The performance response of a heat pipe evacuated tube solar collector using MgO/MWCNT hybrid nanofluid as a working fluid
Utilizing a hybrid nanofluid is a promising solution for enhancing the thermal performance of the solar collector in a sustainable manner. In the present work, the effect of using magnesium oxide/multi-walled carbon nanotubes (MgO/MWCNT) hybrid nanofluid on the thermal performance of the evacuated t...
Saved in:
Published in | Case studies in thermal engineering Vol. 33; p. 101957 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Utilizing a hybrid nanofluid is a promising solution for enhancing the thermal performance of the solar collector in a sustainable manner. In the present work, the effect of using magnesium oxide/multi-walled carbon nanotubes (MgO/MWCNT) hybrid nanofluid on the thermal performance of the evacuated tube solar collector is experimentally investigated. Four different weight ratios of (80:20), (70:30), (60:40), and (50:50) are used for a hybrid of MgO with MWCNTs in a water base, respectively. The experiments are performed at a 0.02% particle concentration and at various volume flow rates ranging from 1 to 3 L/min. The results show an enhancement in the energy and exergy efficiencies with the increase in the weight ratios of MWCNTs nanoparticles and volume flow rate. The enhancement of the energy and exergy efficiencies of the collector is 55.83% and 77.14%, respectively, for MgO/MWCNT (50:50) hybrid nanofluid. It is found that increasing the weight ratio of MWCNTs nanoparticles from 20% to 30% achieves a significant increase in the collector efficiency enhancement compared to other hybrid nanofluids. The results conclude that MgO/MWCNT (50:50) performs better than all other hybrid nanofluids at all volume flow rates and is closer to MWCNT/water nanofluid. |
---|---|
AbstractList | Utilizing a hybrid nanofluid is a promising solution for enhancing the thermal performance of the solar collector in a sustainable manner. In the present work, the effect of using magnesium oxide/multi-walled carbon nanotubes (MgO/MWCNT) hybrid nanofluid on the thermal performance of the evacuated tube solar collector is experimentally investigated. Four different weight ratios of (80:20), (70:30), (60:40), and (50:50) are used for a hybrid of MgO with MWCNTs in a water base, respectively. The experiments are performed at a 0.02% particle concentration and at various volume flow rates ranging from 1 to 3 L/min. The results show an enhancement in the energy and exergy efficiencies with the increase in the weight ratios of MWCNTs nanoparticles and volume flow rate. The enhancement of the energy and exergy efficiencies of the collector is 55.83% and 77.14%, respectively, for MgO/MWCNT (50:50) hybrid nanofluid. It is found that increasing the weight ratio of MWCNTs nanoparticles from 20% to 30% achieves a significant increase in the collector efficiency enhancement compared to other hybrid nanofluids. The results conclude that MgO/MWCNT (50:50) performs better than all other hybrid nanofluids at all volume flow rates and is closer to MWCNT/water nanofluid. |
ArticleNumber | 101957 |
Author | Henein, Shady M. Abdel-Rehim, Ahmed A. |
Author_xml | – sequence: 1 givenname: Shady M. orcidid: 0000-0001-9328-1099 surname: Henein fullname: Henein, Shady M. email: Shady.magdy@bue.edu.eg – sequence: 2 givenname: Ahmed A. surname: Abdel-Rehim fullname: Abdel-Rehim, Ahmed A. |
BookMark | eNqFkctqGzEUhkVJoWmaJ-hGL2BH0mguWnRRTC-BXDYu7U4cSUe23MlokOSU9Okr26WELloQ6PCj_wOd7zU5m-KEhLzlbMkZ7652S5tDwaVgQhwS1fYvyLkQXC542387eza_Ipc57xhjvG8GLuU5-bneIp0x-ZgeYLJIE-Y5Thlp9BToFqHQOcxI8RHsHgo6WvYGaY4jJGrjOKItMdF9DtOG3m7ur26_ru7WdPtkUnB0gin6cV8nyBX3I6bvh3fH6A156WHMePn7viBfPn5Yrz4vbu4_Xa_e3yysHFhZgGtbbx3zCE4J3vcdg3qUsdIx0ympOm4QDIOB-95JPyiunGhhgB6Nkc0FuT5xXYSdnlN4gPSkIwR9DGLaaEgl2BG18K4ZBBfQIEiFaEB2BkzXC9-2gzOV1ZxYNsWcE_o_PM70wYbe6aMNfbChTzZqS_3VsqFACXEqCcL4n-67Uxfrih4DJp1twGrKhVRXX_8Q_tn_BaSNq0M |
CitedBy_id | crossref_primary_10_1016_j_csite_2022_102093 crossref_primary_10_1016_j_csite_2022_102371 crossref_primary_10_1016_j_icheatmasstransfer_2024_107468 crossref_primary_10_1093_ijlct_ctad027 crossref_primary_10_1016_j_cej_2024_150059 crossref_primary_10_18186_thermal_1372260 crossref_primary_10_3390_su152115192 crossref_primary_10_1080_15567036_2023_2179700 crossref_primary_10_1007_s10973_024_13386_z crossref_primary_10_1002_zamm_202300390 crossref_primary_10_1177_09544062231163493 crossref_primary_10_1016_j_csite_2025_105807 crossref_primary_10_1002_est2_676 crossref_primary_10_1016_j_csite_2023_103742 crossref_primary_10_1016_j_csite_2024_104950 crossref_primary_10_1007_s10973_023_12184_3 crossref_primary_10_1016_j_enconman_2024_118583 crossref_primary_10_1108_HFF_03_2022_0195 crossref_primary_10_1080_15567036_2024_2441420 crossref_primary_10_3390_aerospace11040275 crossref_primary_10_1080_15567036_2023_2174620 crossref_primary_10_2298_TSCI230311274T crossref_primary_10_1007_s10973_024_12994_z crossref_primary_10_1016_j_energy_2023_128883 crossref_primary_10_1016_j_renene_2024_121423 crossref_primary_10_1016_j_applthermaleng_2022_119671 crossref_primary_10_3390_ma15196879 crossref_primary_10_1016_j_energy_2023_127704 crossref_primary_10_1016_j_solener_2022_10_054 crossref_primary_10_1016_j_csite_2023_103398 crossref_primary_10_1016_j_tsep_2023_101688 crossref_primary_10_1016_j_energy_2024_133941 crossref_primary_10_3390_nano13081320 crossref_primary_10_3103_S0003701X24600322 crossref_primary_10_1016_j_icheatmasstransfer_2022_106516 crossref_primary_10_1016_j_seta_2022_102466 crossref_primary_10_3390_nano12213871 crossref_primary_10_1016_j_taml_2023_100458 crossref_primary_10_1016_j_applthermaleng_2022_119663 crossref_primary_10_1016_j_jtice_2024_105673 crossref_primary_10_1016_j_est_2024_111243 crossref_primary_10_1016_j_matpr_2024_05_056 crossref_primary_10_1108_HFF_03_2023_0129 crossref_primary_10_1016_j_aej_2024_06_021 crossref_primary_10_1016_j_solener_2023_112019 crossref_primary_10_1016_j_tsep_2023_102107 crossref_primary_10_1016_j_icheatmasstransfer_2023_107057 crossref_primary_10_1088_2053_1591_acf7b2 crossref_primary_10_1016_j_ijhydene_2022_12_319 crossref_primary_10_1080_15567036_2023_2227123 crossref_primary_10_1016_j_csite_2022_102064 crossref_primary_10_1016_j_aej_2024_03_006 crossref_primary_10_1007_s40430_023_04665_1 crossref_primary_10_1016_j_est_2023_109081 crossref_primary_10_1016_j_powtec_2024_120390 crossref_primary_10_1016_j_rineng_2025_104284 crossref_primary_10_1615_HeatTransRes_2023049665 crossref_primary_10_3390_pr10061195 crossref_primary_10_1016_j_tsep_2022_101489 crossref_primary_10_1063_5_0203555 crossref_primary_10_1016_j_csite_2022_102147 crossref_primary_10_3390_en16073189 |
Cites_doi | 10.1016/j.rinp.2017.06.034 10.1016/j.applthermaleng.2020.116516 10.1016/j.renene.2015.11.004 10.1016/j.applthermaleng.2019.114205 10.1080/08916159808946559 10.1016/j.csite.2016.08.006 10.1016/j.applthermaleng.2016.09.091 10.1016/j.renene.2020.08.039 10.1016/j.renene.2017.08.059 10.1016/j.molliq.2019.02.102 10.1016/j.renene.2021.03.003 10.1016/j.renene.2008.06.014 10.1155/2014/147059 10.1016/j.matpr.2020.09.749 10.1016/j.renene.2022.02.069 10.1016/j.solener.2018.04.017 10.1016/j.csite.2022.101760 10.1016/j.csite.2020.100743 10.1016/j.rser.2017.10.012 10.1016/j.enconman.2021.114673 10.1016/j.csite.2021.101510 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.csite.2022.101957 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-157X |
ExternalDocumentID | oai_doaj_org_article_2fd38212a3ea49eeba46bab672f558db 10_1016_j_csite_2022_101957 S2214157X22002039 |
GroupedDBID | 0R~ 0SF 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c480t-ad55fcd0fead9217760a60a9bc4d0b694961beab0a81f7d4f8919d25a8a7ebb43 |
IEDL.DBID | IXB |
ISSN | 2214-157X |
IngestDate | Wed Aug 27 01:27:39 EDT 2025 Tue Jul 01 02:28:33 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Tue Jul 25 20:58:48 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Evacuated tube solar collector Thermal efficiency Exergy Energy Solar energy Hybrid nanofluid |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-ad55fcd0fead9217760a60a9bc4d0b694961beab0a81f7d4f8919d25a8a7ebb43 |
ORCID | 0000-0001-9328-1099 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214157X22002039 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2fd38212a3ea49eeba46bab672f558db crossref_primary_10_1016_j_csite_2022_101957 crossref_citationtrail_10_1016_j_csite_2022_101957 elsevier_sciencedirect_doi_10_1016_j_csite_2022_101957 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Case studies in thermal engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Noghrehabadi, Hajidavalloo, Moravej (bib5) 2016; 8 Farahat, Sarhaddi, Ajam (bib20) 2009; 34 Martínez-Merino, Alcántara, Gómez-Larrán, Carrillo-Berdugo, Navas (bib3) 2022; 188 Pak, Young (bib22) 2007; 11 Rashidi, Akar, Bovand, Ellahi (bib4) 2018; 115 Kaya, Alkasem, Arslan (bib6) 2020; 162 Eltaweel, Abdel-Rehim, Attia (bib10) 2020; 22 Esfe, Alirezaie, Rejvani (bib14) 2017; 111 Alanazi, Khetib, Abo-Dief, Rawa, Cheraghian, Sharifpur (bib21) 2021; 28 Pankaj, Sudhakar (bib8) 2018; 84 Babar, Ali (bib12) 2019; 281 Gupta, Gupta (bib7) 2021; 44 Takabi, Salehi (bib23) 2014 Abid, Khan, Ratlamwala, Malik, Ali, Cheok (bib17) 2021; 246 Eltaweel, Abdel-Rehim (bib1) 2021; 186 Delfani, Karami, Behabadi (bib2) 2016; 87 Eltaweel, Abdel-Rehim (bib11) 2020 Hayat, Nadeem (bib13) 2017; 7 Sani, Pourfallah, Gholinia (bib15) 2022; 30 Kalogirou (bib19) 2009; vol. 2 Sharafeldin, Gróf, Abu-Nada, Mahian (bib9) 2019; 162 Yıldırım, Yurddas (bib16) 2021; 171 Verma, Tiwari, Tiwari, Chauhan (bib18) 2018; 167 Martínez-Merino (10.1016/j.csite.2022.101957_bib3) 2022; 188 Sharafeldin (10.1016/j.csite.2022.101957_bib9) 2019; 162 Farahat (10.1016/j.csite.2022.101957_bib20) 2009; 34 Takabi (10.1016/j.csite.2022.101957_bib23) 2014 Pak (10.1016/j.csite.2022.101957_bib22) 2007; 11 Eltaweel (10.1016/j.csite.2022.101957_bib10) 2020; 22 Eltaweel (10.1016/j.csite.2022.101957_bib11) 2020 Yıldırım (10.1016/j.csite.2022.101957_bib16) 2021; 171 Noghrehabadi (10.1016/j.csite.2022.101957_bib5) 2016; 8 Esfe (10.1016/j.csite.2022.101957_bib14) 2017; 111 Delfani (10.1016/j.csite.2022.101957_bib2) 2016; 87 Gupta (10.1016/j.csite.2022.101957_bib7) 2021; 44 Pankaj (10.1016/j.csite.2022.101957_bib8) 2018; 84 Hayat (10.1016/j.csite.2022.101957_bib13) 2017; 7 Sani (10.1016/j.csite.2022.101957_bib15) 2022; 30 Kalogirou (10.1016/j.csite.2022.101957_bib19) 2009; vol. 2 Eltaweel (10.1016/j.csite.2022.101957_bib1) 2021; 186 Kaya (10.1016/j.csite.2022.101957_bib6) 2020; 162 Babar (10.1016/j.csite.2022.101957_bib12) 2019; 281 Verma (10.1016/j.csite.2022.101957_bib18) 2018; 167 Alanazi (10.1016/j.csite.2022.101957_bib21) 2021; 28 Rashidi (10.1016/j.csite.2022.101957_bib4) 2018; 115 Abid (10.1016/j.csite.2022.101957_bib17) 2021; 246 |
References_xml | – volume: 28 start-page: 101510 year: 2021 ident: bib21 article-title: The effect of nanoparticle shape on alumina/EG-water (50:50) nanofluids flow within a solar collector: entropy and exergy investigation publication-title: Case Stud. Therm. Eng. – volume: 30 start-page: 101760 year: 2022 ident: bib15 article-title: The effect of MoS2–Ag/H2O hybrid nanofluid on improving the performance of a solar collector by placing wavy strips in the absorber tube publication-title: Case Stud. Therm. Eng. – volume: 281 start-page: 598 year: 2019 end-page: 633 ident: bib12 article-title: Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges publication-title: J. Mol. Liq. – volume: 171 start-page: 1079 year: 2021 end-page: 1096 ident: bib16 article-title: Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system publication-title: Renew. Energy – volume: 22 start-page: 100743 year: 2020 ident: bib10 article-title: Energetic and exergetic analysis of a heat pipe evacuated tube solar collector using MWCNT/water nanofluid publication-title: Case Stud. Therm. Eng. – volume: 7 start-page: 2317 year: 2017 end-page: 2324 ident: bib13 article-title: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid publication-title: Results Phys. – volume: 162 start-page: 114205 year: 2019 ident: bib9 article-title: Evacuated tube solar collector performance using copper nanofluid: energy and environmental analysis publication-title: Appl. Therm. Eng. – volume: 188 start-page: 721 year: 2022 end-page: 730 ident: bib3 article-title: MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology publication-title: Renew. Energy – volume: 11 start-page: 151 year: 2007 end-page: 170 ident: bib22 article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles publication-title: Exp. Heat Tran. – year: 2014 ident: bib23 article-title: Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid publication-title: Adv. Mech. Eng. – volume: 115 start-page: 400 year: 2018 end-page: 410 ident: bib4 article-title: Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still publication-title: Renew. Energy – volume: 44 start-page: 401 year: 2021 end-page: 412 ident: bib7 article-title: The role of nanofluids in solar thermal energy: a review of recent advances publication-title: Mater. Today Proc. – volume: 84 start-page: 54 year: 2018 end-page: 74 ident: bib8 article-title: A review of studies using nanofluids in flat-plate and direct absorption solar collectors publication-title: Renew. Sustain. Energy Rev. – start-page: 1 year: 2020 end-page: 28 ident: bib11 article-title: Energy and exergy analysis for stationary solar collectors using nanofluids: a review publication-title: Int. J. Energy Res. – volume: 111 start-page: 1202 year: 2017 end-page: 1210 ident: bib14 article-title: An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management publication-title: Appl. Therm. Eng. – volume: 246 start-page: 114673 year: 2021 ident: bib17 article-title: Thermodynamic analysis and comparison of different absorption cycles driven by evacuated tube solar collector utilizing hybrid nanofluids publication-title: Energy Convers. Manag. – volume: 87 start-page: 754 year: 2016 end-page: 764 ident: bib2 article-title: Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid publication-title: Renew. Energy – volume: 186 start-page: 116516 year: 2021 ident: bib1 article-title: A comparison between flat-plate and evacuted tube solar collector in terms of energy and exergy analysis by using nanofluid publication-title: Appl. Therm. Eng. – volume: vol. 2 year: 2009 ident: bib19 publication-title: Solar Energy Engineering – volume: 34 start-page: 1169 year: 2009 end-page: 1174 ident: bib20 article-title: Exergetic optimization of flat plate solar collectors publication-title: Renew. Energy – volume: 162 start-page: 267 year: 2020 end-page: 284 ident: bib6 article-title: Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency publication-title: Renew. Energy – volume: 167 start-page: 231 year: 2018 end-page: 241 ident: bib18 article-title: Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid publication-title: Sol. Energy – volume: 8 start-page: 378 year: 2016 end-page: 386 ident: bib5 article-title: Experimental investigation of efficiency of square flat-plate solar collector using SiO2/water nanofluid publication-title: Case Stud. Therm. Eng. – volume: 7 start-page: 2317 year: 2017 ident: 10.1016/j.csite.2022.101957_bib13 article-title: Heat transfer enhancement with Ag–CuO/water hybrid nanofluid publication-title: Results Phys. doi: 10.1016/j.rinp.2017.06.034 – volume: 186 start-page: 116516 year: 2021 ident: 10.1016/j.csite.2022.101957_bib1 article-title: A comparison between flat-plate and evacuted tube solar collector in terms of energy and exergy analysis by using nanofluid publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116516 – volume: 87 start-page: 754 year: 2016 ident: 10.1016/j.csite.2022.101957_bib2 article-title: Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid publication-title: Renew. Energy doi: 10.1016/j.renene.2015.11.004 – volume: 162 start-page: 114205 year: 2019 ident: 10.1016/j.csite.2022.101957_bib9 article-title: Evacuated tube solar collector performance using copper nanofluid: energy and environmental analysis publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114205 – volume: 11 start-page: 151 year: 2007 ident: 10.1016/j.csite.2022.101957_bib22 article-title: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles publication-title: Exp. Heat Tran. doi: 10.1080/08916159808946559 – volume: 8 start-page: 378 year: 2016 ident: 10.1016/j.csite.2022.101957_bib5 article-title: Experimental investigation of efficiency of square flat-plate solar collector using SiO2/water nanofluid publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2016.08.006 – volume: 111 start-page: 1202 year: 2017 ident: 10.1016/j.csite.2022.101957_bib14 article-title: An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.09.091 – volume: 162 start-page: 267 year: 2020 ident: 10.1016/j.csite.2022.101957_bib6 article-title: Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency publication-title: Renew. Energy doi: 10.1016/j.renene.2020.08.039 – volume: 115 start-page: 400 year: 2018 ident: 10.1016/j.csite.2022.101957_bib4 article-title: Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still publication-title: Renew. Energy doi: 10.1016/j.renene.2017.08.059 – volume: vol. 2 year: 2009 ident: 10.1016/j.csite.2022.101957_bib19 – volume: 281 start-page: 598 year: 2019 ident: 10.1016/j.csite.2022.101957_bib12 article-title: Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.02.102 – volume: 171 start-page: 1079 year: 2021 ident: 10.1016/j.csite.2022.101957_bib16 article-title: Assessments of thermal performance of hybrid and mono nanofluid U-tube solar collector system publication-title: Renew. Energy doi: 10.1016/j.renene.2021.03.003 – volume: 34 start-page: 1169 issue: 4 year: 2009 ident: 10.1016/j.csite.2022.101957_bib20 article-title: Exergetic optimization of flat plate solar collectors publication-title: Renew. Energy doi: 10.1016/j.renene.2008.06.014 – year: 2014 ident: 10.1016/j.csite.2022.101957_bib23 article-title: Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid publication-title: Adv. Mech. Eng. doi: 10.1155/2014/147059 – volume: 44 start-page: 401 year: 2021 ident: 10.1016/j.csite.2022.101957_bib7 article-title: The role of nanofluids in solar thermal energy: a review of recent advances publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.09.749 – volume: 188 start-page: 721 year: 2022 ident: 10.1016/j.csite.2022.101957_bib3 article-title: MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology publication-title: Renew. Energy doi: 10.1016/j.renene.2022.02.069 – volume: 167 start-page: 231 year: 2018 ident: 10.1016/j.csite.2022.101957_bib18 article-title: Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid publication-title: Sol. Energy doi: 10.1016/j.solener.2018.04.017 – volume: 30 start-page: 101760 year: 2022 ident: 10.1016/j.csite.2022.101957_bib15 article-title: The effect of MoS2–Ag/H2O hybrid nanofluid on improving the performance of a solar collector by placing wavy strips in the absorber tube publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.101760 – start-page: 1 year: 2020 ident: 10.1016/j.csite.2022.101957_bib11 article-title: Energy and exergy analysis for stationary solar collectors using nanofluids: a review publication-title: Int. J. Energy Res. – volume: 22 start-page: 100743 year: 2020 ident: 10.1016/j.csite.2022.101957_bib10 article-title: Energetic and exergetic analysis of a heat pipe evacuated tube solar collector using MWCNT/water nanofluid publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2020.100743 – volume: 84 start-page: 54 year: 2018 ident: 10.1016/j.csite.2022.101957_bib8 article-title: A review of studies using nanofluids in flat-plate and direct absorption solar collectors publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.10.012 – volume: 246 start-page: 114673 year: 2021 ident: 10.1016/j.csite.2022.101957_bib17 article-title: Thermodynamic analysis and comparison of different absorption cycles driven by evacuated tube solar collector utilizing hybrid nanofluids publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114673 – volume: 28 start-page: 101510 year: 2021 ident: 10.1016/j.csite.2022.101957_bib21 article-title: The effect of nanoparticle shape on alumina/EG-water (50:50) nanofluids flow within a solar collector: entropy and exergy investigation publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101510 |
SSID | ssj0001738144 |
Score | 2.49171 |
Snippet | Utilizing a hybrid nanofluid is a promising solution for enhancing the thermal performance of the solar collector in a sustainable manner. In the present work,... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 101957 |
SubjectTerms | Energy Evacuated tube solar collector Exergy Hybrid nanofluid Solar energy Thermal efficiency |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WAoIBYPqo5cCRq4rXj-Fgqqgqp5dKKvUVje1yKquyq3QXRX8_YzrY5lQtSDpHlOJFn5PfGeZ4R4iOH_oQN2SoSm0GRaSr0IVZaOZ0gz7uQVb5n7cmF-rrQi0mpr6QJK-mBy8QdyBjmHa-vOCdUlsihah261siodRdcWn0Z8ybBVN5dMYxEuZKrlI2qGm0W25RDWdzl869ZDvxlarEJnCawlLP3T9BpgjjHz8WzkSrCYfnEF-IJDXvi6SSB4Etxx1aG1YP2H26K5JVgGQEhLbSwuloR0C_0G6aVAdYbR3CbAlpIPpA37SGp3y_h9PLbwen3o7Nz-PEnHeSCAYdlvN7wHd7ycL_Lxjrkplfi4vjL-dFJNVZTqLzq6nWFQevoQx3ZdywHIqatkS_rvAq1a62ybeMIXY1dE01QsbONDVJjh4acU_PXYmdYDvRGgMFWBqZe2hJH1sq4WqI36Yhr7TwzqJmQ28ns_ZhqPFW8uO63mrKffbZAnyzQFwvMxKf7h1Yl08bj3T8nK913TWmycwM7Tz86T_8v55mJdmvjfmQchUnwUFePvf3t_3j7O7GbhizyyfdiZ32zoQ9McdZuP3vzXw4p-h8 priority: 102 providerName: Directory of Open Access Journals |
Title | The performance response of a heat pipe evacuated tube solar collector using MgO/MWCNT hybrid nanofluid as a working fluid |
URI | https://dx.doi.org/10.1016/j.csite.2022.101957 https://doaj.org/article/2fd38212a3ea49eeba46bab672f558db |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQp3Ko-qDqlhb5wLHRJl47jo9lVYSQoIeCurdo_FoWoWy07ILaX98ZJ4HlwgEph2RkJ5FnNN_MeGbM2BG6_gGKYLIYkA0y6CID52OmpFUEec76lOV7UZ5eybOZmu2w6VALQ2mVve7vdHrS1j1l3K_muF0sxr-FKBB99EyItJ1GRXwTWaUivtnxU5xFIyalM11pfEYThuZDKc3LpU1agVBGFEMwtQVQqY__Fk5tYc_JO_a2Nxr5j-6_3rOd0Hxge1utBD-yf8hv3j5VAfBVl_wa-DJy4KRyebtoAw_34DZoYHq-3tjA78i15SQNKXzPKQ9-zs_nv8bnf6YXl_z6L5V08QaaZbzd4B3c4eseuhA7T6R9dnXy83J6mvXnKmROVvk6A69UdD6PKEUGXRJd5oCXsU763JZGmrKwAWwOVRG1l7EyhfFCQQU6WCsnn9hus2zCZ8Y1lMKjEaZMQB9bapsLcJqKXXPr0JYaMTEsZu36puN09sVtPWSX3dSJAzVxoO44MGLfHye1Xc-Nl4cfE5ceh1LD7ERYruZ1LzG1iH5SIUzDJIA0IViQpQVbahGVqrwdsXLgcf1M_vBVi5e-_uW1Ew_YG3rqkie_st31ahO-oYGztocpMHCY5Pg_R8X6rQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa67rDtMOyJZU8ddpwRW5Es67gGK9KtyQ5LsdwE6pVmKBwjTVpsv36UbLfZpYcBPhi0KBsirY-USIqQj-j6eyi8yoJHMXAviwysC5ngRkTIs8alKN9ZOTnjXxdicUDGfS5MDKvs5v52Tk-zdUcZdqM5bFar4Q_GCkQfuWAsbaepe-Q-WgMy_p0ni6PbhRaJoJQOdY0MWeToqw-lOC-bdmkZYlmkqIhTewiVCvnvAdUe-Bw_IY87q5F-bj_sKTnw9TPyaK-W4HPyBwVOm9s0ALppo189XQcKNM65tFk1nvorsDu0MB3d7oynl9G3pVEd0vo9jYHwSzpdfh9Of45nc3r-O-Z00RrqdbjY4R1cYnfX7Ro7TaQX5Oz4y3w8ybqDFTLLq3ybgRMiWJcHVCOFPoksc8BLGctdbkrFVVkYDyaHqgjS8VCpQjkmoALpjeGjl-SwXtf-FaESSubQChPKo5PNpckZWBmzXXNj0ZgaENYPprZd1fF4-MWF7sPLfukkAR0loFsJDMinG6amLbpxd_OjKKWbprFidiKsN0vdqYxmwY0qxGkYeeDKewO8NGBKyYIQlTMDUvYy1v8oIHa1uuvtr_-X8QN5MJlPT_XpyezbG_IwPmkjKd-Sw-1m59-htbM175M2_wX-efzY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+performance+response+of+a+heat+pipe+evacuated+tube+solar+collector+using+MgO%2FMWCNT+hybrid+nanofluid+as+a+working+fluid&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Henein%2C+Shady+M.&rft.au=Abdel-Rehim%2C+Ahmed+A.&rft.date=2022-05-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=33&rft.spage=101957&rft_id=info:doi/10.1016%2Fj.csite.2022.101957&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2022_101957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon |