Konish – volume: 37 start-page: 173 year: 1986 end-page: 184 ident: bb0050 article-title: Air classification of flours of three legumes species: effect of starch granule size distribution publication-title: Journal of the Science of Food and Agriculture contributor: fullname: Pike – year: 2000 ident: bb0145 article-title: Functional foods: Concept to product contributor: fullname: Sandberg – volume: 7 start-page: 1 year: 1978 end-page: 29 ident: bb0190 article-title: Separating grain components by air classification publication-title: Separation and Purification Reviews contributor: fullname: Vose – volume: 56 start-page: 1002 year: 1991 end-page: 1007 ident: bb0055 article-title: Twin-screw extrusion texturization of acid and alkali denatured soy proteins publication-title: Journal of Food Science contributor: fullname: Villota – year: 2012 ident: bb0120 article-title: Thermomechanical morphology of peas and its relation to fracture behaviour publication-title: Food Bioprocess Technology. contributor: fullname: Boom – volume: 35 start-page: 531 year: 1984 end-page: 542 ident: bb0205 article-title: Air classification of pea flour-analytical studies publication-title: Journal of the Science of Food and Agriculture contributor: fullname: Chan – year: 1982 ident: bb0075 article-title: Food Proteins contributor: fullname: Condon – volume: 80 start-page: 397 year: 2000 end-page: 403 ident: bb0015 article-title: Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins publication-title: Journal of the Science of Food and Agriculture contributor: fullname: Marzo – volume: 45 start-page: 390 year: 2001 end-page: 392 ident: bb0030 article-title: Protein from pea mutants as a co-product in starch separation — Isolates from wet and dry separation: yield, composition and solubility publication-title: Nahrung/Food contributor: fullname: Vereijken – volume: 43 start-page: 414 year: 2010 ident: 10.1016/j.foodres.2013.05.004_bb0040 article-title: Pulse proteins: Processing, characterization, functional properties and applications in food and feed publication-title: Food Research International doi: 10.1016/j.foodres.2009.09.003 contributor: fullname: Boye – volume: 56 start-page: 1002 issue: 4 year: 1991 ident: 10.1016/j.foodres.2013.05.004_bb0055 article-title: Twin-screw extrusion texturization of acid and alkali denatured soy proteins publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1991.tb14627.x contributor: fullname: Dahl – volume: 67 start-page: 276 issue: 5 year: 1990 ident: 10.1016/j.foodres.2013.05.004_bb0170 article-title: Pea and lentil protein extraction and functionality publication-title: Journal of the American Oil Chemists' Society doi: 10.1007/BF02539676 contributor: fullname: Swanson – volume: 7 start-page: 219 issue: 3 year: 1976 ident: 10.1016/j.foodres.2013.05.004_bb0100 article-title: Functional properties of proteins in foods: A survey publication-title: C R C Critical Reviews in Food Science and Nutrition doi: 10.1080/10408397609527208 contributor: fullname: Kinsella – volume: 26 start-page: 240 issue: 1 year: 2012 ident: 10.1016/j.foodres.2013.05.004_bb0130 article-title: Reducing the stiffness of concentrated whey protein isolate (WPI) gels by using WPI microparticles publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2011.05.015 contributor: fullname: Purwanti – volume: 59 start-page: 31 issue: 1 year: 1982 ident: 10.1016/j.foodres.2013.05.004_bb0175 article-title: Effect of seed moisture content on the air classification of field peas and Faba beans publication-title: Cereal Chemistry contributor: fullname: Tyler – year: 1953 ident: 10.1016/j.foodres.2013.05.004_bb0065 contributor: fullname: De Boer – volume: 22 start-page: 154 year: 2011 ident: 10.1016/j.foodres.2013.05.004_bb0150 article-title: The potential of dry fractionation processes for sustainable plant protein production publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2010.11.006 contributor: fullname: Schutyser – volume: 1 start-page: 89 issue: 1–4 year: 1984 ident: 10.1016/j.foodres.2013.05.004_bb0105 article-title: Representation and evaluation of particle size analysis data publication-title: Particle & Particle Systems Characterization doi: 10.1002/ppsc.19840010115 contributor: fullname: Leschonski – year: 1966 ident: 10.1016/j.foodres.2013.05.004_bb0085 contributor: fullname: Guggenheim – volume: 102 start-page: 1119 year: 2007 ident: 10.1016/j.foodres.2013.05.004_bb0155 article-title: Physicochemical and textural properties of heat-induced pea protein isolate gels publication-title: Food Chemistry doi: 10.1016/j.foodchem.2006.06.060 contributor: fullname: Shand – volume: 53 start-page: 1775 issue: 6 year: 1988 ident: 10.1016/j.foodres.2013.05.004_bb0005 article-title: Functional properties of raw and heat processed cowpea (vigna unguiculata, walp) flour publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1988.tb07840.x contributor: fullname: Abbey – year: 2008 ident: 10.1016/j.foodres.2013.05.004_bb0060 contributor: fullname: Damodaran – volume: 7 start-page: 103 issue: 1 year: 1991 ident: 10.1016/j.foodres.2013.05.004_bb0115 article-title: Pea proteins: A review of chemistry, technology of production, and utilization publication-title: Food Reviews International doi: 10.1080/87559129109540903 contributor: fullname: Owusu-Ansah – volume: 49 start-page: 493 year: 1989 ident: 10.1016/j.foodres.2013.05.004_bb0095 article-title: Functional properties of air-classified yellow pea (Pisum sativum) fractions publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.2740490412 contributor: fullname: Horvath – volume: 64 start-page: 509 issue: 3 year: 1999 ident: 10.1016/j.foodres.2013.05.004_bb0200 article-title: Extrusion texturization of air-classified pea protein publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1999.tb15073.x contributor: fullname: Wang – volume: 172 start-page: 113 year: 2007 ident: 10.1016/j.foodres.2013.05.004_bb0070 article-title: Air dispersion of starch–protein mixtures: A predictive tool for air classification performance publication-title: Powder Technology doi: 10.1016/j.powtec.2006.10.039 contributor: fullname: Dijkink – volume: 56 start-page: 292 year: 1979 ident: 10.1016/j.foodres.2013.05.004_bb0165 article-title: Yield and functional properties of air-classified protein and starch fractions from eight legume flours publication-title: Journal of the American Oil Chemists' Society doi: 10.1007/BF02671477 contributor: fullname: Sosulski – volume: 58 start-page: 6 year: 2006 ident: 10.1016/j.foodres.2013.05.004_bb0010 article-title: Separation and characterisation of starch-rich fractions from wild-type and mutant pea seeds publication-title: Starch-Starke doi: 10.1002/star.200500419 contributor: fullname: Al-Abbas – volume: 44 start-page: 2534 year: 2011 ident: 10.1016/j.foodres.2013.05.004_bb0110 article-title: Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours publication-title: Food Research International doi: 10.1016/j.foodres.2010.12.017 contributor: fullname: Ma – volume: 58 start-page: 45 year: 2003 ident: 10.1016/j.foodres.2013.05.004_bb0045 article-title: Moisture sorption isotherms of pea seeds publication-title: Journal of Food Engineering doi: 10.1016/S0260-8774(02)00332-1 contributor: fullname: Chen – volume: 47 start-page: 1263 year: 1982 ident: 10.1016/j.foodres.2013.05.004_bb0135 article-title: Air classification of peas (Pisum sativum) varying widely in protein content publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1982.tb07662.x contributor: fullname: Reichtert – volume: 59 start-page: 634 issue: 3 year: 1994 ident: 10.1016/j.foodres.2013.05.004_bb0090 article-title: Physicochemical properties of field pea, pinto and navy bean starches publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1994.tb05580.x contributor: fullname: Gujska – volume: 7 start-page: 1 issue: 1 year: 1978 ident: 10.1016/j.foodres.2013.05.004_bb0190 article-title: Separating grain components by air classification publication-title: Separation and Purification Reviews doi: 10.1080/03602547808066053 contributor: fullname: Vose – volume: 52 start-page: 1010 issue: 4 year: 1987 ident: 10.1016/j.foodres.2013.05.004_bb0160 article-title: Functionality of flours, protein fractions and isolates from field peas and faba bean publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1987.tb14263.x contributor: fullname: Sosulski – volume: 82 start-page: 341 issue: 3 year: 2005 ident: 10.1016/j.foodres.2013.05.004_bb0210 article-title: Fine grinding and air classification of field pea publication-title: Cereal Chemistry doi: 10.1094/CC-82-0341 contributor: fullname: Wu – volume: 37 start-page: 273 issue: 3 year: 1989 ident: 10.1016/j.foodres.2013.05.004_bb0185 article-title: Milling and air classification of two different types of peas—effects on the distribution of antinutritional factors publication-title: Netherlands Journal of Agricultural Science doi: 10.18174/njas.v37i3.16639 contributor: fullname: van der Poel – volume: 68 start-page: 686 year: 1946 ident: 10.1016/j.foodres.2013.05.004_bb0020 article-title: Modifications of the BET equation publication-title: Journal of the American Chemical Society doi: 10.1021/ja01208a049 contributor: fullname: Anderson – volume: 37 start-page: 173 year: 1986 ident: 10.1016/j.foodres.2013.05.004_bb0050 article-title: Air classification of flours of three legumes species: effect of starch granule size distribution publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.2740370212 contributor: fullname: Cloutt – volume: 45 start-page: 390 issue: 6 year: 2001 ident: 10.1016/j.foodres.2013.05.004_bb0030 article-title: Protein from pea mutants as a co-product in starch separation — Isolates from wet and dry separation: yield, composition and solubility publication-title: Nahrung/Food doi: 10.1002/1521-3803(20011001)45:6<390::AID-FOOD390>3.0.CO;2-# contributor: fullname: Bergthaller – volume: 35 start-page: 531 year: 1984 ident: 10.1016/j.foodres.2013.05.004_bb0205 article-title: Air classification of pea flour-analytical studies publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/jsfa.2740350510 contributor: fullname: Wright – year: 2009 ident: 10.1016/j.foodres.2013.05.004_bb0080 contributor: fullname: González–Pérez – volume: 74 start-page: 147 year: 2004 ident: 10.1016/j.foodres.2013.05.004_bb0025 article-title: Investigations concerning the separation mechanism in deflector wheel classifiers publication-title: International Journal of Mineral Processing doi: 10.1016/j.minpro.2004.07.035 contributor: fullname: Bauder – year: 1982 ident: 10.1016/j.foodres.2013.05.004_bb0075 contributor: fullname: Fox – volume: 55 start-page: 469 issue: 4 year: 1978 ident: 10.1016/j.foodres.2013.05.004_bb0140 article-title: Nature of the residual protein associated with starch fractions from air-classified field peas publication-title: Cereal Chemistry contributor: fullname: Reichtert – year: 2012 ident: 10.1016/j.foodres.2013.05.004_bb0120 article-title: Thermomechanical morphology of peas and its relation to fracture behaviour publication-title: Food Bioprocess Technology. contributor: fullname: Pelgrom – volume: 56 start-page: 928 issue: 6 year: 1976 ident: 10.1016/j.foodres.2013.05.004_bb0195 article-title: Air classification of field peas and horsebean flours: chemical studies of starch and protein fractions publication-title: Cereal Chemistry contributor: fullname: Vose – volume: 17 start-page: 1473 year: 1978 ident: 10.1016/j.foodres.2013.05.004_bb0125 article-title: Protein bodies of seeds: ultrastructure, biochemistry, biosynthesis and degradation publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)94623-5 contributor: fullname: Pernollet – year: 2000 ident: 10.1016/j.foodres.2013.05.004_bb0145 contributor: fullname: Sandberg – volume: 80 start-page: 397 year: 2000 ident: 10.1016/j.foodres.2013.05.004_bb0015 article-title: Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins† publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/1097-0010(200002)80:3<397::AID-JSFA542>3.0.CO;2-3 contributor: fullname: Alonso – volume: 5 start-page: 337 year: 1995 ident: 10.1016/j.foodres.2013.05.004_bb0035 article-title: Factors affecting molecular characteristics of whey protein gelation publication-title: International Dairy Journal doi: 10.1016/0958-6946(94)00012-E contributor: fullname: Boye – volume: 58 start-page: 144 issue: 2 year: 1981 ident: 10.1016/j.foodres.2013.05.004_bb0180 article-title: Air classification of legumes. I. Separation efficiency, yield, and composition of the starch and protein fractions publication-title: Cereal Chemistry contributor: fullname: Tyler |
SSID | ssj0006579 |
Score | 2.5183089 |
Snippet | Dry milling in combination with air classification was evaluated as an alternative to conventional wet extraction of protein from yellow field peas (Pisum... |
SourceID | wageningen proquest crossref pascalfrancis fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 232 |
SubjectTerms | air Air classification Biological and medical sciences Classification Concentrates Cut point dry milling Drying egg substitutes energy extrusion texturization field peas flour flours Food industries fractionation Fruit and vegetable industries Fundamental and applied biological sciences. Psychology gels Granular materials heat treatment high protein foods image analysis Milling particle size particle size distribution pea protein Pea protein concentrates Peas Pisum sativum protein bodies protein concentrates protein content Proteins scanning electron microscopes Scanning electron microscopy seeds separation solubility starch fractions starch granules Starches vanes Water holding capacity yield |
Title | Dry fractionation for production of functional pea protein concentrates |
URI | https://dx.doi.org/10.1016/j.foodres.2013.05.004 https://search.proquest.com/docview/1513492723 https://search.proquest.com/docview/1730104954 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F442691 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-t3QPjAcEArXxUQeI1bRJ_JHmcBqOA2MuotDfLdmzUaUqqptXEC387d4mzrRICiacoUSzZd_bvzvbd7wDeM-0lSysWF4blMTcpj00qbMyZITrCQouObf_bhVws-ZcrcXUAZ0MuDIVVBuzvMb1D6_BlHqQ5X69W80t0vtG6ypIuZLI8L0dwiOYoK8ZwePr56-LiDpClCJR7ksXU4D6RZ349801T4caWgrxYx-EZSrb9wUSNvG4odlK3KD7f173Yc0yPbhED6i4p6oGROn8KT4J3GZ32A3gGB64-hkdD8nF7DI8f8A8-h08fNj8jv-lzGzoVRejDRuueBZZeGx-R5esPDKO101FH7LCqI0v5jnXHbdu-gOX5x-9nizhUVogtL5Jt7DJbSWNtleboAmhdMSm5TawtUu0tEwnLXJ5WuXPoYdFda9oR65SeSe5K79lLGNdN7U4gyhM0s4b7xPiCW1kaoUthhTasNKas3ARmgzDVuifQUENk2bUK0lckfZUIhdKfQDGIXO3NBIUg_6-mJ6gipX8gPqrlZUanOUQ4k5fJBKZ7ervrS5ZLoimTE3g3KFLhCqNrE127Ztcq9ImIwjHP2F_-IaDEzZbAPrD7WaBqKgjVKuLwDqdy6na3UfUNPXDBtYpTLnH66v8H_RqOsq5EBwUlvoHxdrNzb9FR2popjGa_0mlYDr8BKx0Tkw |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ5HJIeSpu2ZPtIXejVWdt6WceQNt00yV6ShdyEJEtlQ7GX9S6h_74ztpxkobTQk7GxQJqRZj5JM98Q8pmaIGhe0bS0VKbM5iy1OXcpoxbpCEvDO7b9q6mYzNj3W367RU6HXBgMq4y2v7fpnbWOX8ZRmuPFfD6-BvAN3lUovJAppFTbZBfQgILVuXtyfjGZPhhkwSPlnqApNnhM5BnfHYemqWBji0FetOPwjCXb_uCitoNpMHbStCC-0Ne92ACm-_dgA-ouKeqJkzp7QZ5HdJmc9AN4SbZ8fUD2huTj9oA8e8I_-Ip8-7L8lYRln9vQqSgBDJssehZYfG1Cgp6vPzBMFt4kHbHDvE4c5jvWHbdt-5rMzr7enE7SWFkhdazMVqkvXCWsc1UuAQIYU1EhmMucK3MTHOUZLbzMK-k9ICy8a807Yh0VqGBehUDfkJ26qf0hSWQGbtaykNlQMieU5UZxx42lylpV-RE5HoSpFz2Bhh4iy-50lL5G6euMa5D-iJSDyPXGTNBg5P_V9BBUpM0PsI96dl3gaQ4SzkiVjcjRht4e-lJIgTRlYkQ-DYrUsMLw2sTUvlm3GjARUjjKgv7lHzSUsNni0Af6OAt0jQWhWo0c3vFUTt-vl7r-iQ9YcK1mmEucv_3_QX8ke5Obq0t9eT69eEf2i65cBwYovic7q-XafwDQtLJHcVH8BtJ6FYc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dry+fractionation+for+production+of+functional+pea+protein+concentrates&rft.jtitle=Food+research+international&rft.au=Pelgrom%2C+Pascalle&rft.au=Vissers%2C+Anne&rft.au=Boom%2C+Remko&rft.au=Schutyser%2C+Maarten&rft.date=2013-08-01&rft.issn=0963-9969&rft.volume=53&rft.issue=1&rft.spage=232&rft.epage=239&rft_id=info:doi/10.1016%2Fj.foodres.2013.05.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-9969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-9969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-9969&client=summon |