Measurement report: Rapid decline of aerosol absorption coefficient and aerosol optical property effects on radiative forcing in an urban area of Beijing from 2018 to 2021

Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol optical properties at three wavelengths for PM1 and PM10 were conducted in urban Beijing from March 2018 to February 2022. The aerosol absorption...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 23; no. 9; pp. 5517 - 5531
Main Authors Hu, Xinyao, Sun, Junying, Xia, Can, Shen, Xiaojing, Zhang, Yangmei, Liu, Quan, Liu, Zhaodong, Zhang, Sinan, Wang, Jialing, Yu, Aoyuan, Lu, Jiayuan, Liu, Shuo, Zhang, Xiaoye
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 17.05.2023
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol optical properties at three wavelengths for PM1 and PM10 were conducted in urban Beijing from March 2018 to February 2022. The aerosol absorption coefficient (σab) at 550 nm of PM10 and PM1 decreased by 55.0 % and 53.5 % from 2018 to 2021. The significant reduction in σab may be related to reduced primary emissions caused by effective air pollution control measures. PM2.5 mass concentration decreased by 34.4 % from 2018 to 2021. Single scattering albedo (SSA) increased from 0.89±0.04 for PM10 (0.87±0.05 for PM1) in 2018 to 0.93±0.03 for PM10 (0.91±0.04 for PM1) in 2021. Increasing SSA and decreasing PM2.5 mass concentration suggest that the fraction of absorbing aerosols decreased with improved air quality due to pollution control measures being taken. The annual average submicron absorption ratio (Rab) increased from 86.1 % in 2018 to 89.2 % in 2021, suggesting that fine particles are the main contributors to total PM10 absorption and that the contribution of fine particles to absorption became more important. The absorption Ångström exponent (AAE) in winter decreased from 2018 to 2021, implying a decreasing contribution from brown carbon to light absorption, which may relate to the reduced emissions of biomass burning and coal combustion. During the study period, aerosol radiative forcing efficiency became more negative, mainly influenced by increasing SSA and was −27.0 and −26.2 W m−2 per aerosol optical depth (AOD) for PM10 and PM1 in 2021. Higher σab and PM2.5 mass concentrations were primarily distributed in clusters 4 and 5, transported from the south and the west of Beijing each year. σab and PM2.5 corresponding to clusters 4 and 5 decreased evidently from 2018 to 2021, which may result from the control of source emissions in surrounding regions of Beijing. The 4-year data presented in this study provide critical optical parameters for radiative forcing assessment within two size ranges and are helpful for evaluating the effectiveness of clean air action.
AbstractList Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol optical properties at three wavelengths for PM1 and PM10 were conducted in urban Beijing from March 2018 to February 2022. The aerosol absorption coefficient (σab) at 550 nm of PM10 and PM1 decreased by 55.0 % and 53.5 % from 2018 to 2021. The significant reduction in σab may be related to reduced primary emissions caused by effective air pollution control measures. PM2.5 mass concentration decreased by 34.4 % from 2018 to 2021. Single scattering albedo (SSA) increased from 0.89±0.04 for PM10 (0.87±0.05 for PM1) in 2018 to 0.93±0.03 for PM10 (0.91±0.04 for PM1) in 2021. Increasing SSA and decreasing PM2.5 mass concentration suggest that the fraction of absorbing aerosols decreased with improved air quality due to pollution control measures being taken. The annual average submicron absorption ratio (Rab) increased from 86.1 % in 2018 to 89.2 % in 2021, suggesting that fine particles are the main contributors to total PM10 absorption and that the contribution of fine particles to absorption became more important. The absorption Ångström exponent (AAE) in winter decreased from 2018 to 2021, implying a decreasing contribution from brown carbon to light absorption, which may relate to the reduced emissions of biomass burning and coal combustion. During the study period, aerosol radiative forcing efficiency became more negative, mainly influenced by increasing SSA and was −27.0 and −26.2 W m−2 per aerosol optical depth (AOD) for PM10 and PM1 in 2021. Higher σab and PM2.5 mass concentrations were primarily distributed in clusters 4 and 5, transported from the south and the west of Beijing each year. σab and PM2.5 corresponding to clusters 4 and 5 decreased evidently from 2018 to 2021, which may result from the control of source emissions in surrounding regions of Beijing. The 4-year data presented in this study provide critical optical parameters for radiative forcing assessment within two size ranges and are helpful for evaluating the effectiveness of clean air action.
Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol optical properties at three wavelengths for PM1 and PM10 were conducted in urban Beijing from March 2018 to February 2022. The aerosol absorption coefficient (σab) at 550 nm of PM10 and PM1 decreased by 55.0 % and 53.5 % from 2018 to 2021. The significant reduction in σab may be related to reduced primary emissions caused by effective air pollution control measures. PM2.5 mass concentration decreased by 34.4 % from 2018 to 2021. Single scattering albedo (SSA) increased from 0.89±0.04 for PM10 (0.87±0.05 for PM1) in 2018 to 0.93±0.03 for PM10 (0.91±0.04 for PM1) in 2021. Increasing SSA and decreasing PM2.5 mass concentration suggest that the fraction of absorbing aerosols decreased with improved air quality due to pollution control measures being taken. The annual average submicron absorption ratio (Rab) increased from 86.1 % in 2018 to 89.2 % in 2021, suggesting that fine particles are the main contributors to total PM10 absorption and that the contribution of fine particles to absorption became more important. The absorption Ångström exponent (AAE) in winter decreased from 2018 to 2021, implying a decreasing contribution from brown carbon to light absorption, which may relate to the reduced emissions of biomass burning and coal combustion. During the study period, aerosol radiative forcing efficiency became more negative, mainly influenced by increasing SSA and was -27.0 and -26.2 W m-2 per aerosol optical depth (AOD) for PM10 and PM1 in 2021. Higher σab and PM2.5 mass concentrations were primarily distributed in clusters 4 and 5, transported from the south and the west of Beijing each year. σab and PM2.5 corresponding to clusters 4 and 5 decreased evidently from 2018 to 2021, which may result from the control of source emissions in surrounding regions of Beijing. The 4-year data presented in this study provide critical optical parameters for radiative forcing assessment within two size ranges and are helpful for evaluating the effectiveness of clean air action.
Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol optical properties at three wavelengths for PM.sub.1 and PM.sub.10 were conducted in urban Beijing from March 2018 to February 2022. The aerosol absorption coefficient (Ï.sub.ab) at 550 nm of PM.sub.10 and PM.sub.1 decreased by 55.0 % and 53.5 % from 2018 to 2021. The significant reduction in Ï.sub.ab may be related to reduced primary emissions caused by effective air pollution control measures. PM.sub.2.5 mass concentration decreased by 34.4 % from 2018 to 2021. Single scattering albedo (SSA) increased from 0.89±0.04 for PM.sub.10 (0.87±0.05 for PM.sub.1) in 2018 to 0.93±0.03 for PM.sub.10 (0.91±0.04 for PM.sub.1) in 2021. Increasing SSA and decreasing PM.sub.2.5 mass concentration suggest that the fraction of absorbing aerosols decreased with improved air quality due to pollution control measures being taken. The annual average submicron absorption ratio (Rab) increased from 86.1 % in 2018 to 89.2 % in 2021, suggesting that fine particles are the main contributors to total PM.sub.10 absorption and that the contribution of fine particles to absorption became more important. The absorption Ãngström exponent (AAE) in winter decreased from 2018 to 2021, implying a decreasing contribution from brown carbon to light absorption, which may relate to the reduced emissions of biomass burning and coal combustion. During the study period, aerosol radiative forcing efficiency became more negative, mainly influenced by increasing SSA and was -27.0 and -26.2 W m.sup.-2 per aerosol optical depth (AOD) for PM.sub.10 and PM.sub.1 in 2021. Higher Ï.sub.ab and PM.sub.2.5 mass concentrations were primarily distributed in clusters 4 and 5, transported from the south and the west of Beijing each year. Ï.sub.ab and PM.sub.2.5 corresponding to clusters 4 and 5 decreased evidently from 2018 to 2021, which may result from the control of source emissions in surrounding regions of Beijing. The 4-year data presented in this study provide critical optical parameters for radiative forcing assessment within two size ranges and are helpful for evaluating the effectiveness of clean air action.
Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol optical properties at three wavelengths for PM 1 and PM 10 were conducted in urban Beijing from March 2018 to February 2022. The aerosol absorption coefficient ( σab ) at 550 nm of PM 10 and PM 1 decreased by 55.0 % and 53.5 % from 2018 to 2021. The significant reduction in σab may be related to reduced primary emissions caused by effective air pollution control measures. PM 2.5 mass concentration decreased by 34.4 % from 2018 to 2021. Single scattering albedo (SSA) increased from 0.89±0.04 for PM 10 ( 0.87±0.05 for PM 1) in 2018 to 0.93±0.03 for PM 10 ( 0.91±0.04 for PM 1) in 2021. Increasing SSA and decreasing PM 2.5 mass concentration suggest that the fraction of absorbing aerosols decreased with improved air quality due to pollution control measures being taken. The annual average submicron absorption ratio (Rab) increased from 86.1 % in 2018 to 89.2 % in 2021, suggesting that fine particles are the main contributors to total PM 10 absorption and that the contribution of fine particles to absorption became more important. The absorption Ångström exponent (AAE) in winter decreased from 2018 to 2021, implying a decreasing contribution from brown carbon to light absorption, which may relate to the reduced emissions of biomass burning and coal combustion. During the study period, aerosol radiative forcing efficiency became more negative, mainly influenced by increasing SSA and was −27.0 and −26.2  W m −2 per aerosol optical depth (AOD) for PM 10 and PM 1 in 2021. Higher σab and PM 2.5 mass concentrations were primarily distributed in clusters 4 and 5, transported from the south and the west of Beijing each year. σab and PM 2.5 corresponding to clusters 4 and 5 decreased evidently from 2018 to 2021, which may result from the control of source emissions in surrounding regions of Beijing. The 4-year data presented in this study provide critical optical parameters for radiative forcing assessment within two size ranges and are helpful for evaluating the effectiveness of clean air action.
Audience Academic
Author Hu, Xinyao
Zhang, Sinan
Lu, Jiayuan
Yu, Aoyuan
Liu, Zhaodong
Wang, Jialing
Liu, Quan
Xia, Can
Sun, Junying
Shen, Xiaojing
Zhang, Yangmei
Zhang, Xiaoye
Liu, Shuo
Author_xml – sequence: 1
  givenname: Xinyao
  surname: Hu
  fullname: Hu, Xinyao
– sequence: 2
  givenname: Junying
  surname: Sun
  fullname: Sun, Junying
– sequence: 3
  givenname: Can
  surname: Xia
  fullname: Xia, Can
– sequence: 4
  givenname: Xiaojing
  surname: Shen
  fullname: Shen, Xiaojing
– sequence: 5
  givenname: Yangmei
  orcidid: 0000-0001-8825-1469
  surname: Zhang
  fullname: Zhang, Yangmei
– sequence: 6
  givenname: Quan
  orcidid: 0000-0003-0382-5764
  surname: Liu
  fullname: Liu, Quan
– sequence: 7
  givenname: Zhaodong
  surname: Liu
  fullname: Liu, Zhaodong
– sequence: 8
  givenname: Sinan
  surname: Zhang
  fullname: Zhang, Sinan
– sequence: 9
  givenname: Jialing
  surname: Wang
  fullname: Wang, Jialing
– sequence: 10
  givenname: Aoyuan
  surname: Yu
  fullname: Yu, Aoyuan
– sequence: 11
  givenname: Jiayuan
  surname: Lu
  fullname: Lu, Jiayuan
– sequence: 12
  givenname: Shuo
  surname: Liu
  fullname: Liu, Shuo
– sequence: 13
  givenname: Xiaoye
  surname: Zhang
  fullname: Zhang, Xiaoye
BookMark eNp1Uk1v1DAQjVCRaAt3jpY4cUjrjzhxuJUK6EpFSAXO1sQer7xK4mB7Ef1N_EkcFlAXgSzZ1sx78_nOqpM5zFhVzxm9kKxvLsEsNRe1lKyrOeXiUXXKWkXrTvDm5MH_SXWW0o5SLilrTqvv7xHSPuKEcyYRlxDzK3IHi7fEohn9jCQ4AhhDCiOBIYW4ZB9mYgI6541feTDbP5BQ3AZGssSwYMz3pMDQ5EQKJ4L1kP1XJC5E4-ct8XMhk30cyg0RYU32Gv1u9bkYJsIpUySH8nL2tHrsYEz47Nd7Xn1---bT9U19--Hd5vrqtjaNornuLROohtKgUo0wQllQUgyDUIDOukYNphOAclBmEM3AlAHlkNEOpZG2peK82hzi2gA7vUQ_QbzXAbz-aQhxqyGWLkfUA0ohhGI9UNtYDkAl9MgVsE5QJtsS68UhVpnHlz2mrHdhH-dSvuaKNVz2ij5AbaEE9bMLOYKZfDL6qmv6lqmernVd_ANVjsXJmyIH54v9iPDyiFAwGb_lLexT0puPd8fY9oA1ZY8potPGZ1hXXZL4UTOqV53pojPNhV51pledFSL9i_h7Yv-l_AD639ba
CitedBy_id crossref_primary_10_5194_acp_24_9387_2024
crossref_primary_10_1016_j_scitotenv_2024_170620
crossref_primary_10_3390_rs16244659
crossref_primary_10_1007_s41748_024_00380_6
crossref_primary_10_5194_acp_23_5517_2023
crossref_primary_10_3390_rs15174119
crossref_primary_10_1016_j_atmosenv_2024_120463
crossref_primary_10_1016_j_atmosenv_2023_120311
crossref_primary_10_1016_j_atmosenv_2023_120226
crossref_primary_10_1016_j_scitotenv_2024_171989
Cites_doi 10.1016/j.envpol.2020.115780
10.1016/j.atmosenv.2016.07.014
10.1029/2008JD010780
10.1175/1520-0469(2002)059<1135:VOAOPA>2.0.CO;2
10.5194/acp-16-13309-2016
10.1029/2011JD016671
10.1016/j.envpol.2020.115952
10.5194/amt-2-417-2009
10.1029/2021JD035273
10.1016/j.atmosenv.2016.01.008
10.5194/acp-10-2319-2010
10.5194/acp-19-8569-2019
10.5194/acp-18-5265-2018
10.1029/96JD03436
10.5194/acp-13-869-2013
10.5194/acp-20-8867-2020
10.1029/2007JD009077
10.1016/j.envsoft.2009.01.004
10.5194/acp-23-5517-2023
10.1126/science.abb7431
10.1016/j.scitotenv.2021.145215
10.1016/j.atmosenv.2020.117570
10.1016/j.scitotenv.2022.153847
10.1002/jgrd.50171
10.5194/acp-22-7905-2022
10.5194/acp-9-2035-2009
10.5194/acp-11-4445-2011
10.1016/j.atmosres.2011.08.017
10.1038/s43017-022-00296-7
10.3390/atmos12121545
10.5194/acp-13-7053-2013
10.1073/pnas.1907956116
10.1016/j.atmosenv.2019.05.034
10.1016/j.scitotenv.2022.159233
10.1016/j.jenvman.2020.110263
10.5194/acp-19-11363-2019
10.1016/j.partic.2014.03.013
10.5194/acp-10-4207-2010
10.1080/02786829808965551
10.1029/1999JD900241
10.1016/j.scitotenv.2020.140739
10.1017/9781009157896.008
10.1016/j.atmosres.2014.10.010
10.1016/j.envpol.2020.114455
10.5194/amt-12-3417-2019
10.1016/j.jqsrt.2009.02.035
10.1029/2020JD034094
10.1016/j.atmosres.2022.106015
10.1126/science.abb6105
10.1029/95GL00075
10.5194/acp-19-11303-2019
10.1080/02786820500421521
10.5194/acp-18-8469-2018
10.1126/science.255.5043.423
10.1029/2001JD900073
10.5194/acp-15-1555-2015
10.1038/35055518
10.5194/acp-9-8903-2009
10.5194/acp-21-13031-2021
10.1016/j.atmosenv.2019.02.049
10.1080/027868299304435
10.1016/j.atmosenv.2008.02.034
10.5194/amt-13-4353-2020
10.1029/2021GL092770
10.1002/2016JD025762
10.5194/amt-10-4805-2017
10.5194/acp-8-2229-2008
10.1016/j.apr.2021.101307
10.1016/j.atmosenv.2007.10.062
10.1029/2021GL093243
10.5194/acp-15-12487-2015
10.1029/2003JD003405
10.5194/acp-18-1149-2018
10.1016/j.scitotenv.2018.12.474
10.1016/j.scitotenv.2021.150950
10.5194/acp-15-13633-2015
10.1016/j.scitotenv.2019.07.006
10.5194/acp-22-561-2022
10.5194/acp-18-7877-2018
10.1016/j.chemosphere.2020.126849
10.1016/j.scitotenv.2019.05.283
10.1016/j.atmosres.2020.104977
ContentType Journal Article
Copyright COPYRIGHT 2023 Copernicus GmbH
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Copernicus GmbH
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
COVID
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-23-5517-2023
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Statistics
EISSN 1680-7324
EndPage 5531
ExternalDocumentID oai_doaj_org_article_be5333819a0d4d2aa05a9e28a1730156
A749618900
10_5194_acp_23_5517_2023
GeographicLocations China
Beijing China
GeographicLocations_xml – name: China
– name: Beijing China
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
COVID
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c480t-9d13e8b2508843c38da853bb38aefdf48bc73ae5b8cb34b18ca8fe107e5c5d603
IEDL.DBID BENPR
ISSN 1680-7324
1680-7316
IngestDate Wed Aug 27 01:02:31 EDT 2025
Fri Jul 25 06:48:55 EDT 2025
Tue Jun 17 21:12:02 EDT 2025
Tue Jun 10 20:32:24 EDT 2025
Fri Jun 27 05:28:45 EDT 2025
Tue Jul 01 04:36:07 EDT 2025
Thu Apr 24 23:06:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-9d13e8b2508843c38da853bb38aefdf48bc73ae5b8cb34b18ca8fe107e5c5d603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0382-5764
0000-0001-8825-1469
OpenAccessLink https://www.proquest.com/docview/2814259806?pq-origsite=%requestingapplication%
PQID 2814259806
PQPubID 105744
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_be5333819a0d4d2aa05a9e28a1730156
proquest_journals_2814259806
gale_infotracmisc_A749618900
gale_infotracacademiconefile_A749618900
gale_incontextgauss_ISR_A749618900
crossref_citationtrail_10_5194_acp_23_5517_2023
crossref_primary_10_5194_acp_23_5517_2023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-17
PublicationDateYYYYMMDD 2023-05-17
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-17
  day: 17
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2023
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref45
  doi: 10.1016/j.envpol.2020.115780
– ident: ref51
  doi: 10.1016/j.atmosenv.2016.07.014
– ident: ref20
  doi: 10.1029/2008JD010780
– ident: ref15
  doi: 10.1175/1520-0469(2002)059<1135:VOAOPA>2.0.CO;2
– ident: ref23
  doi: 10.5194/acp-16-13309-2016
– ident: ref61
  doi: 10.1029/2011JD016671
– ident: ref40
  doi: 10.1016/j.envpol.2020.115952
– ident: ref63
  doi: 10.5194/amt-2-417-2009
– ident: ref13
  doi: 10.1029/2021JD035273
– ident: ref52
  doi: 10.1016/j.atmosenv.2016.01.008
– ident: ref19
  doi: 10.5194/acp-10-2319-2010
– ident: ref32
  doi: 10.5194/acp-19-8569-2019
– ident: ref53
  doi: 10.5194/acp-18-5265-2018
– ident: ref25
  doi: 10.1029/96JD03436
– ident: ref11
  doi: 10.5194/acp-13-869-2013
– ident: ref12
  doi: 10.5194/acp-20-8867-2020
– ident: ref39
  doi: 10.1029/2007JD009077
– ident: ref69
  doi: 10.1016/j.envsoft.2009.01.004
– ident: ref30
  doi: 10.5194/acp-23-5517-2023
– ident: ref38
  doi: 10.1126/science.abb7431
– ident: ref29
  doi: 10.1016/j.scitotenv.2021.145215
– ident: ref81
  doi: 10.1016/j.atmosenv.2020.117570
– ident: ref21
  doi: 10.1016/j.scitotenv.2022.153847
– ident: ref6
  doi: 10.1002/jgrd.50171
– ident: ref22
  doi: 10.5194/acp-22-7905-2022
– ident: ref77
  doi: 10.5194/acp-9-2035-2009
– ident: ref65
  doi: 10.5194/acp-11-4445-2011
– ident: ref2
  doi: 10.1016/j.atmosres.2011.08.017
– ident: ref41
  doi: 10.1038/s43017-022-00296-7
– ident: ref78
  doi: 10.3390/atmos12121545
– ident: ref80
  doi: 10.5194/acp-13-7053-2013
– ident: ref79
  doi: 10.1073/pnas.1907956116
– ident: ref82
  doi: 10.1016/j.atmosenv.2019.05.034
– ident: ref72
  doi: 10.1016/j.scitotenv.2022.159233
– ident: ref75
  doi: 10.1016/j.jenvman.2020.110263
– ident: ref46
  doi: 10.5194/acp-19-11363-2019
– ident: ref35
  doi: 10.1016/j.partic.2014.03.013
– ident: ref36
  doi: 10.5194/acp-10-4207-2010
– ident: ref1
  doi: 10.1080/02786829808965551
– ident: ref54
  doi: 10.1029/1999JD900241
– ident: ref58
  doi: 10.1016/j.scitotenv.2020.140739
– ident: ref16
– ident: ref59
  doi: 10.1017/9781009157896.008
– ident: ref50
  doi: 10.1016/j.atmosres.2014.10.010
– ident: ref74
  doi: 10.1016/j.envpol.2020.114455
– ident: ref14
  doi: 10.5194/amt-12-3417-2019
– ident: ref47
  doi: 10.1016/j.jqsrt.2009.02.035
– ident: ref28
  doi: 10.1029/2020JD034094
– ident: ref33
  doi: 10.1016/j.atmosres.2022.106015
– ident: ref60
  doi: 10.1126/science.abb6105
– ident: ref26
  doi: 10.1029/95GL00075
– ident: ref66
  doi: 10.5194/acp-19-11303-2019
– ident: ref4
  doi: 10.1080/02786820500421521
– ident: ref57
  doi: 10.5194/acp-18-8469-2018
– ident: ref9
  doi: 10.1126/science.255.5043.423
– ident: ref3
  doi: 10.1029/2001JD900073
– ident: ref17
  doi: 10.5194/acp-15-1555-2015
– ident: ref31
  doi: 10.1038/35055518
– ident: ref27
  doi: 10.5194/acp-9-8903-2009
– ident: ref62
  doi: 10.5194/acp-21-13031-2021
– ident: ref68
  doi: 10.1016/j.atmosenv.2019.02.049
– ident: ref5
  doi: 10.1080/027868299304435
– ident: ref10
  doi: 10.1016/j.atmosenv.2008.02.034
– ident: ref37
  doi: 10.5194/amt-13-4353-2020
– ident: ref44
  doi: 10.1029/2021GL092770
– ident: ref24
  doi: 10.1002/2016JD025762
– ident: ref70
– ident: ref48
  doi: 10.5194/amt-10-4805-2017
– ident: ref76
  doi: 10.5194/acp-8-2229-2008
– ident: ref42
  doi: 10.1016/j.apr.2021.101307
– ident: ref64
  doi: 10.1016/j.atmosenv.2007.10.062
– ident: ref34
  doi: 10.1029/2021GL093243
– ident: ref55
  doi: 10.5194/acp-15-12487-2015
– ident: ref7
  doi: 10.1029/2003JD003405
– ident: ref18
  doi: 10.5194/acp-18-1149-2018
– ident: ref8
  doi: 10.1016/j.scitotenv.2018.12.474
– ident: ref67
  doi: 10.1016/j.scitotenv.2021.150950
– ident: ref84
  doi: 10.5194/acp-15-13633-2015
– ident: ref43
  doi: 10.1016/j.scitotenv.2019.07.006
– ident: ref56
  doi: 10.5194/acp-22-561-2022
– ident: ref49
  doi: 10.5194/acp-18-7877-2018
– ident: ref73
  doi: 10.1016/j.chemosphere.2020.126849
– ident: ref71
  doi: 10.1016/j.scitotenv.2019.05.283
– ident: ref83
  doi: 10.1016/j.atmosres.2020.104977
SSID ssj0025014
Score 2.4710615
Snippet Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol...
Reliable observations of aerosol optical properties are crucial for quantifying the radiative forcing of climate. The simultaneous measurements of aerosol...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5517
SubjectTerms Absorption
Absorption coefficient
Absorptivity
Aerosol absorption
Aerosol optical depth
Aerosol optical properties
Aerosols
Air pollution
Air pollution control
Air pollution measurements
Air quality
Air quality control
Air quality management
Air quality measurements
Albedo
Atmospheric aerosols
Biomass burning
Carbon
Clusters
Coal combustion
Combustion
Electromagnetic absorption
Emission measurements
Emissions
Emissions control
Environmental law
Light absorption
Mass
Measurement
Optical analysis
Optical properties
Optical thickness
Outdoor air quality
Ozone
Particulate emissions
Particulate matter
Pollution control
Radiation
Radiative forcing
Statistics
Urban areas
Wavelengths
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQnrggniKwIAshEAerTuwkDrfdFasFqRwWVtqbNX4EFVVJlKaH_U37J3cmSQs9ABcurZqMW9czGX8ztr9h7G3UmQs1aEEJR6FDLkVVZoWoCgeQQhVcoHzH8mtxcaW_XOfXv5X6oj1hEz3wNHALFxGQUFgBMuiQAcgcqpgZSMk285FsG-e8XTA1h1q0WkahVmGkoNpM0wIlohW9AN9hxwQihVJQ7fCDCWnk7f-Tdx6nnPOH7MGMFfnJ1MdH7F5sHrNkiTC37cdsOH_Hz9YrxJzjpyfsdvkr48en1YCP_BK6VeAh0hnIyNuaQ8SOtGsObtP2o8fgvo0jlQS1gybsRdpuTHXzjlL2_XDD5-0fHNv0xGpAzpIj7vU4A_JVg435tnf4CghG6cdO4-on3aNjLBxhgOFDi-9Z-pRdnX_6fnYh5moMwmsjB1GFVEXjMkJ0WnllAuBU75wyEOtQa-N8qSDmznintEuNB1NHjC5j7vNQSPWMHTVtE58zjiFaUFlay7KutFREYejwOzJH1-vaJGyxU4n1M1U5VcxYWwxZSIkWlWgzZUmJlpSYsA_7Ft1E0_EX2VPS8l6OCLbHC2h2djY7-y-zS9gbshFLFBoN7dH5AdvNxn7-dmlPSk1ldCopE_Z-Fqpb7L-H-cgDjgKxbh1IHh9I4jPuD2_vTNHOPmZjM5Oiw62MLF78j3_0kt2n0aGdEWl5zI6GfhtfIeAa3Ovx2boDh1ol9w
  priority: 102
  providerName: Directory of Open Access Journals
Title Measurement report: Rapid decline of aerosol absorption coefficient and aerosol optical property effects on radiative forcing in an urban area of Beijing from 2018 to 2021
URI https://www.proquest.com/docview/2814259806
https://doaj.org/article/be5333819a0d4d2aa05a9e28a1730156
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYduGC-BSFUVkIgThYdRIncbigdVoZSJ2gMLGb5a9MRVWcpe1hfxP_JO-lbqce2KVR4-fWybOff-9n-z1C3nmRGldrwZBwZMLlnFVlWrCqMFonunLGId8xvSjOL8W3q_wqEm7LuK1yaxN7Q-2CRY58lMoEulclefG5vWGYNQpXV2MKjQNyBCZYgvN1ND67-D7buVy4aoYuVyE5wxxNm4VKQC1ipG0LDWSAGEqGOcT3JqY-fv__rHQ_9Uwek0cRM9KTjZKfkAe-eUoGU4C7oetZcfqeni7mgD37b8_I3-kd80c3qwKf6Ey3c0edx7OQnoaaag8NCQuqzTJ0veWgNvg-pATW043biYS2p7xpi9R9t7qlcRsIhTodRjdAo0kB_1qYCem8gcp03Rn41ABK8c_Gfv4Hy_A4CwU4IOkqwDVNnpPLydmv03MWszIwKyRfscolmZcmRWQnMptJp2HKNyaT2teuFtLYMtM-N9KaTJhEWi1rD16mz23uCp69IIdNaPxLQsFVc1ma1LysK8EzDGVo4DdSg_frWg7IaKsSZWPIcsycsVDguqASFShRpZlCJSpU4oB83NVoN-E67pEdo5Z3chhou78RumsVx60yHvAwerWaO-FSrXmuK59KnaBpzIsBeYt9RGEojQb36lzr9XKpvv6cqZNSYDqdivMB-RCF6gDttzoefYC3gNG39iSP9yRhrNv94m1XVNHWLNXdyHh1f_Fr8hCfG_c-JOUxOVx1a_8GINXKDMmBnHwZxtGD18n0x-9hT1D8A4VJIy0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGeIAXxKcoDLAQH-IhqmM7iYOE0DYoLVv3MDZpb56_MhVVSUhbof1NSPyN3KVppz6wt700anxOIp9997s7-46QN0Fy6wsjI3Q4RtInLMoznkZ5ao2JTe6tR3_H-CgdnsrvZ8nZFvm7OguD2ypXMrEV1L5y6CPvcxXD9MoVSz_XvyKsGoXR1VUJjeW0OAiXv8Fkm30afQH-vuV88PVkfxh1VQUiJxWbR7mPRVCWIzKRwgnlDagsa4UyofCFVNZlwoTEKmeFtLFyRhUBrKSQuMSnTMBzb5HbUogcV5QafFsbeBijQwMvVSzCilDLsChgJNk3robhiACfZBFWLN9Qg221gP_phFbRDe6Tex1CpbvLKfWAbIXyIemNAVxXTeuDp-_o_nQCSLf994j8GV_5GekyBvGRHpt64qkPePIy0KqgJsCHVFNq7KxqWjlFXRXaBBbYz5R-TVLVrYOd1hgoaOaXtNt0QqFPg7kUUERTQNsO9C6dlNCZLhoLvwYgML5sL0x-YhsenqEAPhSdV3Dl8WNyeiPcekK2y6oMTwkFw9ALHhcsK3LJBCZOtPAMbvF-Uage6a9Yol2XIB3rdEw1GErIRA1M1FxoZKJGJvbIh3WPepkc5BraPeTymg7Terc3quZCd1JC2wDoG21ow7z03BiWmDxwZWIUxEnaI69xjmhM3FHizqALs5jN9OjHsd7NJBbvyRnrkfcdUVHB9zvTHbSAUcBcXxuUOxuUIFncZvNqKupOss301Tp8dn3zK3JneDI-1Iejo4Pn5C6OAe66iLMdsj1vFuEFgLm5fdmuIErOb3rJ_gOgJFx-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3ZbtNAcFVSCfHCjQgUWCEO8eDGXl9rJISalqihpILSir4te7kKRLZxHKHyS_wBv8LPMOMjVZDoWx94iRXvrBON557ZGUKe2IApk8rAwYCjE5jQdZKYRU4SKSk9mRhlMN4x2Y92j4K3x-HxGvnVnYXBsspOJtaC2uQaY-QDxj0gr4S70SBtyyLe74xeF98cnCCFmdZunEZDInv29Du4b_NX4x14108ZG7053N512gkDjg64WzmJ8XzLFUMrJfC1z40E9aWUz6VNTRpwpWNf2lBxrfxAeVxLnlrwmGyoQxO5Pjz3ElnnEQ9Zj6wPR5MPn5buHmbs0N2LuOvgfKgmSQoWUzCQugDkOGCtxA7OL19RivXsgH9piFrtja6R3x3CmmqXr5uLSm3qH3_1kvw_MXqdXG2tcbrVsM8Nsmazm6Q_AUciL-t8A31Gt2dTsOrrb7fIz8lZTJU2-ZaX9EAWU0ONxVOmluYplRbQnM-oVPO8rGUy1bmtm3XgPpmZJUhe1MkEWmBSpKxOaVtgQ2FPiX0jUB1R8Cw02Bh0msFmuigVfEow9_HHhnb6BdfwoBAFQ4vTKocr826TowvB3R3Sy_LM3iUUnGDjMy914zQJXB-bRCp4BlN4P015nww6ghO6bQaPM0lmApxCJFEBJCqYL5BEBZJon7xY7iiaRijnwA6Rhpdw2MK8vpGXJ6KViEJZ8DQwXiBdExgmpRvKxDIuPVQ6YdQnj5EDBDYpyZA4T-RiPhfjjwdiKw5wUFHiun3yvAVKc_j_WraHSgAL2NdsBXJjBRKkqF5d7phEtFJ8Ls445N75y4_IZWAd8W68v3efXEEUYIGJF2-QXlUu7AOwWyv1sBUQlHy-aA76A-7RqlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+report%3A+Rapid+decline+of+aerosol+absorption+coefficient+and+aerosol+optical+property+effects+on+radiative+forcing+in+an+urban+area+of+Beijing+from+2018+to+2021&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Hu%2C+Xinyao&rft.au=Sun%2C+Junying&rft.au=Xia%2C+Can&rft.au=Shen%2C+Xiaojing&rft.date=2023-05-17&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=23&rft.issue=9&rft.spage=5517&rft.epage=5531&rft_id=info:doi/10.5194%2Facp-23-5517-2023&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon