Molecular Determinants in tRNA D-arm Required for Inhibition of HIV-1 Gag Membrane Binding
[Display omitted] •Features of tRNA contributing to inhibition of HIV-1 Gag membrane binding are unclear.•Membrane binding of purified MA is strongly inhibited by tRNALys3 but not tRNAPro.•The D arm but not anticodon arm contributes to strong inhibition by tRNALys3.•The D arm sequence and its contex...
Saved in:
Published in | Journal of molecular biology Vol. 434; no. 2; p. 167390 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
30.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Features of tRNA contributing to inhibition of HIV-1 Gag membrane binding are unclear.•Membrane binding of purified MA is strongly inhibited by tRNALys3 but not tRNAPro.•The D arm but not anticodon arm contributes to strong inhibition by tRNALys3.•The D arm sequence and its context are major determinants for the inhibitory effect.
Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure. |
---|---|
AbstractList | Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P₂ and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P₂-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAᴾʳᵒ, but not that of tRNAᴸʸˢ³, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNAᴸʸˢ³ showed greater inhibition of MA membrane binding than full-length tRNAᴾʳᵒ. While transplantation of the D loop sequence of tRNAᴸʸˢ³ into tRNAᴾʳᵒ resulted in a modest increase in the inhibitory effect relative to WT tRNAᴾʳᵒ, replacing the entire D arm sequence with that of tRNAᴸʸˢ³ was necessary to confer the full inhibitory effects upon tRNAᴾʳᵒ. Together, these results demonstrate that the D arm of tRNAᴸʸˢ³ is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure. Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P 2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P 2 -independent membrane binding to varying degrees in vitro ; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNA Pro , but not that of tRNA Lys3 , are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNA Lys3 showed greater inhibition of MA membrane binding than full-length tRNA Pro . While transplantation of the D loop sequence of tRNA Lys3 into tRNA Pro resulted in a modest increase in the inhibitory effect relative to WT tRNA Pro , replacing the entire D arm sequence with that of tRNA Lys3 was necessary to confer the full inhibitory effects upon tRNA Pro . Together, these results demonstrate that the D arm of tRNA Lys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure. Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P -independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNA , but not that of tRNA , are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNA showed greater inhibition of MA membrane binding than full-length tRNA . While transplantation of the D loop sequence of tRNA into tRNA resulted in a modest increase in the inhibitory effect relative to WT tRNA , replacing the entire D arm sequence with that of tRNA was necessary to confer the full inhibitory effects upon tRNA . Together, these results demonstrate that the D arm of tRNA is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure. [Display omitted] •Features of tRNA contributing to inhibition of HIV-1 Gag membrane binding are unclear.•Membrane binding of purified MA is strongly inhibited by tRNALys3 but not tRNAPro.•The D arm but not anticodon arm contributes to strong inhibition by tRNALys3.•The D arm sequence and its context are major determinants for the inhibitory effect. Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure. Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure. |
ArticleNumber | 167390 |
Author | Kotani, Osamu Musier-Forsyth, Karin Liu, Shuohui Sumner, Christopher Sato, Hironori Ono, Akira |
AuthorAffiliation | 1 - Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States 2 - Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan 3 - Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States |
AuthorAffiliation_xml | – name: 2 - Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan – name: 1 - Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States – name: 3 - Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States |
Author_xml | – sequence: 1 givenname: Christopher surname: Sumner fullname: Sumner, Christopher organization: Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States – sequence: 2 givenname: Osamu surname: Kotani fullname: Kotani, Osamu organization: Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 3 givenname: Shuohui surname: Liu fullname: Liu, Shuohui organization: Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States – sequence: 4 givenname: Karin surname: Musier-Forsyth fullname: Musier-Forsyth, Karin organization: Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States – sequence: 5 givenname: Hironori surname: Sato fullname: Sato, Hironori organization: Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 6 givenname: Akira surname: Ono fullname: Ono, Akira email: akiraono@umich.edu organization: Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34883117$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vFSEUxYmpsa_VD-DGsHQzTxgYhomJSf_Y9iWtJo26cEOAufPKywy0wDTx25eX1xp1UVnAgnNOzr2_A7TngweE3lKypISKD5vlZjLLmtR0SUXLOvICLSiRXSUFk3toQUhdV7VkYh8dpLQhhDSMy1dov9ySUdou0M-rMIKdRx3xKWSIk_Pa54Sdx_n6yxE-rXSc8DXczS5Cj4cQ8crfOOOyCx6HAV-sflQUn-s1voLJRO0BHzvfO79-jV4Oekzw5vE9RN_PPn87uaguv56vTo4uK8slyZXpWsEGW3Oue2N63TLZWtJxbboGGmE501q30BDWwWC7RlOhB9MDo4YPnaTsEH3a5d7OZoLegs9Rj-o2uknHXypop_7-8e5GrcO9km1TN0SWgPePATHczZCymlyyMI5lmDAnVYvtujgr5_9SIhvWdIIX6bs_a_3u87T7Imh3AhtDShEGZV3W272Wlm5UlKgtZbVRhbLaUlY7ysVJ_3E-hT_n-bjzQEFx7yCqZB14C30Ba7Pqg3vG_QBHD77a |
CitedBy_id | crossref_primary_10_1016_j_chembiol_2023_12_008 crossref_primary_10_3390_v14040816 crossref_primary_10_3390_membranes12050441 crossref_primary_10_3390_v16111714 crossref_primary_10_1038_s41467_024_50730_1 crossref_primary_10_1016_j_jmb_2024_168639 crossref_primary_10_3390_v15020474 crossref_primary_10_3390_ijms25073659 |
Cites_doi | 10.1128/JVI.01614-07 10.1128/jvi.71.9.6582-6592.1997 10.1128/JVI.01197-09 10.1073/pnas.0602818103 10.1016/j.jmb.2018.04.042 10.1111/j.1432-1033.1997.t01-1-00592.x 10.1128/JVI.73.5.4136-4144.1999 10.1007/BF00124456 10.1128/JVI.74.6.2855-2866.2000 10.1021/bi952337x 10.1021/ct200162x 10.1093/nar/25.14.2902 10.3389/fmicb.2014.00187 10.7554/eLife.14663 10.1128/JVI.02626-09 10.1073/pnas.0305665101 10.1128/JVI.02757-06 10.1021/bi980364s 10.1128/JVI.73.3.1902-1908.1999 10.1128/JVI.00794-15 10.1038/nature13709 10.1128/JVI.02383-10 10.1128/JVI.00075-13 10.1128/JVI.02266-10 10.1017/S1355838201002023 10.1021/acs.jpcb.9b02655 10.1261/rna.058453.116 10.1007/978-1-4939-2214-7_23 10.1021/ci990307l 10.1128/JVI.01659-13 10.1016/j.cell.2014.09.057 10.1111/j.1432-1033.1976.tb10656.x 10.1006/jmbi.1997.1615 10.1128/jvi.67.11.6387-6394.1993 10.1073/pnas.1706600114 10.1529/biophysj.106.097782 10.1016/j.chom.2021.07.006 10.1073/pnas.93.7.3099 10.1016/j.virol.2009.02.048 10.1128/JVI.02820-15 10.1128/jvi.70.12.8540-8548.1996 10.1021/acs.jctc.5b00255 10.1128/JVI.74.18.8670-8679.2000 10.1128/JVI.01809-10 10.1074/jbc.RA119.010997 10.1021/bi052308e 10.1016/j.str.2005.07.010 10.1073/pnas.0405596101 10.1063/1.445869 10.1016/j.jmb.2016.03.005 10.1002/jcc.20290 10.1128/JVI.00756-19 10.1016/j.jmb.2011.04.063 10.1016/0021-9991(77)90098-5 10.1016/j.bpj.2013.12.019 10.1021/bi9019274 10.1128/JVI.00381-19 10.1128/JVI.02122-06 10.1128/JVI.73.7.5388-5401.1999 10.1007/s10867-014-9370-z 10.1073/pnas.0908661107 10.1128/mBio.02202-14 10.1016/j.jmb.2006.11.068 10.1128/JVI.73.4.2604-2612.1999 10.1074/jbc.RA120.014835 10.1074/jbc.272.36.22809 10.1038/nrmicro3490 10.1021/bi701360j |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.jmb.2021.167390 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1089-8638 |
EndPage | 167390 |
ExternalDocumentID | PMC8752508 34883117 10_1016_j_jmb_2021_167390 S0022283621006276 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI007528 – fundername: NIAID NIH HHS grantid: R37 AI071727 – fundername: NIAID NIH HHS grantid: F31 AI134287 – fundername: NIAID NIH HHS grantid: R01 AI153216 |
GroupedDBID | --- --K --M -DZ -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 85S 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABPPZ ABUDA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AFFNX AFTJW AFXIZ AGEKW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CJTIS CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GX1 HMG IH2 IHE J1W KOM LG5 LUGTX LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPCBC SSH SSI SSU SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~G- .55 .GJ 186 29L 3O- AAQXK AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADXHL AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HLW HVGLF HX~ HZ~ H~9 K-O MVM NEJ R2- RIG SBG SEW SIN UQL VH1 WUQ X7M XJT XOL Y6R YYP ZGI ZKB ~KM AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM VQA 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c480t-b9763fc244adbbda7387c094ab95e56c43aaa7e5039efc95a16afbde31b4f9813 |
IEDL.DBID | .~1 |
ISSN | 0022-2836 1089-8638 |
IngestDate | Thu Aug 21 18:38:31 EDT 2025 Thu Jul 10 18:18:57 EDT 2025 Mon Jul 21 11:03:03 EDT 2025 Wed Feb 19 02:23:55 EST 2025 Tue Jul 01 03:50:36 EDT 2025 Thu Apr 24 23:00:10 EDT 2025 Sun Apr 06 06:56:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | acidic phospholipid tRNA–protein interaction virus assembly highly basic region lipid-protein interaction |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-b9763fc244adbbda7387c094ab95e56c43aaa7e5039efc95a16afbde31b4f9813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8752508 |
PMID | 34883117 |
PQID | 2608535964 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8752508 proquest_miscellaneous_2648834333 proquest_miscellaneous_2608535964 pubmed_primary_34883117 crossref_citationtrail_10_1016_j_jmb_2021_167390 crossref_primary_10_1016_j_jmb_2021_167390 elsevier_sciencedirect_doi_10_1016_j_jmb_2021_167390 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-30 |
PublicationDateYYYYMMDD | 2022-01-30 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of molecular biology |
PublicationTitleAlternate | J Mol Biol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Barros, Heinrich, Datta, Rein, Karageorgos, Nanda, Lösche (b0030) 2016; 90 Lochrie, Waugh, Pratt, Clever, Parslow, Polisky (b0175) 1997; 25 Alfadhli, Huseby, Kapit, Colman, Barklis (b0010) 2007; 81 Olety, Veatch, Ono (b0215) 2015; 89 Purohit, Dupont, Stevenson, Green (b0250) 2001; 7 Charlier, Louet, Chaloin, Fuchs, Martinez, Muriaux, Floquet (b0055) 2014; 106 Spearman, Horton, Ratner, Kuli-Zade (b0305) 1997; 71 Chukkapalli, Hogue, Boyko, Hu, Ono (b0060) 2008; 82 functions for simulating liquid water Kutluay, Zang, Blanco-Melo, Powell, Jannain, Errando, Bieniasz (b0170) 2014; 159 Tran, Lalonde, Sly, Conboy (b0330) 2019; 123 Freed (b0100) 2015; 13 Chukkapalli, Oh, Ono (b0070) 2010; 107 Paillart, Göttlinger (b0235) 1999; 73 Miller, Yildiz, Lo, Wang, D'Souza (b0190) 2014; 515 Bou-Nader, Muecksch, Brown, Gordon, York, Peng, Zhang (b0035) 2021; 29 Jorgensen, W., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential Thornhill, Olety, Ono (b0320) 2019; 93 Case, Cheatham, Darden, Gohlke, Luo, Merz, Woods (b0050) 2005; 26 Gaines, Tkacik, Rivera-Oven, Somani, Achimovich, Alabi, Summers (b0105) 2018; 430 Dalton, Ako-Adjei, Murray, Murray, Vogt (b0080) 2007; 81 Pelham, Jackson (b0245) 1976; 67 Dick, Kamynina, Vogt (b0085) 2013; 87 2886–2902. , Gross, Hohenberg, Kräusslich (b0115) 1997; 249 . Koma, Kotani, Miyakawa, Ryo, Yokoyama, Doi, Nomaguchi (b0165) 2019; 93 Mercredi, Bucca, Loeliger, Gaines, Mehta, Bhargava, Summers (b0185) 2016; 428 Ramalingam, Duclair, Datta, Ellington, Rein, Prasad (b0260) 2011; 85 Gerber, Müller (b0110) 1995; 9 Inlora, Collins, Trubin, Chung, Ono (b0150) 2014; 5 Scarlata, Ehrlich, Carter (b0290) 1998; 277 Alfadhli, Barklis, Barklis (b0005) 2009; 387 Shiba, Stello, Motegi, Noda, Musier-Forsyth, Schimmel (b0295) 1997; 272 Pak, Grime, Sengupta, Chen, Durumeric, Srivastava, Voth (b0240) 2017; 114 Gui, Gupta, Xu, Zandi, Gill, Huang, Mohideen (b0120) 2015; 41 Hearps, Wagstaff, Piller, Jans (b0125) 2008; 47 Shkriabai, Datta, Zhao, Hess, Rein, Kvaratskhelia (b0300) 2006; 45 Stehlin, Burke, Yang, Liu, Shiba, Musier-Forsyth (b0310) 1998; 37 cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes Alfadhli, McNett, Tsagli, Bächinger, Peyton, Barklis (b0015) 2011; 410 Tang, Loeliger, Luncsford, Kinde, Beckett, Summers (b0315) 2004; 101 Chukkapalli, Inlora, Todd, Ono (b0065) 2013; 87 Carlson, Bai, Keane, Doudna, Hurley (b0040) 2016; 5 Maier, Martinez, Kasavajhala, Wickstrom, Hauser, Simmerling (b0180) 2015; 11 Ryckaert, J., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Zgarbová, M., Otyepka, M., Sponer, J., Mládek, A., Banáš, P., Cheatham, T. E., & Jurečka, P. (2011). Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. Cimarelli, Luban (b0075) 1999; 73 Hermida-Matsumoto, Resh (b0130) 1999; 73 Inlora, Chukkapalli, Derse, Ono (b0145) 2011; 85 Saad, Loeliger, Luncsford, Liriano, Tai, Kim, Summers (b0275) 2007; 366 Hill, Worthylake, Bancroft, Christensen, Sundquist (b0140) 1996; 93 Yuan, Yu, Lee, Essex (b0340) 1993; 67 Alfadhli, Still, Barklis (b0020) 2009; 83 Pérez, Marchán, Svozil, Sponer, Cheatham, Laughton, Orozco (b0255) 2007; 92 327–341. Zhou, Resh (b0350) 1996; 70 Murphy, Samal, Vlach, Mas, Prevelige, Saad (b0205) 2019; 294 Saad, Miller, Tai, Kim, Ghanam, Summers (b0280) 2006; 103 Hermida-Matsumoto, Resh (b0135) 2000; 74 Ono, Ablan, Lockett, Nagashima, Freed (b0220) 2004; 101 Todd, Duchon, Inlora, Olson, Musier-Forsyth, Ono (b0325) 2017; 23 Wildman, Crippen (b0335) 1999; 39 Dick, Vogt (b0090) 2014; 5 Monde, Chukkapalli, Ono (b0200) 2011; 85 Case, Betz, Cerutti, Cheatham, Darden, Duke, Kollman (b0045) 2016 Jones, Datta, Rein, Rouzina, Musier-Forsyth (b0155) 2011; 85 Molecular Operating Environment (MOE) (2020). (Version 2019.01) Chemical Computing Group ULC. Ono, Freed (b0225) 1999; 73 Murray, Li, Wang, Tang, Honig, Murray (b0210) 2005; 13 Anraku, Fukuda, Takamune, Misumi, Okamoto, Otsuka, Fujita (b0025) 2010; 49 Rye-McCurdy, Rouzina, Musier-Forsyth (b0270) 2015; 1259 Ehrlich, Fong, Scarlata, Zybarth, Carter (b0095) 1996; 35 Ono, Orenstein, Freed (b0230) 2000; 74 Sarni, Biswas, Liu, Olson, Kitzrow, Rein, Musier-Forsyth (b0285) 2020; 295 926–935. 10.1016/j.jmb.2021.167390_b0265 Gross (10.1016/j.jmb.2021.167390_b0115) 1997; 249 Thornhill (10.1016/j.jmb.2021.167390_b0320) 2019; 93 Carlson (10.1016/j.jmb.2021.167390_b0040) 2016; 5 Ono (10.1016/j.jmb.2021.167390_b0230) 2000; 74 Yuan (10.1016/j.jmb.2021.167390_b0340) 1993; 67 Miller (10.1016/j.jmb.2021.167390_b0190) 2014; 515 Ramalingam (10.1016/j.jmb.2021.167390_b0260) 2011; 85 Barros (10.1016/j.jmb.2021.167390_b0030) 2016; 90 Paillart (10.1016/j.jmb.2021.167390_b0235) 1999; 73 Alfadhli (10.1016/j.jmb.2021.167390_b0010) 2007; 81 Mercredi (10.1016/j.jmb.2021.167390_b0185) 2016; 428 Saad (10.1016/j.jmb.2021.167390_b0275) 2007; 366 Rye-McCurdy (10.1016/j.jmb.2021.167390_b0270) 2015; 1259 Koma (10.1016/j.jmb.2021.167390_b0165) 2019; 93 Cimarelli (10.1016/j.jmb.2021.167390_b0075) 1999; 73 Freed (10.1016/j.jmb.2021.167390_b0100) 2015; 13 Ono (10.1016/j.jmb.2021.167390_b0225) 1999; 73 Ehrlich (10.1016/j.jmb.2021.167390_b0095) 1996; 35 Saad (10.1016/j.jmb.2021.167390_b0280) 2006; 103 Inlora (10.1016/j.jmb.2021.167390_b0145) 2011; 85 Inlora (10.1016/j.jmb.2021.167390_b0150) 2014; 5 Bou-Nader (10.1016/j.jmb.2021.167390_b0035) 2021; 29 Chukkapalli (10.1016/j.jmb.2021.167390_b0070) 2010; 107 Case (10.1016/j.jmb.2021.167390_b0045) 2016 Pak (10.1016/j.jmb.2021.167390_b0240) 2017; 114 Olety (10.1016/j.jmb.2021.167390_b0215) 2015; 89 Jones (10.1016/j.jmb.2021.167390_b0155) 2011; 85 Alfadhli (10.1016/j.jmb.2021.167390_b0020) 2009; 83 Sarni (10.1016/j.jmb.2021.167390_b0285) 2020; 295 Murray (10.1016/j.jmb.2021.167390_b0210) 2005; 13 Case (10.1016/j.jmb.2021.167390_b0050) 2005; 26 Murphy (10.1016/j.jmb.2021.167390_b0205) 2019; 294 Kutluay (10.1016/j.jmb.2021.167390_b0170) 2014; 159 Chukkapalli (10.1016/j.jmb.2021.167390_b0060) 2008; 82 10.1016/j.jmb.2021.167390_b0160 Hearps (10.1016/j.jmb.2021.167390_b0125) 2008; 47 Shiba (10.1016/j.jmb.2021.167390_b0295) 1997; 272 Maier (10.1016/j.jmb.2021.167390_b0180) 2015; 11 Dick (10.1016/j.jmb.2021.167390_b0090) 2014; 5 Alfadhli (10.1016/j.jmb.2021.167390_b0005) 2009; 387 Chukkapalli (10.1016/j.jmb.2021.167390_b0065) 2013; 87 Wildman (10.1016/j.jmb.2021.167390_b0335) 1999; 39 Spearman (10.1016/j.jmb.2021.167390_b0305) 1997; 71 Alfadhli (10.1016/j.jmb.2021.167390_b0015) 2011; 410 Stehlin (10.1016/j.jmb.2021.167390_b0310) 1998; 37 Zhou (10.1016/j.jmb.2021.167390_b0350) 1996; 70 Hermida-Matsumoto (10.1016/j.jmb.2021.167390_b0130) 1999; 73 Lochrie (10.1016/j.jmb.2021.167390_b0175) 1997; 25 Gerber (10.1016/j.jmb.2021.167390_b0110) 1995; 9 10.1016/j.jmb.2021.167390_b0195 Hermida-Matsumoto (10.1016/j.jmb.2021.167390_b0135) 2000; 74 Dalton (10.1016/j.jmb.2021.167390_b0080) 2007; 81 Monde (10.1016/j.jmb.2021.167390_b0200) 2011; 85 Gui (10.1016/j.jmb.2021.167390_b0120) 2015; 41 Ono (10.1016/j.jmb.2021.167390_b0220) 2004; 101 Hill (10.1016/j.jmb.2021.167390_b0140) 1996; 93 Pérez (10.1016/j.jmb.2021.167390_b0255) 2007; 92 Charlier (10.1016/j.jmb.2021.167390_b0055) 2014; 106 Todd (10.1016/j.jmb.2021.167390_b0325) 2017; 23 Anraku (10.1016/j.jmb.2021.167390_b0025) 2010; 49 Tran (10.1016/j.jmb.2021.167390_b0330) 2019; 123 Gaines (10.1016/j.jmb.2021.167390_b0105) 2018; 430 Purohit (10.1016/j.jmb.2021.167390_b0250) 2001; 7 Tang (10.1016/j.jmb.2021.167390_b0315) 2004; 101 Shkriabai (10.1016/j.jmb.2021.167390_b0300) 2006; 45 Pelham (10.1016/j.jmb.2021.167390_b0245) 1976; 67 Scarlata (10.1016/j.jmb.2021.167390_b0290) 1998; 277 Dick (10.1016/j.jmb.2021.167390_b0085) 2013; 87 10.1016/j.jmb.2021.167390_b0345 |
References_xml | – volume: 159 start-page: 1096 year: 2014 end-page: 1109 ident: b0170 article-title: Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis publication-title: Cell – volume: 83 start-page: 12196 year: 2009 end-page: 12203 ident: b0020 article-title: Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids publication-title: J. Virol. – reference: , 2886–2902. – volume: 74 start-page: 2855 year: 2000 end-page: 2866 ident: b0230 article-title: Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly publication-title: J. Virol. – volume: 35 start-page: 3933 year: 1996 end-page: 3943 ident: b0095 article-title: Partitioning of HIV-1 Gag and Gag-related proteins to membranes publication-title: Biochemistry – volume: 272 start-page: 22809 year: 1997 end-page: 22816 ident: b0295 article-title: Human lysyl-tRNA synthetase accepts nucleotide 73 variants and rescues Escherichia coli double-defective mutant publication-title: J. Biol. Chem. – volume: 515 start-page: 591 year: 2014 end-page: 595 ident: b0190 article-title: A structure-based mechanism for tRNA and retroviral RNA remodelling during primer annealing publication-title: Nature – volume: 106 start-page: 577 year: 2014 end-page: 585 ident: b0055 article-title: Coarse-grained simulations of the HIV-1 matrix protein anchoring: revisiting its assembly on membrane domains publication-title: Biophys. J. – reference: , 926–935. – volume: 5 year: 2014 ident: b0150 article-title: Membrane binding and subcellular localization of retroviral Gag proteins are differentially regulated by MA interactions with phosphatidylinositol-(4,5)-bisphosphate and RNA publication-title: mBio – volume: 366 start-page: 574 year: 2007 end-page: 585 ident: b0275 article-title: Point mutations in the HIV-1 matrix protein turn off the myristyl switch publication-title: J. Mol. Biol. – volume: 90 start-page: 4544 year: 2016 end-page: 4555 ident: b0030 article-title: Membrane binding of HIV-1 matrix protein: dependence on bilayer composition and protein lipidation publication-title: J. Virol. – volume: 277 start-page: 161 year: 1998 end-page: 169 ident: b0290 article-title: Membrane-induced alterations in HIV-1 Gag and matrix protein-protein interactions publication-title: J. Mol. Biol. – volume: 430 start-page: 2113 year: 2018 end-page: 2127 ident: b0105 article-title: HIV-1 Matrix Protein Interactions with tRNA: Implications for Membrane Targeting publication-title: J. Mol. Biol. – volume: 23 start-page: 395 year: 2017 end-page: 405 ident: b0325 article-title: Inhibition of HIV-1 Gag-membrane interactions by specific RNAs publication-title: RNA – reference: Jorgensen, W., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential – volume: 87 start-page: 13598 year: 2013 end-page: 13608 ident: b0085 article-title: Effect of multimerization on membrane association of Rous sarcoma virus and HIV-1 matrix domain proteins publication-title: J. Virol. – volume: 41 start-page: 135 year: 2015 end-page: 149 ident: b0120 article-title: A novel minimal in vitro system for analyzing HIV-1 Gag-mediated budding publication-title: J. Biol. Phys. – volume: 89 start-page: 7861 year: 2015 end-page: 7873 ident: b0215 article-title: Phosphatidylinositol-(4,5)-bisphosphate acyl chains differentiate membrane binding of HIV-1 gag from that of the phospholipase Cδ1 pleckstrin homology domain publication-title: J. Virol. – volume: 67 start-page: 6387 year: 1993 end-page: 6394 ident: b0340 article-title: Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor publication-title: J. Virol. – volume: 123 start-page: 4673 year: 2019 end-page: 4687 ident: b0330 article-title: Mechanistic investigation of HIV-1 gag association with lipid membranes publication-title: J. Phys. Chem. B – volume: 13 start-page: 1521 year: 2005 end-page: 1531 ident: b0210 article-title: Retroviral matrix domains share electrostatic homology: models for membrane binding function throughout the viral life cycle publication-title: Structure – volume: 93 year: 2019 ident: b0165 article-title: Allosteric Regulation of HIV-1 Capsid Structure for Gag Assembly, Virion Production, and Viral Infectivity by a Disordered Interdomain Linker publication-title: J. Virol. – volume: 70 start-page: 8540 year: 1996 end-page: 8548 ident: b0350 article-title: Differential membrane binding of the human immunodeficiency virus type 1 matrix protein publication-title: J. Virol. – volume: 81 start-page: 1472 year: 2007 end-page: 1478 ident: b0010 article-title: Human immunodeficiency virus type 1 matrix protein assembles on membranes as a hexamer publication-title: J. Virol. – volume: 67 start-page: 247 year: 1976 end-page: 256 ident: b0245 article-title: An efficient mRNA-dependent translation system from reticulocyte lysates publication-title: Eur. J. Biochem. – volume: 107 start-page: 1600 year: 2010 end-page: 1605 ident: b0070 article-title: Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain publication-title: Proc. Natl. Acad. Sci. USA – volume: 93 start-page: 3099 year: 1996 end-page: 3104 ident: b0140 article-title: Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly publication-title: Proc. Natl. Acad. Sci. USA – volume: 114 start-page: E10056 year: 2017 end-page: E10065 ident: b0240 article-title: Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane publication-title: Proc. Natl. Acad. Sci. USA – volume: 71 start-page: 6582 year: 1997 end-page: 6592 ident: b0305 article-title: Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism publication-title: J. Virol. – year: 2016 ident: b0045 article-title: Amber 16 – volume: 87 start-page: 7155 year: 2013 end-page: 7159 ident: b0065 article-title: Evidence in support of RNA-mediated inhibition of phosphatidylserine-dependent HIV-1 Gag membrane binding in cells publication-title: J. Virol. – volume: 82 start-page: 2405 year: 2008 end-page: 2417 ident: b0060 article-title: Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding publication-title: J. Virol. – volume: 93 year: 2019 ident: b0320 article-title: Relationships between MA-RNA binding in cells and suppression of HIV-1 Gag mislocalization to intracellular membranes publication-title: J. Virol. – volume: 387 start-page: 466 year: 2009 end-page: 472 ident: b0005 article-title: HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate publication-title: Virology – volume: 73 start-page: 1902 year: 1999 end-page: 1908 ident: b0130 article-title: Human immunodeficiency virus type 1 protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA publication-title: J. Virol. – reference: Molecular Operating Environment (MOE) (2020). (Version 2019.01) Chemical Computing Group ULC. – volume: 1259 start-page: 385 year: 2015 end-page: 402 ident: b0270 article-title: Fluorescence anisotropy-based salt-titration approach to characterize protein-nucleic acid interactions publication-title: Methods Mol. Biol. – volume: 81 start-page: 6434 year: 2007 end-page: 6445 ident: b0080 article-title: Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain publication-title: J. Virol. – volume: 294 start-page: 18600 year: 2019 end-page: 18612 ident: b0205 article-title: Structural and biophysical characterizations of HIV-1 matrix trimer binding to lipid nanodiscs shed light on virus assembly publication-title: J. Biol. Chem. – volume: 25 start-page: 2902 year: 1997 end-page: 2910 ident: b0175 article-title: In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein publication-title: Nucleic Acids Res. – volume: 101 start-page: 14889 year: 2004 end-page: 14894 ident: b0220 article-title: Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane publication-title: Proc. Natl. Acad. Sci. USA – volume: 37 start-page: 8605 year: 1998 end-page: 8613 ident: b0310 article-title: Species-specific differences in the operational RNA code for aminoacylation of tRNAPro publication-title: Biochemistry – volume: 11 start-page: 3696 year: 2015 end-page: 3713 ident: b0180 article-title: ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB publication-title: J. Chem. Theory Comput. – volume: 73 start-page: 5388 year: 1999 end-page: 5401 ident: b0075 article-title: Translation elongation factor 1-alpha interacts specifically with the human immunodeficiency virus type 1 Gag polyprotein publication-title: J. Virol. – volume: 103 start-page: 11364 year: 2006 end-page: 11369 ident: b0280 article-title: Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly publication-title: Proc. Natl. Acad. Sci. USA – volume: 295 start-page: 14391 year: 2020 end-page: 14401 ident: b0285 article-title: HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal publication-title: J. Biol. Chem. – volume: 85 start-page: 3802 year: 2011 end-page: 3810 ident: b0145 article-title: Gag localization and virus-like particle release mediated by the matrix domain of human T-lymphotropic virus type 1 Gag are less dependent on phosphatidylinositol-(4,5)-bisphosphate than those mediated by the matrix domain of HIV-1 Gag publication-title: J. Virol. – volume: 5 start-page: 187 year: 2014 ident: b0090 article-title: Membrane interaction of retroviral Gag proteins publication-title: Front. Microbiol. – reference: , 327–341. – volume: 92 start-page: 3817 year: 2007 end-page: 3829 ident: b0255 article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers publication-title: Biophys. J. – volume: 26 start-page: 1668 year: 2005 end-page: 1688 ident: b0050 article-title: The Amber biomolecular simulation programs publication-title: J. Comput. Chem. – reference: , – volume: 410 start-page: 653 year: 2011 end-page: 666 ident: b0015 article-title: HIV-1 matrix protein binding to RNA publication-title: J. Mol. Biol. – volume: 428 start-page: 1637 year: 2016 end-page: 1655 ident: b0185 article-title: Structural and molecular determinants of membrane binding by the HIV-1 matrix protein publication-title: J. Mol. Biol. – volume: 7 start-page: 576 year: 2001 end-page: 584 ident: b0250 article-title: Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection publication-title: RNA – reference: Ryckaert, J., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the – volume: 13 start-page: 484 year: 2015 end-page: 496 ident: b0100 article-title: HIV-1 assembly, release and maturation publication-title: Nature Rev. Microbiol. – volume: 249 start-page: 592 year: 1997 end-page: 600 ident: b0115 article-title: In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus publication-title: Eur. J. Biochem. – volume: 73 start-page: 4136 year: 1999 end-page: 4144 ident: b0225 article-title: Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus publication-title: J. Virol. – volume: 74 start-page: 8670 year: 2000 end-page: 8679 ident: b0135 article-title: Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging publication-title: J. Virol. – volume: 101 start-page: 517 year: 2004 end-page: 522 ident: b0315 article-title: Entropic switch regulates myristate exposure in the HIV-1 matrix protein publication-title: Proc. Natl. Acad. Sci. USA – volume: 45 start-page: 4077 year: 2006 end-page: 4083 ident: b0300 article-title: Interactions of HIV-1 Gag with assembly cofactors publication-title: Biochemistry – volume: 85 start-page: 1594 year: 2011 end-page: 1603 ident: b0155 article-title: Matrix domain modulates HIV-1 Gag's nucleic acid chaperone activity via inositol phosphate binding publication-title: J. Virol. – reference: functions for simulating liquid water, – volume: 85 start-page: 305 year: 2011 end-page: 314 ident: b0260 article-title: RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production publication-title: J. Virol. – volume: 47 start-page: 2199 year: 2008 end-page: 2210 ident: b0125 article-title: The N-terminal basic domain of the HIV-1 matrix protein does not contain a conventional nuclear localization sequence but is required for DNA binding and protein self-association publication-title: Biochemistry – volume: 39 start-page: 868 year: 1999 end-page: 873 ident: b0335 article-title: Prediction of physicochemical parameters by atomic contributions publication-title: J. Chem. Inf. Comput. Sci. – reference: Zgarbová, M., Otyepka, M., Sponer, J., Mládek, A., Banáš, P., Cheatham, T. E., & Jurečka, P. (2011). Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. – reference: . – volume: 85 start-page: 3584 year: 2011 end-page: 3595 ident: b0200 article-title: Assembly and replication of HIV-1 in T cells with low levels of phosphatidylinositol-(4,5)-bisphosphate publication-title: J. Virol. – volume: 9 start-page: 251 year: 1995 end-page: 268 ident: b0110 article-title: MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry publication-title: J. Comput. Aided Mol. Des. – reference: cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes – volume: 29 start-page: 1421 year: 2021 end-page: 1436.e1427 ident: b0035 article-title: HIV-1 matrix-tRNA complex structure reveals basis for host control of Gag localization publication-title: Cell Host Microbe – volume: 73 start-page: 2604 year: 1999 end-page: 2612 ident: b0235 article-title: Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of gag membrane targeting publication-title: J. Virol. – volume: 5 year: 2016 ident: b0040 article-title: Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies publication-title: Elife – volume: 49 start-page: 5109 year: 2010 end-page: 5116 ident: b0025 article-title: Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance publication-title: Biochemistry – volume: 82 start-page: 2405 year: 2008 ident: 10.1016/j.jmb.2021.167390_b0060 article-title: Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding publication-title: J. Virol. doi: 10.1128/JVI.01614-07 – volume: 71 start-page: 6582 year: 1997 ident: 10.1016/j.jmb.2021.167390_b0305 article-title: Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism publication-title: J. Virol. doi: 10.1128/jvi.71.9.6582-6592.1997 – year: 2016 ident: 10.1016/j.jmb.2021.167390_b0045 – volume: 83 start-page: 12196 year: 2009 ident: 10.1016/j.jmb.2021.167390_b0020 article-title: Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids publication-title: J. Virol. doi: 10.1128/JVI.01197-09 – volume: 103 start-page: 11364 year: 2006 ident: 10.1016/j.jmb.2021.167390_b0280 article-title: Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0602818103 – volume: 430 start-page: 2113 year: 2018 ident: 10.1016/j.jmb.2021.167390_b0105 article-title: HIV-1 Matrix Protein Interactions with tRNA: Implications for Membrane Targeting publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2018.04.042 – volume: 249 start-page: 592 year: 1997 ident: 10.1016/j.jmb.2021.167390_b0115 article-title: In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1997.t01-1-00592.x – volume: 73 start-page: 4136 year: 1999 ident: 10.1016/j.jmb.2021.167390_b0225 article-title: Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus publication-title: J. Virol. doi: 10.1128/JVI.73.5.4136-4144.1999 – volume: 9 start-page: 251 year: 1995 ident: 10.1016/j.jmb.2021.167390_b0110 article-title: MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/BF00124456 – volume: 74 start-page: 2855 year: 2000 ident: 10.1016/j.jmb.2021.167390_b0230 article-title: Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly publication-title: J. Virol. doi: 10.1128/JVI.74.6.2855-2866.2000 – volume: 35 start-page: 3933 year: 1996 ident: 10.1016/j.jmb.2021.167390_b0095 article-title: Partitioning of HIV-1 Gag and Gag-related proteins to membranes publication-title: Biochemistry doi: 10.1021/bi952337x – ident: 10.1016/j.jmb.2021.167390_b0345 doi: 10.1021/ct200162x – volume: 25 start-page: 2902 year: 1997 ident: 10.1016/j.jmb.2021.167390_b0175 article-title: In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.14.2902 – volume: 5 start-page: 187 year: 2014 ident: 10.1016/j.jmb.2021.167390_b0090 article-title: Membrane interaction of retroviral Gag proteins publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00187 – volume: 5 year: 2016 ident: 10.1016/j.jmb.2021.167390_b0040 article-title: Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies publication-title: Elife doi: 10.7554/eLife.14663 – volume: 85 start-page: 305 year: 2011 ident: 10.1016/j.jmb.2021.167390_b0260 article-title: RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production publication-title: J. Virol. doi: 10.1128/JVI.02626-09 – volume: 101 start-page: 517 year: 2004 ident: 10.1016/j.jmb.2021.167390_b0315 article-title: Entropic switch regulates myristate exposure in the HIV-1 matrix protein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0305665101 – volume: 81 start-page: 6434 year: 2007 ident: 10.1016/j.jmb.2021.167390_b0080 article-title: Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain publication-title: J. Virol. doi: 10.1128/JVI.02757-06 – volume: 37 start-page: 8605 year: 1998 ident: 10.1016/j.jmb.2021.167390_b0310 article-title: Species-specific differences in the operational RNA code for aminoacylation of tRNAPro publication-title: Biochemistry doi: 10.1021/bi980364s – volume: 73 start-page: 1902 year: 1999 ident: 10.1016/j.jmb.2021.167390_b0130 article-title: Human immunodeficiency virus type 1 protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA publication-title: J. Virol. doi: 10.1128/JVI.73.3.1902-1908.1999 – volume: 89 start-page: 7861 year: 2015 ident: 10.1016/j.jmb.2021.167390_b0215 article-title: Phosphatidylinositol-(4,5)-bisphosphate acyl chains differentiate membrane binding of HIV-1 gag from that of the phospholipase Cδ1 pleckstrin homology domain publication-title: J. Virol. doi: 10.1128/JVI.00794-15 – volume: 515 start-page: 591 year: 2014 ident: 10.1016/j.jmb.2021.167390_b0190 article-title: A structure-based mechanism for tRNA and retroviral RNA remodelling during primer annealing publication-title: Nature doi: 10.1038/nature13709 – volume: 85 start-page: 3802 year: 2011 ident: 10.1016/j.jmb.2021.167390_b0145 article-title: Gag localization and virus-like particle release mediated by the matrix domain of human T-lymphotropic virus type 1 Gag are less dependent on phosphatidylinositol-(4,5)-bisphosphate than those mediated by the matrix domain of HIV-1 Gag publication-title: J. Virol. doi: 10.1128/JVI.02383-10 – volume: 87 start-page: 7155 year: 2013 ident: 10.1016/j.jmb.2021.167390_b0065 article-title: Evidence in support of RNA-mediated inhibition of phosphatidylserine-dependent HIV-1 Gag membrane binding in cells publication-title: J. Virol. doi: 10.1128/JVI.00075-13 – volume: 85 start-page: 3584 year: 2011 ident: 10.1016/j.jmb.2021.167390_b0200 article-title: Assembly and replication of HIV-1 in T cells with low levels of phosphatidylinositol-(4,5)-bisphosphate publication-title: J. Virol. doi: 10.1128/JVI.02266-10 – volume: 7 start-page: 576 year: 2001 ident: 10.1016/j.jmb.2021.167390_b0250 article-title: Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection publication-title: RNA doi: 10.1017/S1355838201002023 – volume: 123 start-page: 4673 year: 2019 ident: 10.1016/j.jmb.2021.167390_b0330 article-title: Mechanistic investigation of HIV-1 gag association with lipid membranes publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.9b02655 – volume: 23 start-page: 395 year: 2017 ident: 10.1016/j.jmb.2021.167390_b0325 article-title: Inhibition of HIV-1 Gag-membrane interactions by specific RNAs publication-title: RNA doi: 10.1261/rna.058453.116 – volume: 1259 start-page: 385 year: 2015 ident: 10.1016/j.jmb.2021.167390_b0270 article-title: Fluorescence anisotropy-based salt-titration approach to characterize protein-nucleic acid interactions publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2214-7_23 – volume: 39 start-page: 868 year: 1999 ident: 10.1016/j.jmb.2021.167390_b0335 article-title: Prediction of physicochemical parameters by atomic contributions publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci990307l – volume: 87 start-page: 13598 year: 2013 ident: 10.1016/j.jmb.2021.167390_b0085 article-title: Effect of multimerization on membrane association of Rous sarcoma virus and HIV-1 matrix domain proteins publication-title: J. Virol. doi: 10.1128/JVI.01659-13 – volume: 159 start-page: 1096 year: 2014 ident: 10.1016/j.jmb.2021.167390_b0170 article-title: Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis publication-title: Cell doi: 10.1016/j.cell.2014.09.057 – volume: 67 start-page: 247 year: 1976 ident: 10.1016/j.jmb.2021.167390_b0245 article-title: An efficient mRNA-dependent translation system from reticulocyte lysates publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1976.tb10656.x – volume: 277 start-page: 161 year: 1998 ident: 10.1016/j.jmb.2021.167390_b0290 article-title: Membrane-induced alterations in HIV-1 Gag and matrix protein-protein interactions publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1615 – volume: 67 start-page: 6387 year: 1993 ident: 10.1016/j.jmb.2021.167390_b0340 article-title: Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor publication-title: J. Virol. doi: 10.1128/jvi.67.11.6387-6394.1993 – volume: 114 start-page: E10056 year: 2017 ident: 10.1016/j.jmb.2021.167390_b0240 article-title: Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1706600114 – volume: 92 start-page: 3817 year: 2007 ident: 10.1016/j.jmb.2021.167390_b0255 article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers publication-title: Biophys. J. doi: 10.1529/biophysj.106.097782 – volume: 29 start-page: 1421 year: 2021 ident: 10.1016/j.jmb.2021.167390_b0035 article-title: HIV-1 matrix-tRNA complex structure reveals basis for host control of Gag localization publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.07.006 – volume: 93 start-page: 3099 year: 1996 ident: 10.1016/j.jmb.2021.167390_b0140 article-title: Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.7.3099 – volume: 387 start-page: 466 year: 2009 ident: 10.1016/j.jmb.2021.167390_b0005 article-title: HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate publication-title: Virology doi: 10.1016/j.virol.2009.02.048 – volume: 90 start-page: 4544 year: 2016 ident: 10.1016/j.jmb.2021.167390_b0030 article-title: Membrane binding of HIV-1 matrix protein: dependence on bilayer composition and protein lipidation publication-title: J. Virol. doi: 10.1128/JVI.02820-15 – volume: 70 start-page: 8540 year: 1996 ident: 10.1016/j.jmb.2021.167390_b0350 article-title: Differential membrane binding of the human immunodeficiency virus type 1 matrix protein publication-title: J. Virol. doi: 10.1128/jvi.70.12.8540-8548.1996 – volume: 11 start-page: 3696 year: 2015 ident: 10.1016/j.jmb.2021.167390_b0180 article-title: ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00255 – volume: 74 start-page: 8670 year: 2000 ident: 10.1016/j.jmb.2021.167390_b0135 article-title: Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging publication-title: J. Virol. doi: 10.1128/JVI.74.18.8670-8679.2000 – volume: 85 start-page: 1594 year: 2011 ident: 10.1016/j.jmb.2021.167390_b0155 article-title: Matrix domain modulates HIV-1 Gag's nucleic acid chaperone activity via inositol phosphate binding publication-title: J. Virol. doi: 10.1128/JVI.01809-10 – volume: 294 start-page: 18600 year: 2019 ident: 10.1016/j.jmb.2021.167390_b0205 article-title: Structural and biophysical characterizations of HIV-1 matrix trimer binding to lipid nanodiscs shed light on virus assembly publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.010997 – volume: 45 start-page: 4077 year: 2006 ident: 10.1016/j.jmb.2021.167390_b0300 article-title: Interactions of HIV-1 Gag with assembly cofactors publication-title: Biochemistry doi: 10.1021/bi052308e – volume: 13 start-page: 1521 year: 2005 ident: 10.1016/j.jmb.2021.167390_b0210 article-title: Retroviral matrix domains share electrostatic homology: models for membrane binding function throughout the viral life cycle publication-title: Structure doi: 10.1016/j.str.2005.07.010 – ident: 10.1016/j.jmb.2021.167390_b0195 – volume: 101 start-page: 14889 year: 2004 ident: 10.1016/j.jmb.2021.167390_b0220 article-title: Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0405596101 – ident: 10.1016/j.jmb.2021.167390_b0160 doi: 10.1063/1.445869 – volume: 428 start-page: 1637 year: 2016 ident: 10.1016/j.jmb.2021.167390_b0185 article-title: Structural and molecular determinants of membrane binding by the HIV-1 matrix protein publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.03.005 – volume: 26 start-page: 1668 year: 2005 ident: 10.1016/j.jmb.2021.167390_b0050 article-title: The Amber biomolecular simulation programs publication-title: J. Comput. Chem. doi: 10.1002/jcc.20290 – volume: 93 year: 2019 ident: 10.1016/j.jmb.2021.167390_b0320 article-title: Relationships between MA-RNA binding in cells and suppression of HIV-1 Gag mislocalization to intracellular membranes publication-title: J. Virol. doi: 10.1128/JVI.00756-19 – volume: 410 start-page: 653 year: 2011 ident: 10.1016/j.jmb.2021.167390_b0015 article-title: HIV-1 matrix protein binding to RNA publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.04.063 – ident: 10.1016/j.jmb.2021.167390_b0265 doi: 10.1016/0021-9991(77)90098-5 – volume: 106 start-page: 577 year: 2014 ident: 10.1016/j.jmb.2021.167390_b0055 article-title: Coarse-grained simulations of the HIV-1 matrix protein anchoring: revisiting its assembly on membrane domains publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.12.019 – volume: 49 start-page: 5109 year: 2010 ident: 10.1016/j.jmb.2021.167390_b0025 article-title: Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance publication-title: Biochemistry doi: 10.1021/bi9019274 – volume: 93 year: 2019 ident: 10.1016/j.jmb.2021.167390_b0165 article-title: Allosteric Regulation of HIV-1 Capsid Structure for Gag Assembly, Virion Production, and Viral Infectivity by a Disordered Interdomain Linker publication-title: J. Virol. doi: 10.1128/JVI.00381-19 – volume: 81 start-page: 1472 year: 2007 ident: 10.1016/j.jmb.2021.167390_b0010 article-title: Human immunodeficiency virus type 1 matrix protein assembles on membranes as a hexamer publication-title: J. Virol. doi: 10.1128/JVI.02122-06 – volume: 73 start-page: 5388 year: 1999 ident: 10.1016/j.jmb.2021.167390_b0075 article-title: Translation elongation factor 1-alpha interacts specifically with the human immunodeficiency virus type 1 Gag polyprotein publication-title: J. Virol. doi: 10.1128/JVI.73.7.5388-5401.1999 – volume: 41 start-page: 135 year: 2015 ident: 10.1016/j.jmb.2021.167390_b0120 article-title: A novel minimal in vitro system for analyzing HIV-1 Gag-mediated budding publication-title: J. Biol. Phys. doi: 10.1007/s10867-014-9370-z – volume: 107 start-page: 1600 year: 2010 ident: 10.1016/j.jmb.2021.167390_b0070 article-title: Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0908661107 – volume: 5 year: 2014 ident: 10.1016/j.jmb.2021.167390_b0150 article-title: Membrane binding and subcellular localization of retroviral Gag proteins are differentially regulated by MA interactions with phosphatidylinositol-(4,5)-bisphosphate and RNA publication-title: mBio doi: 10.1128/mBio.02202-14 – volume: 366 start-page: 574 year: 2007 ident: 10.1016/j.jmb.2021.167390_b0275 article-title: Point mutations in the HIV-1 matrix protein turn off the myristyl switch publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.11.068 – volume: 73 start-page: 2604 year: 1999 ident: 10.1016/j.jmb.2021.167390_b0235 article-title: Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of gag membrane targeting publication-title: J. Virol. doi: 10.1128/JVI.73.4.2604-2612.1999 – volume: 295 start-page: 14391 year: 2020 ident: 10.1016/j.jmb.2021.167390_b0285 article-title: HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.014835 – volume: 272 start-page: 22809 year: 1997 ident: 10.1016/j.jmb.2021.167390_b0295 article-title: Human lysyl-tRNA synthetase accepts nucleotide 73 variants and rescues Escherichia coli double-defective mutant publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.36.22809 – volume: 13 start-page: 484 year: 2015 ident: 10.1016/j.jmb.2021.167390_b0100 article-title: HIV-1 assembly, release and maturation publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro3490 – volume: 47 start-page: 2199 year: 2008 ident: 10.1016/j.jmb.2021.167390_b0125 article-title: The N-terminal basic domain of the HIV-1 matrix protein does not contain a conventional nuclear localization sequence but is required for DNA binding and protein self-association publication-title: Biochemistry doi: 10.1021/bi701360j |
SSID | ssj0005348 |
Score | 2.4303348 |
Snippet | [Display omitted]
•Features of tRNA contributing to inhibition of HIV-1 Gag membrane binding are unclear.•Membrane binding of purified MA is strongly inhibited... Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P... Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2... Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P₂... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167390 |
SubjectTerms | acidic phospholipid Anticodon - metabolism Binding Sites Cell Membrane - metabolism gag Gene Products, Human Immunodeficiency Virus - chemistry gag Gene Products, Human Immunodeficiency Virus - metabolism highly basic region HIV-1 - genetics HIV-1 - metabolism Humans lipid-protein interaction molecular biology Molecular Docking Simulation particles Phosphatidylinositol 4,5-Diphosphate Protein Interaction Domains and Motifs RNA RNA, Transfer - chemistry RNA, Transfer - metabolism RNA, Viral - genetics testing tRNA–protein interaction virus assembly Virus Assembly - physiology |
Title | Molecular Determinants in tRNA D-arm Required for Inhibition of HIV-1 Gag Membrane Binding |
URI | https://dx.doi.org/10.1016/j.jmb.2021.167390 https://www.ncbi.nlm.nih.gov/pubmed/34883117 https://www.proquest.com/docview/2608535964 https://www.proquest.com/docview/2648834333 https://pubmed.ncbi.nlm.nih.gov/PMC8752508 |
Volume | 434 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFWovFdAHW1pkpJ4qGeLYiePjdnnsUrEHVCrUi2U7NgSxWUSXQy_97R0n8Wq3RXvgGo8l2zOZh_3NDEKfyzQpJcQFxKdcELDHnphCJiQL5e1SzzyzTbXPcT685GdX2dUaGsRcmACr7HR_q9Mbbd19OexO8_C-qkKOb7i9AAVMQyKgCGW3ORdByg_-LMA8GC9ixfBAHV82G4zX7cRAiJjSA5oLFtTy07bpf9_zXwjlgk062USvO2cS99v1bqE1V2-jjba95O9t9HIQu7m9QT_PYx9cfLSAgMFVjWcX4z4-Ivphgi9cAAa7EoMri0f1TWUaRBeeejwc_SAUn-prfO4mEGLXDn-tmpSYt-jy5Pj7YEi6vgrE8iKZEQMuCPMWDLsujSm1YIWwEOZpIzOX5ZYzrbVwWcKk81Zmmubam9IxariXBWXv0Ho9rd0Owi6VqaXUQXzueWm1tAwcRK5zm-VGpqKHkniiynZFx0PvizsV0WW3CpigAhNUy4Qe-jKfct9W3FhFzCOb1JLYKLAIq6btR5Yq4EN4I4Fjmz7-UhDegQOTyZyvogGtxzhjrIfet2IwXykLQ5TCxsWSgMwJQjnv5ZG6umnKekPkCP5o8eF5W9pFr9Ig40m4TvyI1mcPj-4T-Eszs9f8EHvoRX_0bTj-C1npEwA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8andC4IBgwyqeROCGFxbGdxMfSMVK29jBtaOJi2Y7NMtF0Gt2B_57nfJQVUA9cY1uy_Zz3Yf_e7wG8LZO4lBgXRD7hWYT22Ecml3EkAr1d4plntmH7nKXFGf98Ls63YNznwgRYZaf7W53eaOvuy363m_tXVRVyfMPtBSpgGhIBs_QObAd2KjGA7dHkqJj9Rnownvek4WFA_7jZwLwu5wajxIS-p2nGgmb-t3n62_38E0V5yywdPoD7nT9JRu2UH8KWq3fhblth8ucu7Iz7gm6P4Ou0L4VLDm6BYEhVk-XJbEQOIn09JycuYINdSdCbJZP6ojINqIssPCkmXyJKPulvZOrmGGXXjnyomqyYx3B2-PF0XERdaYXI8jxeRga9EOYt2nZdGlPqjOWZxUhPGymcSC1nWuvMiZhJ560Umqbam9IxariXOWVPYFAvavcUiEtkYil1GKJ7XlotLUMfkevUitTIJBtC3O-osh3veCh_8V31ALNLhUJQQQiqFcIQ3q2GXLWkG5s6815Mau3kKDQKm4a96UWqUA7hmQS3bXHzQ2GEhz6MkCnf1AcVH-OMsSHstcdgNVMWmijFhWdrB2TVITB6r7fU1UXD7I3BI7qk-bP_W9Jr2ClOp8fqeDI7eg73knDe43C7-AIGy-sb9xLdp6V51f0evwC6HxWx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Determinants+in+tRNA+D-arm+Required+for+Inhibition+of+HIV-1+Gag+Membrane+Binding&rft.jtitle=Journal+of+molecular+biology&rft.au=Sumner%2C+Christopher&rft.au=Kotani%2C+Osamu&rft.au=Liu%2C+Shuohui&rft.au=Musier-Forsyth%2C+Karin&rft.date=2022-01-30&rft.issn=0022-2836&rft.volume=434&rft.issue=2&rft.spage=167390&rft_id=info:doi/10.1016%2Fj.jmb.2021.167390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmb_2021_167390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon |