Soil-line vegetation indices for corn nitrogen content prediction
The soil-line vegetation indices for prediction of corn canopy nitrogen content were investigated. Results indicated that the vegetation indices applied were correlated with corn canopy nitrogen content and the wavelengths between 630-860 nm are suitable for nitrogen diagnosis. The second-order poly...
Saved in:
Published in | International Agrophysics Vol. 26; no. 2; pp. 103 - 108 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lublin
Versita
01.04.2012
Polish Academy of Sciences, Institute of Agrophysics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The soil-line vegetation indices for prediction of corn canopy nitrogen content were investigated. Results indicated that the vegetation indices applied were correlated with corn canopy nitrogen content and the wavelengths between 630-860 nm are suitable for nitrogen diagnosis. The second-order polynomial equation was the best model for nitrogen content prediction among different regression types. Analyses based on both predicted and measured data were carried out to compare the performance of existing vegetation indices. |
---|---|
AbstractList | The soil-line vegetation indices for prediction of corn canopy nitrogen content were investigated. Results indicated that the vegetation indices applied were correlated with corn canopy nitrogen content and the wavelengths between 630-860 nm are suitable for nitrogen diagnosis. The second-order polynomial equation was the best model for nitrogen content prediction among different regression types. Analyses based on both predicted and measured data were carried out to compare the performance of existing vegetation indices. Soil-line vegetation indices for corn nitrogen content prediction The soil-line vegetation indices for prediction of corn canopy nitrogen content were investigated. Results indicated that the vegetation indices applied were correlated with corn canopy nitrogen content and the wavelengths between 630-860 nm are suitable for nitrogen diagnosis. The second-order polynomial equation was the best model for nitrogen content prediction among different regression types. Analyses based on both predicted and measured data were carried out to compare the performance of existing vegetation indices. Soil-line vegetation indices for corn nitrogen content prediction The soil-line vegetation indices for prediction of corn canopy nitrogen content were investigated. Results indicated that the vegetation indices applied were correlated with corn canopy nitrogen content and the wavelengths between 630-860 nm are suitable for nitrogen diagnosis. The second-order polynomial equation was the best model for nitrogen content prediction among different regression types. Analyses based on both predicted and measured data were carried out to compare the performance of existing vegetation indices. |
Author | Omid, M. Ahmadi, H. Bagheri, N. Alavipanah, S. |
Author_xml | – sequence: 1 givenname: N. surname: Bagheri fullname: Bagheri, N. organization: Department of Agricultural Technology and Engineering, University of Tehran, Karaj, Iran – sequence: 2 givenname: H. surname: Ahmadi fullname: Ahmadi, H. organization: Department of Agricultural Technology and Engineering, University of Tehran, Karaj, Iran – sequence: 3 givenname: S. surname: Alavipanah fullname: Alavipanah, S. organization: Department of Geography, University of Tehran, Karaj, Iran – sequence: 4 givenname: M. surname: Omid fullname: Omid, M. organization: Department of Agricultural Technology and Engineering, University of Tehran, Karaj, Iran |
BookMark | eNp1UF1r2zAUFSOFZWl_wN4Me1Z7JdmW9DS6sC2lgdI2g70JW74K7jIpk5W2-feVcSl92X0558L5gPOJzHzwSMhnBue8lOrikUFGCoxTAFZT9YHMuQCgSvJqRubART1y_pGcDcMD5BNa10LOyeV96Hd013ssHnGLqUl98EXvu97iULgQCxuiL3yfYtiiz59P6FOxj5glo_iUnLhmN-DZKy7Irx_fN8sVXd_8vFperqktFSTayqoE55rOMl1pV4pSVW1nLQjVqUq2wB1Dqy0yVTEnaw1aso5Bi6LV0jqxIF-m3H0M_w44JPMQDtHnSsME50JpoVVWsUllYxiGiM7sY_-3iUfDwIxjmWksk8cy41hm9HydPE_NLmHscBsPx0zeFfzPy2vOQOQEOiX0Q8Lnt8om_jG1FLIyt5vSfFuWavX7emPuxAsfnoEx |
CitedBy_id | crossref_primary_10_1007_s10661_019_7989_8 crossref_primary_10_1017_S0014479722000308 crossref_primary_10_29133_yyutbd_1114636 crossref_primary_10_1590_S0100_204X2013001000011 crossref_primary_10_33409_tbbbd_757448 crossref_primary_10_33409_tbbbd_668890 crossref_primary_10_1016_j_ecolind_2020_107001 crossref_primary_10_1177_0967033520939319 crossref_primary_10_1007_s12355_023_01329_1 crossref_primary_10_1007_s40333_023_0020_9 |
Cites_doi | 10.1016/j.fcr.2007.11.001 10.1016/S0034-4257(97)00171-5 10.1016/0034-4257(94)90134-1 10.1016/j.rse.2003.12.013 10.1016/j.eja.2007.11.005 10.1080/014311600210326 10.13031/2013.16023 10.1016/0034-4257(88)90106-X 10.1016/j.compag.2008.10.003 10.1016/j.compag.2007.05.002 10.1016/j.compag.2007.01.004 10.13031/2013.18308 10.2134/agronj1996.00021962008800010001x 10.1016/j.jag.2004.03.002 10.1081/PLN-120013295 10.1016/j.agee.2004.10.030 10.2134/agronj2005.0099 10.1016/j.jag.2004.10.002 10.1016/S1002-0160(06)60032-5 10.1016/j.biosystemseng.2008.05.005 10.13031/2013.18303 |
ContentType | Journal Article |
Copyright | Copyright Versita Apr 2012 |
Copyright_xml | – notice: Copyright Versita Apr 2012 |
DBID | BSCLL AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO HCIFZ M0K PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.2478/v10247-012-0016-8 |
DatabaseName | Istex CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Agriculture Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2300-8725 |
EndPage | 108 |
ExternalDocumentID | 2933225151 10_2478_v10247_012_0016_8 10_2478_v10247_012_0016_8262103 ark_67375_QT4_BC48HXKT_R |
GroupedDBID | 0R~ 29J 2WC 3EA 5GY 5VS 7X2 8FE 8FH AAHBH ACGFS ADBBV ADUQZ AENEX AFKRA AFRAH AGGNV ALMA_UNASSIGNED_HOLDINGS ASPBG ATCPS AVWKF AZFZN BCNDV BENPR BHPHI BSCLL CCPQU E0C E3Z ECGQY FEDTE GROUPED_DOAJ HCIFZ HVGLF HZ~ KQ8 M0K MET M~E O9- OK1 PIMPY PROAC SA. SLJYH TR2 Y2W ~02 ~Z8 9WM AAPBV AGKVL M48 AAYXX CITATION 3V. 8FK ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c480t-b7540ffadc1959f43485bdcc038d857b02f1ec9ce1851f7690971d10be3b97cf3 |
IEDL.DBID | BENPR |
ISSN | 0236-8722 |
IngestDate | Thu Oct 10 17:31:33 EDT 2024 Fri Aug 23 03:36:04 EDT 2024 Fri Nov 25 00:40:46 EST 2022 Wed Oct 30 09:29:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This content is open access. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-b7540ffadc1959f43485bdcc038d857b02f1ec9ce1851f7690971d10be3b97cf3 |
Notes | ArticleID:v10247-012-0016-8 v10247-012-0016-8.pdf istex:A989F983EB2B09A21A5F5DBA9624D71E0D7215E2 ark:/67375/QT4-BC48HXKT-R |
OpenAccessLink | https://www.proquest.com/docview/1322389398?pq-origsite=%requestingapplication% |
PQID | 1322389398 |
PQPubID | 2026528 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1322389398 crossref_primary_10_2478_v10247_012_0016_8 walterdegruyter_journals_10_2478_v10247_012_0016_8262103 istex_primary_ark_67375_QT4_BC48HXKT_R |
PublicationCentury | 2000 |
PublicationDate | 2012-4-1 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-4-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lublin |
PublicationPlace_xml | – name: Lublin |
PublicationTitle | International Agrophysics |
PublicationYear | 2012 |
Publisher | Versita Polish Academy of Sciences, Institute of Agrophysics |
Publisher_xml | – name: Versita – name: Polish Academy of Sciences, Institute of Agrophysics |
References | M. Eldaw Elwadie (6) 2005; 97 D. Reum (22) 2007; 56 C. Zhao (25) 2005; 7 Z. Jin-Heng (10) 2006; 16 R. Lawrence (14) 1998; 64 F. Li (15) 2008; 106 J. Piekarczyk (20) 2001; 15 M. Min (17) 2005; 48 A. Huete (9) 1988; 25 L. Xue (24) 2008; 100 H. Buscaglia (5) 2002; 25 M. Abrams (1) 2003; 21 O. Beeri (2) 2005; 107 W. Feng (7) 2008; 28 R. Jongschaap (11) 2004; 5 L. Lough (16) 2000 M. Kostrzewski (13) 2002; 46 D. Sena, jr (23) 2007 T. Blackmer (3) 1996; 88 D. Haboudane (8) 2004; 90 J. Qi (21) 1994; 48 M. Perry (19) 2007; 59 M. Borhan (4) 2004; 47 Y. Karimi (12) 2005; 48 M. Pagola (18) 2008; 65 |
References_xml | – volume: 106 start-page: 77 year: 2008 ident: 15 article-title: Estimating N status of winter wheat using a handheld spectrometer in the North China plain publication-title: J. Field Crops. Res doi: 10.1016/j.fcr.2007.11.001 contributor: fullname: F. Li – volume: 46 start-page: 29 issue: 1 year: 2002 ident: 13 article-title: Ground-based remote sensing of water and nitrogen stress publication-title: J. Trans. ASABE contributor: fullname: M. Kostrzewski – year: 2007 ident: 23 article-title: Multivariate classifiers using image texture features for nitrogen doses discrimination in wheat contributor: fullname: D. Sena, jr – volume: 64 start-page: 91 year: 1998 ident: 14 article-title: Comparisons among vegetation indices and bandwise regression in a highly disturbed, heterogeneous landscape publication-title: J. Remote Sens. Environ doi: 10.1016/S0034-4257(97)00171-5 contributor: fullname: R. Lawrence – volume: 48 start-page: 119 year: 1994 ident: 21 article-title: A modified soil vegetation adjusted index publication-title: J. Remote Sens. Environ doi: 10.1016/0034-4257(94)90134-1 contributor: fullname: J. Qi – volume: 90 start-page: 337 year: 2004 ident: 8 article-title: Hyper spectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture publication-title: J. Remote Sens. Environ doi: 10.1016/j.rse.2003.12.013 contributor: fullname: D. Haboudane – volume: 28 start-page: 394 year: 2008 ident: 7 article-title: Monitoring leaf nitrogen status with hyper spectral reflectance in wheat publication-title: J. Eur. Agron doi: 10.1016/j.eja.2007.11.005 contributor: fullname: W. Feng – volume: 21 start-page: 847 year: 2003 ident: 1 article-title: The advanced space borne thermal emission and reflection radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform publication-title: J. Int. J. Remote Sens doi: 10.1080/014311600210326 contributor: fullname: M. Abrams – volume: 47 start-page: 599 issue: 2 year: 2004 ident: 4 article-title: Multi-spectral and color imaging techniques for nitrate and chlorophyll determination of potato leaves in a controlled environment publication-title: J. Trans. ASABE doi: 10.13031/2013.16023 contributor: fullname: M. Borhan – volume: 25 start-page: 295 year: 1988 ident: 9 article-title: A soil vegetation adjusted index (SAVI) publication-title: J. Remote Sens. Environ doi: 10.1016/0034-4257(88)90106-X contributor: fullname: A. Huete – volume: 65 start-page: 213 issue: 2 year: 2008 ident: 18 article-title: New method to assess barely nitrogen nutrition status based on image colour analysis comparison with SPAD-502 publication-title: J. Comput. Electron. Agric doi: 10.1016/j.compag.2008.10.003 contributor: fullname: M. Pagola – volume: 15 start-page: 101 year: 2001 ident: 20 article-title: Studies of soil temperature on the basis of satellite data publication-title: Int. Agrophysics contributor: fullname: J. Piekarczyk – volume: 59 start-page: 56 year: 2007 ident: 19 article-title: Spectral and spatial differences in response of vegetation indices to nitrogen treatments on apple publication-title: J. Comput. Electron. Agric doi: 10.1016/j.compag.2007.05.002 contributor: fullname: M. Perry – year: 2000 ident: 16 article-title: Effects of varing N and K nutrition on the spectral reflectance properties of cotton contributor: fullname: L. Lough – volume: 56 start-page: 60 year: 2007 ident: 22 article-title: Wavelet based multi-spectral image analysis of maize leaf chlorophyll content publication-title: J. Comput. Electron. Agric doi: 10.1016/j.compag.2007.01.004 contributor: fullname: D. Reum – volume: 48 start-page: 455 issue: 2 year: 2005 ident: 17 article-title: Determination of significant wave-lengths and prediction of nitrogen content for citrus publication-title: J. Trans. ASABE doi: 10.13031/2013.18308 contributor: fullname: M. Min – volume: 88 start-page: 1 year: 1996 ident: 3 article-title: Nitrogen deficiency detection using reflected short-wave radiation from irrigated corn canopies publication-title: J. Agron doi: 10.2134/agronj1996.00021962008800010001x contributor: fullname: T. Blackmer – volume: 5 start-page: 205 year: 2004 ident: 11 article-title: Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy status publication-title: J. Int. Appl. Earth Obser. Geoinf doi: 10.1016/j.jag.2004.03.002 contributor: fullname: R. Jongschaap – volume: 25 start-page: 2067 year: 2002 ident: 5 article-title: Early detection of cotton leaf nitrogen status using leaf reflectance publication-title: J. Plant Nutr doi: 10.1081/PLN-120013295 contributor: fullname: H. Buscaglia – volume: 107 start-page: 21 year: 2005 ident: 2 article-title: Alternate satellite models for estimation of sugar beet residue nitrogen credit publication-title: J. Agric. Ecosys. Environ doi: 10.1016/j.agee.2004.10.030 contributor: fullname: O. Beeri – volume: 97 start-page: 99 year: 2005 ident: 6 article-title: Remote sensing of canopy dynamics and biophysical variables estimation of corn in Michigan publication-title: J. Agron doi: 10.2134/agronj2005.0099 contributor: fullname: M. Eldaw Elwadie – volume: 7 start-page: 1 year: 2005 ident: 25 article-title: Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress publication-title: Int. J. Appl. Earth Obser. Geoinf doi: 10.1016/j.jag.2004.10.002 contributor: fullname: C. Zhao – volume: 16 start-page: 108 issue: 1 year: 2006 ident: 10 article-title: Predicting nitrogen status of rice using multi spectral data at canopy scale publication-title: Pedosphere doi: 10.1016/S1002-0160(06)60032-5 contributor: fullname: Z. Jin-Heng – volume: 100 start-page: 524 year: 2008 ident: 24 article-title: Recommendations for nitrogen fertilizer topdressing rates in rice using canopy reflectance spectra publication-title: J. Biosyst. Eng doi: 10.1016/j.biosystemseng.2008.05.005 contributor: fullname: L. Xue – volume: 48 start-page: 805 issue: 2 year: 2005 ident: 12 article-title: Discriminant analysis of hyper spectral data for assessing water and nitrogen stresses in corn publication-title: J. Trans. ASABE doi: 10.13031/2013.18303 contributor: fullname: Y. Karimi |
SSID | ssj0000399637 |
Score | 1.9747393 |
Snippet | The soil-line vegetation indices for prediction of corn canopy nitrogen content were investigated. Results indicated that the vegetation indices applied were... Soil-line vegetation indices for corn nitrogen content prediction The soil-line vegetation indices for prediction of corn canopy nitrogen content were... Soil-line vegetation indices for corn nitrogen content prediction The soil-line vegetation indices for prediction of corn canopy nitrogen content were... |
SourceID | proquest crossref walterdegruyter istex |
SourceType | Aggregation Database Publisher |
StartPage | 103 |
SubjectTerms | corn nitrogen satellite remote sensing soil-line vegetation indices |
Title | Soil-line vegetation indices for corn nitrogen content prediction |
URI | https://api.istex.fr/ark:/67375/QT4-BC48HXKT-R/fulltext.pdf http://www.degruyter.com/doi/10.2478/v10247-012-0016-8 https://www.proquest.com/docview/1322389398 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELZocmkPES2tCC_5UHFAsvB6nbX3VAECRSAQoCDlZq1fUdUqCUuA9t93ZtfhUQnuo13psz3fN57xDCHfVR65y2xgCsQtk4FzZqvgmZW-sEHluXP4wPn8ohjeyNPxYJwu3O5SWeXSJzaO2s8c3pHvY9SE5FrqH_NbhlOjMLuaRmh8IF0BkQLvkO7h8cXl9dMtCwf-LdrGmQI77yoh2tSmkErvPwC7Sqy8FAylD9OvyKmLOP95pTx7j00O24dJff93scyZNlR0skp6SUPSg3bRP5OVMP1CPh1M6tRHI6yBt5z9_M1QQtKHMEklhRTz0-AXKAhVClHnlMJ5rmewhShWrAP90HmNiRs0_kpuTo5HR0OWpiUwJzVfMKtAfMVYeYf9YqLMpR5Y7xzPtdcDZbmIWXClC8DQWVQQFZcq8xm3IbelcjH_RjrT2TSsEwqWmSuzwPGZayy4VtFa7iuhqqBK4ftkbwmTmbdNMQwEE4ipaTE1gCmWyxVG98luA-STZVX_wmoyNTBXI2kOj6Qejs9G5rpPtpZIm3SQ7szzsveJ_g_9F1Zv_VwUENLmG-9_eZN8FM0ewHqcLdJZ1PdhG6TGwu6k_bTThOr_AE9p0UI |
link.rule.ids | 315,783,787,867,21400,27936,27937,33756,43817,67015,68799 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELZacmg5oD5FgFIfqh4qWXi9ztp7QoBAaYGoRUHKzVq_IgRKwia8_n1ndh1akNr7aFf6bM_3jWc8Q8gXlUfuMhuYAnHLZOCc2Sp4ZqUvbFB57hw-cD4dFP1z-WPUG6ULt3kqq1z6xMZR-6nDO_IdjJqQXEu9O7tmODUKs6tphMZL0sFWVRB8dfYPBz_PHm9ZOPBv0TbOFNh5VwnRpjaFVHrnFthVYuWlYCh9mH5CTh3E-f6J8ly7a3LYPozrm4fFMmfaUNHRG7KWNCTdaxf9LXkRJu_I6t64Tn00wnvwltOLK4YSkt6GcSoppJifBr9AQahSiDonFM5zPYUtRLFiHeiHzmpM3KDxB3J-dDg86LM0LYE5qfmCWQXiK8bKO-wXE2Uudc9653iuve4py0XMgitdAIbOooKouFSZz7gNuS2Vi_lHsjKZTsI6oWCZuTILHJ-5xoJrFa3lvhKqCqoUvku-LWEys7YphoFgAjE1LaYGMMVyucLoLvnaAPloWdWXWE2meubXUJr9A6n7o-OhOeuSrSXSJh2kufmz7F2in6H_l9W_fi4KCGnzjf9_-TN51R-enpiT74PjTfJaNPsBa3O2yMqivgmfQHYs7HbaW78BdRDTRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZ4SBUcEH2JAKU-VBwqWfF6nbX3SANRWh4CFKTcrPUrQqAkWpIA_56Z7CYC1F56n33oW9vzjefzt4T8UGnkLrGBKSC3TAbOmS2CZ1b6zAaVps7hAefzi6x7I__0W_0Vcrw4C4OySh8G5fR5UjmkNv3ITXGjbOE1IKTSzRnkRYmaScGQtDDdHPu4StYzBekNSRFvL3daOOTgrDLPFOi-q4So2pt_v9ObBLWOWD-9YZ9bj_M-9vIlX6WjzjbZqnkkPao-_EeyEoafyObRoKy9NMJnWDFHt_cMaSSdhUEtK6TYo4a1gQJZpVB5DinM6XIEw4iiah0QoOMSmzcY_IXcdE567S6r_5jAnNR8wqwCAhZj4R16xkSZSt2y3jmeaq9bynIRk-ByFyBLJ1FBZZyrxCfchtTmysX0K1kbjoZhh1CITFyeBI5HXWPGtYrWcl8IVQSVC98gPxcwmXFljGGgoEBMTYWpAUxRMpcZ3SCHcyCXkUV5h4oy1TJXPWl-taXu9k975rpB9hdIm3oyPRgsmJFX5XAf_Q79V1H_erjIoKxNd___0u_kw-Vxx5z9vjjdIxtiPlRQurNP1iblNHwDVjKxB_NB9wJjTNi- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil-line+vegetation+indices+for+corn+nitrogen+content+prediction&rft.jtitle=International+Agrophysics&rft.au=Bagheri%2C+N&rft.au=Ahmadi%2C+H&rft.au=Alavipanah%2C+S&rft.au=Omid%2C+M&rft.date=2012-04-01&rft.pub=Polish+Academy+of+Sciences%2C+Institute+of+Agrophysics&rft.issn=0236-8722&rft.eissn=2300-8725&rft.volume=26&rft.issue=2&rft.spage=103&rft_id=info:doi/10.2478%2Fv10247-012-0016-8&rft.externalDocID=2933225151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0236-8722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0236-8722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0236-8722&client=summon |