Muscle Coordination Is Habitual Rather than Optimal
When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control th...
Saved in:
Published in | The Journal of neuroscience Vol. 32; no. 21; pp. 7384 - 7391 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
23.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation–supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally “good-enough.” |
---|---|
AbstractList | When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation-supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally "good-enough."When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation-supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally "good-enough." When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation–supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally “good-enough.” |
Author | Carroll, Timothy J. de Rugy, Aymar Loeb, Gerald E. |
Author_xml | – sequence: 1 givenname: Aymar surname: de Rugy fullname: de Rugy, Aymar – sequence: 2 givenname: Gerald E. surname: Loeb fullname: Loeb, Gerald E. – sequence: 3 givenname: Timothy J. surname: Carroll fullname: Carroll, Timothy J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22623684$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9LwzAUxYMoOv98BemjL51JmiYtiCBF3UQdTPcckjRxka6ZTSr47c2cG-qLT_fhnnN-l3sOwW7rWg3AKYJDlOPs_O7xejadPFXjYc5KnCI0xBDhHTCI2zLFBKJdMICYwZQSRg7AofevEEIGEdsHBxhTnNGCDED20HvV6KRyrqttK4J1bTL2yUhIG3rRJFMR5rpLwly0yWQZ7EI0x2DPiMbrk-95BGY318_VKL2f3I6rq_tUkQKGVJZGQVIUsqS5lCjTWhsjkczLwigGlaoRyQtjClEwkyuNlBJMZhDRvMypqbMjcLnOXfZyoWul29CJhi-7eET3wZ2w_PemtXP-4t45pRjjksaAs--Azr312ge-sF7pphGtdr3nKLIoIxkmUXr6k7WFbD4VBRdrgeqc9502XNnw9a6Itk3M4qti-LYYviqGI8RXxUQ7_WPfEP4xfgIxD5Pj |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2018_10_008 crossref_primary_10_1152_jn_00235_2021 crossref_primary_10_1152_jn_01128_2011 crossref_primary_10_1016_j_humov_2014_07_004 crossref_primary_10_3389_fresc_2023_1248269 crossref_primary_10_1109_TNSRE_2019_2893152 crossref_primary_10_3389_fnhum_2023_1144860 crossref_primary_10_3389_fphys_2021_809243 crossref_primary_10_7554_eLife_87463 crossref_primary_10_1249_MSS_0000000000001572 crossref_primary_10_3389_fnbot_2017_00055 crossref_primary_10_1152_jn_00420_2020 crossref_primary_10_1016_j_jbiomech_2013_01_020 crossref_primary_10_1016_j_jbiomech_2019_04_007 crossref_primary_10_1152_jn_00696_2019 crossref_primary_10_7554_eLife_38215 crossref_primary_10_1016_j_tics_2022_02_002 crossref_primary_10_1109_TNSRE_2018_2861774 crossref_primary_10_1007_s00422_017_0711_4 crossref_primary_10_1152_jn_00536_2021 crossref_primary_10_1186_s12984_017_0343_x crossref_primary_10_1016_j_ynirp_2024_100212 crossref_primary_10_1016_j_neuroscience_2017_02_016 crossref_primary_10_1109_TNSRE_2015_2417775 crossref_primary_10_1016_j_bspc_2021_103057 crossref_primary_10_1523_JNEUROSCI_0213_23_2023 crossref_primary_10_3389_fncom_2018_00020 crossref_primary_10_1152_japplphysiol_00561_2014 crossref_primary_10_1152_jn_00776_2013 crossref_primary_10_1371_journal_pone_0154524 crossref_primary_10_1152_japplphysiol_00411_2019 crossref_primary_10_3389_fnint_2022_835852 crossref_primary_10_1098_rspb_2022_1189 crossref_primary_10_1016_j_jbiomech_2016_02_006 crossref_primary_10_1155_2018_5637568 crossref_primary_10_1016_j_neuroscience_2013_01_055 crossref_primary_10_1152_jn_00595_2013 crossref_primary_10_1016_j_neuron_2015_02_042 crossref_primary_10_1523_JNEUROSCI_3095_13_2014 crossref_primary_10_1038_srep00485 crossref_primary_10_1007_s00221_014_3901_5 crossref_primary_10_1115_1_4042185 crossref_primary_10_1152_jn_00714_2012 crossref_primary_10_1152_jn_00676_2019 crossref_primary_10_1088_2516_1091_ac91b6 crossref_primary_10_1111_psyp_13493 crossref_primary_10_1007_s00221_016_4750_1 crossref_primary_10_1152_jn_00319_2016 crossref_primary_10_7554_eLife_36774 crossref_primary_10_3389_fncom_2020_00038 crossref_primary_10_1152_jn_00235_2013 crossref_primary_10_1088_1741_2560_11_5_051001 crossref_primary_10_1152_jn_00052_2018 crossref_primary_10_1242_jeb_248125 crossref_primary_10_1111_ejn_13769 crossref_primary_10_1186_s12984_017_0305_3 crossref_primary_10_1038_s41598_023_43401_6 crossref_primary_10_1016_j_neuron_2021_09_005 crossref_primary_10_1109_TNSRE_2022_3156786 crossref_primary_10_1123_kr_2020_0028 crossref_primary_10_1682_JRRD_2014_05_0134 crossref_primary_10_1186_s12984_016_0148_3 crossref_primary_10_1152_jn_00474_2021 crossref_primary_10_1371_journal_pone_0205911 crossref_primary_10_1088_1741_2560_11_5_056006 crossref_primary_10_1113_JP277725 crossref_primary_10_1152_japplphysiol_01101_2018 crossref_primary_10_1152_jn_00625_2019 crossref_primary_10_1111_psyp_13558 crossref_primary_10_1523_JNEUROSCI_2519_17_2018 crossref_primary_10_7554_eLife_26713 crossref_primary_10_1016_j_tics_2012_09_008 crossref_primary_10_1038_srep02648 crossref_primary_10_1007_s00422_012_0514_6 crossref_primary_10_3389_fncom_2018_00062 crossref_primary_10_1088_1741_2560_12_6_066021 crossref_primary_10_1007_s00421_023_05193_5 crossref_primary_10_2478_hukin_2020_0084 crossref_primary_10_1186_s12984_018_0469_5 crossref_primary_10_1177_0018720814562231 crossref_primary_10_1109_JBHI_2022_3207313 crossref_primary_10_1152_jn_00255_2014 crossref_primary_10_1186_s12984_023_01236_2 crossref_primary_10_3389_fncom_2019_00023 crossref_primary_10_1109_TNSRE_2014_2302212 crossref_primary_10_1108_AA_11_2015_099 crossref_primary_10_3389_fbioe_2025_1530950 crossref_primary_10_3389_fncom_2015_00070 crossref_primary_10_1109_TASE_2023_3249228 crossref_primary_10_1523_JNEUROSCI_1709_18_2018 crossref_primary_10_1038_s41598_017_08147_y crossref_primary_10_1152_jn_00557_2014 crossref_primary_10_1371_journal_pone_0066013 crossref_primary_10_1152_jn_00130_2012 crossref_primary_10_3389_fncom_2017_00082 crossref_primary_10_1152_jn_00472_2019 crossref_primary_10_3389_fspor_2023_1217009 crossref_primary_10_1249_MSS_0000000000002059 crossref_primary_10_1152_jn_00911_2013 crossref_primary_10_1109_TRO_2015_2395731 crossref_primary_10_1186_s13104_022_05994_5 crossref_primary_10_1016_j_bspc_2019_04_009 crossref_primary_10_1038_s41598_021_02338_4 crossref_primary_10_1007_s10439_019_02318_w crossref_primary_10_1162_neco_a_01076 crossref_primary_10_1016_j_wocn_2015_09_001 crossref_primary_10_1088_1741_2560_13_4_046009 crossref_primary_10_1177_00187208211050723 crossref_primary_10_1002_jor_25641 crossref_primary_10_1111_ejn_14649 crossref_primary_10_1177_0018720818769261 crossref_primary_10_1007_s00221_018_5445_6 crossref_primary_10_1242_jeb_163303 crossref_primary_10_1109_TNSRE_2019_2894102 crossref_primary_10_1088_1741_2552_aa87cf crossref_primary_10_1111_sms_12811 crossref_primary_10_1098_rspb_2015_1908 crossref_primary_10_1088_1741_2552_ac47db crossref_primary_10_1152_jn_00205_2018 crossref_primary_10_3758_s13428_017_0995_2 crossref_primary_10_1152_jn_00119_2019 crossref_primary_10_1016_j_neuroscience_2019_05_047 crossref_primary_10_1016_j_neuroscience_2021_07_014 crossref_primary_10_1016_j_neuroscience_2018_01_055 crossref_primary_10_1109_TBME_2016_2531083 crossref_primary_10_3389_fncom_2016_00069 crossref_primary_10_1123_jab_2020_0090 crossref_primary_10_1152_jn_00466_2018 crossref_primary_10_1088_1741_2552_aacbfe crossref_primary_10_1080_00222895_2013_837423 crossref_primary_10_1016_j_conb_2015_12_005 crossref_primary_10_1371_journal_pcbi_1010470 crossref_primary_10_1152_jn_00901_2014 crossref_primary_10_1371_journal_pcbi_1008707 crossref_primary_10_1371_journal_pone_0053759 crossref_primary_10_7554_eLife_62578 crossref_primary_10_1523_JNEUROSCI_2339_15_2016 crossref_primary_10_1109_TNSRE_2014_2302799 crossref_primary_10_3389_fncir_2023_1340298 crossref_primary_10_3389_fnhum_2017_00531 crossref_primary_10_1093_bja_aet347 crossref_primary_10_1371_journal_pone_0210616 crossref_primary_10_3389_fspor_2021_699322 crossref_primary_10_1016_j_jbiomech_2021_110686 crossref_primary_10_1080_00222895_2020_1723482 crossref_primary_10_1152_jn_00929_2015 crossref_primary_10_3389_fncom_2015_00121 |
Cites_doi | 10.1086/394990 10.1523/JNEUROSCI.2238-06.2006 10.1249/00005768-199205000-00004 10.1038/nn1986 10.1152/jn.00985.2001 10.1038/nn1309 10.1152/jn.00621.2002 10.1371/journal.pcbi.1000345 10.1101/SQB.1990.055.01.074 10.1152/japplphysiol.00064.2011 10.1007/s002210050712 10.1109/TNSRE.2011.2162851 10.1111/j.1748-1716.2009.01992.x 10.1152/jn.1999.82.6.3392 10.1152/jn.01058.2009 10.1113/jphysiol.2001.012785 10.1016/0021-9290(87)90310-1 10.1016/0021-9290(81)90035-X 10.1007/s00221-004-1838-9 10.1038/29528 10.1007/s00422-011-0421-2 10.1201/b14481 10.1073/pnas.0901512106 10.1113/jphysiol.1986.sp016126 10.1152/jn.00483.2010 10.1016/S0079-6123(08)62241-4 10.1016/0304-3940(83)90464-0 10.1016/0025-5564(78)90018-4 10.1109/MEMB.2005.1511499 10.1523/JNEUROSCI.5537-09.2010 10.1152/jappl.2001.90.3.770 10.1038/35039000 10.1038/nrn1427 10.1152/jn.1985.54.4.852 10.1007/s00221-010-2280-9 10.1523/JNEUROSCI.22-14-05808.2002 10.1002/rob.20093 10.1016/S0079-6123(08)62878-2 10.1523/JNEUROSCI.5359-07.2008 10.1523/JNEUROSCI.0830-06.2006 10.1016/j.tics.2009.11.004 10.1146/annurev-neuro-060909-153135 10.1038/nn963 10.1152/jn.00404.2005 10.1126/science.285.5436.2136 |
ContentType | Journal Article |
Copyright | Copyright © 2012 the authors 0270-6474/12/327384-08$15.00/0 2012 |
Copyright_xml | – notice: Copyright © 2012 the authors 0270-6474/12/327384-08$15.00/0 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.5792-11.2012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 7391 |
ExternalDocumentID | PMC6622296 22623684 10_1523_JNEUROSCI_5792_11_2012 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK AFHIN AIZTS CGR CUY CVF ECM EIF NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c480t-b9fc0488b965bb13eeeffb1b598fc70ccd1458ff8a87f5ce1cca7b30165956fd3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:02:11 EDT 2025 Fri Jul 11 02:29:21 EDT 2025 Wed Feb 19 02:34:41 EST 2025 Thu Apr 24 22:53:40 EDT 2025 Tue Jul 01 03:46:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c480t-b9fc0488b965bb13eeeffb1b598fc70ccd1458ff8a87f5ce1cca7b30165956fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: A.d.R., G.E.L., and T.J.C. designed research; A.d.R. and T.J.C. performed research; A.d.R. and T.J.C. analyzed data; A.d.R., G.E.L., and T.J.C. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/32/21/7384.full.pdf |
PMID | 22623684 |
PQID | 1016674324 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6622296 proquest_miscellaneous_1016674324 pubmed_primary_22623684 crossref_citationtrail_10_1523_JNEUROSCI_5792_11_2012 crossref_primary_10_1523_JNEUROSCI_5792_11_2012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-23 2012-May-23 20120523 |
PublicationDateYYYYMMDD | 2012-05-23 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2012 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | Vijayan (2023041303563271000_32.21.7384.46) 2001; 90 Loeb (2023041303563271000_32.21.7384.29) 2005; 24 Clarkson (2023041303563271000_32.21.7384.7) 1992; 24 2023041303563271000_32.21.7384.25 Slawinska (2023041303563271000_32.21.7384.39) 2002; 22 2023041303563271000_32.21.7384.26 2023041303563271000_32.21.7384.27 2023041303563271000_32.21.7384.21 2023041303563271000_32.21.7384.43 2023041303563271000_32.21.7384.22 2023041303563271000_32.21.7384.44 2023041303563271000_32.21.7384.45 Jones (2023041303563271000_32.21.7384.23) 1986; 375 2023041303563271000_32.21.7384.24 2023041303563271000_32.21.7384.40 2023041303563271000_32.21.7384.41 2023041303563271000_32.21.7384.20 2023041303563271000_32.21.7384.42 Loeb (2023041303563271000_32.21.7384.28) 1999; 82 2023041303563271000_32.21.7384.1 2023041303563271000_32.21.7384.2 2023041303563271000_32.21.7384.3 2023041303563271000_32.21.7384.4 2023041303563271000_32.21.7384.9 2023041303563271000_32.21.7384.18 2023041303563271000_32.21.7384.5 2023041303563271000_32.21.7384.14 2023041303563271000_32.21.7384.36 2023041303563271000_32.21.7384.6 2023041303563271000_32.21.7384.15 2023041303563271000_32.21.7384.37 2023041303563271000_32.21.7384.16 2023041303563271000_32.21.7384.38 2023041303563271000_32.21.7384.8 2023041303563271000_32.21.7384.17 O'Donovan (2023041303563271000_32.21.7384.32) 1985; 54 2023041303563271000_32.21.7384.10 2023041303563271000_32.21.7384.11 2023041303563271000_32.21.7384.33 2023041303563271000_32.21.7384.12 Gregory (2023041303563271000_32.21.7384.19) 2004; 157 2023041303563271000_32.21.7384.34 2023041303563271000_32.21.7384.13 2023041303563271000_32.21.7384.35 2023041303563271000_32.21.7384.30 2023041303563271000_32.21.7384.31 |
References_xml | – ident: 2023041303563271000_32.21.7384.40 doi: 10.1086/394990 – ident: 2023041303563271000_32.21.7384.6 doi: 10.1523/JNEUROSCI.2238-06.2006 – volume: 24 start-page: 512 year: 1992 ident: 2023041303563271000_32.21.7384.7 article-title: Muscle function after exercise-induced muscle damage and rapid adaptation publication-title: Med Sci Sports Exerc doi: 10.1249/00005768-199205000-00004 – ident: 2023041303563271000_32.21.7384.27 doi: 10.1038/nn1986 – ident: 2023041303563271000_32.21.7384.24 doi: 10.1152/jn.00985.2001 – ident: 2023041303563271000_32.21.7384.42 doi: 10.1038/nn1309 – ident: 2023041303563271000_32.21.7384.13 doi: 10.1152/jn.00621.2002 – ident: 2023041303563271000_32.21.7384.33 doi: 10.1371/journal.pcbi.1000345 – ident: 2023041303563271000_32.21.7384.30 doi: 10.1101/SQB.1990.055.01.074 – ident: 2023041303563271000_32.21.7384.37 doi: 10.1152/japplphysiol.00064.2011 – ident: 2023041303563271000_32.21.7384.31 doi: 10.1007/s002210050712 – ident: 2023041303563271000_32.21.7384.45 doi: 10.1109/TNSRE.2011.2162851 – ident: 2023041303563271000_32.21.7384.5 doi: 10.1111/j.1748-1716.2009.01992.x – volume: 82 start-page: 3392 year: 1999 ident: 2023041303563271000_32.21.7384.28 article-title: Asymmetry of hindlimb muscle activity and cutaneous reflexes after tendon transfers in kittens publication-title: J Neurophysiol doi: 10.1152/jn.1999.82.6.3392 – ident: 2023041303563271000_32.21.7384.17 doi: 10.1152/jn.01058.2009 – ident: 2023041303563271000_32.21.7384.18 doi: 10.1113/jphysiol.2001.012785 – ident: 2023041303563271000_32.21.7384.10 doi: 10.1016/0021-9290(87)90310-1 – ident: 2023041303563271000_32.21.7384.8 doi: 10.1016/0021-9290(81)90035-X – volume: 157 start-page: 234 year: 2004 ident: 2023041303563271000_32.21.7384.19 article-title: Responses of muscle spindles following a series of eccentric contractions publication-title: Exp Brain Res doi: 10.1007/s00221-004-1838-9 – ident: 2023041303563271000_32.21.7384.20 doi: 10.1038/29528 – ident: 2023041303563271000_32.21.7384.41 doi: 10.1007/s00422-011-0421-2 – ident: 2023041303563271000_32.21.7384.16 doi: 10.1201/b14481 – ident: 2023041303563271000_32.21.7384.1 doi: 10.1073/pnas.0901512106 – volume: 375 start-page: 435 year: 1986 ident: 2023041303563271000_32.21.7384.23 article-title: Experimental human muscle damage: morphological changes in relation to other indices of damage publication-title: J Physiol doi: 10.1113/jphysiol.1986.sp016126 – ident: 2023041303563271000_32.21.7384.26 doi: 10.1152/jn.00483.2010 – ident: 2023041303563271000_32.21.7384.14 doi: 10.1016/S0079-6123(08)62241-4 – ident: 2023041303563271000_32.21.7384.15 doi: 10.1016/0304-3940(83)90464-0 – ident: 2023041303563271000_32.21.7384.34 doi: 10.1016/0025-5564(78)90018-4 – volume: 24 start-page: 45 year: 2005 ident: 2023041303563271000_32.21.7384.29 article-title: The functional reanimation of paralyzed limbs publication-title: IEEE Eng Med Biol Mag doi: 10.1109/MEMB.2005.1511499 – ident: 2023041303563271000_32.21.7384.35 doi: 10.1523/JNEUROSCI.5537-09.2010 – volume: 90 start-page: 770 year: 2001 ident: 2023041303563271000_32.21.7384.46 article-title: Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles publication-title: J Appl Physiol doi: 10.1152/jappl.2001.90.3.770 – ident: 2023041303563271000_32.21.7384.2 – ident: 2023041303563271000_32.21.7384.3 doi: 10.1038/35039000 – ident: 2023041303563271000_32.21.7384.36 doi: 10.1038/nrn1427 – volume: 54 start-page: 852 year: 1985 ident: 2023041303563271000_32.21.7384.32 article-title: Kinesiological studies of self- and cross-reinnervated FDL and soleus muscles in freely moving cats publication-title: J Neurophysiol doi: 10.1152/jn.1985.54.4.852 – ident: 2023041303563271000_32.21.7384.11 doi: 10.1007/s00221-010-2280-9 – volume: 22 start-page: 5808 year: 2002 ident: 2023041303563271000_32.21.7384.39 article-title: Altered electromyographic activity pattern of rat soleus muscle transposed into the bed of antagonist muscle publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-14-05808.2002 – ident: 2023041303563271000_32.21.7384.44 doi: 10.1002/rob.20093 – ident: 2023041303563271000_32.21.7384.4 doi: 10.1016/S0079-6123(08)62878-2 – ident: 2023041303563271000_32.21.7384.22 doi: 10.1523/JNEUROSCI.5359-07.2008 – ident: 2023041303563271000_32.21.7384.9 doi: 10.1523/JNEUROSCI.0830-06.2006 – ident: 2023041303563271000_32.21.7384.12 doi: 10.1016/j.tics.2009.11.004 – ident: 2023041303563271000_32.21.7384.38 doi: 10.1146/annurev-neuro-060909-153135 – ident: 2023041303563271000_32.21.7384.43 doi: 10.1038/nn963 – ident: 2023041303563271000_32.21.7384.21 doi: 10.1152/jn.00404.2005 – ident: 2023041303563271000_32.21.7384.25 doi: 10.1126/science.285.5436.2136 |
SSID | ssj0007017 |
Score | 2.4745944 |
Snippet | When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7384 |
SubjectTerms | Adaptation, Physiological - physiology Adult Biomechanical Phenomena Computer Simulation Electric Stimulation - methods Electromyography - methods Female Humans Male Muscle Contraction - physiology Muscle, Skeletal - physiology Paralysis - physiopathology Peripheral Nerves - physiology Posture - physiology Psychomotor Performance - physiology Recruitment, Neurophysiological - physiology Wrist - physiology |
Title | Muscle Coordination Is Habitual Rather than Optimal |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22623684 https://www.proquest.com/docview/1016674324 https://pubmed.ncbi.nlm.nih.gov/PMC6622296 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCYOOjfExGQrxU2ZoPx85jNW3aRlckaKW-RbFji6I1mdbmYfz13NlO2rJKDF6iymni6n7nq-98vztCPmW6MBEPVcCMTIJElFkg01QEcZSVGWgYrE10FK_G6fk0uZyxWduW3bNLVvJI_drJK_kfVGEMcEWW7D8g270UBuAz4AtXQBiuD8L4qlnCSF_V4EHOXVgPG5Rj7W1LC7m127s-Rsf7NdiGhX_hz7WKbGxIN0pbdmiXuv-tcWyW4d2i6DJ5R7WWLqRuQ1prOgPWdHQnGV4L_LmTDyxghgYLHPe3tYWRPXxx0OsdY96ArgOUTct39uaQx67_2z07zWy9iMsxpit-P7k4YjyLghD9dZ9UvVUYe_w1P5uORvnkdDZ5TJ5E4BFY7_niS_enywe2uXL3-zwZHOY53j3L9j7knnPxZ47sxqZj8pw88-DQoYP-BXmkq31yMASo68Ud_Uxt_q49GDkgsdMGuqkNdL6krTZQpw0UtYF6bXhJpmenk5PzwLfECFQiBqtAZkahzZVZyqQMY621MTKULBNG8YFSZZgwYYwoBDdM6RAWKJcxctbAETZl_IrsVXWl3xCapBk3IlGh0BL70AlTYnG3qOAi1MWg6BHWCihXvl48ti25ztFvBMHmnWBzFCz4kjkKtkeOu-duXMWUvz7xsZV_DsYNT6yKStfN0uYfIksmSnrktcOjeyf4DVGcCrjDt5DqvoCF07fvVPMftoB6mmIX-_TtA-Z9R56u18Z7sre6bfQH2Iau5KFVwN94roYL |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+coordination+is+habitual+rather+than+optimal&rft.jtitle=The+Journal+of+neuroscience&rft.au=de+Rugy%2C+Aymar&rft.au=Loeb%2C+Gerald+E&rft.au=Carroll%2C+Timothy+J&rft.date=2012-05-23&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=32&rft.issue=21&rft.spage=7384&rft_id=info:doi/10.1523%2FJNEUROSCI.5792-11.2012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |