Analysis of the relationship between replication of the Hokkaido genotype of Puumala orthohantavirus and autophagy

•Autophagy is induced by the Hokkaido genotype of Puumala orthohantavirus.•Autophagy suppresses the replication of Hokkaido genotype of Puumala orthohantavirus.•Lysosomal degradation is related to the expression of the nucleocapsid protein. Hantaviruses are potentially fatal zoonotic pathogens of th...

Full description

Saved in:
Bibliographic Details
Published inVirus research Vol. 318; p. 198830
Main Authors Tamiya, Kazuma, Kobayashi, Shintaro, Yoshii, Kentaro, Kariwa, Hiroaki
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Autophagy is induced by the Hokkaido genotype of Puumala orthohantavirus.•Autophagy suppresses the replication of Hokkaido genotype of Puumala orthohantavirus.•Lysosomal degradation is related to the expression of the nucleocapsid protein. Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes.
AbstractList Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes.Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes.
Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes.
•Autophagy is induced by the Hokkaido genotype of Puumala orthohantavirus.•Autophagy suppresses the replication of Hokkaido genotype of Puumala orthohantavirus.•Lysosomal degradation is related to the expression of the nucleocapsid protein. Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus (PUUV-Hok) has been reported. However, other PUUV genotypes cause hemorrhagic fever with renal syndrome (HFRS) in humans. Autophagy is a highly conserved lysosomal degradation process in eukaryotic cells that affects the replication of various viruses. In this study, we examined the role of autophagy in PUUV-Hok replication. PUUV-Hok infection induced the expression of LC3-II, an autophagosome marker, and the nucleocapsid protein (NP) of PUUV-Hok was colocalized with punctate structures of LC3. Inhibition of autophagy using an siRNA for Atg5, an autophagy-related gene, increased the replication of PUUV-Hok, whereas an autophagy inducer decreased its replication. Inhibition of lysosomal degradation increased the expression of NP and LC3-II. In summary, autophagy was induced by PUUV-Hok infection, which inhibited PUUV-Hok replication in a manner related to the degradation of the NP in lysosomes.
ArticleNumber 198830
Author Yoshii, Kentaro
Kobayashi, Shintaro
Kariwa, Hiroaki
Tamiya, Kazuma
Author_xml – sequence: 1
  givenname: Kazuma
  surname: Tamiya
  fullname: Tamiya, Kazuma
  organization: Laboratory of Public Health, Faculty of Veterinary medicine, Hokkaido University, Sapporo, Japan
– sequence: 2
  givenname: Shintaro
  orcidid: 0000-0002-8735-5722
  surname: Kobayashi
  fullname: Kobayashi, Shintaro
  email: shin-kobayashi@vetmed.hokudai.ac.jp
  organization: Laboratory of Public Health, Faculty of Veterinary medicine, Hokkaido University, Sapporo, Japan
– sequence: 3
  givenname: Kentaro
  surname: Yoshii
  fullname: Yoshii, Kentaro
  organization: Laboratory of Public Health, Faculty of Veterinary medicine, Hokkaido University, Sapporo, Japan
– sequence: 4
  givenname: Hiroaki
  surname: Kariwa
  fullname: Kariwa, Hiroaki
  organization: Laboratory of Public Health, Faculty of Veterinary medicine, Hokkaido University, Sapporo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35640779$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9vEzEQxS1URNPCV6j2yCXB_9bevVFVQCtVggOcrVl7NnG6WS-2tyjfHidpegX5YOn5N8-jmXdFLsYwIiE3jK4YZerTdvXs45wiphWnnK9Y2zSCviEL1mi-1LLlF2RRwGbJNOWX5CqlLaVUCa3ekUtRK0m1bhck3o4w7JNPVeirvMEq4gDZhzFt_FR1mP8gjkWcBm-P-pm7D09P4F2o1jiGvJ_w8PBjnncwQBVi3oQNjBmOXVYwugrmHKYNrPfvydsehoQfXu5r8uvrl59398vH798e7m4fl1Y2NC8d62zbSeG06ixap6FmUsredRxr6bq6YbzuFaWNqKnoVSuxc7JxXIpWCEvFNXk4-boAWzNFv4O4NwG8OQohrg3E7O2ARoFWrVKMtkAlFU2LlgNjtneoEHpRvD6evKYYfs-Ystn5ZHEYYMQwJ8OVrmvNVfn6P1AuylG8oDcv6Nzt0L32eF5PAdQJsDGksuz-FWHUHHJgtuacA3PIgTnloBR-PhViGfCzx2iS9ThadD6izWUC_l8WfwFKnL__
Cites_doi 10.1038/nrmicro3066
10.1073/pnas.0807211105
10.1091/mbc.e07-12-1257
10.1083/jcb.200507002
10.1007/s11262-017-1522-3
10.1038/cr.2013.161
10.4161/auto.1.2.1697
10.3390/v11070610
10.1007/978-981-15-0606-2_5
10.1016/j.chom.2009.05.016
10.1016/j.virusres.2011.09.017
10.1016/j.jmb.2016.02.004
10.1016/j.celrep.2019.04.061
10.1146/annurev-cellbio-092910-154005
10.1080/15548627.2015.1066957
10.1016/j.cell.2016.04.006
10.1016/0014-5793(93)80398-E
10.1099/0022-1317-77-4-695
10.1007/s00705-004-0393-9
10.1038/nature10546
10.1084/jem.20110996
10.1093/emboj/19.21.5720
10.1126/science.1136880
10.1016/j.chom.2010.01.007
10.1016/j.meegid.2015.05.021
10.1128/JVI.02088-18
10.1016/j.cimid.2007.05.011
10.1099/0022-1317-77-11-2677
10.1016/j.virusres.2013.12.034
10.1002/(SICI)1099-1654(199804/06)8:2<67::AID-RMV217>3.0.CO;2-U
10.1016/j.cell.2011.10.026
10.1111/j.1365-2443.2008.01238.x
10.1099/vir.0.045377-0
10.1099/vir.0.021006-0
10.1016/j.febslet.2010.01.018
10.1038/s41579-018-0003-6
10.4161/auto.6880
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOA
DOI 10.1016/j.virusres.2022.198830
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1872-7492
ExternalDocumentID oai_doaj_org_article_6a76966109a040389ec2a11cfde6eaf3
35640779
10_1016_j_virusres_2022_198830
S0168170222001587
Genre Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABBQC
ABFNM
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMG
HVGLF
HZ~
IH2
IHE
J1W
KOM
LCYCR
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPM
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
WH7
WUQ
ZGI
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c480t-d1bc9b43d76bcecd7a51444fdb2e54db58125f60083503f694ebd48d243933c03
IEDL.DBID .~1
ISSN 0168-1702
1872-7492
IngestDate Wed Aug 27 01:29:45 EDT 2025
Fri Jul 11 11:54:23 EDT 2025
Mon Jul 21 10:11:41 EDT 2025
Thu Apr 03 07:08:34 EDT 2025
Tue Jul 01 01:45:33 EDT 2025
Fri Feb 23 02:40:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Viral replication
Autophagy
Hantaviruses
Language English
License Copyright © 2022. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-d1bc9b43d76bcecd7a51444fdb2e54db58125f60083503f694ebd48d243933c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8735-5722
OpenAccessLink https://doaj.org/article/6a76966109a040389ec2a11cfde6eaf3
PMID 35640779
PQID 2672323262
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6a76966109a040389ec2a11cfde6eaf3
proquest_miscellaneous_2675572639
proquest_miscellaneous_2672323262
pubmed_primary_35640779
crossref_primary_10_1016_j_virusres_2022_198830
elsevier_sciencedirect_doi_10_1016_j_virusres_2022_198830
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Virus research
PublicationTitleAlternate Virus Res
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mir, Duran, Hjelle, Ye, Panganiban (bib0019) 2008; 105
Tanida, Minematsu-Ikeguchi, Ueno, Kominami (bib0031) 2005; 1
Lee, Lund, Ramanathan, Mizushima, Iwasaki (bib0015) 2007; 315
MacNeil, Nichol, Spiropoulou (bib0016) 2011; 162
Mauvezin, Neufeld (bib0018) 2015; 11
Yashina, Abramov, Dupal, Danchinova, Malyshev, Hay, Gu, Yanagihara (bib0036) 2015; 33
Deretic, Levine (bib0005) 2009; 5
Bjørkøy, Lamark, Brech, Outzen, Perander, Øvervatn, Stenmark, Johansen (bib0001) 2005; 171
Vaheri, Strandin, Hepojoki, Sironen, Henttonen, Mäkelä, Mustonen (bib0033) 2013; 11
Zaffagnini, Martens (bib0038) 2016; 428
Noda, Ohsumi, Inagaki (bib0023) 2010; 584
Yoshimatsu, Arikawa, Tamura, Yoshida, Lundkvist, Niklasson, Kariwa, Azuma (bib0037) 1996; 77
Sumpter, Sirasanagandla, Fernández, Wei, Dong, Franco, Zou, Marchal, Lee, Clapp, Hanenberg, Levine (bib0030) 2016; 165
Brocato, Hooper (bib0002) 2019; 11
Reuter, Krüger (bib0028) 2018; 54
Kabeya, Mizushima, Ueno, Yamamoto, Kirisako, Noda, Kominami, Ohsumi, Yoshimori (bib0012) 2000; 19
Kanerva, Mustonen, Vaheri (bib0013) 1998
Plyusnin, Vapalahti, Vaheri (bib0027) 1996; 77
Kariwa, Yoshimatsu, Arikawa (bib0014) 2007; 30
Jiang, Mizushima (bib0010) 2014; 24
Wang, Ma, Liu, Ye, Li, Cheng, Zhang, Lei, Shen, Zhang (bib0035) 2019; 27
Tsukada, Ohsumi (bib0032) 1993; 333
Mizushima, Komatsu (bib0020) 2011; 147
Fujita, Itoh, Omori, Fukuda, Noda, Yoshimori (bib0006) 2008; 19
Sanada, Seto, Ozaki, Saasa, Yoshimatsu, Arikawa, Yoshii, Kariwa (bib0029) 2012; 93
Mao, Lin, He, Yu, Tan, Zhou (bib0017) 2019; 1209
Jeeva, Mir, Velasquez, Weathers, Leka, Wu, Sevarany, Mir (bib0009) 2019; 93
Okumura, Yoshimatsu, Araki, Lee, Asano, Agui, Arikawa (bib0024) 2004; 149
Orvedahl, Sumpter, Xiao, Ng, Zou, Tang, Narimatsu, Gilpin, Sun, Roth, Forst, Wrana, Zhang, Luby-Phelps, Xavier, Xie, Levine (bib0026) 2011; 480
Mizushima, Yoshimori, Ohsumi (bib0021) 2011; 27
Noda, Kumeta, Nakatogawa, Satoo, Adachi, Ishii, Fujioka, Ohsumi, Inagaki (bib0022) 2008; 13
Joubert, Werneke, de la Calle, Guivel-Benhassine, Giodini, Peduto, Levine, Schwartz, Lenschow, Albert (bib0011) 2012; 209
Orvedahl, MacPherson, Sumpter, Tallóczy, Zou, Levine (bib0025) 2010; 7
Vidoni, Fuzimoto, Ferraresi, Isidoro (bib0034) 2021
Ganaie, Mir (bib0007) 2014; 187
Hepojoki, Strandin, Wang, Vapalahti, Vaheri, Lankinen (bib0008) 2010; 91
Choi, Bowman, Jung (bib0003) 2018; 16
Denizot, Varbanov, Espert, Robert-Hebmann, Sagnier, Garcia, Curriu, Mamoun, Blanco, Biard-Piechaczyk (bib0004) 2008; 4
Choi (10.1016/j.virusres.2022.198830_bib0003) 2018; 16
Joubert (10.1016/j.virusres.2022.198830_bib0011) 2012; 209
Denizot (10.1016/j.virusres.2022.198830_bib0004) 2008; 4
MacNeil (10.1016/j.virusres.2022.198830_bib0016) 2011; 162
Sumpter (10.1016/j.virusres.2022.198830_bib0030) 2016; 165
Wang (10.1016/j.virusres.2022.198830_bib0035) 2019; 27
Tsukada (10.1016/j.virusres.2022.198830_bib0032) 1993; 333
Jiang (10.1016/j.virusres.2022.198830_bib0010) 2014; 24
Noda (10.1016/j.virusres.2022.198830_bib0023) 2010; 584
Vidoni (10.1016/j.virusres.2022.198830_bib0034) 2021
Orvedahl (10.1016/j.virusres.2022.198830_bib0026) 2011; 480
Zaffagnini (10.1016/j.virusres.2022.198830_bib0038) 2016; 428
Tanida (10.1016/j.virusres.2022.198830_bib0031) 2005; 1
Deretic (10.1016/j.virusres.2022.198830_bib0005) 2009; 5
Hepojoki (10.1016/j.virusres.2022.198830_bib0008) 2010; 91
Mauvezin (10.1016/j.virusres.2022.198830_bib0018) 2015; 11
Mizushima (10.1016/j.virusres.2022.198830_bib0021) 2011; 27
Mao (10.1016/j.virusres.2022.198830_bib0017) 2019; 1209
Kariwa (10.1016/j.virusres.2022.198830_bib0014) 2007; 30
Bjørkøy (10.1016/j.virusres.2022.198830_bib0001) 2005; 171
Jeeva (10.1016/j.virusres.2022.198830_bib0009) 2019; 93
Vaheri (10.1016/j.virusres.2022.198830_bib0033) 2013; 11
Sanada (10.1016/j.virusres.2022.198830_bib0029) 2012; 93
Okumura (10.1016/j.virusres.2022.198830_bib0024) 2004; 149
Yoshimatsu (10.1016/j.virusres.2022.198830_bib0037) 1996; 77
Kabeya (10.1016/j.virusres.2022.198830_bib0012) 2000; 19
Lee (10.1016/j.virusres.2022.198830_bib0015) 2007; 315
Yashina (10.1016/j.virusres.2022.198830_bib0036) 2015; 33
Kanerva (10.1016/j.virusres.2022.198830_bib0013) 1998
Mir (10.1016/j.virusres.2022.198830_bib0019) 2008; 105
Plyusnin (10.1016/j.virusres.2022.198830_bib0027) 1996; 77
Noda (10.1016/j.virusres.2022.198830_bib0022) 2008; 13
Orvedahl (10.1016/j.virusres.2022.198830_bib0025) 2010; 7
Brocato (10.1016/j.virusres.2022.198830_bib0002) 2019; 11
Reuter (10.1016/j.virusres.2022.198830_bib0028) 2018; 54
Ganaie (10.1016/j.virusres.2022.198830_bib0007) 2014; 187
Fujita (10.1016/j.virusres.2022.198830_bib0006) 2008; 19
Mizushima (10.1016/j.virusres.2022.198830_bib0020) 2011; 147
References_xml – volume: 11
  year: 2019
  ident: bib0002
  article-title: Progress on the prevention and treatment of hantavirus disease
  publication-title: Viruses
– volume: 27
  start-page: 107
  year: 2011
  end-page: 132
  ident: bib0021
  article-title: The role of atg proteins in autophagosome formation
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 77
  start-page: 695
  year: 1996
  end-page: 704
  ident: bib0037
  article-title: Characterization of the nucleocapsid protein of Hantaan virus strain 76-118 using monoclonal antibodies
  publication-title: J. Gen. Virol.
– volume: 1
  start-page: 84
  year: 2005
  end-page: 91
  ident: bib0031
  article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy
  publication-title: Autophagy
– volume: 147
  start-page: 728
  year: 2011
  end-page: 741
  ident: bib0020
  article-title: Autophagy: renovation of cells and tissues
  publication-title: Cell
– volume: 30
  start-page: 341
  year: 2007
  end-page: 356
  ident: bib0014
  article-title: Hantavirus infection in East Asia
  publication-title: Comp. Immunol. Microbiol. Infect. Dis.
– year: 1998
  ident: bib0013
  article-title: Pathogenesis of Puumala and Other Hantavirus Infections
  publication-title: Rev. Med. Virol.
– volume: 584
  start-page: 1379
  year: 2010
  end-page: 1385
  ident: bib0023
  article-title: Atg8-family interacting motif crucial for selective autophagy
  publication-title: FEBS Lett.
– volume: 93
  start-page: 2237
  year: 2012
  end-page: 2246
  ident: bib0029
  article-title: Isolation of Hokkaido virus, genus Hantavirus, using a newly established cell line derived from the kidney of the grey red-backed vole (Myodes rufocanus bedfordiae)
  publication-title: J. Gen. Virol.
– volume: 11
  start-page: 1437
  year: 2015
  end-page: 1438
  ident: bib0018
  article-title: Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion
  publication-title: Autophagy
– volume: 165
  start-page: 867
  year: 2016
  end-page: 881
  ident: bib0030
  article-title: Fanconi Anemia Proteins Function in Mitophagy and Immunity
  publication-title: Cell
– volume: 77
  start-page: 2677
  year: 1996
  end-page: 2687
  ident: bib0027
  article-title: Hantaviruses: genome structure, expression and evolution
  publication-title: J. Gen. Virol.
– volume: 105
  start-page: 19294
  year: 2008
  end-page: 19299
  ident: bib0019
  article-title: Storage of cellular 5′ mRNA caps in P bodies for viral cap-snatching
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 19
  start-page: 5720
  year: 2000
  end-page: 5728
  ident: bib0012
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J.
– volume: 16
  start-page: 341
  year: 2018
  end-page: 354
  ident: bib0003
  article-title: Autophagy during viral infection - a double-edged sword
  publication-title: Nat. Rev. Microbiol.
– volume: 1209
  start-page: 55
  year: 2019
  end-page: 78
  ident: bib0017
  article-title: Autophagy and viral infection
  publication-title: Adv. Exp. Med. Biol.
– volume: 54
  start-page: 5
  year: 2018
  end-page: 16
  ident: bib0028
  article-title: The nucleocapsid protein of hantaviruses: much more than a genome-wrapping protein
  publication-title: Virus Genes
– volume: 7
  start-page: 115
  year: 2010
  end-page: 127
  ident: bib0025
  article-title: Autophagy protects against sindbis virus infection of the central nervous system
  publication-title: Cell Host Microbe
– volume: 27
  start-page: 2075
  year: 2019
  end-page: 2091.e5
  ident: bib0035
  article-title: The glycoprotein and nucleocapsid protein of hantaviruses manipulate autophagy flux to restrain host innate immune responses
  publication-title: Cell Rep.
– volume: 187
  start-page: 72
  year: 2014
  end-page: 76
  ident: bib0007
  article-title: The role of viral genomic RNA and nucleocapsid protein in the autophagic clearance of hantavirus glycoprotein Gn
  publication-title: Virus Res.
– volume: 171
  start-page: 603
  year: 2005
  end-page: 614
  ident: bib0001
  article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
  publication-title: J. Cell Biol.
– year: 2021
  ident: bib0034
  article-title: Targeting autophagy with natural products to prevent SARS-CoV-2 infection
  publication-title: J. Tradit. Complement. Med.
– volume: 5
  start-page: 527
  year: 2009
  end-page: 549
  ident: bib0005
  article-title: Autophagy, immunity, and microbial adaptations
  publication-title: Cell Host Microbe
– volume: 24
  start-page: 69
  year: 2014
  end-page: 79
  ident: bib0010
  article-title: Autophagy and human diseases
  publication-title: Cell Res.
– volume: 33
  start-page: 304
  year: 2015
  end-page: 313
  ident: bib0036
  article-title: Hokkaido genotype of Puumala virus in the grey red-backed vole (Myodes rufocanus) and northern red-backed vole (Myodes rutilus) in Siberia. Infection
  publication-title: Genet. Evol.
– volume: 162
  start-page: 138
  year: 2011
  end-page: 147
  ident: bib0016
  article-title: Hantavirus pulmonary syndrome
  publication-title: Virus Res.
– volume: 19
  start-page: 2092
  year: 2008
  end-page: 2100
  ident: bib0006
  article-title: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
  publication-title: Mol. Biol. Cell
– volume: 91
  start-page: 2341
  year: 2010
  end-page: 2350
  ident: bib0008
  article-title: Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein
  publication-title: J. Gen. Virol.
– volume: 209
  start-page: 1029
  year: 2012
  end-page: 1047
  ident: bib0011
  article-title: Chikungunya virus-induced autophagy delays caspase-dependent cell death
  publication-title: J. Exp. Med.
– volume: 480
  start-page: 113
  year: 2011
  end-page: 117
  ident: bib0026
  article-title: Image-based genome-wide siRNA screen identifies selective autophagy factors
  publication-title: Nature
– volume: 333
  start-page: 169
  year: 1993
  end-page: 174
  ident: bib0032
  article-title: Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
  publication-title: FEBS Lett.
– volume: 13
  start-page: 1211
  year: 2008
  end-page: 1218
  ident: bib0022
  article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy
  publication-title: Genes Cells
– volume: 315
  start-page: 1398
  year: 2007
  end-page: 1401
  ident: bib0015
  article-title: Autophagy-dependent viral recognition by plasmacytoid dendritic cells
  publication-title: Science
– volume: 11
  start-page: 539
  year: 2013
  end-page: 550
  ident: bib0033
  article-title: Uncovering the mysteries of hantavirus infections
  publication-title: Nat. Rev. Microbiol.
– volume: 149
  start-page: 2427
  year: 2004
  end-page: 2434
  ident: bib0024
  article-title: Epitope analysis of monoclonal antibody E5/G6, which binds to a linear epitope in the nucleocapsid protein of hantaviruses
  publication-title: Arch. Virol.
– volume: 428
  start-page: 1714
  year: 2016
  end-page: 1724
  ident: bib0038
  article-title: Mechanisms of selective autophagy
  publication-title: J. Mol. Biol.
– volume: 93
  year: 2019
  ident: bib0009
  article-title: Hantavirus RdRp requires a host cell factor for cap snatching
  publication-title: J. Virol.
– volume: 4
  start-page: 998
  year: 2008
  end-page: 1008
  ident: bib0004
  article-title: HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells
  publication-title: Autophagy
– volume: 11
  start-page: 539
  year: 2013
  ident: 10.1016/j.virusres.2022.198830_bib0033
  article-title: Uncovering the mysteries of hantavirus infections
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3066
– volume: 105
  start-page: 19294
  year: 2008
  ident: 10.1016/j.virusres.2022.198830_bib0019
  article-title: Storage of cellular 5′ mRNA caps in P bodies for viral cap-snatching
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0807211105
– volume: 19
  start-page: 2092
  year: 2008
  ident: 10.1016/j.virusres.2022.198830_bib0006
  article-title: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-12-1257
– year: 2021
  ident: 10.1016/j.virusres.2022.198830_bib0034
  article-title: Targeting autophagy with natural products to prevent SARS-CoV-2 infection
  publication-title: J. Tradit. Complement. Med.
– volume: 171
  start-page: 603
  year: 2005
  ident: 10.1016/j.virusres.2022.198830_bib0001
  article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200507002
– volume: 54
  start-page: 5
  year: 2018
  ident: 10.1016/j.virusres.2022.198830_bib0028
  article-title: The nucleocapsid protein of hantaviruses: much more than a genome-wrapping protein
  publication-title: Virus Genes
  doi: 10.1007/s11262-017-1522-3
– volume: 24
  start-page: 69
  year: 2014
  ident: 10.1016/j.virusres.2022.198830_bib0010
  article-title: Autophagy and human diseases
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.161
– volume: 1
  start-page: 84
  year: 2005
  ident: 10.1016/j.virusres.2022.198830_bib0031
  article-title: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.1.2.1697
– volume: 11
  year: 2019
  ident: 10.1016/j.virusres.2022.198830_bib0002
  article-title: Progress on the prevention and treatment of hantavirus disease
  publication-title: Viruses
  doi: 10.3390/v11070610
– volume: 1209
  start-page: 55
  year: 2019
  ident: 10.1016/j.virusres.2022.198830_bib0017
  article-title: Autophagy and viral infection
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-15-0606-2_5
– volume: 5
  start-page: 527
  year: 2009
  ident: 10.1016/j.virusres.2022.198830_bib0005
  article-title: Autophagy, immunity, and microbial adaptations
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.05.016
– volume: 162
  start-page: 138
  year: 2011
  ident: 10.1016/j.virusres.2022.198830_bib0016
  article-title: Hantavirus pulmonary syndrome
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2011.09.017
– volume: 428
  start-page: 1714
  year: 2016
  ident: 10.1016/j.virusres.2022.198830_bib0038
  article-title: Mechanisms of selective autophagy
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.02.004
– volume: 27
  start-page: 2075
  year: 2019
  ident: 10.1016/j.virusres.2022.198830_bib0035
  article-title: The glycoprotein and nucleocapsid protein of hantaviruses manipulate autophagy flux to restrain host innate immune responses
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.04.061
– volume: 27
  start-page: 107
  year: 2011
  ident: 10.1016/j.virusres.2022.198830_bib0021
  article-title: The role of atg proteins in autophagosome formation
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-092910-154005
– volume: 11
  start-page: 1437
  year: 2015
  ident: 10.1016/j.virusres.2022.198830_bib0018
  article-title: Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1066957
– volume: 165
  start-page: 867
  year: 2016
  ident: 10.1016/j.virusres.2022.198830_bib0030
  article-title: Fanconi Anemia Proteins Function in Mitophagy and Immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.006
– volume: 333
  start-page: 169
  year: 1993
  ident: 10.1016/j.virusres.2022.198830_bib0032
  article-title: Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(93)80398-E
– volume: 77
  start-page: 695
  year: 1996
  ident: 10.1016/j.virusres.2022.198830_bib0037
  article-title: Characterization of the nucleocapsid protein of Hantaan virus strain 76-118 using monoclonal antibodies
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-77-4-695
– volume: 149
  start-page: 2427
  year: 2004
  ident: 10.1016/j.virusres.2022.198830_bib0024
  article-title: Epitope analysis of monoclonal antibody E5/G6, which binds to a linear epitope in the nucleocapsid protein of hantaviruses
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-004-0393-9
– volume: 480
  start-page: 113
  year: 2011
  ident: 10.1016/j.virusres.2022.198830_bib0026
  article-title: Image-based genome-wide siRNA screen identifies selective autophagy factors
  publication-title: Nature
  doi: 10.1038/nature10546
– volume: 209
  start-page: 1029
  year: 2012
  ident: 10.1016/j.virusres.2022.198830_bib0011
  article-title: Chikungunya virus-induced autophagy delays caspase-dependent cell death
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20110996
– volume: 19
  start-page: 5720
  year: 2000
  ident: 10.1016/j.virusres.2022.198830_bib0012
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.21.5720
– volume: 315
  start-page: 1398
  year: 2007
  ident: 10.1016/j.virusres.2022.198830_bib0015
  article-title: Autophagy-dependent viral recognition by plasmacytoid dendritic cells
  publication-title: Science
  doi: 10.1126/science.1136880
– volume: 7
  start-page: 115
  year: 2010
  ident: 10.1016/j.virusres.2022.198830_bib0025
  article-title: Autophagy protects against sindbis virus infection of the central nervous system
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.01.007
– volume: 33
  start-page: 304
  year: 2015
  ident: 10.1016/j.virusres.2022.198830_bib0036
  article-title: Hokkaido genotype of Puumala virus in the grey red-backed vole (Myodes rufocanus) and northern red-backed vole (Myodes rutilus) in Siberia. Infection
  publication-title: Genet. Evol.
  doi: 10.1016/j.meegid.2015.05.021
– volume: 93
  year: 2019
  ident: 10.1016/j.virusres.2022.198830_bib0009
  article-title: Hantavirus RdRp requires a host cell factor for cap snatching
  publication-title: J. Virol.
  doi: 10.1128/JVI.02088-18
– volume: 30
  start-page: 341
  year: 2007
  ident: 10.1016/j.virusres.2022.198830_bib0014
  article-title: Hantavirus infection in East Asia
  publication-title: Comp. Immunol. Microbiol. Infect. Dis.
  doi: 10.1016/j.cimid.2007.05.011
– volume: 77
  start-page: 2677
  year: 1996
  ident: 10.1016/j.virusres.2022.198830_bib0027
  article-title: Hantaviruses: genome structure, expression and evolution
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-77-11-2677
– volume: 187
  start-page: 72
  year: 2014
  ident: 10.1016/j.virusres.2022.198830_bib0007
  article-title: The role of viral genomic RNA and nucleocapsid protein in the autophagic clearance of hantavirus glycoprotein Gn
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2013.12.034
– year: 1998
  ident: 10.1016/j.virusres.2022.198830_bib0013
  article-title: Pathogenesis of Puumala and Other Hantavirus Infections
  publication-title: Rev. Med. Virol.
  doi: 10.1002/(SICI)1099-1654(199804/06)8:2<67::AID-RMV217>3.0.CO;2-U
– volume: 147
  start-page: 728
  year: 2011
  ident: 10.1016/j.virusres.2022.198830_bib0020
  article-title: Autophagy: renovation of cells and tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.026
– volume: 13
  start-page: 1211
  year: 2008
  ident: 10.1016/j.virusres.2022.198830_bib0022
  article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2008.01238.x
– volume: 93
  start-page: 2237
  year: 2012
  ident: 10.1016/j.virusres.2022.198830_bib0029
  article-title: Isolation of Hokkaido virus, genus Hantavirus, using a newly established cell line derived from the kidney of the grey red-backed vole (Myodes rufocanus bedfordiae)
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.045377-0
– volume: 91
  start-page: 2341
  year: 2010
  ident: 10.1016/j.virusres.2022.198830_bib0008
  article-title: Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.021006-0
– volume: 584
  start-page: 1379
  year: 2010
  ident: 10.1016/j.virusres.2022.198830_bib0023
  article-title: Atg8-family interacting motif crucial for selective autophagy
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.01.018
– volume: 16
  start-page: 341
  year: 2018
  ident: 10.1016/j.virusres.2022.198830_bib0003
  article-title: Autophagy during viral infection - a double-edged sword
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0003-6
– volume: 4
  start-page: 998
  year: 2008
  ident: 10.1016/j.virusres.2022.198830_bib0004
  article-title: HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells
  publication-title: Autophagy
  doi: 10.4161/auto.6880
SSID ssj0006376
Score 2.360072
Snippet •Autophagy is induced by the Hokkaido genotype of Puumala orthohantavirus.•Autophagy suppresses the replication of Hokkaido genotype of Puumala...
Hantaviruses are potentially fatal zoonotic pathogens of the family Hantaviridae. No human infection by the Hokkaido genotype of Puumala orthohantavirus...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 198830
SubjectTerms autophagosomes
Autophagy
fever
genes
genotype
Hantaviruses
Japan
lysosomes
nucleocapsid proteins
Puumala orthohantavirus
Viral replication
viruses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et-uLCF6rfSRpe1RRFg_iwYW9hcmjuj5aWbaC_95J0yzrQb1Ib2laksy035fO9BtCTouClUolRVQkeRUxbU2keF5GlqcQJyZBiOzUPu_EcMRux3y8UOrL5YR5eWC_cOcCcoGUPIlLQH9DeLU6hSTRlbHCQtXpfCLmhc1U_w4W-Nws_A_8fPYxmbaIOU6gO03PcKdduLznBSjqFPu_IdJPjLNDnpt1stZTRnrhh7pBlmy9SVZ8EcnPLTINuiK0qSjSOToN-W1Pk3fa52Fh4zxQHfoNm5cXmJiGOp1W9ynWnbhv2zd4BerCOc0TLjt0c6JQGwqtUyGAx89tMrq5frgaRn0lhUizIp5FJlG6VCwzuVDaapMD8iTGKqNSy5lRHGGeV6LjY3FWiZJZZVhhUqQrWabjbIcs101t9wjVmbIl53gdWGZBQMUzp9nuipch1NkBOQ-LKt-9YIYMmWTPMphBOjNIb4YBuXRrP-_tBK-7BnQD2buB_MsNBqQMlpM9d_CcAG81-XMAJ8HUEh8uFzGB2jYtdhI4LTxE-msfzvMUmd6A7Ho_mU8l4y5Ompf7_zHFA7LqBu0T3A7J8mza2iNkRDN13Dn_F-ncC0o
  priority: 102
  providerName: Directory of Open Access Journals
Title Analysis of the relationship between replication of the Hokkaido genotype of Puumala orthohantavirus and autophagy
URI https://dx.doi.org/10.1016/j.virusres.2022.198830
https://www.ncbi.nlm.nih.gov/pubmed/35640779
https://www.proquest.com/docview/2672323262
https://www.proquest.com/docview/2675572639
https://doaj.org/article/6a76966109a040389ec2a11cfde6eaf3
Volume 318
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiQuCMprga6MxDW7SfxIcixVqy1IFRJU6s3yK21aSFbRplIv_e3MOPHSHoADyinOJLI9E39f4vFnQj6WJa-MycqkzIo64da7xIiiSrzIdZq5DCAyqH2eytUZ_3wuznfIYVwLg2mV09g_julhtJ5KllNvLtdNs_wGZAXV5QDgEPhLXFHOeYFRvrj7neYhWdhgDo0TtL63SvhqcdP0AyARynbn-QK-v0vMhr4HUEHH_wFO_YmHBjw6fkaeTkSSHox1fU52fLtHHo9bS96-IH1UG6FdTYHk0T5mvV02azplZ0Hhdvo62q2662vduI6ieiv-oMULX4fhp_6hKU7ydJfgDB3aRHXrqB5Qm0Bf3L4kZ8dH3w9XybS_QmJ5mW4SlxlbGc5cIY311hUa2BPntTO5F9wZAeAvahlYWspqWXFvHC9dDiSGMZuyV2S37Vr_hlDLjK-EgPu0515LXQuGSu64pRkAoJ-RZexUtR5lNFTML7tS0Q0K3aBGN8zIJ-z7rTXKYIeCrr9QUxwoqQsJ32tZWmkYjIB7eZvrLLO189Lrms1IFT2nHkQVPKr5ZwU-RFcreOVwHkW3vhvASEKz4JD5X22EKHLgfzPyeoyTbVOYwNnTonr7H7V7R57g2Zjt9p7sbvrB7wM92ph5iP85eXRw8mV1Og8_GX4BCh0RoA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lmWp5HgmN3ErySHHsqj2tJSIdFKvRk7dtr0kazCBrSX_qn-QWbyWNoDcEBVbo5j2TP2fJ_j8Qwhb5JEpNZGSZBEcR6IzLvAyjgNvGQmjFwEENlG-9xV033x6UAerJCL4S4MulX2tr-z6a217ksmvTQns6KYfAWygtHlAOAQ-JO496zc9oufsG_7vr71AZT8lrHNj3vvp0GfWiDIRBLOAxfZLLWCu1jZzGcuNkAchMidZV4KZyXgnsxVS1BCnqtUeOtE4hjgN-dZyKHdG-SmAHOBaRPG57_9ShRvM9ph7wLs3qVrycfjH0XdAPRhnHDGxrDhT9D9-hIitokDrgDjn4hvC4Cb98jdnrnSjU4498mKLx-QW10uy8VDUg_hTWiVU2CVtB7c7I6KGe3dwaBweV4-1JtWJyemcBXFcLH4RxhffGmaM3NqKJ4qVUegfdOOiZrSUdNgMARzuHhE9q9F6o_JalmV_gmhGbc-lRK-M154o0wuOYaOxxxqgLh-RCaDUPWsi9uhB4e2Yz2oQaMadKeGEXmHsl_WxrjbbUFVH-p-4mllYgUbxChMDVg_IHs-YyaKstx55U3ORyQdNKevTGNoqvhnB14PqtawxvHgxpS-aqCSgmHBo9hf60gZMyCcI7LWzZPlULjE49o4ffofvXtFbk_3Pu_ona3d7WfkDr7pXO2ek9V53fgXwM3m9mW7Fij5dt2L7xd2RUwB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+relationship+between+replication+of+the+Hokkaido+genotype+of+Puumala+orthohantavirus+and+autophagy&rft.jtitle=Virus+research&rft.au=Tamiya%2C+Kazuma&rft.au=Kobayashi%2C+Shintar%C5%8D&rft.au=Yoshii%2C+Kentaro&rft.au=Kariwa%2C+Hiroaki&rft.date=2022-09-01&rft.issn=0168-1702&rft.volume=318+p.198830-&rft_id=info:doi/10.1016%2Fj.virusres.2022.198830&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1702&client=summon