NESSi: The Non-Equilibrium Systems Simulation package
The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool to st...
Saved in:
Published in | Computer physics communications Vol. 257; p. 107484 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.12.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green’s functions on the L-shaped Kadanoff–Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green’s functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green’s functions. The library employs a discretization of the Kadanoff–Baym contour into time N points and a high-order implementation of integration routines. The total integrated error scales up to O(N−7), which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers.
Program Title: NESSi
CPC Library link to program files:http://dx.doi.org/10.17632/973crf9hgd.1
Licensing provisions: MPL v2.0
Programming language: C++, python
External routines/libraries: cmake, eigen3, hdf5 (optional), mpi (optional), omp (optional)
Nature of problem: Solves equations of motion of time-dependent Green’s functions on the Kadanoff–Baym contour.
Solution method: Higher-order solution methods of integral and integro-differential equations on the Kadanoff–Baym contour. |
---|---|
AbstractList | The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green’s functions on the L-shaped Kadanoff–Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green’s functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green’s functions. The library employs a discretization of the Kadanoff–Baym contour into time points and a high-order implementation of integration routines. The total integrated error scales up to , which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers. The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green's functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green's functions on the L-shaped Kadanoff–Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green's functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green's functions. The library employs a discretization of the Kadanoff–Baym contour into time N points and a high-order implementation of integration routines. The total integrated error scales up to O(N−7), which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers. Program summary: Program Title: NESSi CPC Library link to program files: http://dx.doi.org/10.17632/973crf9hgd.1 Licensing provisions: MPL v2.0 Programming language: C++, python External routines/libraries: cmake, eigen3, hdf5 (optional), mpi (optional), omp (optional) Nature of problem: Solves equations of motion of time-dependent Green's functions on the Kadanoff–Baym contour. Solution method: Higher-order solution methods of integral and integro-differential equations on the Kadanoff–Baym contour. The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green’s functions on the L-shaped Kadanoff–Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green’s functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green’s functions. The library employs a discretization of the Kadanoff–Baym contour into time N points and a high-order implementation of integration routines. The total integrated error scales up to O(N−7), which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers. Program Title: NESSi CPC Library link to program files:http://dx.doi.org/10.17632/973crf9hgd.1 Licensing provisions: MPL v2.0 Programming language: C++, python External routines/libraries: cmake, eigen3, hdf5 (optional), mpi (optional), omp (optional) Nature of problem: Solves equations of motion of time-dependent Green’s functions on the Kadanoff–Baym contour. Solution method: Higher-order solution methods of integral and integro-differential equations on the Kadanoff–Baym contour. The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. Here, we present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green’s functions on the L-shaped Kadanoff–Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green’s functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green’s functions. The library employs a discretization of the Kadanoff–Baym contour into time points and a high-order implementation of integration routines. The total integrated error scales up to $\mathcal{O}(N^{-7})$, which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers. |
ArticleNumber | 107484 |
Author | Bittner, Nikolaj Strand, Hugo U.R. Golež, Denis Herrmann, Andreas Murakami, Yuta Eckstein, Martin Schüler, Michael Werner, Philipp |
Author_xml | – sequence: 1 givenname: Michael orcidid: 0000-0001-7322-6367 surname: Schüler fullname: Schüler, Michael organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland – sequence: 2 givenname: Denis surname: Golež fullname: Golež, Denis organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland – sequence: 3 givenname: Yuta surname: Murakami fullname: Murakami, Yuta organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland – sequence: 4 givenname: Nikolaj surname: Bittner fullname: Bittner, Nikolaj organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland – sequence: 5 givenname: Andreas surname: Herrmann fullname: Herrmann, Andreas organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland – sequence: 6 givenname: Hugo U.R. orcidid: 0000-0002-7263-4403 surname: Strand fullname: Strand, Hugo U.R. organization: Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth avenue, New York, NY 10010, USA – sequence: 7 givenname: Philipp surname: Werner fullname: Werner, Philipp organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland – sequence: 8 givenname: Martin surname: Eckstein fullname: Eckstein, Martin email: martin.eckstein@fau.de organization: Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany |
BackLink | https://www.osti.gov/servlets/purl/1768407$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-89326$$DView record from Swedish Publication Index https://research.chalmers.se/publication/518283$$DView record from Swedish Publication Index |
BookMark | eNp9kcFu1DAQhi1UJLaFB-AWcSbL2LFjG05V2QJS1R7Sch157dmul02y2Amob99EQdzgYI0s_f-n0Xzn7KzrO2LsLYc1B15_OKz9ya8FiPmvpZEv2IobbUthpTxjKwAOpayVesXOcz4AgNa2WjF1u2ma-LG431Nx23fl5ucYj3Gb4tgWzVMeqM1FE9vx6IbYd8XJ-R_ukV6zlzt3zPTmz7xgD9eb-6uv5c3dl29XlzellwaG0jilAolQK85VcJKEV8pTra00HColbVXtBNS11saBCEKbQMGBgq21AerqgjULN_-m07jFU4qtS0_Yu4iJMrnk9-j37thSypgJK6M9CZAYNEmUmhy6ynLkYitqaZxXPkzU9_-kfo7fL7FPj9Mb0dhKzEu8W-J9HiJmHwfye993HfkBua6NBD2F-BLyqc850e4vlQPOhvCAkyGcDeFiaOp8Wjo0nfBXpDTDqfMUYprZoY__aT8DvEKYhw |
CitedBy_id | crossref_primary_10_1103_PhysRevB_106_125153 crossref_primary_10_1038_s41566_023_01371_1 crossref_primary_10_1103_PhysRevB_105_115146 crossref_primary_10_1103_PhysRevB_108_035151 crossref_primary_10_1103_PhysRevResearch_2_043207 crossref_primary_10_1103_PhysRevB_104_245127 crossref_primary_10_1016_j_cpc_2022_108458 crossref_primary_10_1103_PhysRevB_107_035157 crossref_primary_10_1103_PhysRevB_108_035115 crossref_primary_10_1103_PhysRevB_109_165135 crossref_primary_10_1103_PhysRevB_103_035116 crossref_primary_10_1007_s10444_023_10067_7 crossref_primary_10_1016_j_elspec_2021_147108 crossref_primary_10_1103_PhysRevB_103_165118 crossref_primary_10_1103_PhysRevB_108_125143 crossref_primary_10_1088_1751_8121_ac7119 crossref_primary_10_1103_PhysRevB_102_115157 crossref_primary_10_1103_PhysRevB_108_064308 crossref_primary_10_1103_PhysRevLett_130_246301 crossref_primary_10_1038_s41567_024_02396_1 crossref_primary_10_1103_PhysRevB_107_245137 crossref_primary_10_1103_PhysRevB_106_035204 crossref_primary_10_1103_PhysRevB_108_245157 crossref_primary_10_1103_PhysRevB_108_115152 crossref_primary_10_1103_PhysRevB_103_144304 crossref_primary_10_1016_j_elspec_2021_147152 crossref_primary_10_1103_PhysRevB_108_L241202 crossref_primary_10_1103_PhysRevB_106_L121106 crossref_primary_10_1103_PhysRevLett_129_157401 crossref_primary_10_21468_SciPostPhysCore_5_2_030 crossref_primary_10_1103_PhysRevB_104_L201101 crossref_primary_10_21468_SciPostPhys_10_4_091 crossref_primary_10_1103_PhysRevResearch_5_043105 crossref_primary_10_1103_PhysRevB_102_241103 crossref_primary_10_1103_PhysRevX_10_041013 crossref_primary_10_1016_j_elspec_2021_147121 crossref_primary_10_1103_PhysRevB_110_L041109 crossref_primary_10_1103_PhysRevLett_127_106601 crossref_primary_10_1103_PhysRevB_104_085155 crossref_primary_10_1103_PhysRevX_13_021015 crossref_primary_10_21468_SciPostPhys_16_3_073 crossref_primary_10_1103_PhysRevB_104_115138 crossref_primary_10_1103_PhysRevB_106_L241110 crossref_primary_10_1103_PhysRevLett_132_176501 crossref_primary_10_1007_JHEP06_2024_106 crossref_primary_10_1103_PhysRevB_103_L201116 crossref_primary_10_1103_PhysRevB_109_L201101 crossref_primary_10_7566_JPSJ_92_124001 crossref_primary_10_1103_PhysRevLett_132_160403 crossref_primary_10_1002_pssb_202300504 crossref_primary_10_1103_PhysRevB_106_165106 crossref_primary_10_1103_PhysRevB_106_L201408 |
Cites_doi | 10.1103/PhysRevB.91.045128 10.1103/PhysRevB.93.144506 10.1063/1.3127247 10.1007/BF01311391 10.1103/RevModPhys.68.13 10.1103/PhysRevLett.62.324 10.1103/PhysRevB.95.165139 10.1016/j.jcp.2011.04.006 10.1007/BF01342591 10.1007/BF01404691 10.1103/PhysRevB.94.035121 10.1103/RevModPhys.86.779 10.1103/PhysRevB.82.115115 10.1103/PhysRev.84.814 10.1088/0034-4885/61/3/002 10.1002/ctpp.201610003 10.1103/PhysRevB.93.094509 10.1103/PhysRevLett.93.076401 10.1103/PhysRevB.92.245106 10.1103/PhysRevB.88.165115 10.1063/1.1660293 10.1088/1742-5468/2004/04/P04005 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
CorporateAuthor | SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
DBID | AAYXX CITATION OIOZB OTOTI ADTPV AOWAS D91 F1S |
DOI | 10.1016/j.cpc.2020.107484 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV SwePub SwePub Articles SWEPUB Örebro universitet SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2944 |
ExternalDocumentID | oai_research_chalmers_se_387ce204_d7e4_47ea_a391_12b2648ac5cd oai_DiVA_org_oru_89326 1768407 10_1016_j_cpc_2020_107484 S0010465520302277 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION AALMO ABPIF ABPTK OIOZB OTOTI ADTPV AOWAS D91 F1S |
ID | FETCH-LOGICAL-c480t-8a55de2d65115da4e2c55ce6794810354933f2066778a02d278deda050b99d063 |
IEDL.DBID | .~1 |
ISSN | 0010-4655 1879-2944 |
IngestDate | Tue Oct 01 22:51:34 EDT 2024 Tue Oct 01 22:26:36 EDT 2024 Mon Jul 10 02:30:40 EDT 2023 Thu Sep 26 15:57:26 EDT 2024 Fri Feb 23 02:47:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical simulations Nonequilibrium dynamics of quantum many-body problems Kadanoff–Baym equations Keldysh formalism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-8a55de2d65115da4e2c55ce6794810354933f2066778a02d278deda050b99d063 |
Notes | European Research Council (ERC) AC02-76SF00515; 200021-165539; 200021-140648; 278023; 724103; 716648 USDOE Office of Science (SC), Basic Energy Sciences (BES) Swiss National Science Foundation (SNSF) |
ORCID | 0000-0002-7263-4403 0000-0001-7322-6367 0000000272634403 0000000173226367 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1768407 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_387ce204_d7e4_47ea_a391_12b2648ac5cd swepub_primary_oai_DiVA_org_oru_89326 osti_scitechconnect_1768407 crossref_primary_10_1016_j_cpc_2020_107484 elsevier_sciencedirect_doi_10_1016_j_cpc_2020_107484 |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Computer physics communications |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Giamarchi (b35) 2003 Kamenev (b10) 2011 Pruschke, Grewe (b18) 1989; 74 Alvermann, Fehske (b39) 2011; 230 Balzer, Bonitz (b11) 2012 Schlünzen, Bonitz (b23) 2016; 56 Georges, Kotliar, Krauth, Rozenberg (b26) 1996; 68 Aryasetiawan, Gunnarsson (b19) 1998; 61 (b20) 2010 Metzner, Vollhardt (b25) 1989; 62 Keldysh (b7) 1965; 20 Murakami, Werner, Tsuji, Aoki (b29) 2015; 91 Kemper, Sentef, Moritz, Freericks, Devereaux (b27) 2014; 90 Ido, Ohgoe, Imada (b3) 2015; 92 Schüler, Berakdar, Pavlyukh (b31) 2016; 93 Gubernatis, Kawashima, Werner (b5) 2016 Stefanucci, Leeuwen (b9) 2013 Tsuji, Werner (b15) 2013; 88 Puig von Friesen, Verdozzi, Almbladh (b21) 2009; 103 Peierls (b32) 1933; 80 Hedin (b13) 1999; 11 Brunner, Houwen (b37) 1986 Eckstein, Werner (b16) 2010; 82 Steinberg (b36) 1972; 19 Abrikosov, Gorkov, Dzyaloshinski (b8) 1975 Golež, Werner, Eckstein (b34) 2016; 94 Daley, Kollath, Schollwöck, Vidal (b1) 2004; 2004 Mahan (b4) 1990 Stan, Dahlen, van Leeuwen (b12) 2009; 130 Keiter, Kimball (b17) 1971; 42 Murakami, Werner, Tsuji, Aoki (b30) 2016; 93 Puig von Friesen, Verdozzi, Almbladh (b22) 2010; 82 Luttinger (b33) 1951; 84 Sentef, Kemper, Georges, Kollath (b28) 2016; 93 Kadanoff, Baym (b6) 1962 Aoki, Tsuji, Eckstein, Kollar, Oka, Werner (b14) 2014; 86 Schlünzen, Joost, Heidrich-Meisner, Bonitz (b24) 2017; 95 White, Feiguin (b2) 2004; 93 Press, Teukolosky, Vetterling, Flannery (b38) 2007 Aoki (10.1016/j.cpc.2020.107484_b14) 2014; 86 Gubernatis (10.1016/j.cpc.2020.107484_b5) 2016 (10.1016/j.cpc.2020.107484_b20) 2010 Giamarchi (10.1016/j.cpc.2020.107484_b35) 2003 Mahan (10.1016/j.cpc.2020.107484_b4) 1990 Brunner (10.1016/j.cpc.2020.107484_b37) 1986 Aryasetiawan (10.1016/j.cpc.2020.107484_b19) 1998; 61 Schüler (10.1016/j.cpc.2020.107484_b31) 2016; 93 Keiter (10.1016/j.cpc.2020.107484_b17) 1971; 42 Stefanucci (10.1016/j.cpc.2020.107484_b9) 2013 Daley (10.1016/j.cpc.2020.107484_b1) 2004; 2004 Schlünzen (10.1016/j.cpc.2020.107484_b23) 2016; 56 Abrikosov (10.1016/j.cpc.2020.107484_b8) 1975 Georges (10.1016/j.cpc.2020.107484_b26) 1996; 68 Puig von Friesen (10.1016/j.cpc.2020.107484_b21) 2009; 103 Balzer (10.1016/j.cpc.2020.107484_b11) 2012 Pruschke (10.1016/j.cpc.2020.107484_b18) 1989; 74 Puig von Friesen (10.1016/j.cpc.2020.107484_b22) 2010; 82 White (10.1016/j.cpc.2020.107484_b2) 2004; 93 Tsuji (10.1016/j.cpc.2020.107484_b15) 2013; 88 Murakami (10.1016/j.cpc.2020.107484_b30) 2016; 93 Ido (10.1016/j.cpc.2020.107484_b3) 2015; 92 Metzner (10.1016/j.cpc.2020.107484_b25) 1989; 62 Eckstein (10.1016/j.cpc.2020.107484_b16) 2010; 82 Peierls (10.1016/j.cpc.2020.107484_b32) 1933; 80 Kamenev (10.1016/j.cpc.2020.107484_b10) 2011 Hedin (10.1016/j.cpc.2020.107484_b13) 1999; 11 Press (10.1016/j.cpc.2020.107484_b38) 2007 Steinberg (10.1016/j.cpc.2020.107484_b36) 1972; 19 Luttinger (10.1016/j.cpc.2020.107484_b33) 1951; 84 Golež (10.1016/j.cpc.2020.107484_b34) 2016; 94 Keldysh (10.1016/j.cpc.2020.107484_b7) 1965; 20 Schlünzen (10.1016/j.cpc.2020.107484_b24) 2017; 95 Alvermann (10.1016/j.cpc.2020.107484_b39) 2011; 230 Kemper (10.1016/j.cpc.2020.107484_b27) 2014; 90 Stan (10.1016/j.cpc.2020.107484_b12) 2009; 130 Murakami (10.1016/j.cpc.2020.107484_b29) 2015; 91 Kadanoff (10.1016/j.cpc.2020.107484_b6) 1962 Sentef (10.1016/j.cpc.2020.107484_b28) 2016; 93 |
References_xml | – volume: 82 year: 2010 ident: b16 publication-title: Phys. Rev. B contributor: fullname: Werner – volume: 103 year: 2009 ident: b21 publication-title: Phys. Rev. Lett. contributor: fullname: Almbladh – volume: 84 start-page: 814 year: 1951 end-page: 817 ident: b33 publication-title: Phys. Rev. contributor: fullname: Luttinger – volume: 130 year: 2009 ident: b12 publication-title: J. Chem. Phys. contributor: fullname: van Leeuwen – volume: 90 year: 2014 ident: b27 publication-title: Phys. Rev. B contributor: fullname: Devereaux – volume: 93 year: 2016 ident: b31 publication-title: Phys. Rev. B contributor: fullname: Pavlyukh – volume: 61 start-page: 237 year: 1998 end-page: 312 ident: b19 publication-title: Rep. Progr. Phys. contributor: fullname: Gunnarsson – year: 2016 ident: b5 article-title: Quantum Monte Carlo methods contributor: fullname: Werner – year: 1975 ident: b8 article-title: Methods of Quantum Field Theory in Statistical Physics contributor: fullname: Dzyaloshinski – volume: 88 year: 2013 ident: b15 publication-title: Phys. Rev. B contributor: fullname: Werner – volume: 19 start-page: 212 year: 1972 end-page: 217 ident: b36 publication-title: Numer. Math. contributor: fullname: Steinberg – volume: 11 start-page: R489 year: 1999 end-page: R528 ident: b13 publication-title: J. Phys.: Condens. Matter contributor: fullname: Hedin – volume: 91 year: 2015 ident: b29 publication-title: Phys. Rev. B contributor: fullname: Aoki – year: 2007 ident: b38 article-title: Numerical Recipes 3rd Edition: the Art of Scientific Computing contributor: fullname: Flannery – year: 2010 ident: b20 article-title: [A modern, C]++-native, header-only, test framework for unit-tests, TDD and BDD: using C++11, C++14, C++17 and later (or C++03 on the Catch1.x branch) - catchorg/Catch2 – volume: 68 start-page: 13 year: 1996 end-page: 125 ident: b26 publication-title: Rev. Modern Phys. contributor: fullname: Rozenberg – year: 1986 ident: b37 article-title: The Numerical Solution of Volterra Equations contributor: fullname: Houwen – volume: 230 start-page: 5930 year: 2011 ident: b39 publication-title: J. Comput. Phys. contributor: fullname: Fehske – volume: 93 year: 2004 ident: b2 publication-title: Phys. Rev. Lett. contributor: fullname: Feiguin – year: 2012 ident: b11 article-title: Nonequilibrium Green’S Functions Approach To Inhomogeneous Systems contributor: fullname: Bonitz – volume: 86 start-page: 779 year: 2014 end-page: 837 ident: b14 publication-title: Rev. Modern Phys. contributor: fullname: Werner – volume: 74 start-page: 439 year: 1989 end-page: 449 ident: b18 publication-title: Z. Phys. B contributor: fullname: Grewe – volume: 94 year: 2016 ident: b34 publication-title: Phys. Rev. B contributor: fullname: Eckstein – volume: 82 year: 2010 ident: b22 publication-title: Phys. Rev. B contributor: fullname: Almbladh – volume: 95 year: 2017 ident: b24 publication-title: Phys. Rev. B contributor: fullname: Bonitz – volume: 92 year: 2015 ident: b3 publication-title: Phys. Rev. B contributor: fullname: Imada – volume: 42 start-page: 1460 year: 1971 end-page: 1461 ident: b17 publication-title: J. Appl. Phys. contributor: fullname: Kimball – year: 1962 ident: b6 article-title: Quantum Statistical Mechanics contributor: fullname: Baym – year: 2013 ident: b9 article-title: Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction contributor: fullname: Leeuwen – volume: 93 year: 2016 ident: b30 publication-title: Phys. Rev. B contributor: fullname: Aoki – volume: 2004 start-page: P04005 year: 2004 ident: b1 publication-title: J. Stat. Mech. Theor. Exp. contributor: fullname: Vidal – year: 2011 ident: b10 article-title: Field Theory of Non-Equilibrium Systems contributor: fullname: Kamenev – volume: 80 start-page: 763 year: 1933 end-page: 791 ident: b32 publication-title: Z. Phys. contributor: fullname: Peierls – volume: 56 start-page: 5 year: 2016 end-page: 91 ident: b23 publication-title: Contrib. Plasma Phys. contributor: fullname: Bonitz – volume: 20 start-page: 1018 year: 1965 ident: b7 publication-title: JETP contributor: fullname: Keldysh – year: 1990 ident: b4 article-title: Many-Particle Physics contributor: fullname: Mahan – volume: 93 year: 2016 ident: b28 publication-title: Phys. Rev. B contributor: fullname: Kollath – volume: 62 start-page: 324 year: 1989 end-page: 327 ident: b25 publication-title: Phys. Rev. Lett. contributor: fullname: Vollhardt – year: 2003 ident: b35 article-title: Quantum Physics in One Dimension, vol. 121 contributor: fullname: Giamarchi – volume: 20 start-page: 1018 issue: 4 year: 1965 ident: 10.1016/j.cpc.2020.107484_b7 publication-title: JETP contributor: fullname: Keldysh – volume: 91 year: 2015 ident: 10.1016/j.cpc.2020.107484_b29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.045128 contributor: fullname: Murakami – volume: 93 year: 2016 ident: 10.1016/j.cpc.2020.107484_b28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.144506 contributor: fullname: Sentef – year: 2012 ident: 10.1016/j.cpc.2020.107484_b11 contributor: fullname: Balzer – volume: 90 year: 2014 ident: 10.1016/j.cpc.2020.107484_b27 publication-title: Phys. Rev. B contributor: fullname: Kemper – volume: 103 year: 2009 ident: 10.1016/j.cpc.2020.107484_b21 publication-title: Phys. Rev. Lett. contributor: fullname: Puig von Friesen – year: 1975 ident: 10.1016/j.cpc.2020.107484_b8 contributor: fullname: Abrikosov – volume: 130 issue: 22 year: 2009 ident: 10.1016/j.cpc.2020.107484_b12 publication-title: J. Chem. Phys. doi: 10.1063/1.3127247 contributor: fullname: Stan – year: 2007 ident: 10.1016/j.cpc.2020.107484_b38 contributor: fullname: Press – volume: 93 year: 2016 ident: 10.1016/j.cpc.2020.107484_b31 publication-title: Phys. Rev. B contributor: fullname: Schüler – volume: 74 start-page: 439 issue: 4 year: 1989 ident: 10.1016/j.cpc.2020.107484_b18 publication-title: Z. Phys. B doi: 10.1007/BF01311391 contributor: fullname: Pruschke – year: 2016 ident: 10.1016/j.cpc.2020.107484_b5 contributor: fullname: Gubernatis – year: 1990 ident: 10.1016/j.cpc.2020.107484_b4 contributor: fullname: Mahan – volume: 68 start-page: 13 year: 1996 ident: 10.1016/j.cpc.2020.107484_b26 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.68.13 contributor: fullname: Georges – volume: 82 year: 2010 ident: 10.1016/j.cpc.2020.107484_b22 publication-title: Phys. Rev. B contributor: fullname: Puig von Friesen – volume: 62 start-page: 324 year: 1989 ident: 10.1016/j.cpc.2020.107484_b25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.324 contributor: fullname: Metzner – volume: 95 year: 2017 ident: 10.1016/j.cpc.2020.107484_b24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.165139 contributor: fullname: Schlünzen – volume: 230 start-page: 5930 year: 2011 ident: 10.1016/j.cpc.2020.107484_b39 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.04.006 contributor: fullname: Alvermann – volume: 80 start-page: 763 issue: 11 year: 1933 ident: 10.1016/j.cpc.2020.107484_b32 publication-title: Z. Phys. doi: 10.1007/BF01342591 contributor: fullname: Peierls – volume: 19 start-page: 212 issue: 3 year: 1972 ident: 10.1016/j.cpc.2020.107484_b36 publication-title: Numer. Math. doi: 10.1007/BF01404691 contributor: fullname: Steinberg – volume: 94 year: 2016 ident: 10.1016/j.cpc.2020.107484_b34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.035121 contributor: fullname: Golež – volume: 86 start-page: 779 year: 2014 ident: 10.1016/j.cpc.2020.107484_b14 publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.86.779 contributor: fullname: Aoki – year: 1986 ident: 10.1016/j.cpc.2020.107484_b37 contributor: fullname: Brunner – year: 2010 ident: 10.1016/j.cpc.2020.107484_b20 – volume: 82 year: 2010 ident: 10.1016/j.cpc.2020.107484_b16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.115115 contributor: fullname: Eckstein – volume: 84 start-page: 814 year: 1951 ident: 10.1016/j.cpc.2020.107484_b33 publication-title: Phys. Rev. doi: 10.1103/PhysRev.84.814 contributor: fullname: Luttinger – volume: 61 start-page: 237 issue: 3 year: 1998 ident: 10.1016/j.cpc.2020.107484_b19 publication-title: Rep. Progr. Phys. doi: 10.1088/0034-4885/61/3/002 contributor: fullname: Aryasetiawan – volume: 56 start-page: 5 issue: 1 year: 2016 ident: 10.1016/j.cpc.2020.107484_b23 publication-title: Contrib. Plasma Phys. doi: 10.1002/ctpp.201610003 contributor: fullname: Schlünzen – year: 2003 ident: 10.1016/j.cpc.2020.107484_b35 contributor: fullname: Giamarchi – year: 2011 ident: 10.1016/j.cpc.2020.107484_b10 contributor: fullname: Kamenev – volume: 93 year: 2016 ident: 10.1016/j.cpc.2020.107484_b30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.094509 contributor: fullname: Murakami – volume: 93 year: 2004 ident: 10.1016/j.cpc.2020.107484_b2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.076401 contributor: fullname: White – volume: 92 year: 2015 ident: 10.1016/j.cpc.2020.107484_b3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.245106 contributor: fullname: Ido – year: 1962 ident: 10.1016/j.cpc.2020.107484_b6 contributor: fullname: Kadanoff – volume: 88 year: 2013 ident: 10.1016/j.cpc.2020.107484_b15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.165115 contributor: fullname: Tsuji – volume: 11 start-page: R489 issue: 42 year: 1999 ident: 10.1016/j.cpc.2020.107484_b13 publication-title: J. Phys.: Condens. Matter contributor: fullname: Hedin – volume: 42 start-page: 1460 issue: 4 year: 1971 ident: 10.1016/j.cpc.2020.107484_b17 publication-title: J. Appl. Phys. doi: 10.1063/1.1660293 contributor: fullname: Keiter – volume: 2004 start-page: P04005 issue: 04 year: 2004 ident: 10.1016/j.cpc.2020.107484_b1 publication-title: J. Stat. Mech. Theor. Exp. doi: 10.1088/1742-5468/2004/04/P04005 contributor: fullname: Daley – year: 2013 ident: 10.1016/j.cpc.2020.107484_b9 contributor: fullname: Stefanucci |
SSID | ssj0007793 |
Score | 2.6494825 |
Snippet | The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as... |
SourceID | swepub osti crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 107484 |
SubjectTerms | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Kadanoff–Baym equations Kadanoff–Baymequations Keldysh formalism many-body problems Nonequilibrium dynamics of quantum Nonequilibrium dynamics of quantum many-body problems Numerical simulations |
Title | NESSi: The Non-Equilibrium Systems Simulation package |
URI | https://dx.doi.org/10.1016/j.cpc.2020.107484 https://www.osti.gov/servlets/purl/1768407 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-89326 https://research.chalmers.se/publication/518283 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6hrSpxQX2A2EJRDu0FKSXxY51wW21B227ZAy2Pm-XYDptW7C77uPLbO5M4rYqAQw9R5MhWks_OeJz5_A3AB1vW8Swbl0WpYlGUWWy4N3FimcJlc65KR78Gzsa94YX4ei2vN2DQ7oUhWmWw_Y1Nr611uHIU0DyaVxXt8aX4pJQMxyljinaUC5z-cEx_uv9L81AqCO-ivaHabWSz5njZOakYMiqTpuZTc1Nnhp_bAy3Rev45fQVbwXGM-s2zvYYNP30DL2sCp12-BUnJM6rjCLs9Gs-m8cnduqrp_OvbKKiSR9-r25CsK8KV8i-0JNtwcXryYzCMQ0qE2IosWcWZkdJ55nroJ0lnhGdWSut7ikRXEo6LPc5LUmhXKjMJc9gNzjuTyKTIc4fuyA50prOp34WoLFSeOtHjHl0iI3ghfWqk5U4wU-DE34XDFgw9b5QvdEsJ-6kROU3I6Qa5LogWLv1P92m0zM812yNoqQlJ1lri9mCblKKDierCxwbxP_cnLezP1WVfzxY3eKx1Ru5nF749Ui-IJU20ndSZaJZ66TXPlPUsEdopL7RQ3mjD81SnrCCqn7HSunf_9y57sEmlhuqyD53VYu3fo8OyKg7qEXkAL_pfRsMxnUfnV6PfpwHpWw |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrRBcEOVDLAWaA1yQQhN_rBNuVWm1Ldu90KLeRo7ttAF1d-nuXvntzCQOCER76CGHJLbiPDvjceb5DcBbV7fxLJfWVW1SVdVFamWwaeaEoWVzaWrPvwZOpqPxmTo-1-cbsN_vhWFaZbT9nU1vrXW8shvR3F00De_x5fik1oLGqRDG3INNxf4xDeoPP__wPIyJyrtkcLh4H9psSV5uwTKGgs9ZVPOmyWkwp-_tHzHRdgI6fAyPoueY7HWN24KNMHsC91sGp1s-Bc3ZM5qPCfV7Mp3P0oMf66bl86-vkihLnnxprmK2roSWyt_JlDyDs8OD0_1xGnMipE4V2SotrNY-CD8iR0l7q4JwWrswMqy6kkla7UlZs0S7MYXNhKd-8MHbTGdVWXryR57DYDafhReQ1JUpc69GMpBPZJWsdMitdtIrYSua-YfwvgcDF530BfacsG9IyCEjhx1yQ1A9XPhX_yGZ5tuqbTO0XIU1ax2Te6hOzuHBzAzhXYf47-ezGPan5usezq8v6Fhjwf7nECb_KRfVki7RXbapaJa4DCgL44LIFHoTFCoTLFpZ5piLirl-1mnnX97tXXbgwfj0ZIKTo-nnbXjIdzreyysYrK7X4TV5L6vqTTs6fwHd8ulR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NESSi%3A+The+Non-Equilibrium+Systems+Simulation+package&rft.jtitle=Computer+physics+communications&rft.au=Sch%C3%BCler%2C+Michael&rft.au=Gole%C5%BE%2C+Denis&rft.au=Murakami%2C+Yuta&rft.au=Bittner%2C+Nikolaj&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=257&rft_id=info:doi/10.1016%2Fj.cpc.2020.107484&rft.externalDocID=S0010465520302277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |