Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads
Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement—among other dynamic instabil...
Saved in:
Published in | Nature nanotechnology Vol. 16; no. 4; pp. 447 - 454 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement—among other dynamic instabilities—and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young’s modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young’s moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.
Self-assembled nanoribbons with extensive and collective intermolecular interactions exhibit robust mechanical properties, enabling their translation to macroscopic solid-state threads. |
---|---|
AbstractList | Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement—among other dynamic instabilities—and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young’s modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young’s moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.
Self-assembled nanoribbons with extensive and collective intermolecular interactions exhibit robust mechanical properties, enabling their translation to macroscopic solid-state threads. Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement-among other dynamic instabilities-and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young's modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young's moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement-among other dynamic instabilities-and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young's modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young's moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials. Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement-among other dynamic instabilities-and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young's modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young's moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials. Small molecule self-assembly is an established route for producing high surface area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration, and rearrangement - among other dynamic instabilities - and ultimately disassociate upon drying. Here we show a small molecule platform, the aramid amphiphile (AA), that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between AAs suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 microns. The nanoribbons have a Young’s modulus of 1.7 GPa and tensile strength of 1.9 GPa. Here, we exploit this stability to extend small molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize AA nanoribbons into arbitrarily long flexible threads that support 200 times their weight when dried. Tensile tests of the threads provide a benchmark for Young’s moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry in solution. This bottom-up approach to macroscopic materials could benefit solid-state applications, historically inaccessible by self-assembled nanomaterials. Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement—among other dynamic instabilities—and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young’s modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young’s moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.Self-assembled nanoribbons with extensive and collective intermolecular interactions exhibit robust mechanical properties, enabling their translation to macroscopic solid-state threads. |
Author | Cho, Yukio Christoff-Tempesta, Ty Lindemann, William R. Ortony, Julia H. Kim, Dae-Yoon Zuo, Xiaobing Lew, Andrew J. Geri, Michela Lamour, Guillaume |
Author_xml | – sequence: 1 givenname: Ty orcidid: 0000-0002-6551-6599 surname: Christoff-Tempesta fullname: Christoff-Tempesta, Ty organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology – sequence: 2 givenname: Yukio surname: Cho fullname: Cho, Yukio organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology – sequence: 3 givenname: Dae-Yoon surname: Kim fullname: Kim, Dae-Yoon organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology, Institute of Advanced Composite Materials, Korea Institute of Science and Technology – sequence: 4 givenname: Michela orcidid: 0000-0002-6393-5378 surname: Geri fullname: Geri, Michela organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology – sequence: 5 givenname: Guillaume orcidid: 0000-0002-9331-5532 surname: Lamour fullname: Lamour, Guillaume organization: LAMBE, Université Paris-Saclay, University of Evry, CNRS – sequence: 6 givenname: Andrew J. orcidid: 0000-0002-4072-114X surname: Lew fullname: Lew, Andrew J. organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 7 givenname: Xiaobing orcidid: 0000-0002-0134-4804 surname: Zuo fullname: Zuo, Xiaobing organization: X-ray Science Division, Advanced Photon Source, Argonne National Laboratory – sequence: 8 givenname: William R. surname: Lindemann fullname: Lindemann, William R. organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology – sequence: 9 givenname: Julia H. orcidid: 0000-0001-7446-6207 surname: Ortony fullname: Ortony, Julia H. email: ortony@mit.edu organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33462430$$D View this record in MEDLINE/PubMed https://hal.science/hal-03641946$$DView record in HAL https://www.osti.gov/servlets/purl/1788201$$D View this record in Osti.gov |
BookMark | eNp9kctu1TAQhi1URC_wAixQBBtYBMaXJM6yqqBFOhILYG0mjtPjyrEPtkPVt8enaQvqopKlsUbfP7f_mBz44A0hryl8pMDlpyRo0zY1MKgBpID6-hk5op2QNed9c_Dwl90hOU7pCqBhPRMvyCHnomWCwxH59d24qcaUzDy4mypMFUac7VjhvNva8pxJlfU5VIvLEeuUcXCm8uhDtMMQfKrQF9rZS2_G__JV3kaDY3pJnk_oknl1F0_Izy-ff5xd1Jtv51_PTje1FhJyPTI9ddg3kk7DQEeBuhlpi3Toy6hajAAT1YC9mXBoe4NMUy4aahjlepRdx0_I27VuSNmqpG02equD90ZnRTspGdACfVihLTq1i3bGeKMCWnVxulH7HPBW0F60f_bs-5XdxfB7MSmr2SZtnENvwpIUE10PgnNoC_ruEXoVlujLuoo1lHHZdC0v1Js7ahlmMz70vzejAHIFdAwpRTOpsgVmG3y5vHWKgtr7rlbfVfFd3fqurouUPZLeV39SxFdRKrC_NPHf2E-o_gLidb9K |
CitedBy_id | crossref_primary_10_1002_ange_202204611 crossref_primary_10_1039_D2CC03646K crossref_primary_10_2147_IJN_S467354 crossref_primary_10_3390_molecules27144413 crossref_primary_10_1038_s41467_023_36684_w crossref_primary_10_1021_acsnano_3c07191 crossref_primary_10_1039_D2CS00122E crossref_primary_10_1016_j_nantod_2024_102405 crossref_primary_10_1021_acsnano_1c09860 crossref_primary_10_1038_s41467_025_57800_y crossref_primary_10_1021_acsnano_4c02030 crossref_primary_10_1021_acsnano_2c06898 crossref_primary_10_1016_j_mtchem_2023_101736 crossref_primary_10_1016_j_jcis_2024_09_065 crossref_primary_10_1021_acs_chemrev_2c00220 crossref_primary_10_1021_jacs_3c04598 crossref_primary_10_1021_jacs_4c04749 crossref_primary_10_1007_s12274_023_6037_8 crossref_primary_10_1038_s41467_024_51494_4 crossref_primary_10_1021_acs_chemmater_2c03169 crossref_primary_10_1021_acsami_2c01597 crossref_primary_10_1002_anie_202403220 crossref_primary_10_1021_acs_nanolett_0c05048 crossref_primary_10_1002_adma_202207587 crossref_primary_10_1002_ange_202403220 crossref_primary_10_1126_sciadv_abh3482 crossref_primary_10_1038_s41467_021_27536_6 crossref_primary_10_1016_j_cej_2021_134201 crossref_primary_10_1016_j_matt_2022_07_022 crossref_primary_10_1021_acs_biomac_4c00300 crossref_primary_10_1039_D1ME00120E crossref_primary_10_1021_acs_macromol_3c01539 crossref_primary_10_1016_j_mattod_2022_03_015 crossref_primary_10_1016_j_progpolymsci_2025_101945 crossref_primary_10_1039_D1CC04311K crossref_primary_10_1126_science_ado7201 crossref_primary_10_1002_anbr_202100087 crossref_primary_10_1063_PT_3_4694 crossref_primary_10_1039_D1SM00047K crossref_primary_10_1088_1361_6528_acc1eb crossref_primary_10_1002_advs_202207688 crossref_primary_10_1007_s42765_024_00432_6 crossref_primary_10_1007_s42114_024_00986_4 crossref_primary_10_1021_jacs_2c05908 crossref_primary_10_1016_j_memsci_2022_120290 crossref_primary_10_1038_s41467_024_52402_6 crossref_primary_10_1039_D2SC06089B crossref_primary_10_3390_polym13203458 crossref_primary_10_1038_s41467_025_56415_7 crossref_primary_10_1002_adma_202211277 crossref_primary_10_1002_admi_202200311 crossref_primary_10_1021_acsmaterialslett_2c00865 crossref_primary_10_1002_smll_202203015 crossref_primary_10_1021_acsami_4c01419 crossref_primary_10_1007_s12274_022_4379_2 crossref_primary_10_1039_D1EN00002K crossref_primary_10_1016_j_cej_2024_153260 crossref_primary_10_1002_adma_202410723 crossref_primary_10_1002_asia_202400361 crossref_primary_10_1002_anie_202204611 crossref_primary_10_1002_smll_202403882 crossref_primary_10_1002_smll_202307948 crossref_primary_10_1016_j_mtcomm_2021_102880 crossref_primary_10_1021_acs_jpclett_4c00032 crossref_primary_10_1016_j_memsci_2025_123927 crossref_primary_10_1039_D2MH00403H crossref_primary_10_1002_adma_202312724 crossref_primary_10_1021_acs_accounts_2c00052 crossref_primary_10_1016_j_micromeso_2022_111997 |
Cites_doi | 10.1021/ja056549l 10.1126/science.2106161 10.1039/C6SM01686C 10.1126/science.aat6141 10.1186/1751-0473-9-16 10.1038/nnano.2011.102 10.1038/nnano.2008.378 10.1021/ja035882r 10.1016/j.bbabio.2007.06.004 10.1021/ma100501j 10.1021/acs.langmuir.9b00778 10.1002/pol.1977.180151212 10.1073/pnas.0407843102 10.1021/j100102a001 10.1021/jacs.7b02969 10.1107/S0108768112003138 10.1021/nn2014003 10.1107/S0021889806035059 10.1021/ja060573x 10.1039/b915923c 10.1021/jacs.8b10142 10.1021/bi00220a036 10.1038/s41467-019-09697-7 10.1021/ja028215r 10.1126/science.1205962 10.1002/macp.200500259 10.1039/b920569a 10.1016/j.bpj.2020.08.042 10.1126/science.1150057 10.1038/nmat1403 10.1021/jacs.5b05888 10.1110/ps.041024904 10.1038/ncomms11561 10.1073/pnas.0807506106 10.1126/science.1962191 10.1038/nmat4538 10.1039/b008033k 10.1073/pnas.0604035103 10.1016/j.bpj.2017.09.003 10.1002/adma.200900498 10.1126/science.1079280 10.1002/anie.200503514 10.1016/j.biomaterials.2010.10.003 10.1038/nmat2778 10.1002/polb.1993.090310909 10.1016/S0167-2738(00)00629-9 10.1016/j.bpj.2016.12.036 10.1021/jp993770+ 10.1016/j.progpolymsci.2020.101250 10.1021/ja00819a013 10.1016/j.jsb.2010.06.012 10.1126/science.1063187 10.1038/nmat3979 10.1039/b901840a 10.1039/C6CS00176A 10.1002/9783527623501.ch1 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 The Author(s), under exclusive licence to Springer Nature Limited 2021. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 1XC OIOZB OTOTI |
DOI | 10.1038/s41565-020-00840-w |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic Hyper Article en Ligne (HAL) OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1748-3395 |
EndPage | 454 |
ExternalDocumentID | 1788201 oai_HAL_hal_03641946v1 33462430 10_1038_s41565_020_00840_w |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: 1122374; 1122374; CHE-194550 funderid: https://doi.org/10.13039/100000001 – fundername: NIEHS NIH HHS grantid: P30 ES002109 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 1XC NFIDA AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OIOZB OTOTI |
ID | FETCH-LOGICAL-c480t-d2cf7a9581fbb1d4ac5d16a1b9346c4d00f1c0a9efab69ea2c13451e213cd8773 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri May 19 00:37:18 EDT 2023 Fri May 09 12:15:53 EDT 2025 Fri Jul 11 06:42:05 EDT 2025 Sat Aug 23 12:26:34 EDT 2025 Wed Feb 19 02:23:44 EST 2025 Thu Apr 24 22:50:29 EDT 2025 Tue Jul 01 01:56:31 EDT 2025 Fri Feb 21 02:40:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-d2cf7a9581fbb1d4ac5d16a1b9346c4d00f1c0a9efab69ea2c13451e213cd8773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-06CH11357; CHE-1945500; 1122374 National Research Foundation of Korea (NRF) National Science Foundation (NSF) |
ORCID | 0000-0002-6551-6599 0000-0002-0134-4804 0000-0002-4072-114X 0000-0001-7446-6207 0000-0002-6393-5378 0000-0002-9331-5532 0000-0003-0919-692X 0000000293315532 000000024072114X 0000000174466207 0000000201344804 0000000265516599 0000000263935378 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1788201 |
PMID | 33462430 |
PQID | 2512385763 |
PQPubID | 546299 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1788201 hal_primary_oai_HAL_hal_03641946v1 proquest_miscellaneous_2479043306 proquest_journals_2512385763 pubmed_primary_33462430 crossref_citationtrail_10_1038_s41565_020_00840_w crossref_primary_10_1038_s41565_020_00840_w springer_journals_10_1038_s41565_020_00840_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Angeloni (CR51) 2011; 32 Dobb, Johnson, Saville (CR19) 1977; 15 Zhang (CR3) 2010; 9 Schleuss (CR23) 2006; 45 da Silva (CR8) 2016; 7 Yokoi, Kinoshita, Zhang (CR31) 2005; 102 Lamour, Kirkegaard, Li, Knowles, Gsponer (CR43) 2014; 9 Gorelik, van de Streek, Kilbinger, Brunklaus, Kolb (CR34) 2012; 68 Niece, Hartgerink, Donners, Stupp (CR50) 2003; 125 Barth (CR37) 2007; 1767 Nassar, Wong, Gsponer, Lamour (CR45) 2019; 141 Bradbury, Nagao (CR54) 2016; 12 Toledano, Williams, Jayawarna, Ulijn (CR12) 2006; 128 Wang, Liu, Xing, Yan (CR36) 2016; 45 Williams (CR14) 2009; 4 Kline (CR28) 2006; 39 Sherrington, Taskinen (CR18) 2001; 30 Lindemann, Christoff-Tempesta, Ortony (CR58) 2020; 119 Nallet, Laversanne, Roux (CR29) 1993; 3 Zandomeneghi, Krebs, McCammon, Fändrich (CR38) 2004; 13 Smith, Knowles, Dobson, MacPhee, Welland (CR41) 2006; 103 Knowles, Buehler (CR53) 2011; 6 Paramonov, Jun, Hartgerink (CR56) 2006; 128 Peng (CR46) 2017; 113 CR47 Aida, Meijer, Stupp (CR2) 2012; 335 Hashim, Bergueiro, Meijer, Aida (CR15) 2020; 105 Johansson, Kollman, Rothenberg, McKelvey (CR26) 1974; 96 Abbel, Schleuss, Frey, Kilbinger (CR25) 2005; 206 Knowles (CR42) 2007; 318 Lamour (CR48) 2017; 112 Huang, Knowles, Terentjev (CR44) 2009; 21 Cravotto, Cintas (CR33) 2009; 38 Mertens, Svergun (CR30) 2010; 172 Tantakitti (CR5) 2016; 15 Freeman (CR13) 2018; 362 Hartgerink, Beniash, Stupp (CR32) 2001; 294 Tuller (CR17) 2000; 131 Matayoshi, Wang, Krafft, Erickson (CR39) 1990; 247 Ortony (CR10) 2017; 139 Yang (CR22) 2011; 5 Bohle (CR24) 2010; 43 Gorelik (CR35) 2010; 12 Yuan, Shi, Du, Zhou, Xu (CR11) 2015; 137 Claussen, Rabatic, Stupp (CR21) 2003; 125 Fink, Steiner, Szekely, Szekely, Raviv (CR52) 2019; 35 Koutsopoulos, Unsworth, Nagai, Zhang (CR4) 2009; 106 Wimley, Thompson (CR9) 1991; 30 Ortony (CR6) 2014; 13 Whitesides, Mathias, Seto (CR1) 1991; 254 Russell (CR57) 2003; 299 Wu, Heidelberg, Boland (CR40) 2005; 4 Dixon, Dobbs, Valentini (CR27) 1994; 98 Seyler, Storz, Abbel, Kilbinger (CR20) 2009; 5 Takahashi, Ozaki, Takase, Krigbaum (CR55) 1993; 31 Schief, Touryan, Hall, Vogel (CR7) 2000; 104 Xu (CR16) 2019; 10 Zhao (CR49) 2010; 39 A Bohle (840_CR24) 2010; 43 M Yang (840_CR22) 2011; 5 RC Claussen (840_CR21) 2003; 125 R Nassar (840_CR45) 2019; 141 T Gorelik (840_CR35) 2010; 12 JF Smith (840_CR41) 2006; 103 NL Angeloni (840_CR51) 2011; 32 F Tantakitti (840_CR5) 2016; 15 Y Xu (840_CR16) 2019; 10 DA Dixon (840_CR27) 1994; 98 A Barth (840_CR37) 2007; 1767 840_CR47 R Freeman (840_CR13) 2018; 362 X Zhao (840_CR49) 2010; 39 T Aida (840_CR2) 2012; 335 G Cravotto (840_CR33) 2009; 38 R Abbel (840_CR25) 2005; 206 WC Wimley (840_CR9) 1991; 30 W Schief (840_CR7) 2000; 104 RM da Silva (840_CR8) 2016; 7 WR Lindemann (840_CR58) 2020; 119 ED Matayoshi (840_CR39) 1990; 247 S Koutsopoulos (840_CR4) 2009; 106 F Nallet (840_CR29) 1993; 3 D Yuan (840_CR11) 2015; 137 SR Kline (840_CR28) 2006; 39 A Johansson (840_CR26) 1974; 96 J Wang (840_CR36) 2016; 45 TE Gorelik (840_CR34) 2012; 68 G Lamour (840_CR48) 2017; 112 P Hashim (840_CR15) 2020; 105 TP Knowles (840_CR53) 2011; 6 TP Knowles (840_CR42) 2007; 318 YY Huang (840_CR44) 2009; 21 H Yokoi (840_CR31) 2005; 102 HL Tuller (840_CR17) 2000; 131 M Dobb (840_CR19) 1977; 15 JD Hartgerink (840_CR32) 2001; 294 JH Ortony (840_CR10) 2017; 139 Y Takahashi (840_CR55) 1993; 31 JH Ortony (840_CR6) 2014; 13 GM Whitesides (840_CR1) 1991; 254 B Wu (840_CR40) 2005; 4 SE Paramonov (840_CR56) 2006; 128 R Bradbury (840_CR54) 2016; 12 DC Sherrington (840_CR18) 2001; 30 G Zandomeneghi (840_CR38) 2004; 13 L Fink (840_CR52) 2019; 35 G Lamour (840_CR43) 2014; 9 HD Mertens (840_CR30) 2010; 172 S Zhang (840_CR3) 2010; 9 KL Niece (840_CR50) 2003; 125 TW Schleuss (840_CR23) 2006; 45 Z Peng (840_CR46) 2017; 113 P Russell (840_CR57) 2003; 299 S Toledano (840_CR12) 2006; 128 H Seyler (840_CR20) 2009; 5 RJ Williams (840_CR14) 2009; 4 |
References_xml | – volume: 128 start-page: 1070 year: 2006 end-page: 1071 ident: CR12 article-title: Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056549l – volume: 247 start-page: 954 year: 1990 end-page: 958 ident: CR39 article-title: Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer publication-title: Science doi: 10.1126/science.2106161 – volume: 12 start-page: 9383 year: 2016 end-page: 9390 ident: CR54 article-title: Effect of charge on the mechanical properties of surfactant bilayers publication-title: Soft Matter doi: 10.1039/C6SM01686C – volume: 362 start-page: 808 year: 2018 end-page: 813 ident: CR13 article-title: Reversible self-assembly of superstructured networks publication-title: Science doi: 10.1126/science.aat6141 – volume: 9 year: 2014 ident: CR43 article-title: Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains publication-title: Source Code Biol. Med. doi: 10.1186/1751-0473-9-16 – volume: 6 start-page: 469 year: 2011 end-page: 479 ident: CR53 article-title: Nanomechanics of functional and pathological amyloid materials publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.102 – volume: 4 start-page: 19 year: 2009 end-page: 24 ident: CR14 article-title: Enzyme-assisted self-assembly under thermodynamic control publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.378 – volume: 125 start-page: 12680 year: 2003 end-page: 12681 ident: CR21 article-title: Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja035882r – volume: 1767 start-page: 1073 year: 2007 end-page: 1101 ident: CR37 article-title: Infrared spectroscopy of proteins publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2007.06.004 – volume: 43 start-page: 4978 year: 2010 end-page: 4985 ident: CR24 article-title: Hydrogen-bonded aggregates of oligoaramide−poly(ethylene glycol) block copolymers publication-title: Macromolecules doi: 10.1021/ma100501j – volume: 35 start-page: 9694 year: 2019 end-page: 9703 ident: CR52 article-title: Structure and interactions between charged lipid membranes in the presence of multivalent ions publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00778 – volume: 15 start-page: 2201 year: 1977 end-page: 2211 ident: CR19 article-title: Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49) publication-title: J. Polym. Sci. Polym. Phys. Ed. doi: 10.1002/pol.1977.180151212 – volume: 102 start-page: 8414 year: 2005 end-page: 8419 ident: CR31 article-title: Dynamic reassembly of peptide RADA16 nanofiber scaffold publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0407843102 – volume: 98 start-page: 13435 year: 1994 end-page: 13439 ident: CR27 article-title: Amide-water and amide-amide hydrogen bond strengths publication-title: J. Phys. Chem. doi: 10.1021/j100102a001 – volume: 139 start-page: 8915 year: 2017 end-page: 8921 ident: CR10 article-title: Water dynamics from the surface to the interior of a supramolecular nanostructure publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02969 – volume: 68 start-page: 171 year: 2012 end-page: 181 ident: CR34 article-title: crystal structure analysis and refinement approaches of oligo -benzamides based on electron diffraction data publication-title: Acta Crystallogr. B Struct. Sci. doi: 10.1107/S0108768112003138 – volume: 5 start-page: 6945 year: 2011 end-page: 6954 ident: CR22 article-title: Dispersions of aramid nanofibers: a new nanoscale building block publication-title: ACS Nano doi: 10.1021/nn2014003 – volume: 39 start-page: 895 year: 2006 end-page: 900 ident: CR28 article-title: Reduction and analysis of SANS and USANS data using IGOR Pro publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889806035059 – volume: 128 start-page: 7291 year: 2006 end-page: 7298 ident: CR56 article-title: Self-assembly of peptide−amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing publication-title: J. Am. Chem. Soc. doi: 10.1021/ja060573x – volume: 39 start-page: 3480 year: 2010 end-page: 3498 ident: CR49 article-title: Molecular self-assembly and applications of designer peptide amphiphiles publication-title: Chem. Soc. Rev. doi: 10.1039/b915923c – volume: 141 start-page: 58 year: 2019 end-page: 61 ident: CR45 article-title: Inverse correlation between amyloid stiffness and size publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10142 – volume: 30 start-page: 1702 year: 1991 end-page: 1709 ident: CR9 article-title: Transbilayer and interbilayer phospholipid exchange in dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine large unilamellar vesicles publication-title: Biochemistry doi: 10.1021/bi00220a036 – volume: 10 start-page: 1771 year: 2019 ident: CR16 article-title: Nanostructured polymer films with metal-like thermal conductivity publication-title: Nat. Commun. doi: 10.1038/s41467-019-09697-7 – volume: 125 start-page: 7146 year: 2003 end-page: 7147 ident: CR50 article-title: Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028215r – volume: 335 start-page: 813 year: 2012 end-page: 817 ident: CR2 article-title: Functional supramolecular polymers publication-title: Science doi: 10.1126/science.1205962 – volume: 206 start-page: 2067 year: 2005 end-page: 2074 ident: CR25 article-title: Rod-length dependent aggregation in a series of oligo( -benzamide)- -poly(ethylene glycol) rod-coil copolymers publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200500259 – volume: 12 start-page: 1824 year: 2010 end-page: 1832 ident: CR35 article-title: H-bonding schemes of di- and tri- -benzamides assessed by a combination of electron diffraction, X-ray powder diffraction and solid-state NMR publication-title: CrystEngComm doi: 10.1039/b920569a – volume: 119 start-page: 1937 year: 2020 end-page: 1945 ident: CR58 article-title: A global minimization toolkit for batch-fitting and cluster analysis of CW-EPR spectra publication-title: Biophys. J. doi: 10.1016/j.bpj.2020.08.042 – volume: 318 start-page: 1900 year: 2007 end-page: 1903 ident: CR42 article-title: Role of intermolecular forces in defining material properties of protein nanofibrils publication-title: Science doi: 10.1126/science.1150057 – volume: 4 start-page: 525 year: 2005 end-page: 529 ident: CR40 article-title: Mechanical properties of ultrahigh-strength gold nanowires publication-title: Nat. Mater. doi: 10.1038/nmat1403 – volume: 137 start-page: 10092 year: 2015 end-page: 10095 ident: CR11 article-title: Supramolecular glycosylation accelerates proteolytic degradation of peptide nanofibrils publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05888 – volume: 13 start-page: 3314 year: 2004 end-page: 3321 ident: CR38 article-title: FTIR reveals structural differences between native β‐sheet proteins and amyloid fibrils publication-title: Protein Sci. doi: 10.1110/ps.041024904 – ident: CR47 – volume: 7 year: 2016 ident: CR8 article-title: Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres publication-title: Nat. Commun. doi: 10.1038/ncomms11561 – volume: 5 start-page: 2543 year: 2009 end-page: 2545 ident: CR20 article-title: A facile synthesis of aramide–peptide amphiphiles publication-title: Soft Matter – volume: 106 start-page: 4623 year: 2009 end-page: 4628 ident: CR4 article-title: Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0807506106 – volume: 254 start-page: 1312 year: 1991 end-page: 1319 ident: CR1 article-title: Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures publication-title: Science doi: 10.1126/science.1962191 – volume: 15 start-page: 469 year: 2016 end-page: 476 ident: CR5 article-title: Energy landscapes and functions of supramolecular systems publication-title: Nat. Mater. doi: 10.1038/nmat4538 – volume: 30 start-page: 83 year: 2001 end-page: 93 ident: CR18 article-title: Self-assembly in synthetic macromolecular systems multiple hydrogen bonding interactions publication-title: Chem. Soc. Rev. doi: 10.1039/b008033k – volume: 103 start-page: 15806 year: 2006 end-page: 15811 ident: CR41 article-title: Characterization of the nanoscale properties of individual amyloid fibrils publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0604035103 – volume: 113 start-page: 1945 year: 2017 end-page: 1955 ident: CR46 article-title: High tensile strength of engineered -solenoid fibrils via sonication and pulling publication-title: Biophys. J. doi: 10.1016/j.bpj.2017.09.003 – volume: 21 start-page: 3945 year: 2009 end-page: 3948 ident: CR44 article-title: Strength of nanotubes, filaments, and nanowires from sonication‐induced scission publication-title: Adv. Mater. doi: 10.1002/adma.200900498 – volume: 299 start-page: 358 year: 2003 end-page: 362 ident: CR57 article-title: Photonic crystal fibers publication-title: Science doi: 10.1126/science.1079280 – volume: 45 start-page: 2969 year: 2006 end-page: 2975 ident: CR23 article-title: Hockey-puck micelles from oligo( -benzamide)- -PEG rod–coil block copolymers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503514 – volume: 32 start-page: 1091 year: 2011 end-page: 1101 ident: CR51 article-title: Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.10.003 – volume: 9 start-page: 594 year: 2010 end-page: 601 ident: CR3 article-title: A self-assembly pathway to aligned monodomain gels publication-title: Nat. Mater. doi: 10.1038/nmat2778 – volume: 3 start-page: 487 year: 1993 end-page: 502 ident: CR29 article-title: Modelling X-ray or neutron scattering spectra of lyotropic lamellar phases: interplay between form and structure factors publication-title: J. Phys. II – volume: 31 start-page: 1135 year: 1993 end-page: 1143 ident: CR55 article-title: Crystal structure of poly( ‐benzamide) publication-title: J. Polym. Sci. B Polym. Phys. doi: 10.1002/polb.1993.090310909 – volume: 131 start-page: 143 year: 2000 end-page: 157 ident: CR17 article-title: Ionic conduction in nanocrystalline materials publication-title: Solid State Ion. doi: 10.1016/S0167-2738(00)00629-9 – volume: 112 start-page: 584 year: 2017 end-page: 594 ident: CR48 article-title: Mapping the broad structural and mechanical properties of amyloid fibrils publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.12.036 – volume: 104 start-page: 7388 year: 2000 end-page: 7393 ident: CR7 article-title: Nanoscale topographic instabilities of a phospholipid monolayer publication-title: J. Phys. Chem. B doi: 10.1021/jp993770+ – volume: 105 start-page: 101250 year: 2020 ident: CR15 article-title: Supramolecular polymerization: a conceptual expansion for innovative materials publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2020.101250 – volume: 96 start-page: 3794 year: 1974 end-page: 3800 ident: CR26 article-title: Hydrogen bonding ability of the amide group publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00819a013 – volume: 172 start-page: 128 year: 2010 end-page: 141 ident: CR30 article-title: Structural characterization of proteins and complexes using small-angle X-ray solution scattering publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2010.06.012 – volume: 294 start-page: 1684 year: 2001 end-page: 1688 ident: CR32 article-title: Self-assembly and mineralization of peptide-amphiphile nanofibers publication-title: Science doi: 10.1126/science.1063187 – volume: 13 start-page: 812 year: 2014 end-page: 816 ident: CR6 article-title: Internal dynamics of a supramolecular nanofibre publication-title: Nat. Mater. doi: 10.1038/nmat3979 – volume: 38 start-page: 2684 year: 2009 end-page: 2697 ident: CR33 article-title: Molecular self-assembly and patterning induced by sound waves. The case of gelation publication-title: Chem. Soc. Rev. doi: 10.1039/b901840a – volume: 45 start-page: 5589 year: 2016 end-page: 5604 ident: CR36 article-title: Peptide self-assembly: thermodynamics and kinetics publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00176A – volume: 15 start-page: 469 year: 2016 ident: 840_CR5 publication-title: Nat. Mater. doi: 10.1038/nmat4538 – volume: 125 start-page: 12680 year: 2003 ident: 840_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja035882r – volume: 10 start-page: 1771 year: 2019 ident: 840_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09697-7 – volume: 35 start-page: 9694 year: 2019 ident: 840_CR52 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00778 – volume: 13 start-page: 812 year: 2014 ident: 840_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat3979 – volume: 105 start-page: 101250 year: 2020 ident: 840_CR15 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2020.101250 – volume: 45 start-page: 5589 year: 2016 ident: 840_CR36 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00176A – volume: 113 start-page: 1945 year: 2017 ident: 840_CR46 publication-title: Biophys. J. doi: 10.1016/j.bpj.2017.09.003 – volume: 68 start-page: 171 year: 2012 ident: 840_CR34 publication-title: Acta Crystallogr. B Struct. Sci. doi: 10.1107/S0108768112003138 – volume: 45 start-page: 2969 year: 2006 ident: 840_CR23 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503514 – volume: 30 start-page: 83 year: 2001 ident: 840_CR18 publication-title: Chem. Soc. Rev. doi: 10.1039/b008033k – volume: 294 start-page: 1684 year: 2001 ident: 840_CR32 publication-title: Science doi: 10.1126/science.1063187 – volume: 318 start-page: 1900 year: 2007 ident: 840_CR42 publication-title: Science doi: 10.1126/science.1150057 – volume: 43 start-page: 4978 year: 2010 ident: 840_CR24 publication-title: Macromolecules doi: 10.1021/ma100501j – volume: 247 start-page: 954 year: 1990 ident: 840_CR39 publication-title: Science doi: 10.1126/science.2106161 – volume: 206 start-page: 2067 year: 2005 ident: 840_CR25 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200500259 – volume: 5 start-page: 2543 year: 2009 ident: 840_CR20 publication-title: Soft Matter – volume: 299 start-page: 358 year: 2003 ident: 840_CR57 publication-title: Science doi: 10.1126/science.1079280 – volume: 3 start-page: 487 year: 1993 ident: 840_CR29 publication-title: J. Phys. II – volume: 39 start-page: 3480 year: 2010 ident: 840_CR49 publication-title: Chem. Soc. Rev. doi: 10.1039/b915923c – volume: 9 year: 2014 ident: 840_CR43 publication-title: Source Code Biol. Med. doi: 10.1186/1751-0473-9-16 – volume: 38 start-page: 2684 year: 2009 ident: 840_CR33 publication-title: Chem. Soc. Rev. doi: 10.1039/b901840a – volume: 12 start-page: 9383 year: 2016 ident: 840_CR54 publication-title: Soft Matter doi: 10.1039/C6SM01686C – volume: 254 start-page: 1312 year: 1991 ident: 840_CR1 publication-title: Science doi: 10.1126/science.1962191 – volume: 4 start-page: 525 year: 2005 ident: 840_CR40 publication-title: Nat. Mater. doi: 10.1038/nmat1403 – volume: 125 start-page: 7146 year: 2003 ident: 840_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028215r – volume: 128 start-page: 7291 year: 2006 ident: 840_CR56 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja060573x – volume: 21 start-page: 3945 year: 2009 ident: 840_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.200900498 – ident: 840_CR47 doi: 10.1002/9783527623501.ch1 – volume: 98 start-page: 13435 year: 1994 ident: 840_CR27 publication-title: J. Phys. Chem. doi: 10.1021/j100102a001 – volume: 137 start-page: 10092 year: 2015 ident: 840_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05888 – volume: 172 start-page: 128 year: 2010 ident: 840_CR30 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2010.06.012 – volume: 4 start-page: 19 year: 2009 ident: 840_CR14 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.378 – volume: 5 start-page: 6945 year: 2011 ident: 840_CR22 publication-title: ACS Nano doi: 10.1021/nn2014003 – volume: 112 start-page: 584 year: 2017 ident: 840_CR48 publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.12.036 – volume: 7 year: 2016 ident: 840_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms11561 – volume: 102 start-page: 8414 year: 2005 ident: 840_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0407843102 – volume: 335 start-page: 813 year: 2012 ident: 840_CR2 publication-title: Science doi: 10.1126/science.1205962 – volume: 128 start-page: 1070 year: 2006 ident: 840_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056549l – volume: 141 start-page: 58 year: 2019 ident: 840_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10142 – volume: 119 start-page: 1937 year: 2020 ident: 840_CR58 publication-title: Biophys. J. doi: 10.1016/j.bpj.2020.08.042 – volume: 96 start-page: 3794 year: 1974 ident: 840_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00819a013 – volume: 6 start-page: 469 year: 2011 ident: 840_CR53 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.102 – volume: 104 start-page: 7388 year: 2000 ident: 840_CR7 publication-title: J. Phys. Chem. B doi: 10.1021/jp993770+ – volume: 106 start-page: 4623 year: 2009 ident: 840_CR4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0807506106 – volume: 131 start-page: 143 year: 2000 ident: 840_CR17 publication-title: Solid State Ion. doi: 10.1016/S0167-2738(00)00629-9 – volume: 1767 start-page: 1073 year: 2007 ident: 840_CR37 publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2007.06.004 – volume: 9 start-page: 594 year: 2010 ident: 840_CR3 publication-title: Nat. Mater. doi: 10.1038/nmat2778 – volume: 362 start-page: 808 year: 2018 ident: 840_CR13 publication-title: Science doi: 10.1126/science.aat6141 – volume: 12 start-page: 1824 year: 2010 ident: 840_CR35 publication-title: CrystEngComm doi: 10.1039/b920569a – volume: 32 start-page: 1091 year: 2011 ident: 840_CR51 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.10.003 – volume: 103 start-page: 15806 year: 2006 ident: 840_CR41 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0604035103 – volume: 31 start-page: 1135 year: 1993 ident: 840_CR55 publication-title: J. Polym. Sci. B Polym. Phys. doi: 10.1002/polb.1993.090310909 – volume: 13 start-page: 3314 year: 2004 ident: 840_CR38 publication-title: Protein Sci. doi: 10.1110/ps.041024904 – volume: 30 start-page: 1702 year: 1991 ident: 840_CR9 publication-title: Biochemistry doi: 10.1021/bi00220a036 – volume: 39 start-page: 895 year: 2006 ident: 840_CR28 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889806035059 – volume: 15 start-page: 2201 year: 1977 ident: 840_CR19 publication-title: J. Polym. Sci. Polym. Phys. Ed. doi: 10.1002/pol.1977.180151212 – volume: 139 start-page: 8915 year: 2017 ident: 840_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02969 |
SSID | ssj0052924 |
Score | 2.5841074 |
Snippet | Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular... Small molecule self-assembly is an established route for producing high surface area nanostructures with readily customizable chemistries and precise molecular... |
SourceID | osti hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 447 |
SubjectTerms | 639/301/357 639/638/541 Aramid fibers Chemical Physics Chemistry Chemistry and Materials Science Composite materials Design Drying Exchanging Hydrogen bonds Kevlar (trademark) Materials Science Mechanical properties Modulus of elasticity Molecular structure Nanomaterials Nanoribbons Nanoscale materials NANOSCIENCE AND NANOTECHNOLOGY Nanotechnology Nanotechnology and Microengineering Physics Self-assembly Solid state Supramolecular chemistry Tensile strength Tensile tests |
Title | Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads |
URI | https://link.springer.com/article/10.1038/s41565-020-00840-w https://www.ncbi.nlm.nih.gov/pubmed/33462430 https://www.proquest.com/docview/2512385763 https://www.proquest.com/docview/2479043306 https://hal.science/hal-03641946 https://www.osti.gov/servlets/purl/1788201 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELXo9gAcEJSv0FIFxA2sxrFjJydUqi4rBBUCKu3N2I4DK6VJ2WSp-PfM5KtFQKUoh8SJYr-x_ZwZvyHkhYpsKjmXNC5sTAVQdAosX9DcCi86BU6Je4c_nMjFqXi3TJbDD7dmCKscx8RuoM5rh__ID3Ae5imwY_76_AfFrFHoXR1SaGyRbZQuw5AutZwWXEmc9UltlUgpLMXUsGkm4ulBgwsX3JuM-6phkUMv_piYtr5jWOSshm72L-r5l9u0m43md8mdgUaGhz3u98gNX-2Qm0dj9rYdcvuK0OB98vWzLwsKPNmf2fJXWBehWZuzVR4aAHMFR-mbcFW1dbgp27WhQBlt6cPKVNAE1oJlhqaC0uXqGwzLV66HLdiCyZsH5HR-_OVoQYfcCtSJNGppHrtCGWgyVljLcmFckjNpmM24kE7kUVQwF5nMF8bKzJvYMS4S5mPGXZ4qxR-SWVVX_jEJRVJECUy1KHoqhMmyxMWKmQSYnfBSyYCwsWG1G4THMf9FqTsHOE91D4YGMHQHhr4IyMvpmfNeduPa0s8Br6kgKmYvDt9rvIZuVpYJ-ZMFZBfh1MAsUB7XYRyRazVTKZKggOyNKOuhFzf60uYC8my6DUCiU8VUvt5AGaEyFIGLoJ6PeuuYPoRDW8aCRwF5NZrL5cv_X50n13_LLrkVY2BNFz60R2bteuOfAjNq7X5n_nBO52_3yfab45OPn34DZ1MIiQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELba5VA4ICiv0AIGwQmsxo-8DghVhbKl215opd5c23FgpTQpu1lW_VP8RmaSzbYI6K1STo5j2Z4Zz-fMi5DXSWjTWMqYicIKpgCiM0D5iuVWedVm4IwxdvjgMB4eqy8n0ckK-dXHwqBbZX8mtgd1Xjv8R76FelimgI7lh_MfDKtGoXW1L6HRscW-v5jDlW36fu8j0PeNELufjnaGbFFVgDmVhg3LhSsSk0UpL6zluTIuynlsuM2kip3Kw7DgLjSZL4yNM2-E41JF3AsuXZ4miYRxV8ktJWWGEpXufu5P_khkXRHdRKUMrn7JIkgnlOnWFC9KGAuNcdxwqWLzPxTh6nd0wxzUINb_grp_mWlb7bd7j9xdwFa63fHZfbLiq3WyttNXi1snd64kNnxATr_6smCAy_2ZLS9oXVAzMWfjnBpgnjE8pZ_ScdXUdFY2E8MAotrS08pUsOXWgiRQU0HvcvwN1MCVdtoA75l8-pAc38iuPyKDqq78E0JVVIQRqHZMsqqUybLIiYSbCJCk8nESB4T3G6vdItE51tsodWtwl6nuiKGBGLolhp4H5O3ym_Muzce1vV8BvZYdMUP3cHuksQ3NujxT8U8ekA0kpwYkg-l4HfotuUbzJEXQFZDNnsp6cWpM9SWPB-Tl8jUQEo04pvL1DPqoJMOkcyGs83HHHcuJSNhLoWQYkHc9u1wO_v_lPL1-Li_I2vDoYKRHe4f7G-S2QKee1nVpkwyaycw_A1TW2OetKFByetOy9xss60P_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaReJxQFBeoQUCghO1No6dODkgVLWstrRUSFBpb67tOLBSmpTdLKv-NX4dM3lsi4DeKuWUOJbjmfF8k3kR8loGJok5j2mYm5AKgOgUUL6gmRFONBU4Y8wd_nQUj4_Fx0k0WSO_-lwYDKvsz8TmoM4qi__Ih6iHeQLomA_zLizi897o_dkPih2k0NPat9NoWeTAnS_BfJu_298DWr8Jw9GHr7tj2nUYoFYkQU2z0OZSp1HCcmNYJrSNMhZrZlIuYiuyIMiZDXTqcm3i1OnQMi4i5kLGbZZIyWHedXJD8oihjMnJytiLwrRtqCtFQsEMlF3CTsCT4RyNJsyLxpxuMLDo8g-luP4dQzIHFYj4v2DvXy7bRhOO7pG7HYT1d1qeu0_WXLlBbu32neM2yJ1LRQ4fkJMvrsgpYHR3aopzv8p9PdOn08zXwEhTuAo396dlXfmLop5pCnDVFM4vdQlbbgxIha9LGF1Mv4FKuHTfr4EPdTZ_SI6vZdcfkUFZle4J8UWUBxGoeSy4KoRO08iGkukIUKVwsYw9wvqNVbYreo69NwrVON95olpiKCCGaoihlh55u3rnrC35ceXoV0Cv1UCs1j3eOVR4D128LBXxT-aRTSSnAlSDpXktxjDZWjGZIADzyFZPZdWdIHN1we8eebl6DIREh44uXbWAMUKmWIAugO983HLHaiEc9jIUPPDIds8uF5P__3OeXr2WF-QmSJ063D862CS3Q4zvaaKYtsigni3cMwBotXneSIJPTq5b9H4DV-dILA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembly+of+aramid+amphiphiles+into+ultra-stable+nanoribbons+and+aligned+nanoribbon+threads&rft.jtitle=Nature+nanotechnology&rft.au=Christoff-Tempesta%2C+Ty&rft.au=Cho%2C+Yukio&rft.au=Kim%2C+Dae-Yoon&rft.au=Geri%2C+Michela&rft.date=2021-04-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=16&rft.issue=4&rft.spage=447&rft.epage=454&rft_id=info:doi/10.1038%2Fs41565-020-00840-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_020_00840_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |