Measurement report: Rapid decline of aerosol absorption coefficient and aerosol optical property effects on radiative forcing in an urban area of Beijing from 2018 to 2021
Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol optical properties at three wavelengths for PM1 and PM10 were conducted in urban Beijing from March 2018 to February 2022. The aerosol absorption...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 23; no. 9; pp. 5517 - 5531 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
17.05.2023
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reliable observations of aerosol optical properties are crucial for
quantifying the radiative forcing of climate. The simultaneous measurements
of aerosol optical properties at three wavelengths for PM1 and
PM10 were conducted in urban Beijing from March 2018 to February 2022.
The aerosol absorption coefficient (σab) at 550 nm of
PM10 and PM1 decreased by 55.0 % and 53.5 % from 2018 to 2021. The significant reduction in σab may be related to reduced primary emissions caused by effective air pollution control measures. PM2.5 mass concentration decreased by 34.4 % from 2018 to 2021. Single scattering albedo (SSA) increased from 0.89±0.04 for PM10 (0.87±0.05 for PM1) in 2018 to 0.93±0.03 for PM10 (0.91±0.04 for PM1) in 2021. Increasing SSA and decreasing PM2.5 mass concentration suggest that the fraction of absorbing aerosols decreased with improved air quality due to pollution control measures being taken. The annual average submicron absorption ratio (Rab) increased from 86.1 % in 2018 to 89.2 % in 2021, suggesting that fine particles are the main contributors to total PM10 absorption and that the contribution of fine particles to absorption became more important. The absorption Ångström exponent (AAE) in winter decreased from 2018 to 2021, implying a decreasing contribution from brown carbon to light absorption, which may relate to the reduced emissions of biomass burning and coal combustion. During the study period, aerosol radiative forcing efficiency became more negative, mainly influenced by increasing SSA and was −27.0 and −26.2 W m−2 per aerosol optical depth (AOD) for PM10 and PM1 in 2021. Higher σab and PM2.5 mass concentrations were primarily distributed in clusters 4 and 5, transported from the south and the west of Beijing each year. σab and PM2.5 corresponding to clusters 4 and 5 decreased evidently from 2018 to 2021, which may result from the control of source emissions in surrounding regions of Beijing. The 4-year data presented in this study provide critical optical parameters for radiative forcing assessment within two size ranges and are helpful for evaluating the effectiveness of clean air action. |
---|---|
AbstractList | Reliable observations of aerosol optical properties are crucial for
quantifying the radiative forcing of climate. The simultaneous measurements
of aerosol optical properties at three wavelengths for PM1 and
PM10 were conducted in urban Beijing from March 2018 to February 2022.
The aerosol absorption coefficient (σab) at 550 nm of
PM10 and PM1 decreased by 55.0 % and 53.5 % from 2018 to 2021. The significant reduction in σab may be related to reduced primary emissions caused by effective air pollution control measures. PM2.5 mass concentration decreased by 34.4 % from 2018 to 2021. Single scattering albedo (SSA) increased from 0.89±0.04 for PM10 (0.87±0.05 for PM1) in 2018 to 0.93±0.03 for PM10 (0.91±0.04 for PM1) in 2021. Increasing SSA and decreasing PM2.5 mass concentration suggest that the fraction of absorbing aerosols decreased with improved air quality due to pollution control measures being taken. The annual average submicron absorption ratio (Rab) increased from 86.1 % in 2018 to 89.2 % in 2021, suggesting that fine particles are the main contributors to total PM10 absorption and that the contribution of fine particles to absorption became more important. The absorption Ångström exponent (AAE) in winter decreased from 2018 to 2021, implying a decreasing contribution from brown carbon to light absorption, which may relate to the reduced emissions of biomass burning and coal combustion. During the study period, aerosol radiative forcing efficiency became more negative, mainly influenced by increasing SSA and was −27.0 and −26.2 W m−2 per aerosol optical depth (AOD) for PM10 and PM1 in 2021. Higher σab and PM2.5 mass concentrations were primarily distributed in clusters 4 and 5, transported from the south and the west of Beijing each year. σab and PM2.5 corresponding to clusters 4 and 5 decreased evidently from 2018 to 2021, which may result from the control of source emissions in surrounding regions of Beijing. The 4-year data presented in this study provide critical optical parameters for radiative forcing assessment within two size ranges and are helpful for evaluating the effectiveness of clean air action. Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol optical properties at three wavelengths for PM1 and PM10 were conducted in urban Beijing from March 2018 to February 2022. The aerosol absorption coefficient (σab) at 550 nm of PM10 and PM1 decreased by 55.0 % and 53.5 % from 2018 to 2021. The significant reduction in σab may be related to reduced primary emissions caused by effective air pollution control measures. PM2.5 mass concentration decreased by 34.4 % from 2018 to 2021. Single scattering albedo (SSA) increased from 0.89±0.04 for PM10 (0.87±0.05 for PM1) in 2018 to 0.93±0.03 for PM10 (0.91±0.04 for PM1) in 2021. Increasing SSA and decreasing PM2.5 mass concentration suggest that the fraction of absorbing aerosols decreased with improved air quality due to pollution control measures being taken. The annual average submicron absorption ratio (Rab) increased from 86.1 % in 2018 to 89.2 % in 2021, suggesting that fine particles are the main contributors to total PM10 absorption and that the contribution of fine particles to absorption became more important. The absorption Ångström exponent (AAE) in winter decreased from 2018 to 2021, implying a decreasing contribution from brown carbon to light absorption, which may relate to the reduced emissions of biomass burning and coal combustion. During the study period, aerosol radiative forcing efficiency became more negative, mainly influenced by increasing SSA and was -27.0 and -26.2 W m-2 per aerosol optical depth (AOD) for PM10 and PM1 in 2021. Higher σab and PM2.5 mass concentrations were primarily distributed in clusters 4 and 5, transported from the south and the west of Beijing each year. σab and PM2.5 corresponding to clusters 4 and 5 decreased evidently from 2018 to 2021, which may result from the control of source emissions in surrounding regions of Beijing. The 4-year data presented in this study provide critical optical parameters for radiative forcing assessment within two size ranges and are helpful for evaluating the effectiveness of clean air action. Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol optical properties at three wavelengths for PM.sub.1 and PM.sub.10 were conducted in urban Beijing from March 2018 to February 2022. The aerosol absorption coefficient (Ï.sub.ab) at 550 nm of PM.sub.10 and PM.sub.1 decreased by 55.0 % and 53.5 % from 2018 to 2021. The significant reduction in Ï.sub.ab may be related to reduced primary emissions caused by effective air pollution control measures. PM.sub.2.5 mass concentration decreased by 34.4 % from 2018 to 2021. Single scattering albedo (SSA) increased from 0.89±0.04 for PM.sub.10 (0.87±0.05 for PM.sub.1) in 2018 to 0.93±0.03 for PM.sub.10 (0.91±0.04 for PM.sub.1) in 2021. Increasing SSA and decreasing PM.sub.2.5 mass concentration suggest that the fraction of absorbing aerosols decreased with improved air quality due to pollution control measures being taken. The annual average submicron absorption ratio (Rab) increased from 86.1 % in 2018 to 89.2 % in 2021, suggesting that fine particles are the main contributors to total PM.sub.10 absorption and that the contribution of fine particles to absorption became more important. The absorption Ãngström exponent (AAE) in winter decreased from 2018 to 2021, implying a decreasing contribution from brown carbon to light absorption, which may relate to the reduced emissions of biomass burning and coal combustion. During the study period, aerosol radiative forcing efficiency became more negative, mainly influenced by increasing SSA and was -27.0 and -26.2 W m.sup.-2 per aerosol optical depth (AOD) for PM.sub.10 and PM.sub.1 in 2021. Higher Ï.sub.ab and PM.sub.2.5 mass concentrations were primarily distributed in clusters 4 and 5, transported from the south and the west of Beijing each year. Ï.sub.ab and PM.sub.2.5 corresponding to clusters 4 and 5 decreased evidently from 2018 to 2021, which may result from the control of source emissions in surrounding regions of Beijing. The 4-year data presented in this study provide critical optical parameters for radiative forcing assessment within two size ranges and are helpful for evaluating the effectiveness of clean air action. Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol optical properties at three wavelengths for PM 1 and PM 10 were conducted in urban Beijing from March 2018 to February 2022. The aerosol absorption coefficient ( σab ) at 550 nm of PM 10 and PM 1 decreased by 55.0 % and 53.5 % from 2018 to 2021. The significant reduction in σab may be related to reduced primary emissions caused by effective air pollution control measures. PM 2.5 mass concentration decreased by 34.4 % from 2018 to 2021. Single scattering albedo (SSA) increased from 0.89±0.04 for PM 10 ( 0.87±0.05 for PM 1) in 2018 to 0.93±0.03 for PM 10 ( 0.91±0.04 for PM 1) in 2021. Increasing SSA and decreasing PM 2.5 mass concentration suggest that the fraction of absorbing aerosols decreased with improved air quality due to pollution control measures being taken. The annual average submicron absorption ratio (Rab) increased from 86.1 % in 2018 to 89.2 % in 2021, suggesting that fine particles are the main contributors to total PM 10 absorption and that the contribution of fine particles to absorption became more important. The absorption Ångström exponent (AAE) in winter decreased from 2018 to 2021, implying a decreasing contribution from brown carbon to light absorption, which may relate to the reduced emissions of biomass burning and coal combustion. During the study period, aerosol radiative forcing efficiency became more negative, mainly influenced by increasing SSA and was −27.0 and −26.2 W m −2 per aerosol optical depth (AOD) for PM 10 and PM 1 in 2021. Higher σab and PM 2.5 mass concentrations were primarily distributed in clusters 4 and 5, transported from the south and the west of Beijing each year. σab and PM 2.5 corresponding to clusters 4 and 5 decreased evidently from 2018 to 2021, which may result from the control of source emissions in surrounding regions of Beijing. The 4-year data presented in this study provide critical optical parameters for radiative forcing assessment within two size ranges and are helpful for evaluating the effectiveness of clean air action. |
Audience | Academic |
Author | Hu, Xinyao Zhang, Sinan Lu, Jiayuan Yu, Aoyuan Liu, Zhaodong Wang, Jialing Liu, Quan Xia, Can Sun, Junying Shen, Xiaojing Zhang, Yangmei Zhang, Xiaoye Liu, Shuo |
Author_xml | – sequence: 1 givenname: Xinyao surname: Hu fullname: Hu, Xinyao – sequence: 2 givenname: Junying surname: Sun fullname: Sun, Junying – sequence: 3 givenname: Can surname: Xia fullname: Xia, Can – sequence: 4 givenname: Xiaojing surname: Shen fullname: Shen, Xiaojing – sequence: 5 givenname: Yangmei orcidid: 0000-0001-8825-1469 surname: Zhang fullname: Zhang, Yangmei – sequence: 6 givenname: Quan orcidid: 0000-0003-0382-5764 surname: Liu fullname: Liu, Quan – sequence: 7 givenname: Zhaodong surname: Liu fullname: Liu, Zhaodong – sequence: 8 givenname: Sinan surname: Zhang fullname: Zhang, Sinan – sequence: 9 givenname: Jialing surname: Wang fullname: Wang, Jialing – sequence: 10 givenname: Aoyuan surname: Yu fullname: Yu, Aoyuan – sequence: 11 givenname: Jiayuan surname: Lu fullname: Lu, Jiayuan – sequence: 12 givenname: Shuo surname: Liu fullname: Liu, Shuo – sequence: 13 givenname: Xiaoye surname: Zhang fullname: Zhang, Xiaoye |
BookMark | eNp1Uk1v1DAQjVCRaAt3jpY4cUjrjzhxuJUK6EpFSAXO1sQer7xK4mB7Ef1N_EkcFlAXgSzZ1sx78_nOqpM5zFhVzxm9kKxvLsEsNRe1lKyrOeXiUXXKWkXrTvDm5MH_SXWW0o5SLilrTqvv7xHSPuKEcyYRlxDzK3IHi7fEohn9jCQ4AhhDCiOBIYW4ZB9mYgI6541feTDbP5BQ3AZGssSwYMz3pMDQ5EQKJ4L1kP1XJC5E4-ct8XMhk30cyg0RYU32Gv1u9bkYJsIpUySH8nL2tHrsYEz47Nd7Xn1---bT9U19--Hd5vrqtjaNornuLROohtKgUo0wQllQUgyDUIDOukYNphOAclBmEM3AlAHlkNEOpZG2peK82hzi2gA7vUQ_QbzXAbz-aQhxqyGWLkfUA0ohhGI9UNtYDkAl9MgVsE5QJtsS68UhVpnHlz2mrHdhH-dSvuaKNVz2ij5AbaEE9bMLOYKZfDL6qmv6lqmernVd_ANVjsXJmyIH54v9iPDyiFAwGb_lLexT0puPd8fY9oA1ZY8potPGZ1hXXZL4UTOqV53pojPNhV51pledFSL9i_h7Yv-l_AD639ba |
CitedBy_id | crossref_primary_10_5194_acp_24_9387_2024 crossref_primary_10_1016_j_scitotenv_2024_170620 crossref_primary_10_3390_rs16244659 crossref_primary_10_1007_s41748_024_00380_6 crossref_primary_10_5194_acp_23_5517_2023 crossref_primary_10_3390_rs15174119 crossref_primary_10_1016_j_atmosenv_2024_120463 crossref_primary_10_1016_j_atmosenv_2023_120311 crossref_primary_10_1016_j_atmosenv_2023_120226 crossref_primary_10_1016_j_scitotenv_2024_171989 |
Cites_doi | 10.1016/j.envpol.2020.115780 10.1016/j.atmosenv.2016.07.014 10.1029/2008JD010780 10.1175/1520-0469(2002)059<1135:VOAOPA>2.0.CO;2 10.5194/acp-16-13309-2016 10.1029/2011JD016671 10.1016/j.envpol.2020.115952 10.5194/amt-2-417-2009 10.1029/2021JD035273 10.1016/j.atmosenv.2016.01.008 10.5194/acp-10-2319-2010 10.5194/acp-19-8569-2019 10.5194/acp-18-5265-2018 10.1029/96JD03436 10.5194/acp-13-869-2013 10.5194/acp-20-8867-2020 10.1029/2007JD009077 10.1016/j.envsoft.2009.01.004 10.5194/acp-23-5517-2023 10.1126/science.abb7431 10.1016/j.scitotenv.2021.145215 10.1016/j.atmosenv.2020.117570 10.1016/j.scitotenv.2022.153847 10.1002/jgrd.50171 10.5194/acp-22-7905-2022 10.5194/acp-9-2035-2009 10.5194/acp-11-4445-2011 10.1016/j.atmosres.2011.08.017 10.1038/s43017-022-00296-7 10.3390/atmos12121545 10.5194/acp-13-7053-2013 10.1073/pnas.1907956116 10.1016/j.atmosenv.2019.05.034 10.1016/j.scitotenv.2022.159233 10.1016/j.jenvman.2020.110263 10.5194/acp-19-11363-2019 10.1016/j.partic.2014.03.013 10.5194/acp-10-4207-2010 10.1080/02786829808965551 10.1029/1999JD900241 10.1016/j.scitotenv.2020.140739 10.1017/9781009157896.008 10.1016/j.atmosres.2014.10.010 10.1016/j.envpol.2020.114455 10.5194/amt-12-3417-2019 10.1016/j.jqsrt.2009.02.035 10.1029/2020JD034094 10.1016/j.atmosres.2022.106015 10.1126/science.abb6105 10.1029/95GL00075 10.5194/acp-19-11303-2019 10.1080/02786820500421521 10.5194/acp-18-8469-2018 10.1126/science.255.5043.423 10.1029/2001JD900073 10.5194/acp-15-1555-2015 10.1038/35055518 10.5194/acp-9-8903-2009 10.5194/acp-21-13031-2021 10.1016/j.atmosenv.2019.02.049 10.1080/027868299304435 10.1016/j.atmosenv.2008.02.034 10.5194/amt-13-4353-2020 10.1029/2021GL092770 10.1002/2016JD025762 10.5194/amt-10-4805-2017 10.5194/acp-8-2229-2008 10.1016/j.apr.2021.101307 10.1016/j.atmosenv.2007.10.062 10.1029/2021GL093243 10.5194/acp-15-12487-2015 10.1029/2003JD003405 10.5194/acp-18-1149-2018 10.1016/j.scitotenv.2018.12.474 10.1016/j.scitotenv.2021.150950 10.5194/acp-15-13633-2015 10.1016/j.scitotenv.2019.07.006 10.5194/acp-22-561-2022 10.5194/acp-18-7877-2018 10.1016/j.chemosphere.2020.126849 10.1016/j.scitotenv.2019.05.283 10.1016/j.atmosres.2020.104977 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 Copernicus GmbH 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 Copernicus GmbH – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU COVID DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.5194/acp-23-5517-2023 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Statistics |
EISSN | 1680-7324 |
EndPage | 5531 |
ExternalDocumentID | oai_doaj_org_article_be5333819a0d4d2aa05a9e28a1730156 A749618900 10_5194_acp_23_5517_2023 |
GeographicLocations | China Beijing China |
GeographicLocations_xml | – name: China – name: Beijing China |
GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RKB RNS TR2 XSB ~02 BBORY PMFND 7QH 7TG 7TN 7UA 8FD AZQEC C1K COVID DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c480t-9d13e8b2508843c38da853bb38aefdf48bc73ae5b8cb34b18ca8fe107e5c5d603 |
IEDL.DBID | BENPR |
ISSN | 1680-7324 1680-7316 |
IngestDate | Wed Aug 27 01:02:31 EDT 2025 Fri Jul 25 06:48:55 EDT 2025 Tue Jun 17 21:12:02 EDT 2025 Tue Jun 10 20:32:24 EDT 2025 Fri Jun 27 05:28:45 EDT 2025 Tue Jul 01 04:36:07 EDT 2025 Thu Apr 24 23:06:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-9d13e8b2508843c38da853bb38aefdf48bc73ae5b8cb34b18ca8fe107e5c5d603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0382-5764 0000-0001-8825-1469 |
OpenAccessLink | https://www.proquest.com/docview/2814259806?pq-origsite=%requestingapplication% |
PQID | 2814259806 |
PQPubID | 105744 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_be5333819a0d4d2aa05a9e28a1730156 proquest_journals_2814259806 gale_infotracmisc_A749618900 gale_infotracacademiconefile_A749618900 gale_incontextgauss_ISR_A749618900 crossref_citationtrail_10_5194_acp_23_5517_2023 crossref_primary_10_5194_acp_23_5517_2023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-17 |
PublicationDateYYYYMMDD | 2023-05-17 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2023 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref45 doi: 10.1016/j.envpol.2020.115780 – ident: ref51 doi: 10.1016/j.atmosenv.2016.07.014 – ident: ref20 doi: 10.1029/2008JD010780 – ident: ref15 doi: 10.1175/1520-0469(2002)059<1135:VOAOPA>2.0.CO;2 – ident: ref23 doi: 10.5194/acp-16-13309-2016 – ident: ref61 doi: 10.1029/2011JD016671 – ident: ref40 doi: 10.1016/j.envpol.2020.115952 – ident: ref63 doi: 10.5194/amt-2-417-2009 – ident: ref13 doi: 10.1029/2021JD035273 – ident: ref52 doi: 10.1016/j.atmosenv.2016.01.008 – ident: ref19 doi: 10.5194/acp-10-2319-2010 – ident: ref32 doi: 10.5194/acp-19-8569-2019 – ident: ref53 doi: 10.5194/acp-18-5265-2018 – ident: ref25 doi: 10.1029/96JD03436 – ident: ref11 doi: 10.5194/acp-13-869-2013 – ident: ref12 doi: 10.5194/acp-20-8867-2020 – ident: ref39 doi: 10.1029/2007JD009077 – ident: ref69 doi: 10.1016/j.envsoft.2009.01.004 – ident: ref30 doi: 10.5194/acp-23-5517-2023 – ident: ref38 doi: 10.1126/science.abb7431 – ident: ref29 doi: 10.1016/j.scitotenv.2021.145215 – ident: ref81 doi: 10.1016/j.atmosenv.2020.117570 – ident: ref21 doi: 10.1016/j.scitotenv.2022.153847 – ident: ref6 doi: 10.1002/jgrd.50171 – ident: ref22 doi: 10.5194/acp-22-7905-2022 – ident: ref77 doi: 10.5194/acp-9-2035-2009 – ident: ref65 doi: 10.5194/acp-11-4445-2011 – ident: ref2 doi: 10.1016/j.atmosres.2011.08.017 – ident: ref41 doi: 10.1038/s43017-022-00296-7 – ident: ref78 doi: 10.3390/atmos12121545 – ident: ref80 doi: 10.5194/acp-13-7053-2013 – ident: ref79 doi: 10.1073/pnas.1907956116 – ident: ref82 doi: 10.1016/j.atmosenv.2019.05.034 – ident: ref72 doi: 10.1016/j.scitotenv.2022.159233 – ident: ref75 doi: 10.1016/j.jenvman.2020.110263 – ident: ref46 doi: 10.5194/acp-19-11363-2019 – ident: ref35 doi: 10.1016/j.partic.2014.03.013 – ident: ref36 doi: 10.5194/acp-10-4207-2010 – ident: ref1 doi: 10.1080/02786829808965551 – ident: ref54 doi: 10.1029/1999JD900241 – ident: ref58 doi: 10.1016/j.scitotenv.2020.140739 – ident: ref16 – ident: ref59 doi: 10.1017/9781009157896.008 – ident: ref50 doi: 10.1016/j.atmosres.2014.10.010 – ident: ref74 doi: 10.1016/j.envpol.2020.114455 – ident: ref14 doi: 10.5194/amt-12-3417-2019 – ident: ref47 doi: 10.1016/j.jqsrt.2009.02.035 – ident: ref28 doi: 10.1029/2020JD034094 – ident: ref33 doi: 10.1016/j.atmosres.2022.106015 – ident: ref60 doi: 10.1126/science.abb6105 – ident: ref26 doi: 10.1029/95GL00075 – ident: ref66 doi: 10.5194/acp-19-11303-2019 – ident: ref4 doi: 10.1080/02786820500421521 – ident: ref57 doi: 10.5194/acp-18-8469-2018 – ident: ref9 doi: 10.1126/science.255.5043.423 – ident: ref3 doi: 10.1029/2001JD900073 – ident: ref17 doi: 10.5194/acp-15-1555-2015 – ident: ref31 doi: 10.1038/35055518 – ident: ref27 doi: 10.5194/acp-9-8903-2009 – ident: ref62 doi: 10.5194/acp-21-13031-2021 – ident: ref68 doi: 10.1016/j.atmosenv.2019.02.049 – ident: ref5 doi: 10.1080/027868299304435 – ident: ref10 doi: 10.1016/j.atmosenv.2008.02.034 – ident: ref37 doi: 10.5194/amt-13-4353-2020 – ident: ref44 doi: 10.1029/2021GL092770 – ident: ref24 doi: 10.1002/2016JD025762 – ident: ref70 – ident: ref48 doi: 10.5194/amt-10-4805-2017 – ident: ref76 doi: 10.5194/acp-8-2229-2008 – ident: ref42 doi: 10.1016/j.apr.2021.101307 – ident: ref64 doi: 10.1016/j.atmosenv.2007.10.062 – ident: ref34 doi: 10.1029/2021GL093243 – ident: ref55 doi: 10.5194/acp-15-12487-2015 – ident: ref7 doi: 10.1029/2003JD003405 – ident: ref18 doi: 10.5194/acp-18-1149-2018 – ident: ref8 doi: 10.1016/j.scitotenv.2018.12.474 – ident: ref67 doi: 10.1016/j.scitotenv.2021.150950 – ident: ref84 doi: 10.5194/acp-15-13633-2015 – ident: ref43 doi: 10.1016/j.scitotenv.2019.07.006 – ident: ref56 doi: 10.5194/acp-22-561-2022 – ident: ref49 doi: 10.5194/acp-18-7877-2018 – ident: ref73 doi: 10.1016/j.chemosphere.2020.126849 – ident: ref71 doi: 10.1016/j.scitotenv.2019.05.283 – ident: ref83 doi: 10.1016/j.atmosres.2020.104977 |
SSID | ssj0025014 |
Score | 2.4710615 |
Snippet | Reliable observations of aerosol optical properties are crucial for
quantifying the radiative forcing of climate. The simultaneous measurements
of aerosol... Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5517 |
SubjectTerms | Absorption Absorption coefficient Absorptivity Aerosol absorption Aerosol optical depth Aerosol optical properties Aerosols Air pollution Air pollution control Air pollution measurements Air quality Air quality control Air quality management Air quality measurements Albedo Atmospheric aerosols Biomass burning Carbon Clusters Coal combustion Combustion Electromagnetic absorption Emission measurements Emissions Emissions control Environmental law Light absorption Mass Measurement Optical analysis Optical properties Optical thickness Outdoor air quality Ozone Particulate emissions Particulate matter Pollution control Radiation Radiative forcing Statistics Urban areas Wavelengths |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQnrggniKwIAshEAerTuwkDrfdFasFqRwWVtqbNX4EFVVJlKaH_U37J3cmSQs9ABcurZqMW9czGX8ztr9h7G3UmQs1aEEJR6FDLkVVZoWoCgeQQhVcoHzH8mtxcaW_XOfXv5X6oj1hEz3wNHALFxGQUFgBMuiQAcgcqpgZSMk285FsG-e8XTA1h1q0WkahVmGkoNpM0wIlohW9AN9hxwQihVJQ7fCDCWnk7f-Tdx6nnPOH7MGMFfnJ1MdH7F5sHrNkiTC37cdsOH_Hz9YrxJzjpyfsdvkr48en1YCP_BK6VeAh0hnIyNuaQ8SOtGsObtP2o8fgvo0jlQS1gybsRdpuTHXzjlL2_XDD5-0fHNv0xGpAzpIj7vU4A_JVg435tnf4CghG6cdO4-on3aNjLBxhgOFDi-9Z-pRdnX_6fnYh5moMwmsjB1GFVEXjMkJ0WnllAuBU75wyEOtQa-N8qSDmznintEuNB1NHjC5j7vNQSPWMHTVtE58zjiFaUFlay7KutFREYejwOzJH1-vaJGyxU4n1M1U5VcxYWwxZSIkWlWgzZUmJlpSYsA_7Ft1E0_EX2VPS8l6OCLbHC2h2djY7-y-zS9gbshFLFBoN7dH5AdvNxn7-dmlPSk1ldCopE_Z-Fqpb7L-H-cgDjgKxbh1IHh9I4jPuD2_vTNHOPmZjM5Oiw62MLF78j3_0kt2n0aGdEWl5zI6GfhtfIeAa3Ovx2boDh1ol9w priority: 102 providerName: Directory of Open Access Journals |
Title | Measurement report: Rapid decline of aerosol absorption coefficient and aerosol optical property effects on radiative forcing in an urban area of Beijing from 2018 to 2021 |
URI | https://www.proquest.com/docview/2814259806 https://doaj.org/article/be5333819a0d4d2aa05a9e28a1730156 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYduGC-BSFUVkIgThYdRIncbigdVoZSJ2gMLGb5a9MRVWcpe1hfxP_JO-lbqce2KVR4-fWybOff-9n-z1C3nmRGldrwZBwZMLlnFVlWrCqMFonunLGId8xvSjOL8W3q_wqEm7LuK1yaxN7Q-2CRY58lMoEulclefG5vWGYNQpXV2MKjQNyBCZYgvN1ND67-D7buVy4aoYuVyE5wxxNm4VKQC1ipG0LDWSAGEqGOcT3JqY-fv__rHQ_9Uwek0cRM9KTjZKfkAe-eUoGU4C7oetZcfqeni7mgD37b8_I3-kd80c3qwKf6Ey3c0edx7OQnoaaag8NCQuqzTJ0veWgNvg-pATW043biYS2p7xpi9R9t7qlcRsIhTodRjdAo0kB_1qYCem8gcp03Rn41ABK8c_Gfv4Hy_A4CwU4IOkqwDVNnpPLydmv03MWszIwKyRfscolmZcmRWQnMptJp2HKNyaT2teuFtLYMtM-N9KaTJhEWi1rD16mz23uCp69IIdNaPxLQsFVc1ma1LysK8EzDGVo4DdSg_frWg7IaKsSZWPIcsycsVDguqASFShRpZlCJSpU4oB83NVoN-E67pEdo5Z3chhou78RumsVx60yHvAwerWaO-FSrXmuK59KnaBpzIsBeYt9RGEojQb36lzr9XKpvv6cqZNSYDqdivMB-RCF6gDttzoefYC3gNG39iSP9yRhrNv94m1XVNHWLNXdyHh1f_Fr8hCfG_c-JOUxOVx1a_8GINXKDMmBnHwZxtGD18n0x-9hT1D8A4VJIy0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeIAXxKcoDLAQH-IhqmM7iYOE0DYoLVv3MDZpb56_MhVVSUhbof1NSPyN3KVppz6wt700anxOIp9997s7-46QN0Fy6wsjI3Q4RtInLMoznkZ5ao2JTe6tR3_H-CgdnsrvZ8nZFvm7OguD2ypXMrEV1L5y6CPvcxXD9MoVSz_XvyKsGoXR1VUJjeW0OAiXv8Fkm30afQH-vuV88PVkfxh1VQUiJxWbR7mPRVCWIzKRwgnlDagsa4UyofCFVNZlwoTEKmeFtLFyRhUBrKSQuMSnTMBzb5HbUogcV5QafFsbeBijQwMvVSzCilDLsChgJNk3robhiACfZBFWLN9Qg221gP_phFbRDe6Tex1CpbvLKfWAbIXyIemNAVxXTeuDp-_o_nQCSLf994j8GV_5GekyBvGRHpt64qkPePIy0KqgJsCHVFNq7KxqWjlFXRXaBBbYz5R-TVLVrYOd1hgoaOaXtNt0QqFPg7kUUERTQNsO9C6dlNCZLhoLvwYgML5sL0x-YhsenqEAPhSdV3Dl8WNyeiPcekK2y6oMTwkFw9ALHhcsK3LJBCZOtPAMbvF-Uage6a9Yol2XIB3rdEw1GErIRA1M1FxoZKJGJvbIh3WPepkc5BraPeTymg7Terc3quZCd1JC2wDoG21ow7z03BiWmDxwZWIUxEnaI69xjmhM3FHizqALs5jN9OjHsd7NJBbvyRnrkfcdUVHB9zvTHbSAUcBcXxuUOxuUIFncZvNqKupOss301Tp8dn3zK3JneDI-1Iejo4Pn5C6OAe66iLMdsj1vFuEFgLm5fdmuIErOb3rJ_gOgJFx- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3ZbtNAcFVSCfHCjQgUWCEO8eDGXl9rJISalqihpILSir4te7kKRLZxHKHyS_wBv8LPMOMjVZDoWx94iRXvrBON557ZGUKe2IApk8rAwYCjE5jQdZKYRU4SKSk9mRhlMN4x2Y92j4K3x-HxGvnVnYXBsspOJtaC2uQaY-QDxj0gr4S70SBtyyLe74xeF98cnCCFmdZunEZDInv29Du4b_NX4x14108ZG7053N512gkDjg64WzmJ8XzLFUMrJfC1z40E9aWUz6VNTRpwpWNf2lBxrfxAeVxLnlrwmGyoQxO5Pjz3ElnnEQ9Zj6wPR5MPn5buHmbs0N2LuOvgfKgmSQoWUzCQugDkOGCtxA7OL19RivXsgH9piFrtja6R3x3CmmqXr5uLSm3qH3_1kvw_MXqdXG2tcbrVsM8Nsmazm6Q_AUciL-t8A31Gt2dTsOrrb7fIz8lZTJU2-ZaX9EAWU0ONxVOmluYplRbQnM-oVPO8rGUy1bmtm3XgPpmZJUhe1MkEWmBSpKxOaVtgQ2FPiX0jUB1R8Cw02Bh0msFmuigVfEow9_HHhnb6BdfwoBAFQ4vTKocr826TowvB3R3Sy_LM3iUUnGDjMy914zQJXB-bRCp4BlN4P015nww6ghO6bQaPM0lmApxCJFEBJCqYL5BEBZJon7xY7iiaRijnwA6Rhpdw2MK8vpGXJ6KViEJZ8DQwXiBdExgmpRvKxDIuPVQ6YdQnj5EDBDYpyZA4T-RiPhfjjwdiKw5wUFHiun3yvAVKc_j_WraHSgAL2NdsBXJjBRKkqF5d7phEtFJ8Ls445N75y4_IZWAd8W68v3efXEEUYIGJF2-QXlUu7AOwWyv1sBUQlHy-aA76A-7RqlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+report%3A+Rapid+decline+of+aerosol+absorption+coefficient+and+aerosol+optical+property+effects+on+radiative+forcing+in+an+urban+area+of+Beijing+from+2018+to+2021&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Hu%2C+Xinyao&rft.au=Sun%2C+Junying&rft.au=Xia%2C+Can&rft.au=Shen%2C+Xiaojing&rft.date=2023-05-17&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=23&rft.issue=9&rft.spage=5517&rft.epage=5531&rft_id=info:doi/10.5194%2Facp-23-5517-2023&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |