Ice sheet and palaeoclimate controls on drainage network evolution: an example from Dogger Bank, North Sea
Submerged landscapes on continental shelves archive drainage networks formed during periods of sea-level lowstand. The evolution of these postglacial drainage networks also reveals how past climate changes affected the landscape. Ice-marginal and paraglacial drainage networks on low-relief topograph...
Saved in:
Published in | Earth surface dynamics Vol. 8; no. 4; pp. 869 - 891 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Gottingen
Copernicus GmbH
23.10.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Submerged landscapes on continental shelves archive drainage networks formed during periods of sea-level lowstand. The evolution of these postglacial drainage networks also reveals how past climate changes affected the landscape. Ice-marginal and paraglacial drainage networks on low-relief topography are susceptible to reorganisation of water supply, forced by ice-marginal rearrangement, precipitation and temperature variations, and marine inundation. A rare geological archive of climate-driven landscape evolution during the transition from ice-marginal (ca. 23 ka) to a fully submerged marine environment (ca. 8 ka) is preserved at Dogger Bank, in the southern North Sea. |
---|---|
AbstractList | Submerged landscapes on continental shelves archive drainage networks formed during periods of sea-level lowstand. The evolution of these postglacial drainage networks also reveals how past climate changes affected the landscape. Ice-marginal and paraglacial drainage networks on low-relief topography are susceptible to reorganisation of water supply, forced by ice-marginal rearrangement, precipitation and temperature variations, and marine inundation. A rare geological archive of climate-driven landscape evolution during the transition from ice-marginal (ca. 23 ka) to a fully submerged marine environment (ca. 8 ka) is preserved at Dogger Bank, in the southern North Sea. In this study, our analysis of high-resolution seismic reflection and cone penetration test data reveal a channel network over a 1330 km.sup.2 area that incised glacial and proglacial lake-fill sediments. The channel network sits below coastal and shallow marine sediments and is therefore interpreted to represent a terrestrial drainage network. When mapped out, the channel form morphology reveals two distinct sets. The first set comprises two low-sinuosity, wide (400 m) channels that contain macroforms of braid and side bars. These channels are interpreted to have originated as proglacial rivers, which drained the ice-sheet margin to the north. The second set of channels (75-200 m wide, with one larger, â¼400 m wide) has higher sinuosity and forms a subdendritic network of tributaries to the proglacial channels. The timing of channel formation lacks chronostratigraphic control. However, the proglacial rivers must have formed as the ice sheet was still on Dogger Bank, before 23 ka, to supply meltwater to the rivers. Ice-sheet retreat from Dogger Bank led to reorganisation of meltwater drainage and abandonment of the proglacial rivers. Palaeoclimate simulations show a cold and dry period at Dogger Bank between 23 and 17 ka. After 17 ka, precipitation increased, and drainage of precipitation formed the second set of channels. The second set of rivers remained active until marine transgression of Dogger Bank at ca. 8.5-8 ka. Overall, this study provides a detailed insight into the evolution of river networks across Dogger Bank and highlights the interplay between external (climate) and internal (local) forcings in drainage network evolution. Submerged landscapes on continental shelves archive drainage networks formed during periods of sea-level lowstand. The evolution of these postglacial drainage networks also reveals how past climate changes affected the landscape. Ice-marginal and paraglacial drainage networks on low-relief topography are susceptible to reorganisation of water supply, forced by ice-marginal rearrangement, precipitation and temperature variations, and marine inundation. A rare geological archive of climate-driven landscape evolution during the transition from ice-marginal (ca. 23 ka) to a fully submerged marine environment (ca. 8 ka) is preserved at Dogger Bank, in the southern North Sea. In this study, our analysis of high-resolution seismic reflection and cone penetration test data reveal a channel network over a 1330 km 2 area that incised glacial and proglacial lake-fill sediments. The channel network sits below coastal and shallow marine sediments and is therefore interpreted to represent a terrestrial drainage network. When mapped out, the channel form morphology reveals two distinct sets. The first set comprises two low-sinuosity, wide ( >400 m) channels that contain macroforms of braid and side bars. These channels are interpreted to have originated as proglacial rivers, which drained the ice-sheet margin to the north. The second set of channels (75–200 m wide, with one larger, ∼400 m wide) has higher sinuosity and forms a subdendritic network of tributaries to the proglacial channels. The timing of channel formation lacks chronostratigraphic control. However, the proglacial rivers must have formed as the ice sheet was still on Dogger Bank, before 23 ka, to supply meltwater to the rivers. Ice-sheet retreat from Dogger Bank led to reorganisation of meltwater drainage and abandonment of the proglacial rivers. Palaeoclimate simulations show a cold and dry period at Dogger Bank between 23 and 17 ka. After 17 ka, precipitation increased, and drainage of precipitation formed the second set of channels. The second set of rivers remained active until marine transgression of Dogger Bank at ca. 8.5–8 ka. Overall, this study provides a detailed insight into the evolution of river networks across Dogger Bank and highlights the interplay between external (climate) and internal (local) forcings in drainage network evolution. Submerged landscapes on continental shelves archive drainage networks formed during periods of sea-level lowstand. The evolution of these postglacial drainage networks also reveals how past climate changes affected the landscape. Ice-marginal and paraglacial drainage networks on low-relief topography are susceptible to reorganisation of water supply, forced by ice-marginal rearrangement, precipitation and temperature variations, and marine inundation. A rare geological archive of climate-driven landscape evolution during the transition from ice-marginal (ca. 23 ka) to a fully submerged marine environment (ca. 8 ka) is preserved at Dogger Bank, in the southern North Sea. In this study, our analysis of high-resolution seismic reflection and cone penetration test data reveal a channel network over a 1330 km2 area that incised glacial and proglacial lake-fill sediments. The channel network sits below coastal and shallow marine sediments and is therefore interpreted to represent a terrestrial drainage network. When mapped out, the channel form morphology reveals two distinct sets. The first set comprises two low-sinuosity, wide (>400 m) channels that contain macroforms of braid and side bars. These channels are interpreted to have originated as proglacial rivers, which drained the ice-sheet margin to the north. The second set of channels (75–200 m wide, with one larger, ∼400 m wide) has higher sinuosity and forms a subdendritic network of tributaries to the proglacial channels. The timing of channel formation lacks chronostratigraphic control. However, the proglacial rivers must have formed as the ice sheet was still on Dogger Bank, before 23 ka, to supply meltwater to the rivers. Ice-sheet retreat from Dogger Bank led to reorganisation of meltwater drainage and abandonment of the proglacial rivers. Palaeoclimate simulations show a cold and dry period at Dogger Bank between 23 and 17 ka. After 17 ka, precipitation increased, and drainage of precipitation formed the second set of channels. The second set of rivers remained active until marine transgression of Dogger Bank at ca. 8.5–8 ka. Overall, this study provides a detailed insight into the evolution of river networks across Dogger Bank and highlights the interplay between external (climate) and internal (local) forcings in drainage network evolution. Submerged landscapes on continental shelves archive drainage networks formed during periods of sea-level lowstand. The evolution of these postglacial drainage networks also reveals how past climate changes affected the landscape. Ice-marginal and paraglacial drainage networks on low-relief topography are susceptible to reorganisation of water supply, forced by ice-marginal rearrangement, precipitation and temperature variations, and marine inundation. A rare geological archive of climate-driven landscape evolution during the transition from ice-marginal (ca. 23 ka) to a fully submerged marine environment (ca. 8 ka) is preserved at Dogger Bank, in the southern North Sea. Submerged landscapes on continental shelves archive drainage networks formed during periods of sea-level lowstand. The evolution of these postglacial drainage networks also reveals how past climate changes affected the landscape. Ice-marginal and paraglacial drainage networks on low-relief topography are susceptible to reorganisation of water supply, forced by ice-marginal rearrangement, precipitation and temperature variations, and marine inundation. A rare geological archive of climate-driven landscape evolution during the transition from ice-marginal (ca. 23 ka) to a fully submerged marine environment (ca. 8 ka) is preserved at Dogger Bank, in the southern North Sea.In this study, our analysis of high-resolution seismic reflection and cone penetration test data reveal a channel network over a 1330 km2 area that incised glacial and proglacial lake-fill sediments. The channel network sits below coastal and shallow marine sediments and is therefore interpreted to represent a terrestrial drainage network. When mapped out, the channel form morphology reveals two distinct sets. The first set comprises two low-sinuosity, wide (>400 m) channels that contain macroforms of braid and side bars. These channels are interpreted to have originated as proglacial rivers, which drained the ice-sheet margin to the north. The second set of channels (75–200 m wide, with one larger,∼400 m wide) has higher sinuosity and forms a subdendritic network of tributaries to the proglacial channels.The timing of channel formation lacks chronostratigraphic control. However, the proglacial rivers must have formed as the ice sheet was still on Dogger Bank, before 23 ka, to supply meltwater to the rivers. Ice-sheet retreat from Dogger Bank led to reorganisation of meltwater drainage and abandonment of the proglacial rivers. Palaeoclimate simulations show a cold and dry period at Dogger Bank between 23 and 17 ka. After 17 ka, precipitation increased, and drainage of precipitation formed the second set of channels. The second set of rivers remained active until marine transgression of Dogger Bank at ca. 8.5–8 ka. Overall, this study provides a detailed insight into the evolution of river networks across Dogger Bank and highlights the interplay between external (climate) and internal (local) forcings in drainage network evolution. |
Audience | Academic |
Author | Emery, Andy R Carrivick, Jonathan L Ivanovic, Ruza F Cotterill, Carol J Barlow, Natasha L. M Mellett, Claire L Hodgson, David M Richardson, Janet C |
Author_xml | – sequence: 1 fullname: Emery, Andy R – sequence: 2 fullname: Hodgson, David M – sequence: 3 fullname: Barlow, Natasha L. M – sequence: 4 fullname: Carrivick, Jonathan L – sequence: 5 fullname: Cotterill, Carol J – sequence: 6 fullname: Richardson, Janet C – sequence: 7 fullname: Ivanovic, Ruza F – sequence: 8 fullname: Mellett, Claire L |
BookMark | eNptUk1v1DAQjVCRKKV3jpY4IZHi2LETcyvla6UKJAoSN2tij9Nss_bWdqD8e7xdBKyEfBhr9N6br_e4OvLBY1U9beiZaFT7EtMSXd3XvVQ1o4w-qI5Zo2QtOft29M__UXWa0ppS2nAmOFfH1XplkKRrxEzAW7KFGTCYedpARmKCzzHMiQRPbITJw4jEY_4R4g3B72Fe8hT8q8IkeAeb7YzExbAhb8I4YiSvwd-8IB9DzNfkCuFJ9dDBnPD0dzypvr57--XiQ3356f3q4vyyNm1Pcz1YxaBnlGPTGgZiUMYNosFOdoIqa5zojWJcdrY1xgqkFHEwg-SKW4bU8JNqtde1AdZ6G8ss8acOMOn7RIijhpgnM6PmjWUOGXOql22HreKlaqmJDlxnela0nu21tjHcLpiyXocl-tK-Zq3gUjIp5F_UCEV08i7kCGYzJaPPS1-spYLttM7-gyrP4mYqq0Y3lfwB4fkBYXcOvMsjLCnp1dXnQyzdY00MKUV0fwZvqN55RN97RPe6eETvPMJ_ATansCk |
CitedBy_id | crossref_primary_10_1144_SP525_2021_155 crossref_primary_10_1016_j_geomorph_2021_108061 crossref_primary_10_1177_09596836231197732 crossref_primary_10_1111_bor_12647 crossref_primary_10_1002_esp_5880 crossref_primary_10_1016_j_quascirev_2022_107909 |
Cites_doi | 10.1046/j.1365-246X.2002.01702.x 10.1038/ngeo2932 10.1016/j.quascirev.2004.11.021 10.1016/j.epsl.2009.12.050 10.1017/S0079497X00002176 10.1002/jqs.1015 10.1016/0277-3791(91)90029-T 10.1016/j.quascirev.2014.09.003 10.3997/1873-0604.2017032 10.1144/TMS7.3 10.1144/gsjgs.144.1.0043 10.1002/jqs.2743 10.1016/j.geomorph.2013.03.030 10.1002/9781118927823 10.1306/212F8F4E-2B24-11D7-8648000102C1865D 10.1002/jqs.3039 10.1016/j.quaint.2011.07.034 10.1016/j.sedgeo.2004.07.005 10.1126/science.1171041 10.1016/j.jappgeo.2003.08.001 10.1016/j.quascirev.2010.07.019 10.1016/j.geomorph.2012.10.024 10.1016/j.geomorph.2020.107347 10.1098/rstb.1988.0024 10.1016/j.margeo.2020.106199 10.1016/j.geomorph.2004.03.006 10.1016/j.sedgeo.2017.12.022 10.1002/jqs.2897 10.1111/j.1365-3091.2004.00616.x 10.1016/j.earscirev.2004.12.002 10.1016/j.margeo.2017.11.021 10.1007/978-3-319-53160-1 10.1111/bor.12142 10.1002/jqs.1549 10.1016/S0277-3791(99)00016-5 10.1016/j.quascirev.2013.03.016 10.1016/j.geomorph.2005.05.018 10.5194/gmd-9-2563-2016 10.1111/bor.12253 10.1139/t90-014 10.1016/j.quascirev.2019.105943 10.1002/jqs.2932 10.1016/j.quascirev.2017.07.006 10.1111/j.1365-3091.2010.01222.x 10.1016/j.quascirev.2015.06.010 10.1016/j.pgeola.2015.08.009 10.1657/1523-0430-41.1.18 10.1002/jqs.3147 10.1007/978-3-319-53160-1_14 10.5194/gmd-10-3715-2017 10.1002/2017GL074274 10.1016/S1040-6182(00)00127-0 10.1016/j.sedgeo.2008.11.006 10.1130/G31631.1 10.1016/j.quascirev.2018.08.010 10.1002/jqs.757 10.1016/B978-0-444-53643-3.00083-2 10.1002/esp.3545 10.1017/njg.2014.4 10.1016/j.jas.2013.05.023 10.1144/GSL.SP.1993.075.01.01 10.1002/2014GL060090 10.1002/jqs.2552 10.3189/2013JoG13J085 10.1007/s003820050010 10.1016/j.quascirev.2011.04.018 10.1038/nature02805 10.2307/j.ctv1pzk1w9.13 10.1007/s003820050009 10.1016/j.epsl.2011.09.010 10.1002/jqs.950 10.1002/2014JB011176 10.1016/j.margeo.2017.09.003 10.3389/feart.2019.00234 10.1073/pnas.1717838115 10.1111/j.1365-2451.2006.00554.x 10.1130/G25727A.1 10.1680/geot.1999.49.2.181 10.1016/j.quascirev.2007.07.013 10.1130/G37215.1 10.1016/j.quascirev.2017.11.001 10.1130/G37652.1 10.1016/j.jhydrol.2015.09.062 10.4113/jom.2011.1160 10.1177/030913339602000101 10.5194/esurf-4-567-2016 10.1016/j.yqres.2005.03.007 10.1086/623976 10.1177/030913339501900402 10.2113/JEEG12.1.127 10.5194/gmd-11-2541-2018 10.1144/GSL.SP.2000.166.01.15 10.1016/j.margeo.2019.105981 10.1002/esp.3662 10.2307/j.ctv1pzk1w9 10.1016/S0277-3791(97)00023-1 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TN 7UA ABUWG AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ L.G PCBAR PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.5194/esurf-8-869-2020 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2196-632X |
EndPage | 891 |
ExternalDocumentID | oai_doaj_org_article_31d2fe22f98647e4933e12a5efaf7c82 A639240522 10_5194_esurf_8_869_2020 |
GeographicLocations | North Sea |
GeographicLocations_xml | – name: North Sea |
GroupedDBID | 5VS 8FE 8FH AAFWJ AAYXX ABDBF ADBBV AEGXH AENEX AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ H13 HCIFZ IAO IEA ISR ITC KQ8 LK5 M7R OK1 PCBAR PIMPY PROAC RIG RKB ZBA 7QH 7TN 7UA ABUWG AZQEC C1K DWQXO F1W H96 L.G PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c480t-bd92a8203e14c2a5b9cfb51e767509dcf58c92367d4ccd5e00eebcb6393d2e0c3 |
IEDL.DBID | DOA |
ISSN | 2196-632X 2196-6311 |
IngestDate | Tue Oct 22 15:10:47 EDT 2024 Sat Nov 09 13:23:14 EST 2024 Thu Feb 22 23:30:27 EST 2024 Tue Nov 12 23:16:30 EST 2024 Thu Aug 01 19:36:59 EDT 2024 Fri Aug 23 01:53:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-bd92a8203e14c2a5b9cfb51e767509dcf58c92367d4ccd5e00eebcb6393d2e0c3 |
ORCID | 0000-0003-1231-0148 0000-0002-9286-5348 0000-0002-7805-6018 |
OpenAccessLink | https://doaj.org/article/31d2fe22f98647e4933e12a5efaf7c82 |
PQID | 2453662656 |
PQPubID | 2037686 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31d2fe22f98647e4933e12a5efaf7c82 proquest_journals_2453662656 gale_infotracmisc_A639240522 gale_infotracacademiconefile_A639240522 gale_incontextgauss_ISR_A639240522 crossref_primary_10_5194_esurf_8_869_2020 |
PublicationCentury | 2000 |
PublicationDate | 2020-10-23 |
PublicationDateYYYYMMDD | 2020-10-23 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Gottingen |
PublicationPlace_xml | – name: Gottingen |
PublicationTitle | Earth surface dynamics |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref98 doi: 10.1046/j.1365-246X.2002.01702.x – ident: ref90 doi: 10.1038/ngeo2932 – ident: ref1 doi: 10.1016/j.quascirev.2004.11.021 – ident: ref102 doi: 10.1016/j.epsl.2009.12.050 – ident: ref27 doi: 10.1017/S0079497X00002176 – ident: ref61 doi: 10.1002/jqs.1015 – ident: ref45 doi: 10.1016/0277-3791(91)90029-T – ident: ref10 doi: 10.1016/j.quascirev.2014.09.003 – ident: ref29 doi: 10.3997/1873-0604.2017032 – ident: ref43 doi: 10.1144/TMS7.3 – ident: ref15 doi: 10.1144/gsjgs.144.1.0043 – ident: ref101 doi: 10.1002/jqs.2743 – ident: ref67 doi: 10.1016/j.geomorph.2013.03.030 – ident: ref107 – ident: ref40 doi: 10.1002/9781118927823 – ident: ref62 doi: 10.1306/212F8F4E-2B24-11D7-8648000102C1865D – ident: ref13 doi: 10.1002/jqs.3039 – ident: ref47 – ident: ref72 doi: 10.1016/j.quaint.2011.07.034 – ident: ref22 doi: 10.1016/j.sedgeo.2004.07.005 – ident: ref16 – ident: ref58 doi: 10.1126/science.1171041 – ident: ref80 doi: 10.1016/j.jappgeo.2003.08.001 – ident: ref26 doi: 10.1016/j.quascirev.2010.07.019 – ident: ref24 doi: 10.1016/j.geomorph.2012.10.024 – ident: ref82 doi: 10.1016/j.geomorph.2020.107347 – ident: ref44 doi: 10.1098/rstb.1988.0024 – ident: ref75 doi: 10.1016/j.margeo.2020.106199 – ident: ref21 doi: 10.1016/j.geomorph.2004.03.006 – ident: ref37 doi: 10.1016/j.sedgeo.2017.12.022 – ident: ref7 doi: 10.1002/jqs.2897 – ident: ref2 doi: 10.1111/j.1365-3091.2004.00616.x – ident: ref64 doi: 10.1016/j.earscirev.2004.12.002 – ident: ref97 – ident: ref53 doi: 10.1016/j.margeo.2017.11.021 – ident: ref4 doi: 10.1007/978-3-319-53160-1 – ident: ref54 doi: 10.1111/bor.12142 – ident: ref52 doi: 10.1002/jqs.1549 – ident: ref88 doi: 10.1016/S0277-3791(99)00016-5 – ident: ref38 – ident: ref94 doi: 10.1016/j.quascirev.2013.03.016 – ident: ref85 doi: 10.1016/j.geomorph.2005.05.018 – ident: ref55 doi: 10.5194/gmd-9-2563-2016 – ident: ref31 doi: 10.1111/bor.12253 – ident: ref84 doi: 10.1139/t90-014 – ident: ref81 doi: 10.1016/j.quascirev.2019.105943 – ident: ref78 doi: 10.1002/jqs.2932 – ident: ref30 doi: 10.1016/j.quascirev.2017.07.006 – ident: ref51 doi: 10.1111/j.1365-3091.2010.01222.x – ident: ref103 doi: 10.1016/j.quascirev.2015.06.010 – ident: ref6 doi: 10.1016/j.pgeola.2015.08.009 – ident: ref19 doi: 10.1657/1523-0430-41.1.18 – ident: ref50 doi: 10.1002/jqs.3147 – ident: ref49 doi: 10.1007/978-3-319-53160-1_14 – ident: ref104 doi: 10.5194/gmd-10-3715-2017 – ident: ref60 doi: 10.1002/2017GL074274 – ident: ref105 doi: 10.1016/S1040-6182(00)00127-0 – ident: ref66 doi: 10.1016/j.sedgeo.2008.11.006 – ident: ref93 doi: 10.1130/G31631.1 – ident: ref83 doi: 10.1016/j.quascirev.2018.08.010 – ident: ref69 – ident: ref95 – ident: ref9 doi: 10.1002/jqs.757 – ident: ref20 doi: 10.1016/B978-0-444-53643-3.00083-2 – ident: ref65 doi: 10.1002/esp.3545 – ident: ref100 doi: 10.1111/bor.12142 – ident: ref106 doi: 10.1017/njg.2014.4 – ident: ref96 doi: 10.1016/j.jas.2013.05.023 – ident: ref86 – ident: ref11 doi: 10.1144/GSL.SP.1993.075.01.01 – ident: ref33 doi: 10.1002/2014GL060090 – ident: ref57 doi: 10.1002/jqs.2552 – ident: ref25 doi: 10.3189/2013JoG13J085 – ident: ref46 doi: 10.1007/s003820050010 – ident: ref71 doi: 10.1016/j.quascirev.2011.04.018 – ident: ref3 doi: 10.1038/nature02805 – ident: ref91 doi: 10.2307/j.ctv1pzk1w9.13 – ident: ref79 doi: 10.1007/s003820050009 – ident: ref99 doi: 10.1016/j.epsl.2011.09.010 – ident: ref17 doi: 10.1002/jqs.950 – ident: ref76 doi: 10.1002/2014JB011176 – ident: ref5 doi: 10.1016/j.margeo.2017.09.003 – ident: ref34 doi: 10.3389/feart.2019.00234 – ident: ref70 doi: 10.1073/pnas.1717838115 – ident: ref18 doi: 10.1111/j.1365-2451.2006.00554.x – ident: ref36 doi: 10.1130/G25727A.1 – ident: ref68 doi: 10.1680/geot.1999.49.2.181 – ident: ref14 doi: 10.1016/j.quascirev.2007.07.013 – ident: ref73 doi: 10.1130/G37215.1 – ident: ref77 doi: 10.1016/j.quascirev.2017.11.001 – ident: ref87 doi: 10.1130/G37652.1 – ident: ref48 doi: 10.1016/j.jhydrol.2015.09.062 – ident: ref12 doi: 10.4113/jom.2011.1160 – ident: ref74 doi: 10.1177/030913339602000101 – ident: ref59 doi: 10.5194/esurf-4-567-2016 – ident: ref39 doi: 10.1016/j.yqres.2005.03.007 – ident: ref108 doi: 10.1086/623976 – ident: ref8 doi: 10.1177/030913339501900402 – ident: ref23 doi: 10.2113/JEEG12.1.127 – ident: ref32 doi: 10.5194/gmd-11-2541-2018 – ident: ref28 – ident: ref89 doi: 10.1144/GSL.SP.2000.166.01.15 – ident: ref42 – ident: ref35 doi: 10.1016/j.margeo.2019.105981 – ident: ref92 doi: 10.1002/esp.3662 – ident: ref41 doi: 10.2307/j.ctv1pzk1w9 – ident: ref56 – ident: ref63 doi: 10.1016/S0277-3791(97)00023-1 |
SSID | ssj0001325339 |
Score | 2.2533574 |
Snippet | Submerged landscapes on continental shelves archive drainage networks formed during periods of sea-level lowstand. The evolution of these postglacial drainage... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 869 |
SubjectTerms | Archives & records Banks (Finance) Channel morphology Channels Climate Climate change Cone penetration tests Continental shelves Drainage Drainage patterns Evolution Exports Glaciation Glaciers Ice Ice formation Ice sheets Lakes Landscape Landscape evolution Marine environment Marine geology Marine sediments Meltwater Networks Palaeoclimate Paleoclimate Precipitation Precipitation variability Protection and preservation River networks Rivers Sea level Sediment Sediments Seismic analysis Seismic surveys Stratigraphy Submarine banks Tributaries Water supply |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyQuiKdYaJGFkBASVhM7D4dL1YWWlkOFWir1ZtnOeKGtkiXJIvj3zGS9lD3ANbEPM57HZ3v8DWOvoCodKLCi0okWmI-lcIC7FFtkrsRl9sGNBbInxdF59ukiv4gHbn0sq1zHxDFQ162nM_JdmeWqQPSdF3uL74K6RtHtamyhcZttSdwpJBO2NTs4-Xx6c8qiJOIZwsDomYUoVJqu7ioRuGS70C-7ILTQRYXWQi2__8pNI4X_vwL1mH0O77N7ETby_dU6P2C3oHnI7nwc2_L-esQujz3w_ivAwG1T84W9ttD6628IR4HHavSetw2vqSMEhhDerMq_OfyItvcOZ3L4aYktmNOjE_6hnc-h4zPbXL3l4_0OPwP7mJ0fHnx5fyRiFwXhM50MwtWVtJjnFaSZlzZ3Feo_T4FYXJKq9iHXviIetzrzvs4hSQCcd4hcVC0h8eoJmzRtA08Zr1Se-FSGpNAhK6VzmhopIoDExO8guCl7s9afWazIMgxuMkjXZtS10QanGNL1lM1IwX_GEc31-KHt5iZ6jVFpLQNIGYhEvoSsUigFygDBhtJrOWUvaXkMEVk0VCkzt8u-N8dnp2YfBUC0gvByyl7HQaEdOuttfHiAMhH31cbI7Y2R6Gl-8_faCkz09N7c2OWz__9-zu6S3JT3pNpmk6Fbwg4CmsG9iFb7GxWO8zQ priority: 102 providerName: ProQuest |
Title | Ice sheet and palaeoclimate controls on drainage network evolution: an example from Dogger Bank, North Sea |
URI | https://www.proquest.com/docview/2453662656 https://doaj.org/article/31d2fe22f98647e4933e12a5efaf7c82 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA4yEXyR-QuvmyOIIIJlaZK2qW-7urn5MGRzsLeQpCd36mjHba_of-85aSf3PogvvrYJNN9Jcr7TnHyHsVdQVx4UuKw2wmToj2XmAaMUV2pfoZlD9ClB9rQ8vtCfLovLtVJflBM2ygOPwO2rvJERpIykI16BxgAccukKiC5WwYy7r6jXgqn0d0VJ5DHEfXFFllmp8nw8o0TCovehXy1jZjJT1jhLqNT3mk9K0v1_26CT1znaZg8musgPxs98yO5A-4jd-5jK8f56zL6dBOD9FcDAXdvwG3ftoAvXX5GGAp-y0HvetbyhShC4dfB2TPvm8GOac--wJ4efjlSCOV024R-6xQKWfO7a7295Otfh5-CesIujwy_vj7OpekIWtBFD5ptaOvTvCJcOCJivEfciB1JvEXUTYmFCTfptjQ6hKUAIAB88MhbVSBBBPWVbbdfCM8ZrVYiQyyhKE3UlvTdUQBGJIzp8D9HP2Jtb_OzNKJJhMbggrG3C2hqLXSxhPWNzAvhPO5K3Tg_Q6HYyuv2X0WfsJZnHkoBFSxkyC7fqe3tyfmYPcADIUpBWztjrqVHshqULbrpwgGMizauNlrsbLXGFhc3Xt7PATiu8t1IXqsRosCif_48R7bD7hA55Ral22dawXMELpDuD32N354enn8_20gz_DdPm_B4 |
link.rule.ids | 315,783,787,867,2109,21400,27936,27937,33756,43817,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYIL4qkuFLAQEkIiamLn4XBBXWjZhbJCfUi9WbYzXh5VsiRZBP-emayXsge4JvZhxvP4bI-_YewZlIUFCSYqVawizMcisoC7FJOntsBldt4OBbKzfHKWvj_PzsOBWxfKKtcxcQjUVePojHxPpJnMEX1n-evF94i6RtHtamihcZVtE1UVbr62xwezT8eXpyxSIJ4hDIyemUe5TJLVXSUCl3QPumXrIxWpvERroZbff-WmgcL_X4F6yD6Ht9jNABv5_mqdb7MrUN9h194NbXl_3WVfpw549xmg56au-MJcGGjcxReEo8BDNXrHm5pX1BECQwivV-XfHH4E23uFMzn8NMQWzOnRCX_bzOfQ8rGpv73kw_0OPwFzj50dHpy-mUShi0LkUhX3ka1KYTDPS0hSJ0xmS9R_lgCxuMRl5XymXEk8blXqXJVBHANYZxG5yEpA7OR9tlU3NewwXsosdonwca58WghrFTVSRACJid-CtyP2Yq0_vViRZWjcZJCu9aBrrTRO0aTrERuTgv-MI5rr4UPTznXwGi2TSngQwhOJfAFpKVEKlAG88YVTYsSe0vJoIrKoqVJmbpZdp6cnx3ofBUC0gvByxJ6HQb7pW-NMeHiAMhH31cbI3Y2R6Glu8_faCnTw9E5f2uWD__9-wq5PTj8e6aPp7MNDdoN0QDlQyF221bdLeITgprePgwX_Bsj89i4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgFYgL4ikCBSyEhJBYZdf2vrighjY0gKKqpVJvlu0dB9pqN2Q3CP49MxuHkgNc1_ZhxvP4vB5_w9hLKHMLEkxUFnERYT4WkQU8pZhM2Ry32XnbF8jOssNT9fEsPQv1T20oq9zExD5QV42jf-QjoVKZIfpOs5EPZRFH-5N3i-8RdZCim9bQTuM628lVJuMB2xkfzI6Or_64SIHYhvAwemkWZTJJ1veWCGLUCNrV0kdFVGQlWg61__4rT_V0_v8K2n0mmtxhtwOE5HvrPb_LrkF9j9340Lfo_XWfnU8d8PYrQMdNXfGFuTTQuMtvCE2Bh8r0ljc1r6g7BIYTXq9LwTn8CHb4Fldy-GmIOZjTAxS-38znsORjU1-84f1dDz8B84CdTg6-vD-MQkeFyKki7iJblcJgzpeQKCdMakvcizQBYnSJy8r5tHAlcbpVyrkqhTgGsM4iipGVgNjJh2xQNzU8YryUaewS4eOs8CoX1hbUVBHBJIIAC94O2euN_vRiTZyh8cBButa9rnWhcYkmXQ_ZmBT8Zx5RXvcfmuVcBw_SMqmEByE8EcrnoEqJUqAM4I3PXSGG7AVtjyZSi5rMY25WbaunJ8d6DwVA5IJQc8hehUm-6ZbGmfAIAWUiHqytmbtbM9Hr3Pbwxgp08PpWX9no4_8PP2c30Xj15-ns0xN2i1RA6VDIXTbolit4ijins8-CAf8GWFP6XA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ice+sheet+and+palaeoclimate+controls+on+drainage+network+evolution%3A+an+example+from+Dogger+Bank%2C+North+Sea&rft.jtitle=Earth+surface+dynamics&rft.au=Emery%2C+Andy+R&rft.au=Hodgson%2C+David+M&rft.au=Barlow%2C+Natasha+L.+M&rft.au=Carrivick%2C+Jonathan+L&rft.date=2020-10-23&rft.pub=Copernicus+GmbH&rft.issn=2196-6311&rft.eissn=2196-632X&rft.volume=8&rft.issue=4&rft.spage=869&rft_id=info:doi/10.5194%2Fesurf-8-869-2020&rft.externalDBID=ISR&rft.externalDocID=A639240522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-632X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-632X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-632X&client=summon |