NESSi: The Non-Equilibrium Systems Simulation package

The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool to st...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 257; p. 107484
Main Authors Schüler, Michael, Golež, Denis, Murakami, Yuta, Bittner, Nikolaj, Herrmann, Andreas, Strand, Hugo U.R., Werner, Philipp, Eckstein, Martin
Format Journal Article
LanguageEnglish
Published United States Elsevier B.V 01.12.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green’s functions on the L-shaped Kadanoff–Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green’s functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green’s functions. The library employs a discretization of the Kadanoff–Baym contour into time N points and a high-order implementation of integration routines. The total integrated error scales up to O(N−7), which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers. Program Title: NESSi CPC Library link to program files:http://dx.doi.org/10.17632/973crf9hgd.1 Licensing provisions: MPL v2.0 Programming language: C++, python External routines/libraries: cmake, eigen3, hdf5 (optional), mpi (optional), omp (optional) Nature of problem: Solves equations of motion of time-dependent Green’s functions on the Kadanoff–Baym contour. Solution method: Higher-order solution methods of integral and integro-differential equations on the Kadanoff–Baym contour.
AbstractList The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green’s functions on the L-shaped Kadanoff–Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green’s functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green’s functions. The library employs a discretization of the Kadanoff–Baym contour into time  points and a high-order implementation of integration routines. The total integrated error scales up to , which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers.
The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green's functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green's functions on the L-shaped Kadanoff–Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green's functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green's functions. The library employs a discretization of the Kadanoff–Baym contour into time N points and a high-order implementation of integration routines. The total integrated error scales up to O(N−7), which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers. Program summary: Program Title: NESSi CPC Library link to program files: http://dx.doi.org/10.17632/973crf9hgd.1 Licensing provisions: MPL v2.0 Programming language: C++, python External routines/libraries: cmake, eigen3, hdf5 (optional), mpi (optional), omp (optional) Nature of problem: Solves equations of motion of time-dependent Green's functions on the Kadanoff–Baym contour. Solution method: Higher-order solution methods of integral and integro-differential equations on the Kadanoff–Baym contour.
The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green’s functions on the L-shaped Kadanoff–Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green’s functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green’s functions. The library employs a discretization of the Kadanoff–Baym contour into time N points and a high-order implementation of integration routines. The total integrated error scales up to O(N−7), which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers. Program Title: NESSi CPC Library link to program files:http://dx.doi.org/10.17632/973crf9hgd.1 Licensing provisions: MPL v2.0 Programming language: C++, python External routines/libraries: cmake, eigen3, hdf5 (optional), mpi (optional), omp (optional) Nature of problem: Solves equations of motion of time-dependent Green’s functions on the Kadanoff–Baym contour. Solution method: Higher-order solution methods of integral and integro-differential equations on the Kadanoff–Baym contour.
The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green’s functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. Here, we present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green’s functions on the L-shaped Kadanoff–Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green’s functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green’s functions. The library employs a discretization of the Kadanoff–Baym contour into time points and a high-order implementation of integration routines. The total integrated error scales up to $\mathcal{O}(N^{-7})$, which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers.
ArticleNumber 107484
Author Bittner, Nikolaj
Strand, Hugo U.R.
Golež, Denis
Herrmann, Andreas
Murakami, Yuta
Eckstein, Martin
Schüler, Michael
Werner, Philipp
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0001-7322-6367
  surname: Schüler
  fullname: Schüler, Michael
  organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
– sequence: 2
  givenname: Denis
  surname: Golež
  fullname: Golež, Denis
  organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
– sequence: 3
  givenname: Yuta
  surname: Murakami
  fullname: Murakami, Yuta
  organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
– sequence: 4
  givenname: Nikolaj
  surname: Bittner
  fullname: Bittner, Nikolaj
  organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
– sequence: 5
  givenname: Andreas
  surname: Herrmann
  fullname: Herrmann, Andreas
  organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
– sequence: 6
  givenname: Hugo U.R.
  orcidid: 0000-0002-7263-4403
  surname: Strand
  fullname: Strand, Hugo U.R.
  organization: Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth avenue, New York, NY 10010, USA
– sequence: 7
  givenname: Philipp
  surname: Werner
  fullname: Werner, Philipp
  organization: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
– sequence: 8
  givenname: Martin
  surname: Eckstein
  fullname: Eckstein, Martin
  email: martin.eckstein@fau.de
  organization: Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
BackLink https://www.osti.gov/servlets/purl/1768407$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-89326$$DView record from Swedish Publication Index
https://research.chalmers.se/publication/518283$$DView record from Swedish Publication Index
BookMark eNp9kcFu1DAQhi1UJLaFB-AWcSbL2LFjG05V2QJS1R7Sch157dmul02y2Amob99EQdzgYI0s_f-n0Xzn7KzrO2LsLYc1B15_OKz9ya8FiPmvpZEv2IobbUthpTxjKwAOpayVesXOcz4AgNa2WjF1u2ma-LG431Nx23fl5ucYj3Gb4tgWzVMeqM1FE9vx6IbYd8XJ-R_ukV6zlzt3zPTmz7xgD9eb-6uv5c3dl29XlzellwaG0jilAolQK85VcJKEV8pTra00HColbVXtBNS11saBCEKbQMGBgq21AerqgjULN_-m07jFU4qtS0_Yu4iJMrnk9-j37thSypgJK6M9CZAYNEmUmhy6ynLkYitqaZxXPkzU9_-kfo7fL7FPj9Mb0dhKzEu8W-J9HiJmHwfye993HfkBua6NBD2F-BLyqc850e4vlQPOhvCAkyGcDeFiaOp8Wjo0nfBXpDTDqfMUYprZoY__aT8DvEKYhw
CitedBy_id crossref_primary_10_1103_PhysRevB_106_125153
crossref_primary_10_1038_s41566_023_01371_1
crossref_primary_10_1103_PhysRevB_105_115146
crossref_primary_10_1103_PhysRevB_108_035151
crossref_primary_10_1103_PhysRevResearch_2_043207
crossref_primary_10_1103_PhysRevB_104_245127
crossref_primary_10_1016_j_cpc_2022_108458
crossref_primary_10_1103_PhysRevB_107_035157
crossref_primary_10_1103_PhysRevB_108_035115
crossref_primary_10_1103_PhysRevB_109_165135
crossref_primary_10_1103_PhysRevB_103_035116
crossref_primary_10_1007_s10444_023_10067_7
crossref_primary_10_1016_j_elspec_2021_147108
crossref_primary_10_1103_PhysRevB_103_165118
crossref_primary_10_1103_PhysRevB_108_125143
crossref_primary_10_1088_1751_8121_ac7119
crossref_primary_10_1103_PhysRevB_102_115157
crossref_primary_10_1103_PhysRevB_108_064308
crossref_primary_10_1103_PhysRevLett_130_246301
crossref_primary_10_1038_s41567_024_02396_1
crossref_primary_10_1103_PhysRevB_107_245137
crossref_primary_10_1103_PhysRevB_106_035204
crossref_primary_10_1103_PhysRevB_108_245157
crossref_primary_10_1103_PhysRevB_108_115152
crossref_primary_10_1103_PhysRevB_103_144304
crossref_primary_10_1016_j_elspec_2021_147152
crossref_primary_10_1103_PhysRevB_108_L241202
crossref_primary_10_1103_PhysRevB_106_L121106
crossref_primary_10_1103_PhysRevLett_129_157401
crossref_primary_10_21468_SciPostPhysCore_5_2_030
crossref_primary_10_1103_PhysRevB_104_L201101
crossref_primary_10_21468_SciPostPhys_10_4_091
crossref_primary_10_1103_PhysRevResearch_5_043105
crossref_primary_10_1103_PhysRevB_102_241103
crossref_primary_10_1103_PhysRevX_10_041013
crossref_primary_10_1016_j_elspec_2021_147121
crossref_primary_10_1103_PhysRevB_110_L041109
crossref_primary_10_1103_PhysRevLett_127_106601
crossref_primary_10_1103_PhysRevB_104_085155
crossref_primary_10_1103_PhysRevX_13_021015
crossref_primary_10_21468_SciPostPhys_16_3_073
crossref_primary_10_1103_PhysRevB_104_115138
crossref_primary_10_1103_PhysRevB_106_L241110
crossref_primary_10_1103_PhysRevLett_132_176501
crossref_primary_10_1007_JHEP06_2024_106
crossref_primary_10_1103_PhysRevB_103_L201116
crossref_primary_10_1103_PhysRevB_109_L201101
crossref_primary_10_7566_JPSJ_92_124001
crossref_primary_10_1103_PhysRevLett_132_160403
crossref_primary_10_1002_pssb_202300504
crossref_primary_10_1103_PhysRevB_106_165106
crossref_primary_10_1103_PhysRevB_106_L201408
Cites_doi 10.1103/PhysRevB.91.045128
10.1103/PhysRevB.93.144506
10.1063/1.3127247
10.1007/BF01311391
10.1103/RevModPhys.68.13
10.1103/PhysRevLett.62.324
10.1103/PhysRevB.95.165139
10.1016/j.jcp.2011.04.006
10.1007/BF01342591
10.1007/BF01404691
10.1103/PhysRevB.94.035121
10.1103/RevModPhys.86.779
10.1103/PhysRevB.82.115115
10.1103/PhysRev.84.814
10.1088/0034-4885/61/3/002
10.1002/ctpp.201610003
10.1103/PhysRevB.93.094509
10.1103/PhysRevLett.93.076401
10.1103/PhysRevB.92.245106
10.1103/PhysRevB.88.165115
10.1063/1.1660293
10.1088/1742-5468/2004/04/P04005
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
CorporateAuthor SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
ADTPV
AOWAS
D91
F1S
DOI 10.1016/j.cpc.2020.107484
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
SwePub
SwePub Articles
SWEPUB Örebro universitet
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
ExternalDocumentID oai_research_chalmers_se_387ce204_d7e4_47ea_a391_12b2648ac5cd
oai_DiVA_org_oru_89326
1768407
10_1016_j_cpc_2020_107484
S0010465520302277
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
AALMO
ABPIF
ABPTK
OIOZB
OTOTI
ADTPV
AOWAS
D91
F1S
ID FETCH-LOGICAL-c480t-8a55de2d65115da4e2c55ce6794810354933f2066778a02d278deda050b99d063
IEDL.DBID .~1
ISSN 0010-4655
1879-2944
IngestDate Tue Oct 01 22:51:34 EDT 2024
Tue Oct 01 22:26:36 EDT 2024
Mon Jul 10 02:30:40 EDT 2023
Thu Sep 26 15:57:26 EDT 2024
Fri Feb 23 02:47:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Numerical simulations
Nonequilibrium dynamics of quantum many-body problems
Kadanoff–Baym equations
Keldysh formalism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-8a55de2d65115da4e2c55ce6794810354933f2066778a02d278deda050b99d063
Notes European Research Council (ERC)
AC02-76SF00515; 200021-165539; 200021-140648; 278023; 724103; 716648
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Swiss National Science Foundation (SNSF)
ORCID 0000-0002-7263-4403
0000-0001-7322-6367
0000000272634403
0000000173226367
OpenAccessLink https://www.osti.gov/servlets/purl/1768407
ParticipantIDs swepub_primary_oai_research_chalmers_se_387ce204_d7e4_47ea_a391_12b2648ac5cd
swepub_primary_oai_DiVA_org_oru_89326
osti_scitechconnect_1768407
crossref_primary_10_1016_j_cpc_2020_107484
elsevier_sciencedirect_doi_10_1016_j_cpc_2020_107484
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computer physics communications
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Giamarchi (b35) 2003
Kamenev (b10) 2011
Pruschke, Grewe (b18) 1989; 74
Alvermann, Fehske (b39) 2011; 230
Balzer, Bonitz (b11) 2012
Schlünzen, Bonitz (b23) 2016; 56
Georges, Kotliar, Krauth, Rozenberg (b26) 1996; 68
Aryasetiawan, Gunnarsson (b19) 1998; 61
(b20) 2010
Metzner, Vollhardt (b25) 1989; 62
Keldysh (b7) 1965; 20
Murakami, Werner, Tsuji, Aoki (b29) 2015; 91
Kemper, Sentef, Moritz, Freericks, Devereaux (b27) 2014; 90
Ido, Ohgoe, Imada (b3) 2015; 92
Schüler, Berakdar, Pavlyukh (b31) 2016; 93
Gubernatis, Kawashima, Werner (b5) 2016
Stefanucci, Leeuwen (b9) 2013
Tsuji, Werner (b15) 2013; 88
Puig von Friesen, Verdozzi, Almbladh (b21) 2009; 103
Peierls (b32) 1933; 80
Hedin (b13) 1999; 11
Brunner, Houwen (b37) 1986
Eckstein, Werner (b16) 2010; 82
Steinberg (b36) 1972; 19
Abrikosov, Gorkov, Dzyaloshinski (b8) 1975
Golež, Werner, Eckstein (b34) 2016; 94
Daley, Kollath, Schollwöck, Vidal (b1) 2004; 2004
Mahan (b4) 1990
Stan, Dahlen, van Leeuwen (b12) 2009; 130
Keiter, Kimball (b17) 1971; 42
Murakami, Werner, Tsuji, Aoki (b30) 2016; 93
Puig von Friesen, Verdozzi, Almbladh (b22) 2010; 82
Luttinger (b33) 1951; 84
Sentef, Kemper, Georges, Kollath (b28) 2016; 93
Kadanoff, Baym (b6) 1962
Aoki, Tsuji, Eckstein, Kollar, Oka, Werner (b14) 2014; 86
Schlünzen, Joost, Heidrich-Meisner, Bonitz (b24) 2017; 95
White, Feiguin (b2) 2004; 93
Press, Teukolosky, Vetterling, Flannery (b38) 2007
Aoki (10.1016/j.cpc.2020.107484_b14) 2014; 86
Gubernatis (10.1016/j.cpc.2020.107484_b5) 2016
(10.1016/j.cpc.2020.107484_b20) 2010
Giamarchi (10.1016/j.cpc.2020.107484_b35) 2003
Mahan (10.1016/j.cpc.2020.107484_b4) 1990
Brunner (10.1016/j.cpc.2020.107484_b37) 1986
Aryasetiawan (10.1016/j.cpc.2020.107484_b19) 1998; 61
Schüler (10.1016/j.cpc.2020.107484_b31) 2016; 93
Keiter (10.1016/j.cpc.2020.107484_b17) 1971; 42
Stefanucci (10.1016/j.cpc.2020.107484_b9) 2013
Daley (10.1016/j.cpc.2020.107484_b1) 2004; 2004
Schlünzen (10.1016/j.cpc.2020.107484_b23) 2016; 56
Abrikosov (10.1016/j.cpc.2020.107484_b8) 1975
Georges (10.1016/j.cpc.2020.107484_b26) 1996; 68
Puig von Friesen (10.1016/j.cpc.2020.107484_b21) 2009; 103
Balzer (10.1016/j.cpc.2020.107484_b11) 2012
Pruschke (10.1016/j.cpc.2020.107484_b18) 1989; 74
Puig von Friesen (10.1016/j.cpc.2020.107484_b22) 2010; 82
White (10.1016/j.cpc.2020.107484_b2) 2004; 93
Tsuji (10.1016/j.cpc.2020.107484_b15) 2013; 88
Murakami (10.1016/j.cpc.2020.107484_b30) 2016; 93
Ido (10.1016/j.cpc.2020.107484_b3) 2015; 92
Metzner (10.1016/j.cpc.2020.107484_b25) 1989; 62
Eckstein (10.1016/j.cpc.2020.107484_b16) 2010; 82
Peierls (10.1016/j.cpc.2020.107484_b32) 1933; 80
Kamenev (10.1016/j.cpc.2020.107484_b10) 2011
Hedin (10.1016/j.cpc.2020.107484_b13) 1999; 11
Press (10.1016/j.cpc.2020.107484_b38) 2007
Steinberg (10.1016/j.cpc.2020.107484_b36) 1972; 19
Luttinger (10.1016/j.cpc.2020.107484_b33) 1951; 84
Golež (10.1016/j.cpc.2020.107484_b34) 2016; 94
Keldysh (10.1016/j.cpc.2020.107484_b7) 1965; 20
Schlünzen (10.1016/j.cpc.2020.107484_b24) 2017; 95
Alvermann (10.1016/j.cpc.2020.107484_b39) 2011; 230
Kemper (10.1016/j.cpc.2020.107484_b27) 2014; 90
Stan (10.1016/j.cpc.2020.107484_b12) 2009; 130
Murakami (10.1016/j.cpc.2020.107484_b29) 2015; 91
Kadanoff (10.1016/j.cpc.2020.107484_b6) 1962
Sentef (10.1016/j.cpc.2020.107484_b28) 2016; 93
References_xml – volume: 82
  year: 2010
  ident: b16
  publication-title: Phys. Rev. B
  contributor:
    fullname: Werner
– volume: 103
  year: 2009
  ident: b21
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Almbladh
– volume: 84
  start-page: 814
  year: 1951
  end-page: 817
  ident: b33
  publication-title: Phys. Rev.
  contributor:
    fullname: Luttinger
– volume: 130
  year: 2009
  ident: b12
  publication-title: J. Chem. Phys.
  contributor:
    fullname: van Leeuwen
– volume: 90
  year: 2014
  ident: b27
  publication-title: Phys. Rev. B
  contributor:
    fullname: Devereaux
– volume: 93
  year: 2016
  ident: b31
  publication-title: Phys. Rev. B
  contributor:
    fullname: Pavlyukh
– volume: 61
  start-page: 237
  year: 1998
  end-page: 312
  ident: b19
  publication-title: Rep. Progr. Phys.
  contributor:
    fullname: Gunnarsson
– year: 2016
  ident: b5
  article-title: Quantum Monte Carlo methods
  contributor:
    fullname: Werner
– year: 1975
  ident: b8
  article-title: Methods of Quantum Field Theory in Statistical Physics
  contributor:
    fullname: Dzyaloshinski
– volume: 88
  year: 2013
  ident: b15
  publication-title: Phys. Rev. B
  contributor:
    fullname: Werner
– volume: 19
  start-page: 212
  year: 1972
  end-page: 217
  ident: b36
  publication-title: Numer. Math.
  contributor:
    fullname: Steinberg
– volume: 11
  start-page: R489
  year: 1999
  end-page: R528
  ident: b13
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Hedin
– volume: 91
  year: 2015
  ident: b29
  publication-title: Phys. Rev. B
  contributor:
    fullname: Aoki
– year: 2007
  ident: b38
  article-title: Numerical Recipes 3rd Edition: the Art of Scientific Computing
  contributor:
    fullname: Flannery
– year: 2010
  ident: b20
  article-title: [A modern, C]++-native, header-only, test framework for unit-tests, TDD and BDD: using C++11, C++14, C++17 and later (or C++03 on the Catch1.x branch) - catchorg/Catch2
– volume: 68
  start-page: 13
  year: 1996
  end-page: 125
  ident: b26
  publication-title: Rev. Modern Phys.
  contributor:
    fullname: Rozenberg
– year: 1986
  ident: b37
  article-title: The Numerical Solution of Volterra Equations
  contributor:
    fullname: Houwen
– volume: 230
  start-page: 5930
  year: 2011
  ident: b39
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Fehske
– volume: 93
  year: 2004
  ident: b2
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Feiguin
– year: 2012
  ident: b11
  article-title: Nonequilibrium Green’S Functions Approach To Inhomogeneous Systems
  contributor:
    fullname: Bonitz
– volume: 86
  start-page: 779
  year: 2014
  end-page: 837
  ident: b14
  publication-title: Rev. Modern Phys.
  contributor:
    fullname: Werner
– volume: 74
  start-page: 439
  year: 1989
  end-page: 449
  ident: b18
  publication-title: Z. Phys. B
  contributor:
    fullname: Grewe
– volume: 94
  year: 2016
  ident: b34
  publication-title: Phys. Rev. B
  contributor:
    fullname: Eckstein
– volume: 82
  year: 2010
  ident: b22
  publication-title: Phys. Rev. B
  contributor:
    fullname: Almbladh
– volume: 95
  year: 2017
  ident: b24
  publication-title: Phys. Rev. B
  contributor:
    fullname: Bonitz
– volume: 92
  year: 2015
  ident: b3
  publication-title: Phys. Rev. B
  contributor:
    fullname: Imada
– volume: 42
  start-page: 1460
  year: 1971
  end-page: 1461
  ident: b17
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Kimball
– year: 1962
  ident: b6
  article-title: Quantum Statistical Mechanics
  contributor:
    fullname: Baym
– year: 2013
  ident: b9
  article-title: Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
  contributor:
    fullname: Leeuwen
– volume: 93
  year: 2016
  ident: b30
  publication-title: Phys. Rev. B
  contributor:
    fullname: Aoki
– volume: 2004
  start-page: P04005
  year: 2004
  ident: b1
  publication-title: J. Stat. Mech. Theor. Exp.
  contributor:
    fullname: Vidal
– year: 2011
  ident: b10
  article-title: Field Theory of Non-Equilibrium Systems
  contributor:
    fullname: Kamenev
– volume: 80
  start-page: 763
  year: 1933
  end-page: 791
  ident: b32
  publication-title: Z. Phys.
  contributor:
    fullname: Peierls
– volume: 56
  start-page: 5
  year: 2016
  end-page: 91
  ident: b23
  publication-title: Contrib. Plasma Phys.
  contributor:
    fullname: Bonitz
– volume: 20
  start-page: 1018
  year: 1965
  ident: b7
  publication-title: JETP
  contributor:
    fullname: Keldysh
– year: 1990
  ident: b4
  article-title: Many-Particle Physics
  contributor:
    fullname: Mahan
– volume: 93
  year: 2016
  ident: b28
  publication-title: Phys. Rev. B
  contributor:
    fullname: Kollath
– volume: 62
  start-page: 324
  year: 1989
  end-page: 327
  ident: b25
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Vollhardt
– year: 2003
  ident: b35
  article-title: Quantum Physics in One Dimension, vol. 121
  contributor:
    fullname: Giamarchi
– volume: 20
  start-page: 1018
  issue: 4
  year: 1965
  ident: 10.1016/j.cpc.2020.107484_b7
  publication-title: JETP
  contributor:
    fullname: Keldysh
– volume: 91
  year: 2015
  ident: 10.1016/j.cpc.2020.107484_b29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.045128
  contributor:
    fullname: Murakami
– volume: 93
  year: 2016
  ident: 10.1016/j.cpc.2020.107484_b28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.144506
  contributor:
    fullname: Sentef
– year: 2012
  ident: 10.1016/j.cpc.2020.107484_b11
  contributor:
    fullname: Balzer
– volume: 90
  year: 2014
  ident: 10.1016/j.cpc.2020.107484_b27
  publication-title: Phys. Rev. B
  contributor:
    fullname: Kemper
– volume: 103
  year: 2009
  ident: 10.1016/j.cpc.2020.107484_b21
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Puig von Friesen
– year: 1975
  ident: 10.1016/j.cpc.2020.107484_b8
  contributor:
    fullname: Abrikosov
– volume: 130
  issue: 22
  year: 2009
  ident: 10.1016/j.cpc.2020.107484_b12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3127247
  contributor:
    fullname: Stan
– year: 2007
  ident: 10.1016/j.cpc.2020.107484_b38
  contributor:
    fullname: Press
– volume: 93
  year: 2016
  ident: 10.1016/j.cpc.2020.107484_b31
  publication-title: Phys. Rev. B
  contributor:
    fullname: Schüler
– volume: 74
  start-page: 439
  issue: 4
  year: 1989
  ident: 10.1016/j.cpc.2020.107484_b18
  publication-title: Z. Phys. B
  doi: 10.1007/BF01311391
  contributor:
    fullname: Pruschke
– year: 2016
  ident: 10.1016/j.cpc.2020.107484_b5
  contributor:
    fullname: Gubernatis
– year: 1990
  ident: 10.1016/j.cpc.2020.107484_b4
  contributor:
    fullname: Mahan
– volume: 68
  start-page: 13
  year: 1996
  ident: 10.1016/j.cpc.2020.107484_b26
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.68.13
  contributor:
    fullname: Georges
– volume: 82
  year: 2010
  ident: 10.1016/j.cpc.2020.107484_b22
  publication-title: Phys. Rev. B
  contributor:
    fullname: Puig von Friesen
– volume: 62
  start-page: 324
  year: 1989
  ident: 10.1016/j.cpc.2020.107484_b25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.324
  contributor:
    fullname: Metzner
– volume: 95
  year: 2017
  ident: 10.1016/j.cpc.2020.107484_b24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.165139
  contributor:
    fullname: Schlünzen
– volume: 230
  start-page: 5930
  year: 2011
  ident: 10.1016/j.cpc.2020.107484_b39
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.04.006
  contributor:
    fullname: Alvermann
– volume: 80
  start-page: 763
  issue: 11
  year: 1933
  ident: 10.1016/j.cpc.2020.107484_b32
  publication-title: Z. Phys.
  doi: 10.1007/BF01342591
  contributor:
    fullname: Peierls
– volume: 19
  start-page: 212
  issue: 3
  year: 1972
  ident: 10.1016/j.cpc.2020.107484_b36
  publication-title: Numer. Math.
  doi: 10.1007/BF01404691
  contributor:
    fullname: Steinberg
– volume: 94
  year: 2016
  ident: 10.1016/j.cpc.2020.107484_b34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.035121
  contributor:
    fullname: Golež
– volume: 86
  start-page: 779
  year: 2014
  ident: 10.1016/j.cpc.2020.107484_b14
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.86.779
  contributor:
    fullname: Aoki
– year: 1986
  ident: 10.1016/j.cpc.2020.107484_b37
  contributor:
    fullname: Brunner
– year: 2010
  ident: 10.1016/j.cpc.2020.107484_b20
– volume: 82
  year: 2010
  ident: 10.1016/j.cpc.2020.107484_b16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.115115
  contributor:
    fullname: Eckstein
– volume: 84
  start-page: 814
  year: 1951
  ident: 10.1016/j.cpc.2020.107484_b33
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.84.814
  contributor:
    fullname: Luttinger
– volume: 61
  start-page: 237
  issue: 3
  year: 1998
  ident: 10.1016/j.cpc.2020.107484_b19
  publication-title: Rep. Progr. Phys.
  doi: 10.1088/0034-4885/61/3/002
  contributor:
    fullname: Aryasetiawan
– volume: 56
  start-page: 5
  issue: 1
  year: 2016
  ident: 10.1016/j.cpc.2020.107484_b23
  publication-title: Contrib. Plasma Phys.
  doi: 10.1002/ctpp.201610003
  contributor:
    fullname: Schlünzen
– year: 2003
  ident: 10.1016/j.cpc.2020.107484_b35
  contributor:
    fullname: Giamarchi
– year: 2011
  ident: 10.1016/j.cpc.2020.107484_b10
  contributor:
    fullname: Kamenev
– volume: 93
  year: 2016
  ident: 10.1016/j.cpc.2020.107484_b30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.094509
  contributor:
    fullname: Murakami
– volume: 93
  year: 2004
  ident: 10.1016/j.cpc.2020.107484_b2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.076401
  contributor:
    fullname: White
– volume: 92
  year: 2015
  ident: 10.1016/j.cpc.2020.107484_b3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.245106
  contributor:
    fullname: Ido
– year: 1962
  ident: 10.1016/j.cpc.2020.107484_b6
  contributor:
    fullname: Kadanoff
– volume: 88
  year: 2013
  ident: 10.1016/j.cpc.2020.107484_b15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.165115
  contributor:
    fullname: Tsuji
– volume: 11
  start-page: R489
  issue: 42
  year: 1999
  ident: 10.1016/j.cpc.2020.107484_b13
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Hedin
– volume: 42
  start-page: 1460
  issue: 4
  year: 1971
  ident: 10.1016/j.cpc.2020.107484_b17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1660293
  contributor:
    fullname: Keiter
– volume: 2004
  start-page: P04005
  issue: 04
  year: 2004
  ident: 10.1016/j.cpc.2020.107484_b1
  publication-title: J. Stat. Mech. Theor. Exp.
  doi: 10.1088/1742-5468/2004/04/P04005
  contributor:
    fullname: Daley
– year: 2013
  ident: 10.1016/j.cpc.2020.107484_b9
  contributor:
    fullname: Stefanucci
SSID ssj0007793
Score 2.6494825
Snippet The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump–probe experiments on molecular systems and solids, as...
SourceID swepub
osti
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 107484
SubjectTerms CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Kadanoff–Baym equations
Kadanoff–Baymequations
Keldysh formalism
many-body problems
Nonequilibrium dynamics of quantum
Nonequilibrium dynamics of quantum many-body problems
Numerical simulations
Title NESSi: The Non-Equilibrium Systems Simulation package
URI https://dx.doi.org/10.1016/j.cpc.2020.107484
https://www.osti.gov/servlets/purl/1768407
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-89326
https://research.chalmers.se/publication/518283
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6hrSpxQX2A2EJRDu0FKSXxY51wW21B227ZAy2Pm-XYDptW7C77uPLbO5M4rYqAQw9R5MhWks_OeJz5_A3AB1vW8Swbl0WpYlGUWWy4N3FimcJlc65KR78Gzsa94YX4ei2vN2DQ7oUhWmWw_Y1Nr611uHIU0DyaVxXt8aX4pJQMxyljinaUC5z-cEx_uv9L81AqCO-ivaHabWSz5njZOakYMiqTpuZTc1Nnhp_bAy3Rev45fQVbwXGM-s2zvYYNP30DL2sCp12-BUnJM6rjCLs9Gs-m8cnduqrp_OvbKKiSR9-r25CsK8KV8i-0JNtwcXryYzCMQ0qE2IosWcWZkdJ55nroJ0lnhGdWSut7ikRXEo6LPc5LUmhXKjMJc9gNzjuTyKTIc4fuyA50prOp34WoLFSeOtHjHl0iI3ghfWqk5U4wU-DE34XDFgw9b5QvdEsJ-6kROU3I6Qa5LogWLv1P92m0zM812yNoqQlJ1lri9mCblKKDierCxwbxP_cnLezP1WVfzxY3eKx1Ru5nF749Ui-IJU20ndSZaJZ66TXPlPUsEdopL7RQ3mjD81SnrCCqn7HSunf_9y57sEmlhuqyD53VYu3fo8OyKg7qEXkAL_pfRsMxnUfnV6PfpwHpWw
link.rule.ids 230,315,783,787,888,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VrRBcEOVDLAWaA1yQQhN_rBNuVWm1Ldu90KLeRo7ttAF1d-nuXvntzCQOCER76CGHJLbiPDvjceb5DcBbV7fxLJfWVW1SVdVFamWwaeaEoWVzaWrPvwZOpqPxmTo-1-cbsN_vhWFaZbT9nU1vrXW8shvR3F00De_x5fik1oLGqRDG3INNxf4xDeoPP__wPIyJyrtkcLh4H9psSV5uwTKGgs9ZVPOmyWkwp-_tHzHRdgI6fAyPoueY7HWN24KNMHsC91sGp1s-Bc3ZM5qPCfV7Mp3P0oMf66bl86-vkihLnnxprmK2roSWyt_JlDyDs8OD0_1xGnMipE4V2SotrNY-CD8iR0l7q4JwWrswMqy6kkla7UlZs0S7MYXNhKd-8MHbTGdVWXryR57DYDafhReQ1JUpc69GMpBPZJWsdMitdtIrYSua-YfwvgcDF530BfacsG9IyCEjhx1yQ1A9XPhX_yGZ5tuqbTO0XIU1ax2Te6hOzuHBzAzhXYf47-ezGPan5usezq8v6Fhjwf7nECb_KRfVki7RXbapaJa4DCgL44LIFHoTFCoTLFpZ5piLirl-1mnnX97tXXbgwfj0ZIKTo-nnbXjIdzreyysYrK7X4TV5L6vqTTs6fwHd8ulR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NESSi%3A+The+Non-Equilibrium+Systems+Simulation+package&rft.jtitle=Computer+physics+communications&rft.au=Sch%C3%BCler%2C+Michael&rft.au=Gole%C5%BE%2C+Denis&rft.au=Murakami%2C+Yuta&rft.au=Bittner%2C+Nikolaj&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0010-4655&rft.eissn=1879-2944&rft.volume=257&rft_id=info:doi/10.1016%2Fj.cpc.2020.107484&rft.externalDocID=S0010465520302277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon