Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads

Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement—among other dynamic instabil...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 16; no. 4; pp. 447 - 454
Main Authors Christoff-Tempesta, Ty, Cho, Yukio, Kim, Dae-Yoon, Geri, Michela, Lamour, Guillaume, Lew, Andrew J., Zuo, Xiaobing, Lindemann, William R., Ortony, Julia H.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement—among other dynamic instabilities—and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young’s modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young’s moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials. Self-assembled nanoribbons with extensive and collective intermolecular interactions exhibit robust mechanical properties, enabling their translation to macroscopic solid-state threads.
AbstractList Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement—among other dynamic instabilities—and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young’s modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young’s moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials. Self-assembled nanoribbons with extensive and collective intermolecular interactions exhibit robust mechanical properties, enabling their translation to macroscopic solid-state threads.
Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement-among other dynamic instabilities-and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young's modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young's moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement-among other dynamic instabilities-and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young's modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young's moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.
Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement-among other dynamic instabilities-and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young's modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young's moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.
Small molecule self-assembly is an established route for producing high surface area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration, and rearrangement - among other dynamic instabilities - and ultimately disassociate upon drying. Here we show a small molecule platform, the aramid amphiphile (AA), that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between AAs suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 microns. The nanoribbons have a Young’s modulus of 1.7 GPa and tensile strength of 1.9 GPa. Here, we exploit this stability to extend small molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize AA nanoribbons into arbitrarily long flexible threads that support 200 times their weight when dried. Tensile tests of the threads provide a benchmark for Young’s moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry in solution. This bottom-up approach to macroscopic materials could benefit solid-state applications, historically inaccessible by self-assembled nanomaterials.
Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement—among other dynamic instabilities—and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young’s modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young’s moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.Self-assembled nanoribbons with extensive and collective intermolecular interactions exhibit robust mechanical properties, enabling their translation to macroscopic solid-state threads.
Author Cho, Yukio
Christoff-Tempesta, Ty
Lindemann, William R.
Ortony, Julia H.
Kim, Dae-Yoon
Zuo, Xiaobing
Lew, Andrew J.
Geri, Michela
Lamour, Guillaume
Author_xml – sequence: 1
  givenname: Ty
  orcidid: 0000-0002-6551-6599
  surname: Christoff-Tempesta
  fullname: Christoff-Tempesta, Ty
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology
– sequence: 2
  givenname: Yukio
  surname: Cho
  fullname: Cho, Yukio
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology
– sequence: 3
  givenname: Dae-Yoon
  surname: Kim
  fullname: Kim, Dae-Yoon
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology, Institute of Advanced Composite Materials, Korea Institute of Science and Technology
– sequence: 4
  givenname: Michela
  orcidid: 0000-0002-6393-5378
  surname: Geri
  fullname: Geri, Michela
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology
– sequence: 5
  givenname: Guillaume
  orcidid: 0000-0002-9331-5532
  surname: Lamour
  fullname: Lamour, Guillaume
  organization: LAMBE, Université Paris-Saclay, University of Evry, CNRS
– sequence: 6
  givenname: Andrew J.
  orcidid: 0000-0002-4072-114X
  surname: Lew
  fullname: Lew, Andrew J.
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 7
  givenname: Xiaobing
  orcidid: 0000-0002-0134-4804
  surname: Zuo
  fullname: Zuo, Xiaobing
  organization: X-ray Science Division, Advanced Photon Source, Argonne National Laboratory
– sequence: 8
  givenname: William R.
  surname: Lindemann
  fullname: Lindemann, William R.
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology
– sequence: 9
  givenname: Julia H.
  orcidid: 0000-0001-7446-6207
  surname: Ortony
  fullname: Ortony, Julia H.
  email: ortony@mit.edu
  organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33462430$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03641946$$DView record in HAL
https://www.osti.gov/servlets/purl/1788201$$D View this record in Osti.gov
BookMark eNp9kctu1TAQhi1URC_wAixQBBtYBMaXJM6yqqBFOhILYG0mjtPjyrEPtkPVt8enaQvqopKlsUbfP7f_mBz44A0hryl8pMDlpyRo0zY1MKgBpID6-hk5op2QNed9c_Dwl90hOU7pCqBhPRMvyCHnomWCwxH59d24qcaUzDy4mypMFUac7VjhvNva8pxJlfU5VIvLEeuUcXCm8uhDtMMQfKrQF9rZS2_G__JV3kaDY3pJnk_oknl1F0_Izy-ff5xd1Jtv51_PTje1FhJyPTI9ddg3kk7DQEeBuhlpi3Toy6hajAAT1YC9mXBoe4NMUy4aahjlepRdx0_I27VuSNmqpG02equD90ZnRTspGdACfVihLTq1i3bGeKMCWnVxulH7HPBW0F60f_bs-5XdxfB7MSmr2SZtnENvwpIUE10PgnNoC_ruEXoVlujLuoo1lHHZdC0v1Js7ahlmMz70vzejAHIFdAwpRTOpsgVmG3y5vHWKgtr7rlbfVfFd3fqurouUPZLeV39SxFdRKrC_NPHf2E-o_gLidb9K
CitedBy_id crossref_primary_10_1002_ange_202204611
crossref_primary_10_1039_D2CC03646K
crossref_primary_10_2147_IJN_S467354
crossref_primary_10_3390_molecules27144413
crossref_primary_10_1038_s41467_023_36684_w
crossref_primary_10_1021_acsnano_3c07191
crossref_primary_10_1039_D2CS00122E
crossref_primary_10_1016_j_nantod_2024_102405
crossref_primary_10_1021_acsnano_1c09860
crossref_primary_10_1038_s41467_025_57800_y
crossref_primary_10_1021_acsnano_4c02030
crossref_primary_10_1021_acsnano_2c06898
crossref_primary_10_1016_j_mtchem_2023_101736
crossref_primary_10_1016_j_jcis_2024_09_065
crossref_primary_10_1021_acs_chemrev_2c00220
crossref_primary_10_1021_jacs_3c04598
crossref_primary_10_1021_jacs_4c04749
crossref_primary_10_1007_s12274_023_6037_8
crossref_primary_10_1038_s41467_024_51494_4
crossref_primary_10_1021_acs_chemmater_2c03169
crossref_primary_10_1021_acsami_2c01597
crossref_primary_10_1002_anie_202403220
crossref_primary_10_1021_acs_nanolett_0c05048
crossref_primary_10_1002_adma_202207587
crossref_primary_10_1002_ange_202403220
crossref_primary_10_1126_sciadv_abh3482
crossref_primary_10_1038_s41467_021_27536_6
crossref_primary_10_1016_j_cej_2021_134201
crossref_primary_10_1016_j_matt_2022_07_022
crossref_primary_10_1021_acs_biomac_4c00300
crossref_primary_10_1039_D1ME00120E
crossref_primary_10_1021_acs_macromol_3c01539
crossref_primary_10_1016_j_mattod_2022_03_015
crossref_primary_10_1016_j_progpolymsci_2025_101945
crossref_primary_10_1039_D1CC04311K
crossref_primary_10_1126_science_ado7201
crossref_primary_10_1002_anbr_202100087
crossref_primary_10_1063_PT_3_4694
crossref_primary_10_1039_D1SM00047K
crossref_primary_10_1088_1361_6528_acc1eb
crossref_primary_10_1002_advs_202207688
crossref_primary_10_1007_s42765_024_00432_6
crossref_primary_10_1007_s42114_024_00986_4
crossref_primary_10_1021_jacs_2c05908
crossref_primary_10_1016_j_memsci_2022_120290
crossref_primary_10_1038_s41467_024_52402_6
crossref_primary_10_1039_D2SC06089B
crossref_primary_10_3390_polym13203458
crossref_primary_10_1038_s41467_025_56415_7
crossref_primary_10_1002_adma_202211277
crossref_primary_10_1002_admi_202200311
crossref_primary_10_1021_acsmaterialslett_2c00865
crossref_primary_10_1002_smll_202203015
crossref_primary_10_1021_acsami_4c01419
crossref_primary_10_1007_s12274_022_4379_2
crossref_primary_10_1039_D1EN00002K
crossref_primary_10_1016_j_cej_2024_153260
crossref_primary_10_1002_adma_202410723
crossref_primary_10_1002_asia_202400361
crossref_primary_10_1002_anie_202204611
crossref_primary_10_1002_smll_202403882
crossref_primary_10_1002_smll_202307948
crossref_primary_10_1016_j_mtcomm_2021_102880
crossref_primary_10_1021_acs_jpclett_4c00032
crossref_primary_10_1016_j_memsci_2025_123927
crossref_primary_10_1039_D2MH00403H
crossref_primary_10_1002_adma_202312724
crossref_primary_10_1021_acs_accounts_2c00052
crossref_primary_10_1016_j_micromeso_2022_111997
Cites_doi 10.1021/ja056549l
10.1126/science.2106161
10.1039/C6SM01686C
10.1126/science.aat6141
10.1186/1751-0473-9-16
10.1038/nnano.2011.102
10.1038/nnano.2008.378
10.1021/ja035882r
10.1016/j.bbabio.2007.06.004
10.1021/ma100501j
10.1021/acs.langmuir.9b00778
10.1002/pol.1977.180151212
10.1073/pnas.0407843102
10.1021/j100102a001
10.1021/jacs.7b02969
10.1107/S0108768112003138
10.1021/nn2014003
10.1107/S0021889806035059
10.1021/ja060573x
10.1039/b915923c
10.1021/jacs.8b10142
10.1021/bi00220a036
10.1038/s41467-019-09697-7
10.1021/ja028215r
10.1126/science.1205962
10.1002/macp.200500259
10.1039/b920569a
10.1016/j.bpj.2020.08.042
10.1126/science.1150057
10.1038/nmat1403
10.1021/jacs.5b05888
10.1110/ps.041024904
10.1038/ncomms11561
10.1073/pnas.0807506106
10.1126/science.1962191
10.1038/nmat4538
10.1039/b008033k
10.1073/pnas.0604035103
10.1016/j.bpj.2017.09.003
10.1002/adma.200900498
10.1126/science.1079280
10.1002/anie.200503514
10.1016/j.biomaterials.2010.10.003
10.1038/nmat2778
10.1002/polb.1993.090310909
10.1016/S0167-2738(00)00629-9
10.1016/j.bpj.2016.12.036
10.1021/jp993770+
10.1016/j.progpolymsci.2020.101250
10.1021/ja00819a013
10.1016/j.jsb.2010.06.012
10.1126/science.1063187
10.1038/nmat3979
10.1039/b901840a
10.1039/C6CS00176A
10.1002/9783527623501.ch1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
1XC
OIOZB
OTOTI
DOI 10.1038/s41565-020-00840-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
Hyper Article en Ligne (HAL)
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1748-3395
EndPage 454
ExternalDocumentID 1788201
oai_HAL_hal_03641946v1
33462430
10_1038_s41565_020_00840_w
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: 1122374; 1122374; CHE-194550
  funderid: https://doi.org/10.13039/100000001
– fundername: NIEHS NIH HHS
  grantid: P30 ES002109
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
1XC
NFIDA
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OIOZB
OTOTI
ID FETCH-LOGICAL-c480t-d2cf7a9581fbb1d4ac5d16a1b9346c4d00f1c0a9efab69ea2c13451e213cd8773
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri May 19 00:37:18 EDT 2023
Fri May 09 12:15:53 EDT 2025
Fri Jul 11 06:42:05 EDT 2025
Sat Aug 23 12:26:34 EDT 2025
Wed Feb 19 02:23:44 EST 2025
Thu Apr 24 22:50:29 EDT 2025
Tue Jul 01 01:56:31 EDT 2025
Fri Feb 21 02:40:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-d2cf7a9581fbb1d4ac5d16a1b9346c4d00f1c0a9efab69ea2c13451e213cd8773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-06CH11357; CHE-1945500; 1122374
National Research Foundation of Korea (NRF)
National Science Foundation (NSF)
ORCID 0000-0002-6551-6599
0000-0002-0134-4804
0000-0002-4072-114X
0000-0001-7446-6207
0000-0002-6393-5378
0000-0002-9331-5532
0000-0003-0919-692X
0000000293315532
000000024072114X
0000000174466207
0000000201344804
0000000265516599
0000000263935378
OpenAccessLink https://www.osti.gov/servlets/purl/1788201
PMID 33462430
PQID 2512385763
PQPubID 546299
PageCount 8
ParticipantIDs osti_scitechconnect_1788201
hal_primary_oai_HAL_hal_03641946v1
proquest_miscellaneous_2479043306
proquest_journals_2512385763
pubmed_primary_33462430
crossref_citationtrail_10_1038_s41565_020_00840_w
crossref_primary_10_1038_s41565_020_00840_w
springer_journals_10_1038_s41565_020_00840_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Angeloni (CR51) 2011; 32
Dobb, Johnson, Saville (CR19) 1977; 15
Zhang (CR3) 2010; 9
Schleuss (CR23) 2006; 45
da Silva (CR8) 2016; 7
Yokoi, Kinoshita, Zhang (CR31) 2005; 102
Lamour, Kirkegaard, Li, Knowles, Gsponer (CR43) 2014; 9
Gorelik, van de Streek, Kilbinger, Brunklaus, Kolb (CR34) 2012; 68
Niece, Hartgerink, Donners, Stupp (CR50) 2003; 125
Barth (CR37) 2007; 1767
Nassar, Wong, Gsponer, Lamour (CR45) 2019; 141
Bradbury, Nagao (CR54) 2016; 12
Toledano, Williams, Jayawarna, Ulijn (CR12) 2006; 128
Wang, Liu, Xing, Yan (CR36) 2016; 45
Williams (CR14) 2009; 4
Kline (CR28) 2006; 39
Sherrington, Taskinen (CR18) 2001; 30
Lindemann, Christoff-Tempesta, Ortony (CR58) 2020; 119
Nallet, Laversanne, Roux (CR29) 1993; 3
Zandomeneghi, Krebs, McCammon, Fändrich (CR38) 2004; 13
Smith, Knowles, Dobson, MacPhee, Welland (CR41) 2006; 103
Knowles, Buehler (CR53) 2011; 6
Paramonov, Jun, Hartgerink (CR56) 2006; 128
Peng (CR46) 2017; 113
CR47
Aida, Meijer, Stupp (CR2) 2012; 335
Hashim, Bergueiro, Meijer, Aida (CR15) 2020; 105
Johansson, Kollman, Rothenberg, McKelvey (CR26) 1974; 96
Abbel, Schleuss, Frey, Kilbinger (CR25) 2005; 206
Knowles (CR42) 2007; 318
Lamour (CR48) 2017; 112
Huang, Knowles, Terentjev (CR44) 2009; 21
Cravotto, Cintas (CR33) 2009; 38
Mertens, Svergun (CR30) 2010; 172
Tantakitti (CR5) 2016; 15
Freeman (CR13) 2018; 362
Hartgerink, Beniash, Stupp (CR32) 2001; 294
Tuller (CR17) 2000; 131
Matayoshi, Wang, Krafft, Erickson (CR39) 1990; 247
Ortony (CR10) 2017; 139
Yang (CR22) 2011; 5
Bohle (CR24) 2010; 43
Gorelik (CR35) 2010; 12
Yuan, Shi, Du, Zhou, Xu (CR11) 2015; 137
Claussen, Rabatic, Stupp (CR21) 2003; 125
Fink, Steiner, Szekely, Szekely, Raviv (CR52) 2019; 35
Koutsopoulos, Unsworth, Nagai, Zhang (CR4) 2009; 106
Wimley, Thompson (CR9) 1991; 30
Ortony (CR6) 2014; 13
Whitesides, Mathias, Seto (CR1) 1991; 254
Russell (CR57) 2003; 299
Wu, Heidelberg, Boland (CR40) 2005; 4
Dixon, Dobbs, Valentini (CR27) 1994; 98
Seyler, Storz, Abbel, Kilbinger (CR20) 2009; 5
Takahashi, Ozaki, Takase, Krigbaum (CR55) 1993; 31
Schief, Touryan, Hall, Vogel (CR7) 2000; 104
Xu (CR16) 2019; 10
Zhao (CR49) 2010; 39
A Bohle (840_CR24) 2010; 43
M Yang (840_CR22) 2011; 5
RC Claussen (840_CR21) 2003; 125
R Nassar (840_CR45) 2019; 141
T Gorelik (840_CR35) 2010; 12
JF Smith (840_CR41) 2006; 103
NL Angeloni (840_CR51) 2011; 32
F Tantakitti (840_CR5) 2016; 15
Y Xu (840_CR16) 2019; 10
DA Dixon (840_CR27) 1994; 98
A Barth (840_CR37) 2007; 1767
840_CR47
R Freeman (840_CR13) 2018; 362
X Zhao (840_CR49) 2010; 39
T Aida (840_CR2) 2012; 335
G Cravotto (840_CR33) 2009; 38
R Abbel (840_CR25) 2005; 206
WC Wimley (840_CR9) 1991; 30
W Schief (840_CR7) 2000; 104
RM da Silva (840_CR8) 2016; 7
WR Lindemann (840_CR58) 2020; 119
ED Matayoshi (840_CR39) 1990; 247
S Koutsopoulos (840_CR4) 2009; 106
F Nallet (840_CR29) 1993; 3
D Yuan (840_CR11) 2015; 137
SR Kline (840_CR28) 2006; 39
A Johansson (840_CR26) 1974; 96
J Wang (840_CR36) 2016; 45
TE Gorelik (840_CR34) 2012; 68
G Lamour (840_CR48) 2017; 112
P Hashim (840_CR15) 2020; 105
TP Knowles (840_CR53) 2011; 6
TP Knowles (840_CR42) 2007; 318
YY Huang (840_CR44) 2009; 21
H Yokoi (840_CR31) 2005; 102
HL Tuller (840_CR17) 2000; 131
M Dobb (840_CR19) 1977; 15
JD Hartgerink (840_CR32) 2001; 294
JH Ortony (840_CR10) 2017; 139
Y Takahashi (840_CR55) 1993; 31
JH Ortony (840_CR6) 2014; 13
GM Whitesides (840_CR1) 1991; 254
B Wu (840_CR40) 2005; 4
SE Paramonov (840_CR56) 2006; 128
R Bradbury (840_CR54) 2016; 12
DC Sherrington (840_CR18) 2001; 30
G Zandomeneghi (840_CR38) 2004; 13
L Fink (840_CR52) 2019; 35
G Lamour (840_CR43) 2014; 9
HD Mertens (840_CR30) 2010; 172
S Zhang (840_CR3) 2010; 9
KL Niece (840_CR50) 2003; 125
TW Schleuss (840_CR23) 2006; 45
Z Peng (840_CR46) 2017; 113
P Russell (840_CR57) 2003; 299
S Toledano (840_CR12) 2006; 128
H Seyler (840_CR20) 2009; 5
RJ Williams (840_CR14) 2009; 4
References_xml – volume: 128
  start-page: 1070
  year: 2006
  end-page: 1071
  ident: CR12
  article-title: Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056549l
– volume: 247
  start-page: 954
  year: 1990
  end-page: 958
  ident: CR39
  article-title: Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer
  publication-title: Science
  doi: 10.1126/science.2106161
– volume: 12
  start-page: 9383
  year: 2016
  end-page: 9390
  ident: CR54
  article-title: Effect of charge on the mechanical properties of surfactant bilayers
  publication-title: Soft Matter
  doi: 10.1039/C6SM01686C
– volume: 362
  start-page: 808
  year: 2018
  end-page: 813
  ident: CR13
  article-title: Reversible self-assembly of superstructured networks
  publication-title: Science
  doi: 10.1126/science.aat6141
– volume: 9
  year: 2014
  ident: CR43
  article-title: Easyworm: an open-source software tool to determine the mechanical properties of worm-like chains
  publication-title: Source Code Biol. Med.
  doi: 10.1186/1751-0473-9-16
– volume: 6
  start-page: 469
  year: 2011
  end-page: 479
  ident: CR53
  article-title: Nanomechanics of functional and pathological amyloid materials
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.102
– volume: 4
  start-page: 19
  year: 2009
  end-page: 24
  ident: CR14
  article-title: Enzyme-assisted self-assembly under thermodynamic control
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.378
– volume: 125
  start-page: 12680
  year: 2003
  end-page: 12681
  ident: CR21
  article-title: Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja035882r
– volume: 1767
  start-page: 1073
  year: 2007
  end-page: 1101
  ident: CR37
  article-title: Infrared spectroscopy of proteins
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/j.bbabio.2007.06.004
– volume: 43
  start-page: 4978
  year: 2010
  end-page: 4985
  ident: CR24
  article-title: Hydrogen-bonded aggregates of oligoaramide−poly(ethylene glycol) block copolymers
  publication-title: Macromolecules
  doi: 10.1021/ma100501j
– volume: 35
  start-page: 9694
  year: 2019
  end-page: 9703
  ident: CR52
  article-title: Structure and interactions between charged lipid membranes in the presence of multivalent ions
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00778
– volume: 15
  start-page: 2201
  year: 1977
  end-page: 2211
  ident: CR19
  article-title: Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49)
  publication-title: J. Polym. Sci. Polym. Phys. Ed.
  doi: 10.1002/pol.1977.180151212
– volume: 102
  start-page: 8414
  year: 2005
  end-page: 8419
  ident: CR31
  article-title: Dynamic reassembly of peptide RADA16 nanofiber scaffold
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0407843102
– volume: 98
  start-page: 13435
  year: 1994
  end-page: 13439
  ident: CR27
  article-title: Amide-water and amide-amide hydrogen bond strengths
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100102a001
– volume: 139
  start-page: 8915
  year: 2017
  end-page: 8921
  ident: CR10
  article-title: Water dynamics from the surface to the interior of a supramolecular nanostructure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02969
– volume: 68
  start-page: 171
  year: 2012
  end-page: 181
  ident: CR34
  article-title: crystal structure analysis and refinement approaches of oligo -benzamides based on electron diffraction data
  publication-title: Acta Crystallogr. B Struct. Sci.
  doi: 10.1107/S0108768112003138
– volume: 5
  start-page: 6945
  year: 2011
  end-page: 6954
  ident: CR22
  article-title: Dispersions of aramid nanofibers: a new nanoscale building block
  publication-title: ACS Nano
  doi: 10.1021/nn2014003
– volume: 39
  start-page: 895
  year: 2006
  end-page: 900
  ident: CR28
  article-title: Reduction and analysis of SANS and USANS data using IGOR Pro
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889806035059
– volume: 128
  start-page: 7291
  year: 2006
  end-page: 7298
  ident: CR56
  article-title: Self-assembly of peptide−amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja060573x
– volume: 39
  start-page: 3480
  year: 2010
  end-page: 3498
  ident: CR49
  article-title: Molecular self-assembly and applications of designer peptide amphiphiles
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b915923c
– volume: 141
  start-page: 58
  year: 2019
  end-page: 61
  ident: CR45
  article-title: Inverse correlation between amyloid stiffness and size
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10142
– volume: 30
  start-page: 1702
  year: 1991
  end-page: 1709
  ident: CR9
  article-title: Transbilayer and interbilayer phospholipid exchange in dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine large unilamellar vesicles
  publication-title: Biochemistry
  doi: 10.1021/bi00220a036
– volume: 10
  start-page: 1771
  year: 2019
  ident: CR16
  article-title: Nanostructured polymer films with metal-like thermal conductivity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09697-7
– volume: 125
  start-page: 7146
  year: 2003
  end-page: 7147
  ident: CR50
  article-title: Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028215r
– volume: 335
  start-page: 813
  year: 2012
  end-page: 817
  ident: CR2
  article-title: Functional supramolecular polymers
  publication-title: Science
  doi: 10.1126/science.1205962
– volume: 206
  start-page: 2067
  year: 2005
  end-page: 2074
  ident: CR25
  article-title: Rod-length dependent aggregation in a series of oligo( -benzamide)- -poly(ethylene glycol) rod-coil copolymers
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200500259
– volume: 12
  start-page: 1824
  year: 2010
  end-page: 1832
  ident: CR35
  article-title: H-bonding schemes of di- and tri- -benzamides assessed by a combination of electron diffraction, X-ray powder diffraction and solid-state NMR
  publication-title: CrystEngComm
  doi: 10.1039/b920569a
– volume: 119
  start-page: 1937
  year: 2020
  end-page: 1945
  ident: CR58
  article-title: A global minimization toolkit for batch-fitting and cluster analysis of CW-EPR spectra
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2020.08.042
– volume: 318
  start-page: 1900
  year: 2007
  end-page: 1903
  ident: CR42
  article-title: Role of intermolecular forces in defining material properties of protein nanofibrils
  publication-title: Science
  doi: 10.1126/science.1150057
– volume: 4
  start-page: 525
  year: 2005
  end-page: 529
  ident: CR40
  article-title: Mechanical properties of ultrahigh-strength gold nanowires
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1403
– volume: 137
  start-page: 10092
  year: 2015
  end-page: 10095
  ident: CR11
  article-title: Supramolecular glycosylation accelerates proteolytic degradation of peptide nanofibrils
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05888
– volume: 13
  start-page: 3314
  year: 2004
  end-page: 3321
  ident: CR38
  article-title: FTIR reveals structural differences between native β‐sheet proteins and amyloid fibrils
  publication-title: Protein Sci.
  doi: 10.1110/ps.041024904
– ident: CR47
– volume: 7
  year: 2016
  ident: CR8
  article-title: Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11561
– volume: 5
  start-page: 2543
  year: 2009
  end-page: 2545
  ident: CR20
  article-title: A facile synthesis of aramide–peptide amphiphiles
  publication-title: Soft Matter
– volume: 106
  start-page: 4623
  year: 2009
  end-page: 4628
  ident: CR4
  article-title: Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0807506106
– volume: 254
  start-page: 1312
  year: 1991
  end-page: 1319
  ident: CR1
  article-title: Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures
  publication-title: Science
  doi: 10.1126/science.1962191
– volume: 15
  start-page: 469
  year: 2016
  end-page: 476
  ident: CR5
  article-title: Energy landscapes and functions of supramolecular systems
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4538
– volume: 30
  start-page: 83
  year: 2001
  end-page: 93
  ident: CR18
  article-title: Self-assembly in synthetic macromolecular systems multiple hydrogen bonding interactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b008033k
– volume: 103
  start-page: 15806
  year: 2006
  end-page: 15811
  ident: CR41
  article-title: Characterization of the nanoscale properties of individual amyloid fibrils
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0604035103
– volume: 113
  start-page: 1945
  year: 2017
  end-page: 1955
  ident: CR46
  article-title: High tensile strength of engineered -solenoid fibrils via sonication and pulling
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2017.09.003
– volume: 21
  start-page: 3945
  year: 2009
  end-page: 3948
  ident: CR44
  article-title: Strength of nanotubes, filaments, and nanowires from sonication‐induced scission
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900498
– volume: 299
  start-page: 358
  year: 2003
  end-page: 362
  ident: CR57
  article-title: Photonic crystal fibers
  publication-title: Science
  doi: 10.1126/science.1079280
– volume: 45
  start-page: 2969
  year: 2006
  end-page: 2975
  ident: CR23
  article-title: Hockey-puck micelles from oligo( -benzamide)- -PEG rod–coil block copolymers
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503514
– volume: 32
  start-page: 1091
  year: 2011
  end-page: 1101
  ident: CR51
  article-title: Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.10.003
– volume: 9
  start-page: 594
  year: 2010
  end-page: 601
  ident: CR3
  article-title: A self-assembly pathway to aligned monodomain gels
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2778
– volume: 3
  start-page: 487
  year: 1993
  end-page: 502
  ident: CR29
  article-title: Modelling X-ray or neutron scattering spectra of lyotropic lamellar phases: interplay between form and structure factors
  publication-title: J. Phys. II
– volume: 31
  start-page: 1135
  year: 1993
  end-page: 1143
  ident: CR55
  article-title: Crystal structure of poly( ‐benzamide)
  publication-title: J. Polym. Sci. B Polym. Phys.
  doi: 10.1002/polb.1993.090310909
– volume: 131
  start-page: 143
  year: 2000
  end-page: 157
  ident: CR17
  article-title: Ionic conduction in nanocrystalline materials
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(00)00629-9
– volume: 112
  start-page: 584
  year: 2017
  end-page: 594
  ident: CR48
  article-title: Mapping the broad structural and mechanical properties of amyloid fibrils
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.12.036
– volume: 104
  start-page: 7388
  year: 2000
  end-page: 7393
  ident: CR7
  article-title: Nanoscale topographic instabilities of a phospholipid monolayer
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp993770+
– volume: 105
  start-page: 101250
  year: 2020
  ident: CR15
  article-title: Supramolecular polymerization: a conceptual expansion for innovative materials
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2020.101250
– volume: 96
  start-page: 3794
  year: 1974
  end-page: 3800
  ident: CR26
  article-title: Hydrogen bonding ability of the amide group
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00819a013
– volume: 172
  start-page: 128
  year: 2010
  end-page: 141
  ident: CR30
  article-title: Structural characterization of proteins and complexes using small-angle X-ray solution scattering
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2010.06.012
– volume: 294
  start-page: 1684
  year: 2001
  end-page: 1688
  ident: CR32
  article-title: Self-assembly and mineralization of peptide-amphiphile nanofibers
  publication-title: Science
  doi: 10.1126/science.1063187
– volume: 13
  start-page: 812
  year: 2014
  end-page: 816
  ident: CR6
  article-title: Internal dynamics of a supramolecular nanofibre
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3979
– volume: 38
  start-page: 2684
  year: 2009
  end-page: 2697
  ident: CR33
  article-title: Molecular self-assembly and patterning induced by sound waves. The case of gelation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b901840a
– volume: 45
  start-page: 5589
  year: 2016
  end-page: 5604
  ident: CR36
  article-title: Peptide self-assembly: thermodynamics and kinetics
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00176A
– volume: 15
  start-page: 469
  year: 2016
  ident: 840_CR5
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4538
– volume: 125
  start-page: 12680
  year: 2003
  ident: 840_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja035882r
– volume: 10
  start-page: 1771
  year: 2019
  ident: 840_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09697-7
– volume: 35
  start-page: 9694
  year: 2019
  ident: 840_CR52
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00778
– volume: 13
  start-page: 812
  year: 2014
  ident: 840_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3979
– volume: 105
  start-page: 101250
  year: 2020
  ident: 840_CR15
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2020.101250
– volume: 45
  start-page: 5589
  year: 2016
  ident: 840_CR36
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00176A
– volume: 113
  start-page: 1945
  year: 2017
  ident: 840_CR46
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2017.09.003
– volume: 68
  start-page: 171
  year: 2012
  ident: 840_CR34
  publication-title: Acta Crystallogr. B Struct. Sci.
  doi: 10.1107/S0108768112003138
– volume: 45
  start-page: 2969
  year: 2006
  ident: 840_CR23
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503514
– volume: 30
  start-page: 83
  year: 2001
  ident: 840_CR18
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b008033k
– volume: 294
  start-page: 1684
  year: 2001
  ident: 840_CR32
  publication-title: Science
  doi: 10.1126/science.1063187
– volume: 318
  start-page: 1900
  year: 2007
  ident: 840_CR42
  publication-title: Science
  doi: 10.1126/science.1150057
– volume: 43
  start-page: 4978
  year: 2010
  ident: 840_CR24
  publication-title: Macromolecules
  doi: 10.1021/ma100501j
– volume: 247
  start-page: 954
  year: 1990
  ident: 840_CR39
  publication-title: Science
  doi: 10.1126/science.2106161
– volume: 206
  start-page: 2067
  year: 2005
  ident: 840_CR25
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200500259
– volume: 5
  start-page: 2543
  year: 2009
  ident: 840_CR20
  publication-title: Soft Matter
– volume: 299
  start-page: 358
  year: 2003
  ident: 840_CR57
  publication-title: Science
  doi: 10.1126/science.1079280
– volume: 3
  start-page: 487
  year: 1993
  ident: 840_CR29
  publication-title: J. Phys. II
– volume: 39
  start-page: 3480
  year: 2010
  ident: 840_CR49
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b915923c
– volume: 9
  year: 2014
  ident: 840_CR43
  publication-title: Source Code Biol. Med.
  doi: 10.1186/1751-0473-9-16
– volume: 38
  start-page: 2684
  year: 2009
  ident: 840_CR33
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b901840a
– volume: 12
  start-page: 9383
  year: 2016
  ident: 840_CR54
  publication-title: Soft Matter
  doi: 10.1039/C6SM01686C
– volume: 254
  start-page: 1312
  year: 1991
  ident: 840_CR1
  publication-title: Science
  doi: 10.1126/science.1962191
– volume: 4
  start-page: 525
  year: 2005
  ident: 840_CR40
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1403
– volume: 125
  start-page: 7146
  year: 2003
  ident: 840_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028215r
– volume: 128
  start-page: 7291
  year: 2006
  ident: 840_CR56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja060573x
– volume: 21
  start-page: 3945
  year: 2009
  ident: 840_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900498
– ident: 840_CR47
  doi: 10.1002/9783527623501.ch1
– volume: 98
  start-page: 13435
  year: 1994
  ident: 840_CR27
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100102a001
– volume: 137
  start-page: 10092
  year: 2015
  ident: 840_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05888
– volume: 172
  start-page: 128
  year: 2010
  ident: 840_CR30
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2010.06.012
– volume: 4
  start-page: 19
  year: 2009
  ident: 840_CR14
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.378
– volume: 5
  start-page: 6945
  year: 2011
  ident: 840_CR22
  publication-title: ACS Nano
  doi: 10.1021/nn2014003
– volume: 112
  start-page: 584
  year: 2017
  ident: 840_CR48
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.12.036
– volume: 7
  year: 2016
  ident: 840_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11561
– volume: 102
  start-page: 8414
  year: 2005
  ident: 840_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0407843102
– volume: 335
  start-page: 813
  year: 2012
  ident: 840_CR2
  publication-title: Science
  doi: 10.1126/science.1205962
– volume: 128
  start-page: 1070
  year: 2006
  ident: 840_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056549l
– volume: 141
  start-page: 58
  year: 2019
  ident: 840_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10142
– volume: 119
  start-page: 1937
  year: 2020
  ident: 840_CR58
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2020.08.042
– volume: 96
  start-page: 3794
  year: 1974
  ident: 840_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00819a013
– volume: 6
  start-page: 469
  year: 2011
  ident: 840_CR53
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.102
– volume: 104
  start-page: 7388
  year: 2000
  ident: 840_CR7
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp993770+
– volume: 106
  start-page: 4623
  year: 2009
  ident: 840_CR4
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0807506106
– volume: 131
  start-page: 143
  year: 2000
  ident: 840_CR17
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(00)00629-9
– volume: 1767
  start-page: 1073
  year: 2007
  ident: 840_CR37
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/j.bbabio.2007.06.004
– volume: 9
  start-page: 594
  year: 2010
  ident: 840_CR3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2778
– volume: 362
  start-page: 808
  year: 2018
  ident: 840_CR13
  publication-title: Science
  doi: 10.1126/science.aat6141
– volume: 12
  start-page: 1824
  year: 2010
  ident: 840_CR35
  publication-title: CrystEngComm
  doi: 10.1039/b920569a
– volume: 32
  start-page: 1091
  year: 2011
  ident: 840_CR51
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.10.003
– volume: 103
  start-page: 15806
  year: 2006
  ident: 840_CR41
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0604035103
– volume: 31
  start-page: 1135
  year: 1993
  ident: 840_CR55
  publication-title: J. Polym. Sci. B Polym. Phys.
  doi: 10.1002/polb.1993.090310909
– volume: 13
  start-page: 3314
  year: 2004
  ident: 840_CR38
  publication-title: Protein Sci.
  doi: 10.1110/ps.041024904
– volume: 30
  start-page: 1702
  year: 1991
  ident: 840_CR9
  publication-title: Biochemistry
  doi: 10.1021/bi00220a036
– volume: 39
  start-page: 895
  year: 2006
  ident: 840_CR28
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889806035059
– volume: 15
  start-page: 2201
  year: 1977
  ident: 840_CR19
  publication-title: J. Polym. Sci. Polym. Phys. Ed.
  doi: 10.1002/pol.1977.180151212
– volume: 139
  start-page: 8915
  year: 2017
  ident: 840_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02969
SSID ssj0052924
Score 2.5841074
Snippet Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular...
Small molecule self-assembly is an established route for producing high surface area nanostructures with readily customizable chemistries and precise molecular...
SourceID osti
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 447
SubjectTerms 639/301/357
639/638/541
Aramid fibers
Chemical Physics
Chemistry
Chemistry and Materials Science
Composite materials
Design
Drying
Exchanging
Hydrogen bonds
Kevlar (trademark)
Materials Science
Mechanical properties
Modulus of elasticity
Molecular structure
Nanomaterials
Nanoribbons
Nanoscale materials
NANOSCIENCE AND NANOTECHNOLOGY
Nanotechnology
Nanotechnology and Microengineering
Physics
Self-assembly
Solid state
Supramolecular chemistry
Tensile strength
Tensile tests
Title Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads
URI https://link.springer.com/article/10.1038/s41565-020-00840-w
https://www.ncbi.nlm.nih.gov/pubmed/33462430
https://www.proquest.com/docview/2512385763
https://www.proquest.com/docview/2479043306
https://hal.science/hal-03641946
https://www.osti.gov/servlets/purl/1788201
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELXo9gAcEJSv0FIFxA2sxrFjJydUqi4rBBUCKu3N2I4DK6VJ2WSp-PfM5KtFQKUoh8SJYr-x_ZwZvyHkhYpsKjmXNC5sTAVQdAosX9DcCi86BU6Je4c_nMjFqXi3TJbDD7dmCKscx8RuoM5rh__ID3Ae5imwY_76_AfFrFHoXR1SaGyRbZQuw5AutZwWXEmc9UltlUgpLMXUsGkm4ulBgwsX3JuM-6phkUMv_piYtr5jWOSshm72L-r5l9u0m43md8mdgUaGhz3u98gNX-2Qm0dj9rYdcvuK0OB98vWzLwsKPNmf2fJXWBehWZuzVR4aAHMFR-mbcFW1dbgp27WhQBlt6cPKVNAE1oJlhqaC0uXqGwzLV66HLdiCyZsH5HR-_OVoQYfcCtSJNGppHrtCGWgyVljLcmFckjNpmM24kE7kUVQwF5nMF8bKzJvYMS4S5mPGXZ4qxR-SWVVX_jEJRVJECUy1KHoqhMmyxMWKmQSYnfBSyYCwsWG1G4THMf9FqTsHOE91D4YGMHQHhr4IyMvpmfNeduPa0s8Br6kgKmYvDt9rvIZuVpYJ-ZMFZBfh1MAsUB7XYRyRazVTKZKggOyNKOuhFzf60uYC8my6DUCiU8VUvt5AGaEyFIGLoJ6PeuuYPoRDW8aCRwF5NZrL5cv_X50n13_LLrkVY2BNFz60R2bteuOfAjNq7X5n_nBO52_3yfab45OPn34DZ1MIiQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELba5VA4ICiv0AIGwQmsxo-8DghVhbKl215opd5c23FgpTQpu1lW_VP8RmaSzbYI6K1STo5j2Z4Zz-fMi5DXSWjTWMqYicIKpgCiM0D5iuVWedVm4IwxdvjgMB4eqy8n0ckK-dXHwqBbZX8mtgd1Xjv8R76FelimgI7lh_MfDKtGoXW1L6HRscW-v5jDlW36fu8j0PeNELufjnaGbFFVgDmVhg3LhSsSk0UpL6zluTIuynlsuM2kip3Kw7DgLjSZL4yNM2-E41JF3AsuXZ4miYRxV8ktJWWGEpXufu5P_khkXRHdRKUMrn7JIkgnlOnWFC9KGAuNcdxwqWLzPxTh6nd0wxzUINb_grp_mWlb7bd7j9xdwFa63fHZfbLiq3WyttNXi1snd64kNnxATr_6smCAy_2ZLS9oXVAzMWfjnBpgnjE8pZ_ScdXUdFY2E8MAotrS08pUsOXWgiRQU0HvcvwN1MCVdtoA75l8-pAc38iuPyKDqq78E0JVVIQRqHZMsqqUybLIiYSbCJCk8nESB4T3G6vdItE51tsodWtwl6nuiKGBGLolhp4H5O3ym_Muzce1vV8BvZYdMUP3cHuksQ3NujxT8U8ekA0kpwYkg-l4HfotuUbzJEXQFZDNnsp6cWpM9SWPB-Tl8jUQEo04pvL1DPqoJMOkcyGs83HHHcuJSNhLoWQYkHc9u1wO_v_lPL1-Li_I2vDoYKRHe4f7G-S2QKee1nVpkwyaycw_A1TW2OetKFByetOy9xss60P_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaReJxQFBeoQUCghO1No6dODkgVLWstrRUSFBpb67tOLBSmpTdLKv-NX4dM3lsi4DeKuWUOJbjmfF8k3kR8loGJok5j2mYm5AKgOgUUL6gmRFONBU4Y8wd_nQUj4_Fx0k0WSO_-lwYDKvsz8TmoM4qi__Ih6iHeQLomA_zLizi897o_dkPih2k0NPat9NoWeTAnS_BfJu_298DWr8Jw9GHr7tj2nUYoFYkQU2z0OZSp1HCcmNYJrSNMhZrZlIuYiuyIMiZDXTqcm3i1OnQMi4i5kLGbZZIyWHedXJD8oihjMnJytiLwrRtqCtFQsEMlF3CTsCT4RyNJsyLxpxuMLDo8g-luP4dQzIHFYj4v2DvXy7bRhOO7pG7HYT1d1qeu0_WXLlBbu32neM2yJ1LRQ4fkJMvrsgpYHR3aopzv8p9PdOn08zXwEhTuAo396dlXfmLop5pCnDVFM4vdQlbbgxIha9LGF1Mv4FKuHTfr4EPdTZ_SI6vZdcfkUFZle4J8UWUBxGoeSy4KoRO08iGkukIUKVwsYw9wvqNVbYreo69NwrVON95olpiKCCGaoihlh55u3rnrC35ceXoV0Cv1UCs1j3eOVR4D128LBXxT-aRTSSnAlSDpXktxjDZWjGZIADzyFZPZdWdIHN1we8eebl6DIREh44uXbWAMUKmWIAugO983HLHaiEc9jIUPPDIds8uF5P__3OeXr2WF-QmSJ063D862CS3Q4zvaaKYtsigni3cMwBotXneSIJPTq5b9H4DV-dILA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembly+of+aramid+amphiphiles+into+ultra-stable+nanoribbons+and+aligned+nanoribbon+threads&rft.jtitle=Nature+nanotechnology&rft.au=Christoff-Tempesta%2C+Ty&rft.au=Cho%2C+Yukio&rft.au=Kim%2C+Dae-Yoon&rft.au=Geri%2C+Michela&rft.date=2021-04-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=16&rft.issue=4&rft.spage=447&rft.epage=454&rft_id=info:doi/10.1038%2Fs41565-020-00840-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41565_020_00840_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon