Synchrotron Radiation Photoemission Electron Microscopy Study on Radioactive Cesium-bearing Microparticle Collected in Fukushima
Synchrotron radiation photoemission electron microscopy (SR-PEEM) combining with hard X-ray photoelectron spectroscopy (HAXPES) was utilized to obtain detailed structural and chemical insights into radioactive cesium-bearing microparticles (CsMPs) smaller than 10 µm, collected from a location 25 km...
Saved in:
Published in | E-journal of surface science and nanotechnology Vol. 23; no. 1; pp. 16 - 21 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Japan Society of Vacuum and Surface Science
20.02.2025
公益社団法人 日本表面真空学会 Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synchrotron radiation photoemission electron microscopy (SR-PEEM) combining with hard X-ray photoelectron spectroscopy (HAXPES) was utilized to obtain detailed structural and chemical insights into radioactive cesium-bearing microparticles (CsMPs) smaller than 10 µm, collected from a location 25 km northwest of the Fukushima Daiichi Nuclear Power Plant (FDNPP). X-ray absorption spectromicroscopy with a spatial resolution of approximately 50 nm was employed to investigate the presence of five elements (Cs, Fe, U, Zn, Si) on the microparticle surface. HAXPES data revealed the presence of several elements such as C, O, Mg, Al, Si, Sr, and Cs, while the chemical mapping images obtained by SR-PEEM clearly demonstrated that Cs atoms almost exclusively cover the particle surface. Owing to the surface-sensitive nature of SR-PEEM compared to HAXPES, the results notably indicate inhomogeneous distributions of elements, suggesting an eggshell-like structure with a Cs shell, with a thickness greater than the escape depth of the photoelectrons (a few nanometers) as a most presumable structural model of CsMPs. These novel findings strongly suggest that the aggregation of Cs atoms likely occurs at the microparticle surface and are expected to have applications in the remediation of nuclear power plant accidents. |
---|---|
AbstractList | Synchrotron radiation photoemission electron microscopy (SR-PEEM) combining with hard X-ray photoelectron spectroscopy (HAXPES) was utilized to obtain detailed structural and chemical insights into radioactive cesium-bearing microparticles (CsMPs) smaller than 10 µm, collected from a location 25 km northwest of the Fukushima Daiichi Nuclear Power Plant (FDNPP). X-ray absorption spectromicroscopy with a spatial resolution of approximately 50 nm was employed to investigate the presence of five elements (Cs, Fe, U, Zn, Si) on the microparticle surface. HAXPES data revealed the presence of several elements such as C, O, Mg, Al, Si, Sr, and Cs, while the chemical mapping images obtained by SR-PEEM clearly demonstrated that Cs atoms almost exclusively cover the particle surface. Owing to the surface-sensitive nature of SR-PEEM compared to HAXPES, the results notably indicate inhomogeneous distributions of elements, suggesting an eggshell-like structure with a Cs shell, with a thickness greater than the escape depth of the photoelectrons (a few nanometers) as a most presumable structural model of CsMPs. These novel findings strongly suggest that the aggregation of Cs atoms likely occurs at the microparticle surface and are expected to have applications in the remediation of nuclear power plant accidents. |
ArticleNumber | 2025-004 |
Author | Tsuda, Yasutaka Kobata, Masaaki Satou, Yukihiko Ohkochi, Takuo Yoshigoe, Akitaka Okane, Tetsuo |
Author_xml | – sequence: 1 fullname: Yoshigoe, Akitaka organization: Materials Sciences Research Center, Japan Atomic Energy Agency – sequence: 2 fullname: Tsuda, Yasutaka organization: Materials Sciences Research Center, Japan Atomic Energy Agency – sequence: 3 fullname: Kobata, Masaaki organization: Materials Sciences Research Center, Japan Atomic Energy Agency – sequence: 4 fullname: Okane, Tetsuo organization: Materials Sciences Research Center, Japan Atomic Energy Agency – sequence: 5 fullname: Satou, Yukihiko organization: Collaborative Laboratories for Advanced Decommissioning Sciences (CLADS), Japan Atomic Energy Agency – sequence: 6 fullname: Ohkochi, Takuo organization: Laboratory of Advanced Science and Technology for Industry, University of Hyogo |
BackLink | https://cir.nii.ac.jp/crid/1390022145088178688$$DView record in CiNii |
BookMark | eNpNkL1v2zAQxYnCAWo7mbMKSFclRx0lUWNh2G2BFAnyMRM0RcV0bNIlqQLe-qeXqhyjy_GIe-8d-ZuRiXVWE3JN4ZYihzu9DcHG2wKKMgdgn8iUIuM5YEMn__WfySyELQDWWFdT8uf5aNXGu-idzZ5ka2Q0qXvcuOj03oQw3JY7rf4JfhrlXVDucMyeY98es5PJSRXNb50tdDD9Pl9r6Y19G-UH6aNRuzR0uyFHt5mx2ap_78PG7OUluejkLuir0zknr6vly-J7fv_w7cfi632uGIeYN_Uau5rThirVaFVI5JypkioEqDpkJSuxbWULbd10sNYVlwCarWnFkSmKOCc3Y-7Bu1-9DlFsXe9tWimwoLxOfBKUObkbVcM_g9edOPj0SH8UFMSAWYyYxYBZJMzJ8WV0WGOEMkOl2AAUBWUlcE5rXnGeZMtRtg1Rvulz7AnOORYFHcpH_HmuNtILbfEviX2Y8Q |
Cites_doi | 10.1038/s41598-023-31519-6 10.1063/1.5005799 10.1038/s41598-018-28087-5 10.2343/geochemj.2.0514 10.1103/PhysRevB.85.104418 10.1021/es502849e 10.1007/s10967-018-6063-2 10.1016/j.jenvrad.2020.106240 10.1016/j.chemosphere.2019.05.248 10.1136/bmjopen-2018-023654 10.1246/cl.200374 10.1093/jmicro/dfw030 10.1016/j.jenvrad.2018.05.006 10.1021/es204667h 10.1097/HP.0000000000001148 10.1016/j.ancene.2016.05.001 10.1038/s41598-020-68318-2 10.2343/geochemj.1.0137 10.1186/s40645-020-00403-6 10.1246/cl.190581 10.1038/s41598-020-58464-y 10.1016/j.jenvrad.2019.04.011 10.1039/C7CC03960C 10.1002/rcm.7468 10.1038/srep42731 10.1038/srep20548 10.2343/geochemj.2.0517 10.1021/ac501998d 10.1038/srep02554 10.1016/j.jenvrad.2015.12.023 10.1038/nphys1891 10.1029/2020JD033460 10.1088/0953-8984/17/16/007 10.1038/s41598-019-40423-x 10.1038/s41598-021-85085-w |
ContentType | Journal Article |
Copyright | 2025 The author(s) 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The author(s) – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RYH AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
DOI | 10.1380/ejssnt.2025-004 |
DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1348-0391 |
EndPage | 21 |
ExternalDocumentID | 10_1380_ejssnt_2025_004 article_ejssnt_23_1_23_2025_004_article_char_en |
GroupedDBID | 29G 2WC 5GY ADBBV ADDVE ALMA_UNASSIGNED_HOLDINGS BCNDV CS3 DU5 E3Z EBS EJD GROUPED_DOAJ GX1 HH5 JSF JSH KQ8 M~E OK1 RJT RNS RZJ TR2 XSB OVT RYH AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c480t-97b3f78191cc9ec2a3884c51c3006f345453ddad0d79f0be68a00e4b16834c133 |
ISSN | 1348-0391 |
IngestDate | Thu Jul 24 01:44:21 EDT 2025 Tue Aug 05 11:59:50 EDT 2025 Fri Jun 27 00:32:14 EDT 2025 Thu Apr 03 13:51:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c480t-97b3f78191cc9ec2a3884c51c3006f345453ddad0d79f0be68a00e4b16834c133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://dx.doi.org/10.1380/ejssnt.2025-004 |
PQID | 3218734800 |
PQPubID | 1996353 |
PageCount | 6 |
ParticipantIDs | proquest_journals_3218734800 crossref_primary_10_1380_ejssnt_2025_004 nii_cinii_1390022145088178688 jstage_primary_article_ejssnt_23_1_23_2025_004_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025-02-20 |
PublicationDateYYYYMMDD | 2025-02-20 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | E-journal of surface science and nanotechnology |
PublicationTitleAlternate | e-J. Surf. Sci. Nanotechnol. |
PublicationTitle_FL | eJSSNT e-JSSNT e-J. Surf. Sci. Nanotech e-J. Surf. Sci. Nanotechnol |
PublicationYear | 2025 |
Publisher | The Japan Society of Vacuum and Surface Science 公益社団法人 日本表面真空学会 Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Society of Vacuum and Surface Science – name: 公益社団法人 日本表面真空学会 – name: Japan Science and Technology Agency |
References | [28] T. Okumura, N. Yamaguchi, T. Dohi, K. Iijima, and T. Kogure, Sci. Rep. 8, 9707 (2018). [35] F. Guo, T. Wakita, H. Shimizu, T. Matsushita, T. Yasue, T. Koshikawa, E. Bauer, and K. Kobayashi, J. Phys.: Condens. Matter 17, S1363 (2005). [3] H. Mukai, K. Tamura, R. Kikuchi, Y. Takahashi, T. Yaita, and T. Kogure, J. Environ. Radioact. 190–191, 81 (2018). [30] M. Suetake, Y. Nakano, G. Furuki, R. Ikehara, T. Komiya, E. Kurihara, K. Morooka, S. Yamasaki, T. Ohnuki, K. Horie, M. Takehara, G. T. W. Law, W. Bower, B. Grambow, R. C. Ewing, and S. Utsunomiya, Chemosphere 233, 633 (2019). [22] A. J. Nakamura, Low-Dose Radiation Effects on Animals and Ecosystems (Springer Open, 2020) Chap. 12. [32] J. Wang, Y. Ji, N. Appathurai, J. Zhou, and Y. Yang, Chem. Commun. 53, 8581 (2017). [14] M. Kajino, K. Adachi, Y. Igarashi, Y. Satou, M. Sawada, T. T. Sekiyama, Y. Zaizen, A. Saya, H. Tsuruta, and Y. Moriguchi, J. Geophys. Res. Atmos. 126, e2020JD033460 (2021). [13] H. Miura, T. Ishimaru, Y. Ito, Y. Kurihara, S. Otosaka, A. Sakaguchi, K. Misumi, D. Tsumune, A. Kubo, S. Higaki, J. Kanda, and Y. Takahashi, Sci. Rep. 11, 5664 (2021). [19] M. Ishizuka, M. Mikami, T. Y. Tanaka, Y. Igarashi, K. Kita, Y. Yamada, N. Yoshida, S. Toyoda, Y. Satou, T. Kinase, K. Ninomiya, and A. Shinohara, J. Environ. Radioact. 166, 436 (2017). [18] Y. Igarashi, T. Kogure, Y. Kurihara, H. Miura, T. Okumura, Y. Satou, Y. Takahashi, and N. Yamaguchi, J. Environ. Radioact. 205–206, 101 (2019). [21] K. Yamamoto, S. Nomura, M. Tsubokura, M. Murakami, A. Ozaki, C. Leppold, T. Sawano, M. Takita, S. Kato, Y. Kanazawa, and H. Anbe, BMJ Open 9, e023654 (2019). [36] T. Kogure, N. Yamaguchi, H. Segawa, H. Mukai, S. Motai, K. Akiyama-Hasegawa, M. Mitome, T. Hara, and T. Yaita, Microscopy 65, 451 (2016). [4] A. Hirose, J. Environ. Radioact. 218, 106240 (2020). [2] H. Mukai, T. Hatta, H. Kitazawa, H. Yamada, T. Yaita, and T. Kogure, Environ. Sci. Technol. 48, 13053 (2014). [10] N. Yamaguchi, M. Mitome, K. Akiyama-Hasegawa, M. Asano, K. Adachi, and T. Kogure, Sci. Rep. 6, 20548 (2016). [16] Y. Abe, Y. Iizawa, Y. Terada, K. Adachi, Y. Igarashi, and I. Nakai, Anal. Chem. 86, 8521 (2014). [27] M. S. Snow, D. C. Snyder, and J. E. Delmore, Rapid Commun. Mass Spectrom. 30, 523 (2016). [34] A. Yoshigoe, H. Shiwaku, T. Kobayashi, I. Shimoyama, D. Matsumura, T. Tsuji, Y. Nishihata, T. Kogure, T. Ohkochi, A. Yasui, and T. Yaita, Appl. Phys. Lett. 112, 021603 (2018). [12] H. Miura, Y. Kurihara, A. Sakaguchi, K. Tanaka, N. Yamaguchi, S. Higaki, and Y. Takahashi, Geochem. J. 52, 145 (2018). [6] K. Adachi, M. Kajino, Y. Zaizen, and Y. Igarashi, Sci. Rep. 3, 2554 (2013). [26] T. Okumura, N. Yamaguchi, and T. Kogure, Sci. Rep. 13, 4307 (2023). [20] A. Hidaka, J. Nucl. Sci. Technol. 56, 831 (2019). [5] K. Tanaka, Y. Takahashi, A. Sakaguchi, M. Umeo, S. Hayakawa, H. Tanida, T. Saito, and Y. Kanai, Geochem. J. 46, 73 (2012). [1] N. Kaneyasu, H. Ohashi, F. Suzuki, T. Okuda, and F. Ikemori, Environ. Sci. Technol. 46, 5720 (2012). [29] T. Okumura, N. Yamaguchi, T. Dohi, K. Iijima, and T. Kogure, Sci. Rep. 9, 3520 (2019). [9] G. Furuki, J. Imoto, A. Ochiai, S. Yamasaki, K. Nanba, T. Ohnuki, B. Grambow, R. C. Ewing, and S. Utsunomiya, Sci. Rep. 7, 42731 (2017). [37] H. Miura, Y. Kurihara, M. Yamamoto, A. Sakaguchi, N. Yamaguchi, O. Sekizawa, K. Nitta, S. Higaki, D. Tsumune, T. Itai, and Y. Takahashi, Sci. Rep. 10, 11421 (2020). [11] T. Okumura, N. Yamaguchi, and T. Kogure, Chem. Lett. 49, 1294 (2020). [15] Y. Abe, S. Onozaki, I. Nakai, K. Adachi, Y. Igarashi, Y. Oura, M. Ebihara, T. Miyasaka, H. Nakamura, K. Sueki, H. Tsuruta, and Y. Moriguchi, Prog. Earth Planet. Sci. 8, 13 (2021). [25] T. Okumura, N. Yamaguchi, H. Suga, Y. Takahashi, H. Segawa, and T. Kogure, Sci. Rep. 10, 1352 (2020). [17] T. Okumura, N. Yamaguchi, and T. Kogure, Chem. Lett. 48, 1336 (2019). [24] N. Nihei, K. Yoshimura, T. Okumura, K. Tanoi, K. Iijima, T. Kogure, and T. M. Nakanishi, J. Radioanal. Nucl. Chem. 318, 341 (2018). [8] Y. Satou, K. Sueki, K. Sasa, H. Yoshikawa, S. Nakama, H. Minowa, Y. Abe, I. Nakai, T. Ono, K. Adachi, and Y. Igarashi, Geochem. J. 52, 137 (2018). [31] K. Arai, T. Okuda, A. Tanaka, M. Kotsugi, K. Fukumoto, T. Ohkochi, T. Nakamura, T. Matsushita, T. Muro, M. Oura, Y. Senba, H. Ohashi, A. Kakizaki, C. Mitsumata, and T. Kinoshita, Phys. Rev. B 85, 104418 (2012). [7] Y. Satou, K. Sueki, K. Sasa, K. Adachi, and Y. Igarashi, Anthropocene 14, 71 (2016). [23] S. Higaki, Y. Kurihara, and Y. Takahashi, Health Phys. 118, 656 (2020). [33] J. Wu, D. Carlton, J. S. Park, Y. Meng, E. Arenholz, A. Doran, A. T. Young, A. Scholl, C. Hwang, H. W. Zhao, J. Bokor, and Z. Q. Qiu, Nat. Phys. 7, 303 (2011). 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: [11] T. Okumura, N. Yamaguchi, and T. Kogure, Chem. Lett. 49, 1294 (2020). – reference: [28] T. Okumura, N. Yamaguchi, T. Dohi, K. Iijima, and T. Kogure, Sci. Rep. 8, 9707 (2018). – reference: [32] J. Wang, Y. Ji, N. Appathurai, J. Zhou, and Y. Yang, Chem. Commun. 53, 8581 (2017). – reference: [6] K. Adachi, M. Kajino, Y. Zaizen, and Y. Igarashi, Sci. Rep. 3, 2554 (2013). – reference: [5] K. Tanaka, Y. Takahashi, A. Sakaguchi, M. Umeo, S. Hayakawa, H. Tanida, T. Saito, and Y. Kanai, Geochem. J. 46, 73 (2012). – reference: [27] M. S. Snow, D. C. Snyder, and J. E. Delmore, Rapid Commun. Mass Spectrom. 30, 523 (2016). – reference: [29] T. Okumura, N. Yamaguchi, T. Dohi, K. Iijima, and T. Kogure, Sci. Rep. 9, 3520 (2019). – reference: [21] K. Yamamoto, S. Nomura, M. Tsubokura, M. Murakami, A. Ozaki, C. Leppold, T. Sawano, M. Takita, S. Kato, Y. Kanazawa, and H. Anbe, BMJ Open 9, e023654 (2019). – reference: [24] N. Nihei, K. Yoshimura, T. Okumura, K. Tanoi, K. Iijima, T. Kogure, and T. M. Nakanishi, J. Radioanal. Nucl. Chem. 318, 341 (2018). – reference: [13] H. Miura, T. Ishimaru, Y. Ito, Y. Kurihara, S. Otosaka, A. Sakaguchi, K. Misumi, D. Tsumune, A. Kubo, S. Higaki, J. Kanda, and Y. Takahashi, Sci. Rep. 11, 5664 (2021). – reference: [26] T. Okumura, N. Yamaguchi, and T. Kogure, Sci. Rep. 13, 4307 (2023). – reference: [4] A. Hirose, J. Environ. Radioact. 218, 106240 (2020). – reference: [20] A. Hidaka, J. Nucl. Sci. Technol. 56, 831 (2019). – reference: [25] T. Okumura, N. Yamaguchi, H. Suga, Y. Takahashi, H. Segawa, and T. Kogure, Sci. Rep. 10, 1352 (2020). – reference: [3] H. Mukai, K. Tamura, R. Kikuchi, Y. Takahashi, T. Yaita, and T. Kogure, J. Environ. Radioact. 190–191, 81 (2018). – reference: [15] Y. Abe, S. Onozaki, I. Nakai, K. Adachi, Y. Igarashi, Y. Oura, M. Ebihara, T. Miyasaka, H. Nakamura, K. Sueki, H. Tsuruta, and Y. Moriguchi, Prog. Earth Planet. Sci. 8, 13 (2021). – reference: [35] F. Guo, T. Wakita, H. Shimizu, T. Matsushita, T. Yasue, T. Koshikawa, E. Bauer, and K. Kobayashi, J. Phys.: Condens. Matter 17, S1363 (2005). – reference: [31] K. Arai, T. Okuda, A. Tanaka, M. Kotsugi, K. Fukumoto, T. Ohkochi, T. Nakamura, T. Matsushita, T. Muro, M. Oura, Y. Senba, H. Ohashi, A. Kakizaki, C. Mitsumata, and T. Kinoshita, Phys. Rev. B 85, 104418 (2012). – reference: [34] A. Yoshigoe, H. Shiwaku, T. Kobayashi, I. Shimoyama, D. Matsumura, T. Tsuji, Y. Nishihata, T. Kogure, T. Ohkochi, A. Yasui, and T. Yaita, Appl. Phys. Lett. 112, 021603 (2018). – reference: [10] N. Yamaguchi, M. Mitome, K. Akiyama-Hasegawa, M. Asano, K. Adachi, and T. Kogure, Sci. Rep. 6, 20548 (2016). – reference: [17] T. Okumura, N. Yamaguchi, and T. Kogure, Chem. Lett. 48, 1336 (2019). – reference: [12] H. Miura, Y. Kurihara, A. Sakaguchi, K. Tanaka, N. Yamaguchi, S. Higaki, and Y. Takahashi, Geochem. J. 52, 145 (2018). – reference: [8] Y. Satou, K. Sueki, K. Sasa, H. Yoshikawa, S. Nakama, H. Minowa, Y. Abe, I. Nakai, T. Ono, K. Adachi, and Y. Igarashi, Geochem. J. 52, 137 (2018). – reference: [30] M. Suetake, Y. Nakano, G. Furuki, R. Ikehara, T. Komiya, E. Kurihara, K. Morooka, S. Yamasaki, T. Ohnuki, K. Horie, M. Takehara, G. T. W. Law, W. Bower, B. Grambow, R. C. Ewing, and S. Utsunomiya, Chemosphere 233, 633 (2019). – reference: [2] H. Mukai, T. Hatta, H. Kitazawa, H. Yamada, T. Yaita, and T. Kogure, Environ. Sci. Technol. 48, 13053 (2014). – reference: [1] N. Kaneyasu, H. Ohashi, F. Suzuki, T. Okuda, and F. Ikemori, Environ. Sci. Technol. 46, 5720 (2012). – reference: [37] H. Miura, Y. Kurihara, M. Yamamoto, A. Sakaguchi, N. Yamaguchi, O. Sekizawa, K. Nitta, S. Higaki, D. Tsumune, T. Itai, and Y. Takahashi, Sci. Rep. 10, 11421 (2020). – reference: [14] M. Kajino, K. Adachi, Y. Igarashi, Y. Satou, M. Sawada, T. T. Sekiyama, Y. Zaizen, A. Saya, H. Tsuruta, and Y. Moriguchi, J. Geophys. Res. Atmos. 126, e2020JD033460 (2021). – reference: [33] J. Wu, D. Carlton, J. S. Park, Y. Meng, E. Arenholz, A. Doran, A. T. Young, A. Scholl, C. Hwang, H. W. Zhao, J. Bokor, and Z. Q. Qiu, Nat. Phys. 7, 303 (2011). – reference: [16] Y. Abe, Y. Iizawa, Y. Terada, K. Adachi, Y. Igarashi, and I. Nakai, Anal. Chem. 86, 8521 (2014). – reference: [22] A. J. Nakamura, Low-Dose Radiation Effects on Animals and Ecosystems (Springer Open, 2020) Chap. 12. – reference: [7] Y. Satou, K. Sueki, K. Sasa, K. Adachi, and Y. Igarashi, Anthropocene 14, 71 (2016). – reference: [36] T. Kogure, N. Yamaguchi, H. Segawa, H. Mukai, S. Motai, K. Akiyama-Hasegawa, M. Mitome, T. Hara, and T. Yaita, Microscopy 65, 451 (2016). – reference: [9] G. Furuki, J. Imoto, A. Ochiai, S. Yamasaki, K. Nanba, T. Ohnuki, B. Grambow, R. C. Ewing, and S. Utsunomiya, Sci. Rep. 7, 42731 (2017). – reference: [23] S. Higaki, Y. Kurihara, and Y. Takahashi, Health Phys. 118, 656 (2020). – reference: [18] Y. Igarashi, T. Kogure, Y. Kurihara, H. Miura, T. Okumura, Y. Satou, Y. Takahashi, and N. Yamaguchi, J. Environ. Radioact. 205–206, 101 (2019). – reference: [19] M. Ishizuka, M. Mikami, T. Y. Tanaka, Y. Igarashi, K. Kita, Y. Yamada, N. Yoshida, S. Toyoda, Y. Satou, T. Kinase, K. Ninomiya, and A. Shinohara, J. Environ. Radioact. 166, 436 (2017). – ident: 26 doi: 10.1038/s41598-023-31519-6 – ident: 34 doi: 10.1063/1.5005799 – ident: 28 doi: 10.1038/s41598-018-28087-5 – ident: 8 doi: 10.2343/geochemj.2.0514 – ident: 31 doi: 10.1103/PhysRevB.85.104418 – ident: 2 doi: 10.1021/es502849e – ident: 24 doi: 10.1007/s10967-018-6063-2 – ident: 4 doi: 10.1016/j.jenvrad.2020.106240 – ident: 30 doi: 10.1016/j.chemosphere.2019.05.248 – ident: 21 doi: 10.1136/bmjopen-2018-023654 – ident: 11 doi: 10.1246/cl.200374 – ident: 36 doi: 10.1093/jmicro/dfw030 – ident: 3 doi: 10.1016/j.jenvrad.2018.05.006 – ident: 1 doi: 10.1021/es204667h – ident: 23 doi: 10.1097/HP.0000000000001148 – ident: 7 doi: 10.1016/j.ancene.2016.05.001 – ident: 20 – ident: 37 doi: 10.1038/s41598-020-68318-2 – ident: 22 – ident: 5 doi: 10.2343/geochemj.1.0137 – ident: 15 doi: 10.1186/s40645-020-00403-6 – ident: 17 doi: 10.1246/cl.190581 – ident: 25 doi: 10.1038/s41598-020-58464-y – ident: 18 doi: 10.1016/j.jenvrad.2019.04.011 – ident: 32 doi: 10.1039/C7CC03960C – ident: 27 doi: 10.1002/rcm.7468 – ident: 9 doi: 10.1038/srep42731 – ident: 10 doi: 10.1038/srep20548 – ident: 12 doi: 10.2343/geochemj.2.0517 – ident: 16 doi: 10.1021/ac501998d – ident: 6 doi: 10.1038/srep02554 – ident: 19 doi: 10.1016/j.jenvrad.2015.12.023 – ident: 33 doi: 10.1038/nphys1891 – ident: 14 doi: 10.1029/2020JD033460 – ident: 35 doi: 10.1088/0953-8984/17/16/007 – ident: 29 doi: 10.1038/s41598-019-40423-x – ident: 13 doi: 10.1038/s41598-021-85085-w |
SSID | ssj0037376 |
Score | 2.3225303 |
Snippet | Synchrotron radiation photoemission electron microscopy (SR-PEEM) combining with hard X-ray photoelectron spectroscopy (HAXPES) was utilized to obtain detailed... |
SourceID | proquest crossref nii jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 16 |
SubjectTerms | Aluminum Cesium Chemical mapping Electron microscopy Hard X-ray photoelectron spectroscopy (HAXPES) Magnesium Microparticles Microscopy Nuclear accidents Nuclear power plants Photoelectric emission Photoelectrons Radiation Radioactive cesium-bearing microparticles (CsMPs) Silicon Spatial resolution Spectrum analysis Structural models Synchrotron radiation Synchrotron radiation photoemission electron microscopy (SR-PEEM) X ray absorption X ray photoelectron spectroscopy |
Title | Synchrotron Radiation Photoemission Electron Microscopy Study on Radioactive Cesium-bearing Microparticle Collected in Fukushima |
URI | https://www.jstage.jst.go.jp/article/ejssnt/23/1/23_2025-004/_article/-char/en https://cir.nii.ac.jp/crid/1390022145088178688 https://www.proquest.com/docview/3218734800 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | e-Journal of Surface Science and Nanotechnology, 2025/02/20, Vol.23(1), pp.16-21 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj5QwEG_O00RfjJ9x9e7Cg01MCAq0QHkxYVcuF80Z4-0ld0-kQHG5jXA54GF98k_2T3CmsNyuZ-JHsmmatjMLzI_pdOhMCXkZ5GmOpx5ZkhWBxbNcWBIu2MrdkHPPlYWX40Lx-KN_dMrfn3lnOzs_NnYtdW36Ovv227iS_5EqtIFcMUr2HyQ7MoUGqIN8oQQJQ_lXMj5ZVdniqkZvtvkZkwxoYX5a1G2Nx7ihI8yMh3NucIM8Zq6sL1d68-DKHIhqqVWeOVNN2X21UoA-ug_08MvhT3v_QobWaVmZh92yaxbloNEHy1ZZG7btSXdVSJ3js9cc6J0HPV63Nxz55zVw-lIrM1qWrVyOk8S86XJpnsum22z9ANqnleaxbCRYvqODeCnBVJ6rtunqTS-G20eF2yPuaOxR4dFoRuOAhlMqIqxEnE5j7IKWiNHYp1NGQ4_G0B7Bz8SmEMZ5ujLT9IJGDo0EjUMavqORqznOaHioOYZICRwj6PI1I-gaEq32MwDjGHPYHyG2niL6kOitV6HX946_YTn0od435iSmN3GqC-COm3fx3jGB7W0XFjY6PP1s3JTEAtD3QwIqIHvzC9GW7XTnApYPmBfiVlWWNywJbR7NH5D7g-yNqMfLQ7Kjqkfk7mx9nOBj8n0DrMYIVmMLrMYarMY1WA0NVmMgGsBqbIPV2AKrMYLVKCtjBOsTcnoYz2dH1nD8h5VxYbdWGKSgP9ChkGWhylzJhOCZ52QMZoqCcbD9WZ7L3M6DsLBT5Qtp24qnji8YzxzGnpLdqq7UM2L4hfAVsFHMV_ilO-WFLQKYu1xfCOnICXm1frDJZZ_lJdGfeoWd9DJIUAYJyGBC3vYPfhw43Nw4kCUOFmuCsR_DKEFrTcg-CCzJSixh_YVWtMNxneQEAi5nQvbWokwGXdMkDCxxzENl28__QP6C3Lt-v_bIbnvVqX2wm9v0QPubDjTgfgKNKb9V |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchrotron+Radiation+Photoemission+Electron+Microscopy+Study+on+Radioactive+Cesium-bearing+Microparticle+Collected+in+Fukushima&rft.jtitle=e-Journal+of+Surface+Science+and+Nanotechnology&rft.au=Yoshigoe+Akitaka&rft.au=Tsuda+Yasutaka&rft.au=Kobata+Masaaki&rft.au=Okane+Tetsuo&rft.date=2025-02-20&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E8%A1%A8%E9%9D%A2%E7%9C%9F%E7%A9%BA%E5%AD%A6%E4%BC%9A&rft.eissn=1348-0391&rft.volume=23&rft.issue=1&rft.spage=16&rft.epage=21&rft_id=info:doi/10.1380%2Fejssnt.2025-004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1348-0391&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1348-0391&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1348-0391&client=summon |