Molecular Determinants in tRNA D-arm Required for Inhibition of HIV-1 Gag Membrane Binding

[Display omitted] •Features of tRNA contributing to inhibition of HIV-1 Gag membrane binding are unclear.•Membrane binding of purified MA is strongly inhibited by tRNALys3 but not tRNAPro.•The D arm but not anticodon arm contributes to strong inhibition by tRNALys3.•The D arm sequence and its contex...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 434; no. 2; p. 167390
Main Authors Sumner, Christopher, Kotani, Osamu, Liu, Shuohui, Musier-Forsyth, Karin, Sato, Hironori, Ono, Akira
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 30.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Features of tRNA contributing to inhibition of HIV-1 Gag membrane binding are unclear.•Membrane binding of purified MA is strongly inhibited by tRNALys3 but not tRNAPro.•The D arm but not anticodon arm contributes to strong inhibition by tRNALys3.•The D arm sequence and its context are major determinants for the inhibitory effect. Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.
AbstractList Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P₂ and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P₂-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAᴾʳᵒ, but not that of tRNAᴸʸˢ³, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNAᴸʸˢ³ showed greater inhibition of MA membrane binding than full-length tRNAᴾʳᵒ. While transplantation of the D loop sequence of tRNAᴸʸˢ³ into tRNAᴾʳᵒ resulted in a modest increase in the inhibitory effect relative to WT tRNAᴾʳᵒ, replacing the entire D arm sequence with that of tRNAᴸʸˢ³ was necessary to confer the full inhibitory effects upon tRNAᴾʳᵒ. Together, these results demonstrate that the D arm of tRNAᴸʸˢ³ is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.
Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P 2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P 2 -independent membrane binding to varying degrees in vitro ; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNA Pro , but not that of tRNA Lys3 , are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNA Lys3 showed greater inhibition of MA membrane binding than full-length tRNA Pro . While transplantation of the D loop sequence of tRNA Lys3 into tRNA Pro resulted in a modest increase in the inhibitory effect relative to WT tRNA Pro , replacing the entire D arm sequence with that of tRNA Lys3 was necessary to confer the full inhibitory effects upon tRNA Pro . Together, these results demonstrate that the D arm of tRNA Lys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.
Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P -independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNA , but not that of tRNA , are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNA showed greater inhibition of MA membrane binding than full-length tRNA . While transplantation of the D loop sequence of tRNA into tRNA resulted in a modest increase in the inhibitory effect relative to WT tRNA , replacing the entire D arm sequence with that of tRNA was necessary to confer the full inhibitory effects upon tRNA . Together, these results demonstrate that the D arm of tRNA is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.
[Display omitted] •Features of tRNA contributing to inhibition of HIV-1 Gag membrane binding are unclear.•Membrane binding of purified MA is strongly inhibited by tRNALys3 but not tRNAPro.•The D arm but not anticodon arm contributes to strong inhibition by tRNALys3.•The D arm sequence and its context are major determinants for the inhibitory effect. Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.
Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.
ArticleNumber 167390
Author Kotani, Osamu
Musier-Forsyth, Karin
Liu, Shuohui
Sumner, Christopher
Sato, Hironori
Ono, Akira
AuthorAffiliation 1 - Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
2 - Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
3 - Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
AuthorAffiliation_xml – name: 2 - Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
– name: 1 - Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
– name: 3 - Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
Author_xml – sequence: 1
  givenname: Christopher
  surname: Sumner
  fullname: Sumner, Christopher
  organization: Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
– sequence: 2
  givenname: Osamu
  surname: Kotani
  fullname: Kotani, Osamu
  organization: Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 3
  givenname: Shuohui
  surname: Liu
  fullname: Liu, Shuohui
  organization: Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
– sequence: 4
  givenname: Karin
  surname: Musier-Forsyth
  fullname: Musier-Forsyth, Karin
  organization: Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
– sequence: 5
  givenname: Hironori
  surname: Sato
  fullname: Sato, Hironori
  organization: Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 6
  givenname: Akira
  surname: Ono
  fullname: Ono, Akira
  email: akiraono@umich.edu
  organization: Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34883117$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vFSEUxYmpsa_VD-DGsHQzTxgYhomJSf_Y9iWtJo26cEOAufPKywy0wDTx25eX1xp1UVnAgnNOzr2_A7TngweE3lKypISKD5vlZjLLmtR0SUXLOvICLSiRXSUFk3toQUhdV7VkYh8dpLQhhDSMy1dov9ySUdou0M-rMIKdRx3xKWSIk_Pa54Sdx_n6yxE-rXSc8DXczS5Cj4cQ8crfOOOyCx6HAV-sflQUn-s1voLJRO0BHzvfO79-jV4Oekzw5vE9RN_PPn87uaguv56vTo4uK8slyZXpWsEGW3Oue2N63TLZWtJxbboGGmE501q30BDWwWC7RlOhB9MDo4YPnaTsEH3a5d7OZoLegs9Rj-o2uknHXypop_7-8e5GrcO9km1TN0SWgPePATHczZCymlyyMI5lmDAnVYvtujgr5_9SIhvWdIIX6bs_a_3u87T7Imh3AhtDShEGZV3W272Wlm5UlKgtZbVRhbLaUlY7ysVJ_3E-hT_n-bjzQEFx7yCqZB14C30Ba7Pqg3vG_QBHD77a
CitedBy_id crossref_primary_10_1016_j_chembiol_2023_12_008
crossref_primary_10_3390_v14040816
crossref_primary_10_3390_membranes12050441
crossref_primary_10_3390_v16111714
crossref_primary_10_1038_s41467_024_50730_1
crossref_primary_10_1016_j_jmb_2024_168639
crossref_primary_10_3390_v15020474
crossref_primary_10_3390_ijms25073659
Cites_doi 10.1128/JVI.01614-07
10.1128/jvi.71.9.6582-6592.1997
10.1128/JVI.01197-09
10.1073/pnas.0602818103
10.1016/j.jmb.2018.04.042
10.1111/j.1432-1033.1997.t01-1-00592.x
10.1128/JVI.73.5.4136-4144.1999
10.1007/BF00124456
10.1128/JVI.74.6.2855-2866.2000
10.1021/bi952337x
10.1021/ct200162x
10.1093/nar/25.14.2902
10.3389/fmicb.2014.00187
10.7554/eLife.14663
10.1128/JVI.02626-09
10.1073/pnas.0305665101
10.1128/JVI.02757-06
10.1021/bi980364s
10.1128/JVI.73.3.1902-1908.1999
10.1128/JVI.00794-15
10.1038/nature13709
10.1128/JVI.02383-10
10.1128/JVI.00075-13
10.1128/JVI.02266-10
10.1017/S1355838201002023
10.1021/acs.jpcb.9b02655
10.1261/rna.058453.116
10.1007/978-1-4939-2214-7_23
10.1021/ci990307l
10.1128/JVI.01659-13
10.1016/j.cell.2014.09.057
10.1111/j.1432-1033.1976.tb10656.x
10.1006/jmbi.1997.1615
10.1128/jvi.67.11.6387-6394.1993
10.1073/pnas.1706600114
10.1529/biophysj.106.097782
10.1016/j.chom.2021.07.006
10.1073/pnas.93.7.3099
10.1016/j.virol.2009.02.048
10.1128/JVI.02820-15
10.1128/jvi.70.12.8540-8548.1996
10.1021/acs.jctc.5b00255
10.1128/JVI.74.18.8670-8679.2000
10.1128/JVI.01809-10
10.1074/jbc.RA119.010997
10.1021/bi052308e
10.1016/j.str.2005.07.010
10.1073/pnas.0405596101
10.1063/1.445869
10.1016/j.jmb.2016.03.005
10.1002/jcc.20290
10.1128/JVI.00756-19
10.1016/j.jmb.2011.04.063
10.1016/0021-9991(77)90098-5
10.1016/j.bpj.2013.12.019
10.1021/bi9019274
10.1128/JVI.00381-19
10.1128/JVI.02122-06
10.1128/JVI.73.7.5388-5401.1999
10.1007/s10867-014-9370-z
10.1073/pnas.0908661107
10.1128/mBio.02202-14
10.1016/j.jmb.2006.11.068
10.1128/JVI.73.4.2604-2612.1999
10.1074/jbc.RA120.014835
10.1074/jbc.272.36.22809
10.1038/nrmicro3490
10.1021/bi701360j
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.jmb.2021.167390
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1089-8638
EndPage 167390
ExternalDocumentID PMC8752508
34883117
10_1016_j_jmb_2021_167390
S0022283621006276
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI007528
– fundername: NIAID NIH HHS
  grantid: R37 AI071727
– fundername: NIAID NIH HHS
  grantid: F31 AI134287
– fundername: NIAID NIH HHS
  grantid: R01 AI153216
GroupedDBID ---
--K
--M
-DZ
-ET
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
85S
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABPPZ
ABUDA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AFFNX
AFTJW
AFXIZ
AGEKW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CJTIS
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GX1
HMG
IH2
IHE
J1W
KOM
LG5
LUGTX
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSH
SSI
SSU
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~G-
.55
.GJ
186
29L
3O-
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
ADXHL
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HX~
HZ~
H~9
K-O
MVM
NEJ
R2-
RIG
SBG
SEW
SIN
UQL
VH1
WUQ
X7M
XJT
XOL
Y6R
YYP
ZGI
ZKB
~KM
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
VQA
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c480t-b9763fc244adbbda7387c094ab95e56c43aaa7e5039efc95a16afbde31b4f9813
IEDL.DBID .~1
ISSN 0022-2836
1089-8638
IngestDate Thu Aug 21 18:38:31 EDT 2025
Thu Jul 10 18:18:57 EDT 2025
Mon Jul 21 11:03:03 EDT 2025
Wed Feb 19 02:23:55 EST 2025
Tue Jul 01 03:50:36 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Sun Apr 06 06:56:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords acidic phospholipid
tRNA–protein interaction
virus assembly
highly basic region
lipid-protein interaction
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-b9763fc244adbbda7387c094ab95e56c43aaa7e5039efc95a16afbde31b4f9813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8752508
PMID 34883117
PQID 2608535964
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8752508
proquest_miscellaneous_2648834333
proquest_miscellaneous_2608535964
pubmed_primary_34883117
crossref_citationtrail_10_1016_j_jmb_2021_167390
crossref_primary_10_1016_j_jmb_2021_167390
elsevier_sciencedirect_doi_10_1016_j_jmb_2021_167390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-30
PublicationDateYYYYMMDD 2022-01-30
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-30
  day: 30
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of molecular biology
PublicationTitleAlternate J Mol Biol
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Barros, Heinrich, Datta, Rein, Karageorgos, Nanda, Lösche (b0030) 2016; 90
Lochrie, Waugh, Pratt, Clever, Parslow, Polisky (b0175) 1997; 25
Alfadhli, Huseby, Kapit, Colman, Barklis (b0010) 2007; 81
Olety, Veatch, Ono (b0215) 2015; 89
Purohit, Dupont, Stevenson, Green (b0250) 2001; 7
Charlier, Louet, Chaloin, Fuchs, Martinez, Muriaux, Floquet (b0055) 2014; 106
Spearman, Horton, Ratner, Kuli-Zade (b0305) 1997; 71
Chukkapalli, Hogue, Boyko, Hu, Ono (b0060) 2008; 82
functions for simulating liquid water
Kutluay, Zang, Blanco-Melo, Powell, Jannain, Errando, Bieniasz (b0170) 2014; 159
Tran, Lalonde, Sly, Conboy (b0330) 2019; 123
Freed (b0100) 2015; 13
Chukkapalli, Oh, Ono (b0070) 2010; 107
Paillart, Göttlinger (b0235) 1999; 73
Miller, Yildiz, Lo, Wang, D'Souza (b0190) 2014; 515
Bou-Nader, Muecksch, Brown, Gordon, York, Peng, Zhang (b0035) 2021; 29
Jorgensen, W., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential
Thornhill, Olety, Ono (b0320) 2019; 93
Case, Cheatham, Darden, Gohlke, Luo, Merz, Woods (b0050) 2005; 26
Gaines, Tkacik, Rivera-Oven, Somani, Achimovich, Alabi, Summers (b0105) 2018; 430
Dalton, Ako-Adjei, Murray, Murray, Vogt (b0080) 2007; 81
Pelham, Jackson (b0245) 1976; 67
Dick, Kamynina, Vogt (b0085) 2013; 87
2886–2902.
,
Gross, Hohenberg, Kräusslich (b0115) 1997; 249
.
Koma, Kotani, Miyakawa, Ryo, Yokoyama, Doi, Nomaguchi (b0165) 2019; 93
Mercredi, Bucca, Loeliger, Gaines, Mehta, Bhargava, Summers (b0185) 2016; 428
Ramalingam, Duclair, Datta, Ellington, Rein, Prasad (b0260) 2011; 85
Gerber, Müller (b0110) 1995; 9
Inlora, Collins, Trubin, Chung, Ono (b0150) 2014; 5
Scarlata, Ehrlich, Carter (b0290) 1998; 277
Alfadhli, Barklis, Barklis (b0005) 2009; 387
Shiba, Stello, Motegi, Noda, Musier-Forsyth, Schimmel (b0295) 1997; 272
Pak, Grime, Sengupta, Chen, Durumeric, Srivastava, Voth (b0240) 2017; 114
Gui, Gupta, Xu, Zandi, Gill, Huang, Mohideen (b0120) 2015; 41
Hearps, Wagstaff, Piller, Jans (b0125) 2008; 47
Shkriabai, Datta, Zhao, Hess, Rein, Kvaratskhelia (b0300) 2006; 45
Stehlin, Burke, Yang, Liu, Shiba, Musier-Forsyth (b0310) 1998; 37
cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
Alfadhli, McNett, Tsagli, Bächinger, Peyton, Barklis (b0015) 2011; 410
Tang, Loeliger, Luncsford, Kinde, Beckett, Summers (b0315) 2004; 101
Chukkapalli, Inlora, Todd, Ono (b0065) 2013; 87
Carlson, Bai, Keane, Doudna, Hurley (b0040) 2016; 5
Maier, Martinez, Kasavajhala, Wickstrom, Hauser, Simmerling (b0180) 2015; 11
Ryckaert, J., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the
Zgarbová, M., Otyepka, M., Sponer, J., Mládek, A., Banáš, P., Cheatham, T. E., & Jurečka, P. (2011). Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles.
Cimarelli, Luban (b0075) 1999; 73
Hermida-Matsumoto, Resh (b0130) 1999; 73
Inlora, Chukkapalli, Derse, Ono (b0145) 2011; 85
Saad, Loeliger, Luncsford, Liriano, Tai, Kim, Summers (b0275) 2007; 366
Hill, Worthylake, Bancroft, Christensen, Sundquist (b0140) 1996; 93
Yuan, Yu, Lee, Essex (b0340) 1993; 67
Alfadhli, Still, Barklis (b0020) 2009; 83
Pérez, Marchán, Svozil, Sponer, Cheatham, Laughton, Orozco (b0255) 2007; 92
327–341.
Zhou, Resh (b0350) 1996; 70
Murphy, Samal, Vlach, Mas, Prevelige, Saad (b0205) 2019; 294
Saad, Miller, Tai, Kim, Ghanam, Summers (b0280) 2006; 103
Hermida-Matsumoto, Resh (b0135) 2000; 74
Ono, Ablan, Lockett, Nagashima, Freed (b0220) 2004; 101
Todd, Duchon, Inlora, Olson, Musier-Forsyth, Ono (b0325) 2017; 23
Wildman, Crippen (b0335) 1999; 39
Dick, Vogt (b0090) 2014; 5
Monde, Chukkapalli, Ono (b0200) 2011; 85
Case, Betz, Cerutti, Cheatham, Darden, Duke, Kollman (b0045) 2016
Jones, Datta, Rein, Rouzina, Musier-Forsyth (b0155) 2011; 85
Molecular Operating Environment (MOE) (2020). (Version 2019.01) Chemical Computing Group ULC.
Ono, Freed (b0225) 1999; 73
Murray, Li, Wang, Tang, Honig, Murray (b0210) 2005; 13
Anraku, Fukuda, Takamune, Misumi, Okamoto, Otsuka, Fujita (b0025) 2010; 49
Rye-McCurdy, Rouzina, Musier-Forsyth (b0270) 2015; 1259
Ehrlich, Fong, Scarlata, Zybarth, Carter (b0095) 1996; 35
Ono, Orenstein, Freed (b0230) 2000; 74
Sarni, Biswas, Liu, Olson, Kitzrow, Rein, Musier-Forsyth (b0285) 2020; 295
926–935.
10.1016/j.jmb.2021.167390_b0265
Gross (10.1016/j.jmb.2021.167390_b0115) 1997; 249
Thornhill (10.1016/j.jmb.2021.167390_b0320) 2019; 93
Carlson (10.1016/j.jmb.2021.167390_b0040) 2016; 5
Ono (10.1016/j.jmb.2021.167390_b0230) 2000; 74
Yuan (10.1016/j.jmb.2021.167390_b0340) 1993; 67
Miller (10.1016/j.jmb.2021.167390_b0190) 2014; 515
Ramalingam (10.1016/j.jmb.2021.167390_b0260) 2011; 85
Barros (10.1016/j.jmb.2021.167390_b0030) 2016; 90
Paillart (10.1016/j.jmb.2021.167390_b0235) 1999; 73
Alfadhli (10.1016/j.jmb.2021.167390_b0010) 2007; 81
Mercredi (10.1016/j.jmb.2021.167390_b0185) 2016; 428
Saad (10.1016/j.jmb.2021.167390_b0275) 2007; 366
Rye-McCurdy (10.1016/j.jmb.2021.167390_b0270) 2015; 1259
Koma (10.1016/j.jmb.2021.167390_b0165) 2019; 93
Cimarelli (10.1016/j.jmb.2021.167390_b0075) 1999; 73
Freed (10.1016/j.jmb.2021.167390_b0100) 2015; 13
Ono (10.1016/j.jmb.2021.167390_b0225) 1999; 73
Ehrlich (10.1016/j.jmb.2021.167390_b0095) 1996; 35
Saad (10.1016/j.jmb.2021.167390_b0280) 2006; 103
Inlora (10.1016/j.jmb.2021.167390_b0145) 2011; 85
Inlora (10.1016/j.jmb.2021.167390_b0150) 2014; 5
Bou-Nader (10.1016/j.jmb.2021.167390_b0035) 2021; 29
Chukkapalli (10.1016/j.jmb.2021.167390_b0070) 2010; 107
Case (10.1016/j.jmb.2021.167390_b0045) 2016
Pak (10.1016/j.jmb.2021.167390_b0240) 2017; 114
Olety (10.1016/j.jmb.2021.167390_b0215) 2015; 89
Jones (10.1016/j.jmb.2021.167390_b0155) 2011; 85
Alfadhli (10.1016/j.jmb.2021.167390_b0020) 2009; 83
Sarni (10.1016/j.jmb.2021.167390_b0285) 2020; 295
Murray (10.1016/j.jmb.2021.167390_b0210) 2005; 13
Case (10.1016/j.jmb.2021.167390_b0050) 2005; 26
Murphy (10.1016/j.jmb.2021.167390_b0205) 2019; 294
Kutluay (10.1016/j.jmb.2021.167390_b0170) 2014; 159
Chukkapalli (10.1016/j.jmb.2021.167390_b0060) 2008; 82
10.1016/j.jmb.2021.167390_b0160
Hearps (10.1016/j.jmb.2021.167390_b0125) 2008; 47
Shiba (10.1016/j.jmb.2021.167390_b0295) 1997; 272
Maier (10.1016/j.jmb.2021.167390_b0180) 2015; 11
Dick (10.1016/j.jmb.2021.167390_b0090) 2014; 5
Alfadhli (10.1016/j.jmb.2021.167390_b0005) 2009; 387
Chukkapalli (10.1016/j.jmb.2021.167390_b0065) 2013; 87
Wildman (10.1016/j.jmb.2021.167390_b0335) 1999; 39
Spearman (10.1016/j.jmb.2021.167390_b0305) 1997; 71
Alfadhli (10.1016/j.jmb.2021.167390_b0015) 2011; 410
Stehlin (10.1016/j.jmb.2021.167390_b0310) 1998; 37
Zhou (10.1016/j.jmb.2021.167390_b0350) 1996; 70
Hermida-Matsumoto (10.1016/j.jmb.2021.167390_b0130) 1999; 73
Lochrie (10.1016/j.jmb.2021.167390_b0175) 1997; 25
Gerber (10.1016/j.jmb.2021.167390_b0110) 1995; 9
10.1016/j.jmb.2021.167390_b0195
Hermida-Matsumoto (10.1016/j.jmb.2021.167390_b0135) 2000; 74
Dalton (10.1016/j.jmb.2021.167390_b0080) 2007; 81
Monde (10.1016/j.jmb.2021.167390_b0200) 2011; 85
Gui (10.1016/j.jmb.2021.167390_b0120) 2015; 41
Ono (10.1016/j.jmb.2021.167390_b0220) 2004; 101
Hill (10.1016/j.jmb.2021.167390_b0140) 1996; 93
Pérez (10.1016/j.jmb.2021.167390_b0255) 2007; 92
Charlier (10.1016/j.jmb.2021.167390_b0055) 2014; 106
Todd (10.1016/j.jmb.2021.167390_b0325) 2017; 23
Anraku (10.1016/j.jmb.2021.167390_b0025) 2010; 49
Tran (10.1016/j.jmb.2021.167390_b0330) 2019; 123
Gaines (10.1016/j.jmb.2021.167390_b0105) 2018; 430
Purohit (10.1016/j.jmb.2021.167390_b0250) 2001; 7
Tang (10.1016/j.jmb.2021.167390_b0315) 2004; 101
Shkriabai (10.1016/j.jmb.2021.167390_b0300) 2006; 45
Pelham (10.1016/j.jmb.2021.167390_b0245) 1976; 67
Scarlata (10.1016/j.jmb.2021.167390_b0290) 1998; 277
Dick (10.1016/j.jmb.2021.167390_b0085) 2013; 87
10.1016/j.jmb.2021.167390_b0345
References_xml – volume: 159
  start-page: 1096
  year: 2014
  end-page: 1109
  ident: b0170
  article-title: Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis
  publication-title: Cell
– volume: 83
  start-page: 12196
  year: 2009
  end-page: 12203
  ident: b0020
  article-title: Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids
  publication-title: J. Virol.
– reference: , 2886–2902.
– volume: 74
  start-page: 2855
  year: 2000
  end-page: 2866
  ident: b0230
  article-title: Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly
  publication-title: J. Virol.
– volume: 35
  start-page: 3933
  year: 1996
  end-page: 3943
  ident: b0095
  article-title: Partitioning of HIV-1 Gag and Gag-related proteins to membranes
  publication-title: Biochemistry
– volume: 272
  start-page: 22809
  year: 1997
  end-page: 22816
  ident: b0295
  article-title: Human lysyl-tRNA synthetase accepts nucleotide 73 variants and rescues Escherichia coli double-defective mutant
  publication-title: J. Biol. Chem.
– volume: 515
  start-page: 591
  year: 2014
  end-page: 595
  ident: b0190
  article-title: A structure-based mechanism for tRNA and retroviral RNA remodelling during primer annealing
  publication-title: Nature
– volume: 106
  start-page: 577
  year: 2014
  end-page: 585
  ident: b0055
  article-title: Coarse-grained simulations of the HIV-1 matrix protein anchoring: revisiting its assembly on membrane domains
  publication-title: Biophys. J.
– reference: , 926–935.
– volume: 5
  year: 2014
  ident: b0150
  article-title: Membrane binding and subcellular localization of retroviral Gag proteins are differentially regulated by MA interactions with phosphatidylinositol-(4,5)-bisphosphate and RNA
  publication-title: mBio
– volume: 366
  start-page: 574
  year: 2007
  end-page: 585
  ident: b0275
  article-title: Point mutations in the HIV-1 matrix protein turn off the myristyl switch
  publication-title: J. Mol. Biol.
– volume: 90
  start-page: 4544
  year: 2016
  end-page: 4555
  ident: b0030
  article-title: Membrane binding of HIV-1 matrix protein: dependence on bilayer composition and protein lipidation
  publication-title: J. Virol.
– volume: 277
  start-page: 161
  year: 1998
  end-page: 169
  ident: b0290
  article-title: Membrane-induced alterations in HIV-1 Gag and matrix protein-protein interactions
  publication-title: J. Mol. Biol.
– volume: 430
  start-page: 2113
  year: 2018
  end-page: 2127
  ident: b0105
  article-title: HIV-1 Matrix Protein Interactions with tRNA: Implications for Membrane Targeting
  publication-title: J. Mol. Biol.
– volume: 23
  start-page: 395
  year: 2017
  end-page: 405
  ident: b0325
  article-title: Inhibition of HIV-1 Gag-membrane interactions by specific RNAs
  publication-title: RNA
– reference: Jorgensen, W., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential
– volume: 87
  start-page: 13598
  year: 2013
  end-page: 13608
  ident: b0085
  article-title: Effect of multimerization on membrane association of Rous sarcoma virus and HIV-1 matrix domain proteins
  publication-title: J. Virol.
– volume: 41
  start-page: 135
  year: 2015
  end-page: 149
  ident: b0120
  article-title: A novel minimal in vitro system for analyzing HIV-1 Gag-mediated budding
  publication-title: J. Biol. Phys.
– volume: 89
  start-page: 7861
  year: 2015
  end-page: 7873
  ident: b0215
  article-title: Phosphatidylinositol-(4,5)-bisphosphate acyl chains differentiate membrane binding of HIV-1 gag from that of the phospholipase Cδ1 pleckstrin homology domain
  publication-title: J. Virol.
– volume: 67
  start-page: 6387
  year: 1993
  end-page: 6394
  ident: b0340
  article-title: Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor
  publication-title: J. Virol.
– volume: 123
  start-page: 4673
  year: 2019
  end-page: 4687
  ident: b0330
  article-title: Mechanistic investigation of HIV-1 gag association with lipid membranes
  publication-title: J. Phys. Chem. B
– volume: 13
  start-page: 1521
  year: 2005
  end-page: 1531
  ident: b0210
  article-title: Retroviral matrix domains share electrostatic homology: models for membrane binding function throughout the viral life cycle
  publication-title: Structure
– volume: 93
  year: 2019
  ident: b0165
  article-title: Allosteric Regulation of HIV-1 Capsid Structure for Gag Assembly, Virion Production, and Viral Infectivity by a Disordered Interdomain Linker
  publication-title: J. Virol.
– volume: 70
  start-page: 8540
  year: 1996
  end-page: 8548
  ident: b0350
  article-title: Differential membrane binding of the human immunodeficiency virus type 1 matrix protein
  publication-title: J. Virol.
– volume: 81
  start-page: 1472
  year: 2007
  end-page: 1478
  ident: b0010
  article-title: Human immunodeficiency virus type 1 matrix protein assembles on membranes as a hexamer
  publication-title: J. Virol.
– volume: 67
  start-page: 247
  year: 1976
  end-page: 256
  ident: b0245
  article-title: An efficient mRNA-dependent translation system from reticulocyte lysates
  publication-title: Eur. J. Biochem.
– volume: 107
  start-page: 1600
  year: 2010
  end-page: 1605
  ident: b0070
  article-title: Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 93
  start-page: 3099
  year: 1996
  end-page: 3104
  ident: b0140
  article-title: Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 114
  start-page: E10056
  year: 2017
  end-page: E10065
  ident: b0240
  article-title: Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 71
  start-page: 6582
  year: 1997
  end-page: 6592
  ident: b0305
  article-title: Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism
  publication-title: J. Virol.
– year: 2016
  ident: b0045
  article-title: Amber 16
– volume: 87
  start-page: 7155
  year: 2013
  end-page: 7159
  ident: b0065
  article-title: Evidence in support of RNA-mediated inhibition of phosphatidylserine-dependent HIV-1 Gag membrane binding in cells
  publication-title: J. Virol.
– volume: 82
  start-page: 2405
  year: 2008
  end-page: 2417
  ident: b0060
  article-title: Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding
  publication-title: J. Virol.
– volume: 93
  year: 2019
  ident: b0320
  article-title: Relationships between MA-RNA binding in cells and suppression of HIV-1 Gag mislocalization to intracellular membranes
  publication-title: J. Virol.
– volume: 387
  start-page: 466
  year: 2009
  end-page: 472
  ident: b0005
  article-title: HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate
  publication-title: Virology
– volume: 73
  start-page: 1902
  year: 1999
  end-page: 1908
  ident: b0130
  article-title: Human immunodeficiency virus type 1 protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA
  publication-title: J. Virol.
– reference: Molecular Operating Environment (MOE) (2020). (Version 2019.01) Chemical Computing Group ULC.
– volume: 1259
  start-page: 385
  year: 2015
  end-page: 402
  ident: b0270
  article-title: Fluorescence anisotropy-based salt-titration approach to characterize protein-nucleic acid interactions
  publication-title: Methods Mol. Biol.
– volume: 81
  start-page: 6434
  year: 2007
  end-page: 6445
  ident: b0080
  article-title: Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain
  publication-title: J. Virol.
– volume: 294
  start-page: 18600
  year: 2019
  end-page: 18612
  ident: b0205
  article-title: Structural and biophysical characterizations of HIV-1 matrix trimer binding to lipid nanodiscs shed light on virus assembly
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 2902
  year: 1997
  end-page: 2910
  ident: b0175
  article-title: In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein
  publication-title: Nucleic Acids Res.
– volume: 101
  start-page: 14889
  year: 2004
  end-page: 14894
  ident: b0220
  article-title: Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 37
  start-page: 8605
  year: 1998
  end-page: 8613
  ident: b0310
  article-title: Species-specific differences in the operational RNA code for aminoacylation of tRNAPro
  publication-title: Biochemistry
– volume: 11
  start-page: 3696
  year: 2015
  end-page: 3713
  ident: b0180
  article-title: ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
  publication-title: J. Chem. Theory Comput.
– volume: 73
  start-page: 5388
  year: 1999
  end-page: 5401
  ident: b0075
  article-title: Translation elongation factor 1-alpha interacts specifically with the human immunodeficiency virus type 1 Gag polyprotein
  publication-title: J. Virol.
– volume: 103
  start-page: 11364
  year: 2006
  end-page: 11369
  ident: b0280
  article-title: Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 295
  start-page: 14391
  year: 2020
  end-page: 14401
  ident: b0285
  article-title: HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal
  publication-title: J. Biol. Chem.
– volume: 85
  start-page: 3802
  year: 2011
  end-page: 3810
  ident: b0145
  article-title: Gag localization and virus-like particle release mediated by the matrix domain of human T-lymphotropic virus type 1 Gag are less dependent on phosphatidylinositol-(4,5)-bisphosphate than those mediated by the matrix domain of HIV-1 Gag
  publication-title: J. Virol.
– volume: 5
  start-page: 187
  year: 2014
  ident: b0090
  article-title: Membrane interaction of retroviral Gag proteins
  publication-title: Front. Microbiol.
– reference: , 327–341.
– volume: 92
  start-page: 3817
  year: 2007
  end-page: 3829
  ident: b0255
  article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers
  publication-title: Biophys. J.
– volume: 26
  start-page: 1668
  year: 2005
  end-page: 1688
  ident: b0050
  article-title: The Amber biomolecular simulation programs
  publication-title: J. Comput. Chem.
– reference: ,
– volume: 410
  start-page: 653
  year: 2011
  end-page: 666
  ident: b0015
  article-title: HIV-1 matrix protein binding to RNA
  publication-title: J. Mol. Biol.
– volume: 428
  start-page: 1637
  year: 2016
  end-page: 1655
  ident: b0185
  article-title: Structural and molecular determinants of membrane binding by the HIV-1 matrix protein
  publication-title: J. Mol. Biol.
– volume: 7
  start-page: 576
  year: 2001
  end-page: 584
  ident: b0250
  article-title: Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection
  publication-title: RNA
– reference: Ryckaert, J., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the
– volume: 13
  start-page: 484
  year: 2015
  end-page: 496
  ident: b0100
  article-title: HIV-1 assembly, release and maturation
  publication-title: Nature Rev. Microbiol.
– volume: 249
  start-page: 592
  year: 1997
  end-page: 600
  ident: b0115
  article-title: In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus
  publication-title: Eur. J. Biochem.
– volume: 73
  start-page: 4136
  year: 1999
  end-page: 4144
  ident: b0225
  article-title: Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus
  publication-title: J. Virol.
– volume: 74
  start-page: 8670
  year: 2000
  end-page: 8679
  ident: b0135
  article-title: Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging
  publication-title: J. Virol.
– volume: 101
  start-page: 517
  year: 2004
  end-page: 522
  ident: b0315
  article-title: Entropic switch regulates myristate exposure in the HIV-1 matrix protein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 45
  start-page: 4077
  year: 2006
  end-page: 4083
  ident: b0300
  article-title: Interactions of HIV-1 Gag with assembly cofactors
  publication-title: Biochemistry
– volume: 85
  start-page: 1594
  year: 2011
  end-page: 1603
  ident: b0155
  article-title: Matrix domain modulates HIV-1 Gag's nucleic acid chaperone activity via inositol phosphate binding
  publication-title: J. Virol.
– reference: functions for simulating liquid water,
– volume: 85
  start-page: 305
  year: 2011
  end-page: 314
  ident: b0260
  article-title: RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production
  publication-title: J. Virol.
– volume: 47
  start-page: 2199
  year: 2008
  end-page: 2210
  ident: b0125
  article-title: The N-terminal basic domain of the HIV-1 matrix protein does not contain a conventional nuclear localization sequence but is required for DNA binding and protein self-association
  publication-title: Biochemistry
– volume: 39
  start-page: 868
  year: 1999
  end-page: 873
  ident: b0335
  article-title: Prediction of physicochemical parameters by atomic contributions
  publication-title: J. Chem. Inf. Comput. Sci.
– reference: Zgarbová, M., Otyepka, M., Sponer, J., Mládek, A., Banáš, P., Cheatham, T. E., & Jurečka, P. (2011). Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles.
– reference: .
– volume: 85
  start-page: 3584
  year: 2011
  end-page: 3595
  ident: b0200
  article-title: Assembly and replication of HIV-1 in T cells with low levels of phosphatidylinositol-(4,5)-bisphosphate
  publication-title: J. Virol.
– volume: 9
  start-page: 251
  year: 1995
  end-page: 268
  ident: b0110
  article-title: MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry
  publication-title: J. Comput. Aided Mol. Des.
– reference: cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
– volume: 29
  start-page: 1421
  year: 2021
  end-page: 1436.e1427
  ident: b0035
  article-title: HIV-1 matrix-tRNA complex structure reveals basis for host control of Gag localization
  publication-title: Cell Host Microbe
– volume: 73
  start-page: 2604
  year: 1999
  end-page: 2612
  ident: b0235
  article-title: Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of gag membrane targeting
  publication-title: J. Virol.
– volume: 5
  year: 2016
  ident: b0040
  article-title: Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies
  publication-title: Elife
– volume: 49
  start-page: 5109
  year: 2010
  end-page: 5116
  ident: b0025
  article-title: Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance
  publication-title: Biochemistry
– volume: 82
  start-page: 2405
  year: 2008
  ident: 10.1016/j.jmb.2021.167390_b0060
  article-title: Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding
  publication-title: J. Virol.
  doi: 10.1128/JVI.01614-07
– volume: 71
  start-page: 6582
  year: 1997
  ident: 10.1016/j.jmb.2021.167390_b0305
  article-title: Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism
  publication-title: J. Virol.
  doi: 10.1128/jvi.71.9.6582-6592.1997
– year: 2016
  ident: 10.1016/j.jmb.2021.167390_b0045
– volume: 83
  start-page: 12196
  year: 2009
  ident: 10.1016/j.jmb.2021.167390_b0020
  article-title: Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids
  publication-title: J. Virol.
  doi: 10.1128/JVI.01197-09
– volume: 103
  start-page: 11364
  year: 2006
  ident: 10.1016/j.jmb.2021.167390_b0280
  article-title: Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602818103
– volume: 430
  start-page: 2113
  year: 2018
  ident: 10.1016/j.jmb.2021.167390_b0105
  article-title: HIV-1 Matrix Protein Interactions with tRNA: Implications for Membrane Targeting
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.04.042
– volume: 249
  start-page: 592
  year: 1997
  ident: 10.1016/j.jmb.2021.167390_b0115
  article-title: In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1997.t01-1-00592.x
– volume: 73
  start-page: 4136
  year: 1999
  ident: 10.1016/j.jmb.2021.167390_b0225
  article-title: Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.5.4136-4144.1999
– volume: 9
  start-page: 251
  year: 1995
  ident: 10.1016/j.jmb.2021.167390_b0110
  article-title: MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/BF00124456
– volume: 74
  start-page: 2855
  year: 2000
  ident: 10.1016/j.jmb.2021.167390_b0230
  article-title: Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.6.2855-2866.2000
– volume: 35
  start-page: 3933
  year: 1996
  ident: 10.1016/j.jmb.2021.167390_b0095
  article-title: Partitioning of HIV-1 Gag and Gag-related proteins to membranes
  publication-title: Biochemistry
  doi: 10.1021/bi952337x
– ident: 10.1016/j.jmb.2021.167390_b0345
  doi: 10.1021/ct200162x
– volume: 25
  start-page: 2902
  year: 1997
  ident: 10.1016/j.jmb.2021.167390_b0175
  article-title: In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.14.2902
– volume: 5
  start-page: 187
  year: 2014
  ident: 10.1016/j.jmb.2021.167390_b0090
  article-title: Membrane interaction of retroviral Gag proteins
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2014.00187
– volume: 5
  year: 2016
  ident: 10.1016/j.jmb.2021.167390_b0040
  article-title: Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies
  publication-title: Elife
  doi: 10.7554/eLife.14663
– volume: 85
  start-page: 305
  year: 2011
  ident: 10.1016/j.jmb.2021.167390_b0260
  article-title: RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production
  publication-title: J. Virol.
  doi: 10.1128/JVI.02626-09
– volume: 101
  start-page: 517
  year: 2004
  ident: 10.1016/j.jmb.2021.167390_b0315
  article-title: Entropic switch regulates myristate exposure in the HIV-1 matrix protein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0305665101
– volume: 81
  start-page: 6434
  year: 2007
  ident: 10.1016/j.jmb.2021.167390_b0080
  article-title: Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain
  publication-title: J. Virol.
  doi: 10.1128/JVI.02757-06
– volume: 37
  start-page: 8605
  year: 1998
  ident: 10.1016/j.jmb.2021.167390_b0310
  article-title: Species-specific differences in the operational RNA code for aminoacylation of tRNAPro
  publication-title: Biochemistry
  doi: 10.1021/bi980364s
– volume: 73
  start-page: 1902
  year: 1999
  ident: 10.1016/j.jmb.2021.167390_b0130
  article-title: Human immunodeficiency virus type 1 protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.3.1902-1908.1999
– volume: 89
  start-page: 7861
  year: 2015
  ident: 10.1016/j.jmb.2021.167390_b0215
  article-title: Phosphatidylinositol-(4,5)-bisphosphate acyl chains differentiate membrane binding of HIV-1 gag from that of the phospholipase Cδ1 pleckstrin homology domain
  publication-title: J. Virol.
  doi: 10.1128/JVI.00794-15
– volume: 515
  start-page: 591
  year: 2014
  ident: 10.1016/j.jmb.2021.167390_b0190
  article-title: A structure-based mechanism for tRNA and retroviral RNA remodelling during primer annealing
  publication-title: Nature
  doi: 10.1038/nature13709
– volume: 85
  start-page: 3802
  year: 2011
  ident: 10.1016/j.jmb.2021.167390_b0145
  article-title: Gag localization and virus-like particle release mediated by the matrix domain of human T-lymphotropic virus type 1 Gag are less dependent on phosphatidylinositol-(4,5)-bisphosphate than those mediated by the matrix domain of HIV-1 Gag
  publication-title: J. Virol.
  doi: 10.1128/JVI.02383-10
– volume: 87
  start-page: 7155
  year: 2013
  ident: 10.1016/j.jmb.2021.167390_b0065
  article-title: Evidence in support of RNA-mediated inhibition of phosphatidylserine-dependent HIV-1 Gag membrane binding in cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.00075-13
– volume: 85
  start-page: 3584
  year: 2011
  ident: 10.1016/j.jmb.2021.167390_b0200
  article-title: Assembly and replication of HIV-1 in T cells with low levels of phosphatidylinositol-(4,5)-bisphosphate
  publication-title: J. Virol.
  doi: 10.1128/JVI.02266-10
– volume: 7
  start-page: 576
  year: 2001
  ident: 10.1016/j.jmb.2021.167390_b0250
  article-title: Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection
  publication-title: RNA
  doi: 10.1017/S1355838201002023
– volume: 123
  start-page: 4673
  year: 2019
  ident: 10.1016/j.jmb.2021.167390_b0330
  article-title: Mechanistic investigation of HIV-1 gag association with lipid membranes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b02655
– volume: 23
  start-page: 395
  year: 2017
  ident: 10.1016/j.jmb.2021.167390_b0325
  article-title: Inhibition of HIV-1 Gag-membrane interactions by specific RNAs
  publication-title: RNA
  doi: 10.1261/rna.058453.116
– volume: 1259
  start-page: 385
  year: 2015
  ident: 10.1016/j.jmb.2021.167390_b0270
  article-title: Fluorescence anisotropy-based salt-titration approach to characterize protein-nucleic acid interactions
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-2214-7_23
– volume: 39
  start-page: 868
  year: 1999
  ident: 10.1016/j.jmb.2021.167390_b0335
  article-title: Prediction of physicochemical parameters by atomic contributions
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci990307l
– volume: 87
  start-page: 13598
  year: 2013
  ident: 10.1016/j.jmb.2021.167390_b0085
  article-title: Effect of multimerization on membrane association of Rous sarcoma virus and HIV-1 matrix domain proteins
  publication-title: J. Virol.
  doi: 10.1128/JVI.01659-13
– volume: 159
  start-page: 1096
  year: 2014
  ident: 10.1016/j.jmb.2021.167390_b0170
  article-title: Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.057
– volume: 67
  start-page: 247
  year: 1976
  ident: 10.1016/j.jmb.2021.167390_b0245
  article-title: An efficient mRNA-dependent translation system from reticulocyte lysates
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1976.tb10656.x
– volume: 277
  start-page: 161
  year: 1998
  ident: 10.1016/j.jmb.2021.167390_b0290
  article-title: Membrane-induced alterations in HIV-1 Gag and matrix protein-protein interactions
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1615
– volume: 67
  start-page: 6387
  year: 1993
  ident: 10.1016/j.jmb.2021.167390_b0340
  article-title: Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor
  publication-title: J. Virol.
  doi: 10.1128/jvi.67.11.6387-6394.1993
– volume: 114
  start-page: E10056
  year: 2017
  ident: 10.1016/j.jmb.2021.167390_b0240
  article-title: Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1706600114
– volume: 92
  start-page: 3817
  year: 2007
  ident: 10.1016/j.jmb.2021.167390_b0255
  article-title: Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.097782
– volume: 29
  start-page: 1421
  year: 2021
  ident: 10.1016/j.jmb.2021.167390_b0035
  article-title: HIV-1 matrix-tRNA complex structure reveals basis for host control of Gag localization
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.07.006
– volume: 93
  start-page: 3099
  year: 1996
  ident: 10.1016/j.jmb.2021.167390_b0140
  article-title: Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.7.3099
– volume: 387
  start-page: 466
  year: 2009
  ident: 10.1016/j.jmb.2021.167390_b0005
  article-title: HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate
  publication-title: Virology
  doi: 10.1016/j.virol.2009.02.048
– volume: 90
  start-page: 4544
  year: 2016
  ident: 10.1016/j.jmb.2021.167390_b0030
  article-title: Membrane binding of HIV-1 matrix protein: dependence on bilayer composition and protein lipidation
  publication-title: J. Virol.
  doi: 10.1128/JVI.02820-15
– volume: 70
  start-page: 8540
  year: 1996
  ident: 10.1016/j.jmb.2021.167390_b0350
  article-title: Differential membrane binding of the human immunodeficiency virus type 1 matrix protein
  publication-title: J. Virol.
  doi: 10.1128/jvi.70.12.8540-8548.1996
– volume: 11
  start-page: 3696
  year: 2015
  ident: 10.1016/j.jmb.2021.167390_b0180
  article-title: ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00255
– volume: 74
  start-page: 8670
  year: 2000
  ident: 10.1016/j.jmb.2021.167390_b0135
  article-title: Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.18.8670-8679.2000
– volume: 85
  start-page: 1594
  year: 2011
  ident: 10.1016/j.jmb.2021.167390_b0155
  article-title: Matrix domain modulates HIV-1 Gag's nucleic acid chaperone activity via inositol phosphate binding
  publication-title: J. Virol.
  doi: 10.1128/JVI.01809-10
– volume: 294
  start-page: 18600
  year: 2019
  ident: 10.1016/j.jmb.2021.167390_b0205
  article-title: Structural and biophysical characterizations of HIV-1 matrix trimer binding to lipid nanodiscs shed light on virus assembly
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.010997
– volume: 45
  start-page: 4077
  year: 2006
  ident: 10.1016/j.jmb.2021.167390_b0300
  article-title: Interactions of HIV-1 Gag with assembly cofactors
  publication-title: Biochemistry
  doi: 10.1021/bi052308e
– volume: 13
  start-page: 1521
  year: 2005
  ident: 10.1016/j.jmb.2021.167390_b0210
  article-title: Retroviral matrix domains share electrostatic homology: models for membrane binding function throughout the viral life cycle
  publication-title: Structure
  doi: 10.1016/j.str.2005.07.010
– ident: 10.1016/j.jmb.2021.167390_b0195
– volume: 101
  start-page: 14889
  year: 2004
  ident: 10.1016/j.jmb.2021.167390_b0220
  article-title: Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0405596101
– ident: 10.1016/j.jmb.2021.167390_b0160
  doi: 10.1063/1.445869
– volume: 428
  start-page: 1637
  year: 2016
  ident: 10.1016/j.jmb.2021.167390_b0185
  article-title: Structural and molecular determinants of membrane binding by the HIV-1 matrix protein
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.03.005
– volume: 26
  start-page: 1668
  year: 2005
  ident: 10.1016/j.jmb.2021.167390_b0050
  article-title: The Amber biomolecular simulation programs
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20290
– volume: 93
  year: 2019
  ident: 10.1016/j.jmb.2021.167390_b0320
  article-title: Relationships between MA-RNA binding in cells and suppression of HIV-1 Gag mislocalization to intracellular membranes
  publication-title: J. Virol.
  doi: 10.1128/JVI.00756-19
– volume: 410
  start-page: 653
  year: 2011
  ident: 10.1016/j.jmb.2021.167390_b0015
  article-title: HIV-1 matrix protein binding to RNA
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.04.063
– ident: 10.1016/j.jmb.2021.167390_b0265
  doi: 10.1016/0021-9991(77)90098-5
– volume: 106
  start-page: 577
  year: 2014
  ident: 10.1016/j.jmb.2021.167390_b0055
  article-title: Coarse-grained simulations of the HIV-1 matrix protein anchoring: revisiting its assembly on membrane domains
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.12.019
– volume: 49
  start-page: 5109
  year: 2010
  ident: 10.1016/j.jmb.2021.167390_b0025
  article-title: Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance
  publication-title: Biochemistry
  doi: 10.1021/bi9019274
– volume: 93
  year: 2019
  ident: 10.1016/j.jmb.2021.167390_b0165
  article-title: Allosteric Regulation of HIV-1 Capsid Structure for Gag Assembly, Virion Production, and Viral Infectivity by a Disordered Interdomain Linker
  publication-title: J. Virol.
  doi: 10.1128/JVI.00381-19
– volume: 81
  start-page: 1472
  year: 2007
  ident: 10.1016/j.jmb.2021.167390_b0010
  article-title: Human immunodeficiency virus type 1 matrix protein assembles on membranes as a hexamer
  publication-title: J. Virol.
  doi: 10.1128/JVI.02122-06
– volume: 73
  start-page: 5388
  year: 1999
  ident: 10.1016/j.jmb.2021.167390_b0075
  article-title: Translation elongation factor 1-alpha interacts specifically with the human immunodeficiency virus type 1 Gag polyprotein
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.7.5388-5401.1999
– volume: 41
  start-page: 135
  year: 2015
  ident: 10.1016/j.jmb.2021.167390_b0120
  article-title: A novel minimal in vitro system for analyzing HIV-1 Gag-mediated budding
  publication-title: J. Biol. Phys.
  doi: 10.1007/s10867-014-9370-z
– volume: 107
  start-page: 1600
  year: 2010
  ident: 10.1016/j.jmb.2021.167390_b0070
  article-title: Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0908661107
– volume: 5
  year: 2014
  ident: 10.1016/j.jmb.2021.167390_b0150
  article-title: Membrane binding and subcellular localization of retroviral Gag proteins are differentially regulated by MA interactions with phosphatidylinositol-(4,5)-bisphosphate and RNA
  publication-title: mBio
  doi: 10.1128/mBio.02202-14
– volume: 366
  start-page: 574
  year: 2007
  ident: 10.1016/j.jmb.2021.167390_b0275
  article-title: Point mutations in the HIV-1 matrix protein turn off the myristyl switch
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.11.068
– volume: 73
  start-page: 2604
  year: 1999
  ident: 10.1016/j.jmb.2021.167390_b0235
  article-title: Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of gag membrane targeting
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.4.2604-2612.1999
– volume: 295
  start-page: 14391
  year: 2020
  ident: 10.1016/j.jmb.2021.167390_b0285
  article-title: HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA120.014835
– volume: 272
  start-page: 22809
  year: 1997
  ident: 10.1016/j.jmb.2021.167390_b0295
  article-title: Human lysyl-tRNA synthetase accepts nucleotide 73 variants and rescues Escherichia coli double-defective mutant
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.36.22809
– volume: 13
  start-page: 484
  year: 2015
  ident: 10.1016/j.jmb.2021.167390_b0100
  article-title: HIV-1 assembly, release and maturation
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro3490
– volume: 47
  start-page: 2199
  year: 2008
  ident: 10.1016/j.jmb.2021.167390_b0125
  article-title: The N-terminal basic domain of the HIV-1 matrix protein does not contain a conventional nuclear localization sequence but is required for DNA binding and protein self-association
  publication-title: Biochemistry
  doi: 10.1021/bi701360j
SSID ssj0005348
Score 2.4303348
Snippet [Display omitted] •Features of tRNA contributing to inhibition of HIV-1 Gag membrane binding are unclear.•Membrane binding of purified MA is strongly inhibited...
Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P...
Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2...
Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P₂...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 167390
SubjectTerms acidic phospholipid
Anticodon - metabolism
Binding Sites
Cell Membrane - metabolism
gag Gene Products, Human Immunodeficiency Virus - chemistry
gag Gene Products, Human Immunodeficiency Virus - metabolism
highly basic region
HIV-1 - genetics
HIV-1 - metabolism
Humans
lipid-protein interaction
molecular biology
Molecular Docking Simulation
particles
Phosphatidylinositol 4,5-Diphosphate
Protein Interaction Domains and Motifs
RNA
RNA, Transfer - chemistry
RNA, Transfer - metabolism
RNA, Viral - genetics
testing
tRNA–protein interaction
virus assembly
Virus Assembly - physiology
Title Molecular Determinants in tRNA D-arm Required for Inhibition of HIV-1 Gag Membrane Binding
URI https://dx.doi.org/10.1016/j.jmb.2021.167390
https://www.ncbi.nlm.nih.gov/pubmed/34883117
https://www.proquest.com/docview/2608535964
https://www.proquest.com/docview/2648834333
https://pubmed.ncbi.nlm.nih.gov/PMC8752508
Volume 434
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFWovFdAHW1pkpJ4qGeLYiePjdnnsUrEHVCrUi2U7NgSxWUSXQy_97R0n8Wq3RXvgGo8l2zOZh_3NDEKfyzQpJcQFxKdcELDHnphCJiQL5e1SzzyzTbXPcT685GdX2dUaGsRcmACr7HR_q9Mbbd19OexO8_C-qkKOb7i9AAVMQyKgCGW3ORdByg_-LMA8GC9ixfBAHV82G4zX7cRAiJjSA5oLFtTy07bpf9_zXwjlgk062USvO2cS99v1bqE1V2-jjba95O9t9HIQu7m9QT_PYx9cfLSAgMFVjWcX4z4-Ivphgi9cAAa7EoMri0f1TWUaRBeeejwc_SAUn-prfO4mEGLXDn-tmpSYt-jy5Pj7YEi6vgrE8iKZEQMuCPMWDLsujSm1YIWwEOZpIzOX5ZYzrbVwWcKk81Zmmubam9IxariXBWXv0Ho9rd0Owi6VqaXUQXzueWm1tAwcRK5zm-VGpqKHkniiynZFx0PvizsV0WW3CpigAhNUy4Qe-jKfct9W3FhFzCOb1JLYKLAIq6btR5Yq4EN4I4Fjmz7-UhDegQOTyZyvogGtxzhjrIfet2IwXykLQ5TCxsWSgMwJQjnv5ZG6umnKekPkCP5o8eF5W9pFr9Ig40m4TvyI1mcPj-4T-Eszs9f8EHvoRX_0bTj-C1npEwA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8andC4IBgwyqeROCGFxbGdxMfSMVK29jBtaOJi2Y7NMtF0Gt2B_57nfJQVUA9cY1uy_Zz3Yf_e7wG8LZO4lBgXRD7hWYT22Ecml3EkAr1d4plntmH7nKXFGf98Ls63YNznwgRYZaf7W53eaOvuy363m_tXVRVyfMPtBSpgGhIBs_QObAd2KjGA7dHkqJj9Rnownvek4WFA_7jZwLwu5wajxIS-p2nGgmb-t3n62_38E0V5yywdPoD7nT9JRu2UH8KWq3fhblth8ucu7Iz7gm6P4Ou0L4VLDm6BYEhVk-XJbEQOIn09JycuYINdSdCbJZP6ojINqIssPCkmXyJKPulvZOrmGGXXjnyomqyYx3B2-PF0XERdaYXI8jxeRga9EOYt2nZdGlPqjOWZxUhPGymcSC1nWuvMiZhJ560Umqbam9IxariXOWVPYFAvavcUiEtkYil1GKJ7XlotLUMfkevUitTIJBtC3O-osh3veCh_8V31ALNLhUJQQQiqFcIQ3q2GXLWkG5s6815Mau3kKDQKm4a96UWqUA7hmQS3bXHzQ2GEhz6MkCnf1AcVH-OMsSHstcdgNVMWmijFhWdrB2TVITB6r7fU1UXD7I3BI7qk-bP_W9Jr2ClOp8fqeDI7eg73knDe43C7-AIGy-sb9xLdp6V51f0evwC6HxWx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Determinants+in+tRNA+D-arm+Required+for+Inhibition+of+HIV-1+Gag+Membrane+Binding&rft.jtitle=Journal+of+molecular+biology&rft.au=Sumner%2C+Christopher&rft.au=Kotani%2C+Osamu&rft.au=Liu%2C+Shuohui&rft.au=Musier-Forsyth%2C+Karin&rft.date=2022-01-30&rft.issn=0022-2836&rft.volume=434&rft.issue=2&rft.spage=167390&rft_id=info:doi/10.1016%2Fj.jmb.2021.167390&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmb_2021_167390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2836&client=summon