Analysis of the relationship between replication of the Hokkaido genotype of Puumala orthohantavirus and autophagy
•Autophagy is induced by the Hokkaido genotype of Puumala orthohantavirus.•Autophagy suppresses the replication of Hokkaido genotype of Puumala orthohantavirus.•Lysosomal degradation is related to the expression of the nucleocapsid protein. Hantaviruses are potentially fatal zoonotic pathogens of th...
Saved in:
Published in | Virus research Vol. 318; p. 198830 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Autophagy is induced by the Hokkaido genotype of Puumala orthohantavirus.•Autophagy suppresses the replication of Hokkaido genotype of Puumala orthohantavirus.•Lysosomal degradation is related to the expression of the nucleocapsid protein.
Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes. |
---|---|
AbstractList | Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes.Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes. Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes. •Autophagy is induced by the Hokkaido genotype of Puumala orthohantavirus.•Autophagy suppresses the replication of Hokkaido genotype of Puumala orthohantavirus.•Lysosomal degradation is related to the expression of the nucleocapsid protein. Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes. |
ArticleNumber | 198830 |
Author | Yoshii, Kentaro Kobayashi, Shintaro Kariwa, Hiroaki Tamiya, Kazuma |
Author_xml | – sequence: 1 givenname: Kazuma surname: Tamiya fullname: Tamiya, Kazuma organization: Laboratory of Public Health, Faculty of Veterinary medicine, Hokkaido University, Sapporo, Japan – sequence: 2 givenname: Shintaro orcidid: 0000-0002-8735-5722 surname: Kobayashi fullname: Kobayashi, Shintaro email: shin-kobayashi@vetmed.hokudai.ac.jp organization: Laboratory of Public Health, Faculty of Veterinary medicine, Hokkaido University, Sapporo, Japan – sequence: 3 givenname: Kentaro surname: Yoshii fullname: Yoshii, Kentaro organization: Laboratory of Public Health, Faculty of Veterinary medicine, Hokkaido University, Sapporo, Japan – sequence: 4 givenname: Hiroaki surname: Kariwa fullname: Kariwa, Hiroaki organization: Laboratory of Public Health, Faculty of Veterinary medicine, Hokkaido University, Sapporo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35640779$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9vEzEQxS1URNPCV6j2yCXB_9bevVFVQCtVggOcrVl7NnG6WS-2tyjfHidpegX5YOn5N8-jmXdFLsYwIiE3jK4YZerTdvXs45wiphWnnK9Y2zSCviEL1mi-1LLlF2RRwGbJNOWX5CqlLaVUCa3ekUtRK0m1bhck3o4w7JNPVeirvMEq4gDZhzFt_FR1mP8gjkWcBm-P-pm7D09P4F2o1jiGvJ_w8PBjnncwQBVi3oQNjBmOXVYwugrmHKYNrPfvydsehoQfXu5r8uvrl59398vH798e7m4fl1Y2NC8d62zbSeG06ixap6FmUsredRxr6bq6YbzuFaWNqKnoVSuxc7JxXIpWCEvFNXk4-boAWzNFv4O4NwG8OQohrg3E7O2ARoFWrVKMtkAlFU2LlgNjtneoEHpRvD6evKYYfs-Ystn5ZHEYYMQwJ8OVrmvNVfn6P1AuylG8oDcv6Nzt0L32eF5PAdQJsDGksuz-FWHUHHJgtuacA3PIgTnloBR-PhViGfCzx2iS9ThadD6izWUC_l8WfwFKnL__ |
Cites_doi | 10.1038/nrmicro3066 10.1073/pnas.0807211105 10.1091/mbc.e07-12-1257 10.1083/jcb.200507002 10.1007/s11262-017-1522-3 10.1038/cr.2013.161 10.4161/auto.1.2.1697 10.3390/v11070610 10.1007/978-981-15-0606-2_5 10.1016/j.chom.2009.05.016 10.1016/j.virusres.2011.09.017 10.1016/j.jmb.2016.02.004 10.1016/j.celrep.2019.04.061 10.1146/annurev-cellbio-092910-154005 10.1080/15548627.2015.1066957 10.1016/j.cell.2016.04.006 10.1016/0014-5793(93)80398-E 10.1099/0022-1317-77-4-695 10.1007/s00705-004-0393-9 10.1038/nature10546 10.1084/jem.20110996 10.1093/emboj/19.21.5720 10.1126/science.1136880 10.1016/j.chom.2010.01.007 10.1016/j.meegid.2015.05.021 10.1128/JVI.02088-18 10.1016/j.cimid.2007.05.011 10.1099/0022-1317-77-11-2677 10.1016/j.virusres.2013.12.034 10.1002/(SICI)1099-1654(199804/06)8:2<67::AID-RMV217>3.0.CO;2-U 10.1016/j.cell.2011.10.026 10.1111/j.1365-2443.2008.01238.x 10.1099/vir.0.045377-0 10.1099/vir.0.021006-0 10.1016/j.febslet.2010.01.018 10.1038/s41579-018-0003-6 10.4161/auto.6880 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 DOA |
DOI | 10.1016/j.virusres.2022.198830 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1872-7492 |
ExternalDocumentID | oai_doaj_org_article_6a76966109a040389ec2a11cfde6eaf3 35640779 10_1016_j_virusres_2022_198830 S0168170222001587 |
Genre | Journal Article |
GroupedDBID | --- --K --M .GJ .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABBQC ABFNM ABFRF ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CNWQP CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMG HVGLF HZ~ IH2 IHE J1W KOM LCYCR LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPM RPZ SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K WH7 WUQ ZGI ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c480t-d1bc9b43d76bcecd7a51444fdb2e54db58125f60083503f694ebd48d243933c03 |
IEDL.DBID | .~1 |
ISSN | 0168-1702 1872-7492 |
IngestDate | Wed Aug 27 01:29:45 EDT 2025 Fri Jul 11 11:54:23 EDT 2025 Mon Jul 21 10:11:41 EDT 2025 Thu Apr 03 07:08:34 EDT 2025 Tue Jul 01 01:45:33 EDT 2025 Fri Feb 23 02:40:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Viral replication Autophagy Hantaviruses |
Language | English |
License | Copyright © 2022. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-d1bc9b43d76bcecd7a51444fdb2e54db58125f60083503f694ebd48d243933c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8735-5722 |
OpenAccessLink | https://doaj.org/article/6a76966109a040389ec2a11cfde6eaf3 |
PMID | 35640779 |
PQID | 2672323262 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6a76966109a040389ec2a11cfde6eaf3 proquest_miscellaneous_2675572639 proquest_miscellaneous_2672323262 pubmed_primary_35640779 crossref_primary_10_1016_j_virusres_2022_198830 elsevier_sciencedirect_doi_10_1016_j_virusres_2022_198830 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Virus research |
PublicationTitleAlternate | Virus Res |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mir, Duran, Hjelle, Ye, Panganiban (bib0019) 2008; 105 Tanida, Minematsu-Ikeguchi, Ueno, Kominami (bib0031) 2005; 1 Lee, Lund, Ramanathan, Mizushima, Iwasaki (bib0015) 2007; 315 MacNeil, Nichol, Spiropoulou (bib0016) 2011; 162 Mauvezin, Neufeld (bib0018) 2015; 11 Yashina, Abramov, Dupal, Danchinova, Malyshev, Hay, Gu, Yanagihara (bib0036) 2015; 33 Deretic, Levine (bib0005) 2009; 5 Bjørkøy, Lamark, Brech, Outzen, Perander, Øvervatn, Stenmark, Johansen (bib0001) 2005; 171 Vaheri, Strandin, Hepojoki, Sironen, Henttonen, Mäkelä, Mustonen (bib0033) 2013; 11 Zaffagnini, Martens (bib0038) 2016; 428 Noda, Ohsumi, Inagaki (bib0023) 2010; 584 Yoshimatsu, Arikawa, Tamura, Yoshida, Lundkvist, Niklasson, Kariwa, Azuma (bib0037) 1996; 77 Sumpter, Sirasanagandla, Fernández, Wei, Dong, Franco, Zou, Marchal, Lee, Clapp, Hanenberg, Levine (bib0030) 2016; 165 Brocato, Hooper (bib0002) 2019; 11 Reuter, Krüger (bib0028) 2018; 54 Kabeya, Mizushima, Ueno, Yamamoto, Kirisako, Noda, Kominami, Ohsumi, Yoshimori (bib0012) 2000; 19 Kanerva, Mustonen, Vaheri (bib0013) 1998 Plyusnin, Vapalahti, Vaheri (bib0027) 1996; 77 Kariwa, Yoshimatsu, Arikawa (bib0014) 2007; 30 Jiang, Mizushima (bib0010) 2014; 24 Wang, Ma, Liu, Ye, Li, Cheng, Zhang, Lei, Shen, Zhang (bib0035) 2019; 27 Tsukada, Ohsumi (bib0032) 1993; 333 Mizushima, Komatsu (bib0020) 2011; 147 Fujita, Itoh, Omori, Fukuda, Noda, Yoshimori (bib0006) 2008; 19 Sanada, Seto, Ozaki, Saasa, Yoshimatsu, Arikawa, Yoshii, Kariwa (bib0029) 2012; 93 Mao, Lin, He, Yu, Tan, Zhou (bib0017) 2019; 1209 Jeeva, Mir, Velasquez, Weathers, Leka, Wu, Sevarany, Mir (bib0009) 2019; 93 Okumura, Yoshimatsu, Araki, Lee, Asano, Agui, Arikawa (bib0024) 2004; 149 Orvedahl, Sumpter, Xiao, Ng, Zou, Tang, Narimatsu, Gilpin, Sun, Roth, Forst, Wrana, Zhang, Luby-Phelps, Xavier, Xie, Levine (bib0026) 2011; 480 Mizushima, Yoshimori, Ohsumi (bib0021) 2011; 27 Noda, Kumeta, Nakatogawa, Satoo, Adachi, Ishii, Fujioka, Ohsumi, Inagaki (bib0022) 2008; 13 Joubert, Werneke, de la Calle, Guivel-Benhassine, Giodini, Peduto, Levine, Schwartz, Lenschow, Albert (bib0011) 2012; 209 Orvedahl, MacPherson, Sumpter, Tallóczy, Zou, Levine (bib0025) 2010; 7 Vidoni, Fuzimoto, Ferraresi, Isidoro (bib0034) 2021 Ganaie, Mir (bib0007) 2014; 187 Hepojoki, Strandin, Wang, Vapalahti, Vaheri, Lankinen (bib0008) 2010; 91 Choi, Bowman, Jung (bib0003) 2018; 16 Denizot, Varbanov, Espert, Robert-Hebmann, Sagnier, Garcia, Curriu, Mamoun, Blanco, Biard-Piechaczyk (bib0004) 2008; 4 Choi (10.1016/j.virusres.2022.198830_bib0003) 2018; 16 Joubert (10.1016/j.virusres.2022.198830_bib0011) 2012; 209 Denizot (10.1016/j.virusres.2022.198830_bib0004) 2008; 4 MacNeil (10.1016/j.virusres.2022.198830_bib0016) 2011; 162 Sumpter (10.1016/j.virusres.2022.198830_bib0030) 2016; 165 Wang (10.1016/j.virusres.2022.198830_bib0035) 2019; 27 Tsukada (10.1016/j.virusres.2022.198830_bib0032) 1993; 333 Jiang (10.1016/j.virusres.2022.198830_bib0010) 2014; 24 Noda (10.1016/j.virusres.2022.198830_bib0023) 2010; 584 Vidoni (10.1016/j.virusres.2022.198830_bib0034) 2021 Orvedahl (10.1016/j.virusres.2022.198830_bib0026) 2011; 480 Zaffagnini (10.1016/j.virusres.2022.198830_bib0038) 2016; 428 Tanida (10.1016/j.virusres.2022.198830_bib0031) 2005; 1 Deretic (10.1016/j.virusres.2022.198830_bib0005) 2009; 5 Hepojoki (10.1016/j.virusres.2022.198830_bib0008) 2010; 91 Mauvezin (10.1016/j.virusres.2022.198830_bib0018) 2015; 11 Mizushima (10.1016/j.virusres.2022.198830_bib0021) 2011; 27 Mao (10.1016/j.virusres.2022.198830_bib0017) 2019; 1209 Kariwa (10.1016/j.virusres.2022.198830_bib0014) 2007; 30 Bjørkøy (10.1016/j.virusres.2022.198830_bib0001) 2005; 171 Jeeva (10.1016/j.virusres.2022.198830_bib0009) 2019; 93 Vaheri (10.1016/j.virusres.2022.198830_bib0033) 2013; 11 Sanada (10.1016/j.virusres.2022.198830_bib0029) 2012; 93 Okumura (10.1016/j.virusres.2022.198830_bib0024) 2004; 149 Yoshimatsu (10.1016/j.virusres.2022.198830_bib0037) 1996; 77 Kabeya (10.1016/j.virusres.2022.198830_bib0012) 2000; 19 Lee (10.1016/j.virusres.2022.198830_bib0015) 2007; 315 Yashina (10.1016/j.virusres.2022.198830_bib0036) 2015; 33 Kanerva (10.1016/j.virusres.2022.198830_bib0013) 1998 Mir (10.1016/j.virusres.2022.198830_bib0019) 2008; 105 Plyusnin (10.1016/j.virusres.2022.198830_bib0027) 1996; 77 Noda (10.1016/j.virusres.2022.198830_bib0022) 2008; 13 Orvedahl (10.1016/j.virusres.2022.198830_bib0025) 2010; 7 Brocato (10.1016/j.virusres.2022.198830_bib0002) 2019; 11 Reuter (10.1016/j.virusres.2022.198830_bib0028) 2018; 54 Ganaie (10.1016/j.virusres.2022.198830_bib0007) 2014; 187 Fujita (10.1016/j.virusres.2022.198830_bib0006) 2008; 19 Mizushima (10.1016/j.virusres.2022.198830_bib0020) 2011; 147 |
References_xml | – volume: 11 year: 2019 ident: bib0002 article-title: Progress on the prevention and treatment of hantavirus disease publication-title: Viruses – volume: 27 start-page: 107 year: 2011 end-page: 132 ident: bib0021 article-title: The role of atg proteins in autophagosome formation publication-title: Annu. Rev. Cell Dev. Biol. – volume: 77 start-page: 695 year: 1996 end-page: 704 ident: bib0037 article-title: Characterization of the nucleocapsid protein of Hantaan virus strain 76-118 using monoclonal antibodies publication-title: J. Gen. Virol. – volume: 1 start-page: 84 year: 2005 end-page: 91 ident: bib0031 article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy publication-title: Autophagy – volume: 147 start-page: 728 year: 2011 end-page: 741 ident: bib0020 article-title: Autophagy: renovation of cells and tissues publication-title: Cell – volume: 30 start-page: 341 year: 2007 end-page: 356 ident: bib0014 article-title: Hantavirus infection in East Asia publication-title: Comp. Immunol. Microbiol. Infect. Dis. – year: 1998 ident: bib0013 article-title: Pathogenesis of Puumala and Other Hantavirus Infections publication-title: Rev. Med. Virol. – volume: 584 start-page: 1379 year: 2010 end-page: 1385 ident: bib0023 article-title: Atg8-family interacting motif crucial for selective autophagy publication-title: FEBS Lett. – volume: 93 start-page: 2237 year: 2012 end-page: 2246 ident: bib0029 article-title: Isolation of Hokkaido virus, genus Hantavirus, using a newly established cell line derived from the kidney of the grey red-backed vole (Myodes rufocanus bedfordiae) publication-title: J. Gen. Virol. – volume: 11 start-page: 1437 year: 2015 end-page: 1438 ident: bib0018 article-title: Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion publication-title: Autophagy – volume: 165 start-page: 867 year: 2016 end-page: 881 ident: bib0030 article-title: Fanconi Anemia Proteins Function in Mitophagy and Immunity publication-title: Cell – volume: 77 start-page: 2677 year: 1996 end-page: 2687 ident: bib0027 article-title: Hantaviruses: genome structure, expression and evolution publication-title: J. Gen. Virol. – volume: 105 start-page: 19294 year: 2008 end-page: 19299 ident: bib0019 article-title: Storage of cellular 5′ mRNA caps in P bodies for viral cap-snatching publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 19 start-page: 5720 year: 2000 end-page: 5728 ident: bib0012 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing publication-title: EMBO J. – volume: 16 start-page: 341 year: 2018 end-page: 354 ident: bib0003 article-title: Autophagy during viral infection - a double-edged sword publication-title: Nat. Rev. Microbiol. – volume: 1209 start-page: 55 year: 2019 end-page: 78 ident: bib0017 article-title: Autophagy and viral infection publication-title: Adv. Exp. Med. Biol. – volume: 54 start-page: 5 year: 2018 end-page: 16 ident: bib0028 article-title: The nucleocapsid protein of hantaviruses: much more than a genome-wrapping protein publication-title: Virus Genes – volume: 7 start-page: 115 year: 2010 end-page: 127 ident: bib0025 article-title: Autophagy protects against sindbis virus infection of the central nervous system publication-title: Cell Host Microbe – volume: 27 start-page: 2075 year: 2019 end-page: 2091.e5 ident: bib0035 article-title: The glycoprotein and nucleocapsid protein of hantaviruses manipulate autophagy flux to restrain host innate immune responses publication-title: Cell Rep. – volume: 187 start-page: 72 year: 2014 end-page: 76 ident: bib0007 article-title: The role of viral genomic RNA and nucleocapsid protein in the autophagic clearance of hantavirus glycoprotein Gn publication-title: Virus Res. – volume: 171 start-page: 603 year: 2005 end-page: 614 ident: bib0001 article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death publication-title: J. Cell Biol. – year: 2021 ident: bib0034 article-title: Targeting autophagy with natural products to prevent SARS-CoV-2 infection publication-title: J. Tradit. Complement. Med. – volume: 5 start-page: 527 year: 2009 end-page: 549 ident: bib0005 article-title: Autophagy, immunity, and microbial adaptations publication-title: Cell Host Microbe – volume: 24 start-page: 69 year: 2014 end-page: 79 ident: bib0010 article-title: Autophagy and human diseases publication-title: Cell Res. – volume: 33 start-page: 304 year: 2015 end-page: 313 ident: bib0036 article-title: Hokkaido genotype of Puumala virus in the grey red-backed vole (Myodes rufocanus) and northern red-backed vole (Myodes rutilus) in Siberia. Infection publication-title: Genet. Evol. – volume: 162 start-page: 138 year: 2011 end-page: 147 ident: bib0016 article-title: Hantavirus pulmonary syndrome publication-title: Virus Res. – volume: 19 start-page: 2092 year: 2008 end-page: 2100 ident: bib0006 article-title: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy publication-title: Mol. Biol. Cell – volume: 91 start-page: 2341 year: 2010 end-page: 2350 ident: bib0008 article-title: Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein publication-title: J. Gen. Virol. – volume: 209 start-page: 1029 year: 2012 end-page: 1047 ident: bib0011 article-title: Chikungunya virus-induced autophagy delays caspase-dependent cell death publication-title: J. Exp. Med. – volume: 480 start-page: 113 year: 2011 end-page: 117 ident: bib0026 article-title: Image-based genome-wide siRNA screen identifies selective autophagy factors publication-title: Nature – volume: 333 start-page: 169 year: 1993 end-page: 174 ident: bib0032 article-title: Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae publication-title: FEBS Lett. – volume: 13 start-page: 1211 year: 2008 end-page: 1218 ident: bib0022 article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy publication-title: Genes Cells – volume: 315 start-page: 1398 year: 2007 end-page: 1401 ident: bib0015 article-title: Autophagy-dependent viral recognition by plasmacytoid dendritic cells publication-title: Science – volume: 11 start-page: 539 year: 2013 end-page: 550 ident: bib0033 article-title: Uncovering the mysteries of hantavirus infections publication-title: Nat. Rev. Microbiol. – volume: 149 start-page: 2427 year: 2004 end-page: 2434 ident: bib0024 article-title: Epitope analysis of monoclonal antibody E5/G6, which binds to a linear epitope in the nucleocapsid protein of hantaviruses publication-title: Arch. Virol. – volume: 428 start-page: 1714 year: 2016 end-page: 1724 ident: bib0038 article-title: Mechanisms of selective autophagy publication-title: J. Mol. Biol. – volume: 93 year: 2019 ident: bib0009 article-title: Hantavirus RdRp requires a host cell factor for cap snatching publication-title: J. Virol. – volume: 4 start-page: 998 year: 2008 end-page: 1008 ident: bib0004 article-title: HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells publication-title: Autophagy – volume: 11 start-page: 539 year: 2013 ident: 10.1016/j.virusres.2022.198830_bib0033 article-title: Uncovering the mysteries of hantavirus infections publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3066 – volume: 105 start-page: 19294 year: 2008 ident: 10.1016/j.virusres.2022.198830_bib0019 article-title: Storage of cellular 5′ mRNA caps in P bodies for viral cap-snatching publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0807211105 – volume: 19 start-page: 2092 year: 2008 ident: 10.1016/j.virusres.2022.198830_bib0006 article-title: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-12-1257 – year: 2021 ident: 10.1016/j.virusres.2022.198830_bib0034 article-title: Targeting autophagy with natural products to prevent SARS-CoV-2 infection publication-title: J. Tradit. Complement. Med. – volume: 171 start-page: 603 year: 2005 ident: 10.1016/j.virusres.2022.198830_bib0001 article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death publication-title: J. Cell Biol. doi: 10.1083/jcb.200507002 – volume: 54 start-page: 5 year: 2018 ident: 10.1016/j.virusres.2022.198830_bib0028 article-title: The nucleocapsid protein of hantaviruses: much more than a genome-wrapping protein publication-title: Virus Genes doi: 10.1007/s11262-017-1522-3 – volume: 24 start-page: 69 year: 2014 ident: 10.1016/j.virusres.2022.198830_bib0010 article-title: Autophagy and human diseases publication-title: Cell Res. doi: 10.1038/cr.2013.161 – volume: 1 start-page: 84 year: 2005 ident: 10.1016/j.virusres.2022.198830_bib0031 article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy publication-title: Autophagy doi: 10.4161/auto.1.2.1697 – volume: 11 year: 2019 ident: 10.1016/j.virusres.2022.198830_bib0002 article-title: Progress on the prevention and treatment of hantavirus disease publication-title: Viruses doi: 10.3390/v11070610 – volume: 1209 start-page: 55 year: 2019 ident: 10.1016/j.virusres.2022.198830_bib0017 article-title: Autophagy and viral infection publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-15-0606-2_5 – volume: 5 start-page: 527 year: 2009 ident: 10.1016/j.virusres.2022.198830_bib0005 article-title: Autophagy, immunity, and microbial adaptations publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.05.016 – volume: 162 start-page: 138 year: 2011 ident: 10.1016/j.virusres.2022.198830_bib0016 article-title: Hantavirus pulmonary syndrome publication-title: Virus Res. doi: 10.1016/j.virusres.2011.09.017 – volume: 428 start-page: 1714 year: 2016 ident: 10.1016/j.virusres.2022.198830_bib0038 article-title: Mechanisms of selective autophagy publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.02.004 – volume: 27 start-page: 2075 year: 2019 ident: 10.1016/j.virusres.2022.198830_bib0035 article-title: The glycoprotein and nucleocapsid protein of hantaviruses manipulate autophagy flux to restrain host innate immune responses publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.04.061 – volume: 27 start-page: 107 year: 2011 ident: 10.1016/j.virusres.2022.198830_bib0021 article-title: The role of atg proteins in autophagosome formation publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154005 – volume: 11 start-page: 1437 year: 2015 ident: 10.1016/j.virusres.2022.198830_bib0018 article-title: Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion publication-title: Autophagy doi: 10.1080/15548627.2015.1066957 – volume: 165 start-page: 867 year: 2016 ident: 10.1016/j.virusres.2022.198830_bib0030 article-title: Fanconi Anemia Proteins Function in Mitophagy and Immunity publication-title: Cell doi: 10.1016/j.cell.2016.04.006 – volume: 333 start-page: 169 year: 1993 ident: 10.1016/j.virusres.2022.198830_bib0032 article-title: Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae publication-title: FEBS Lett. doi: 10.1016/0014-5793(93)80398-E – volume: 77 start-page: 695 year: 1996 ident: 10.1016/j.virusres.2022.198830_bib0037 article-title: Characterization of the nucleocapsid protein of Hantaan virus strain 76-118 using monoclonal antibodies publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-77-4-695 – volume: 149 start-page: 2427 year: 2004 ident: 10.1016/j.virusres.2022.198830_bib0024 article-title: Epitope analysis of monoclonal antibody E5/G6, which binds to a linear epitope in the nucleocapsid protein of hantaviruses publication-title: Arch. Virol. doi: 10.1007/s00705-004-0393-9 – volume: 480 start-page: 113 year: 2011 ident: 10.1016/j.virusres.2022.198830_bib0026 article-title: Image-based genome-wide siRNA screen identifies selective autophagy factors publication-title: Nature doi: 10.1038/nature10546 – volume: 209 start-page: 1029 year: 2012 ident: 10.1016/j.virusres.2022.198830_bib0011 article-title: Chikungunya virus-induced autophagy delays caspase-dependent cell death publication-title: J. Exp. Med. doi: 10.1084/jem.20110996 – volume: 19 start-page: 5720 year: 2000 ident: 10.1016/j.virusres.2022.198830_bib0012 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing publication-title: EMBO J. doi: 10.1093/emboj/19.21.5720 – volume: 315 start-page: 1398 year: 2007 ident: 10.1016/j.virusres.2022.198830_bib0015 article-title: Autophagy-dependent viral recognition by plasmacytoid dendritic cells publication-title: Science doi: 10.1126/science.1136880 – volume: 7 start-page: 115 year: 2010 ident: 10.1016/j.virusres.2022.198830_bib0025 article-title: Autophagy protects against sindbis virus infection of the central nervous system publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.01.007 – volume: 33 start-page: 304 year: 2015 ident: 10.1016/j.virusres.2022.198830_bib0036 article-title: Hokkaido genotype of Puumala virus in the grey red-backed vole (Myodes rufocanus) and northern red-backed vole (Myodes rutilus) in Siberia. Infection publication-title: Genet. Evol. doi: 10.1016/j.meegid.2015.05.021 – volume: 93 year: 2019 ident: 10.1016/j.virusres.2022.198830_bib0009 article-title: Hantavirus RdRp requires a host cell factor for cap snatching publication-title: J. Virol. doi: 10.1128/JVI.02088-18 – volume: 30 start-page: 341 year: 2007 ident: 10.1016/j.virusres.2022.198830_bib0014 article-title: Hantavirus infection in East Asia publication-title: Comp. Immunol. Microbiol. Infect. Dis. doi: 10.1016/j.cimid.2007.05.011 – volume: 77 start-page: 2677 year: 1996 ident: 10.1016/j.virusres.2022.198830_bib0027 article-title: Hantaviruses: genome structure, expression and evolution publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-77-11-2677 – volume: 187 start-page: 72 year: 2014 ident: 10.1016/j.virusres.2022.198830_bib0007 article-title: The role of viral genomic RNA and nucleocapsid protein in the autophagic clearance of hantavirus glycoprotein Gn publication-title: Virus Res. doi: 10.1016/j.virusres.2013.12.034 – year: 1998 ident: 10.1016/j.virusres.2022.198830_bib0013 article-title: Pathogenesis of Puumala and Other Hantavirus Infections publication-title: Rev. Med. Virol. doi: 10.1002/(SICI)1099-1654(199804/06)8:2<67::AID-RMV217>3.0.CO;2-U – volume: 147 start-page: 728 year: 2011 ident: 10.1016/j.virusres.2022.198830_bib0020 article-title: Autophagy: renovation of cells and tissues publication-title: Cell doi: 10.1016/j.cell.2011.10.026 – volume: 13 start-page: 1211 year: 2008 ident: 10.1016/j.virusres.2022.198830_bib0022 article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy publication-title: Genes Cells doi: 10.1111/j.1365-2443.2008.01238.x – volume: 93 start-page: 2237 year: 2012 ident: 10.1016/j.virusres.2022.198830_bib0029 article-title: Isolation of Hokkaido virus, genus Hantavirus, using a newly established cell line derived from the kidney of the grey red-backed vole (Myodes rufocanus bedfordiae) publication-title: J. Gen. Virol. doi: 10.1099/vir.0.045377-0 – volume: 91 start-page: 2341 year: 2010 ident: 10.1016/j.virusres.2022.198830_bib0008 article-title: Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein publication-title: J. Gen. Virol. doi: 10.1099/vir.0.021006-0 – volume: 584 start-page: 1379 year: 2010 ident: 10.1016/j.virusres.2022.198830_bib0023 article-title: Atg8-family interacting motif crucial for selective autophagy publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.01.018 – volume: 16 start-page: 341 year: 2018 ident: 10.1016/j.virusres.2022.198830_bib0003 article-title: Autophagy during viral infection - a double-edged sword publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0003-6 – volume: 4 start-page: 998 year: 2008 ident: 10.1016/j.virusres.2022.198830_bib0004 article-title: HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells publication-title: Autophagy doi: 10.4161/auto.6880 |
SSID | ssj0006376 |
Score | 2.360072 |
Snippet | •Autophagy is induced by the Hokkaido genotype of Puumala orthohantavirus.•Autophagy suppresses the replication of Hokkaido genotype of Puumala... Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 198830 |
SubjectTerms | autophagosomes Autophagy fever genes genotype Hantaviruses Japan lysosomes nucleocapsid proteins Puumala orthohantavirus Viral replication viruses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et-uLCF6rfSRpe1RRFg_iwYW9hcmjuj5aWbaC_95J0yzrQb1Ib2laksy035fO9BtCTouClUolRVQkeRUxbU2keF5GlqcQJyZBiOzUPu_EcMRux3y8UOrL5YR5eWC_cOcCcoGUPIlLQH9DeLU6hSTRlbHCQtXpfCLmhc1U_w4W-Nws_A_8fPYxmbaIOU6gO03PcKdduLznBSjqFPu_IdJPjLNDnpt1stZTRnrhh7pBlmy9SVZ8EcnPLTINuiK0qSjSOToN-W1Pk3fa52Fh4zxQHfoNm5cXmJiGOp1W9ynWnbhv2zd4BerCOc0TLjt0c6JQGwqtUyGAx89tMrq5frgaRn0lhUizIp5FJlG6VCwzuVDaapMD8iTGKqNSy5lRHGGeV6LjY3FWiZJZZVhhUqQrWabjbIcs101t9wjVmbIl53gdWGZBQMUzp9nuipch1NkBOQ-LKt-9YIYMmWTPMphBOjNIb4YBuXRrP-_tBK-7BnQD2buB_MsNBqQMlpM9d_CcAG81-XMAJ8HUEh8uFzGB2jYtdhI4LTxE-msfzvMUmd6A7Ho_mU8l4y5Ompf7_zHFA7LqBu0T3A7J8mza2iNkRDN13Dn_F-ncC0o priority: 102 providerName: Directory of Open Access Journals |
Title | Analysis of the relationship between replication of the Hokkaido genotype of Puumala orthohantavirus and autophagy |
URI | https://dx.doi.org/10.1016/j.virusres.2022.198830 https://www.ncbi.nlm.nih.gov/pubmed/35640779 https://www.proquest.com/docview/2672323262 https://www.proquest.com/docview/2675572639 https://doaj.org/article/6a76966109a040389ec2a11cfde6eaf3 |
Volume | 318 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiQuCMprga6MxDW7SfxIcixVqy1IFRJU6s3yK21aSFbRplIv_e3MOPHSHoADyinOJLI9E39f4vFnQj6WJa-MycqkzIo64da7xIiiSrzIdZq5DCAyqH2eytUZ_3wuznfIYVwLg2mV09g_julhtJ5KllNvLtdNs_wGZAXV5QDgEPhLXFHOeYFRvrj7neYhWdhgDo0TtL63SvhqcdP0AyARynbn-QK-v0vMhr4HUEHH_wFO_YmHBjw6fkaeTkSSHox1fU52fLtHHo9bS96-IH1UG6FdTYHk0T5mvV02azplZ0Hhdvo62q2662vduI6ieiv-oMULX4fhp_6hKU7ydJfgDB3aRHXrqB5Qm0Bf3L4kZ8dH3w9XybS_QmJ5mW4SlxlbGc5cIY311hUa2BPntTO5F9wZAeAvahlYWspqWXFvHC9dDiSGMZuyV2S37Vr_hlDLjK-EgPu0515LXQuGSu64pRkAoJ-RZexUtR5lNFTML7tS0Q0K3aBGN8zIJ-z7rTXKYIeCrr9QUxwoqQsJ32tZWmkYjIB7eZvrLLO189Lrms1IFT2nHkQVPKr5ZwU-RFcreOVwHkW3vhvASEKz4JD5X22EKHLgfzPyeoyTbVOYwNnTonr7H7V7R57g2Zjt9p7sbvrB7wM92ph5iP85eXRw8mV1Og8_GX4BCh0RoA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lmWp5HgmN3ErySHHsqj2tJSIdFKvRk7dtr0kazCBrSX_qn-QWbyWNoDcEBVbo5j2TP2fJ_j8Qwhb5JEpNZGSZBEcR6IzLvAyjgNvGQmjFwEENlG-9xV033x6UAerJCL4S4MulX2tr-z6a217ksmvTQns6KYfAWygtHlAOAQ-JO496zc9oufsG_7vr71AZT8lrHNj3vvp0GfWiDIRBLOAxfZLLWCu1jZzGcuNkAchMidZV4KZyXgnsxVS1BCnqtUeOtE4hjgN-dZyKHdG-SmAHOBaRPG57_9ShRvM9ph7wLs3qVrycfjH0XdAPRhnHDGxrDhT9D9-hIitokDrgDjn4hvC4Cb98jdnrnSjU4498mKLx-QW10uy8VDUg_hTWiVU2CVtB7c7I6KGe3dwaBweV4-1JtWJyemcBXFcLH4RxhffGmaM3NqKJ4qVUegfdOOiZrSUdNgMARzuHhE9q9F6o_JalmV_gmhGbc-lRK-M154o0wuOYaOxxxqgLh-RCaDUPWsi9uhB4e2Yz2oQaMadKeGEXmHsl_WxrjbbUFVH-p-4mllYgUbxChMDVg_IHs-YyaKstx55U3ORyQdNKevTGNoqvhnB14PqtawxvHgxpS-aqCSgmHBo9hf60gZMyCcI7LWzZPlULjE49o4ffofvXtFbk_3Pu_ona3d7WfkDr7pXO2ek9V53fgXwM3m9mW7Fij5dt2L7xd2RUwB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+relationship+between+replication+of+the+Hokkaido+genotype+of+Puumala+orthohantavirus+and+autophagy&rft.jtitle=Virus+research&rft.au=Tamiya%2C+Kazuma&rft.au=Kobayashi%2C+Shintar%C5%8D&rft.au=Yoshii%2C+Kentaro&rft.au=Kariwa%2C+Hiroaki&rft.date=2022-09-01&rft.issn=0168-1702&rft.volume=318+p.198830-&rft_id=info:doi/10.1016%2Fj.virusres.2022.198830&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1702&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1702&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1702&client=summon |