Multiple Roles of the Stress Sensor GCN2 in Immune Cells
The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecul...
Saved in:
Published in | International journal of molecular sciences Vol. 24; no. 5; p. 4285 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism’s lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4+ T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2′s functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases. |
---|---|
AbstractList | The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism's lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4[sup.+] T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2′s functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases. The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism’s lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4+ T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2′s functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases. The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism's lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4+ T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2's functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases.The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism's lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4+ T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2's functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases. The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism’s lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4 + T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2′s functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases. The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other stresses, making it critical to the maintenance of cellular and organismal homeostasis. More than 20 years of research has revealed the molecular structure/complex, inducers/regulators, intracellular signaling pathways and bio-functions of GCN2 in various biological processes, across an organism's lifespan, and in many diseases. Accumulated studies have demonstrated that the GCN2 kinase is also closely involved in the immune system and in various immune-related diseases, such as GCN2 acts as an important regulatory molecule to control macrophage functional polarization and CD4 T cell subset differentiation. Herein, we comprehensively summarize the biological functions of GCN2 and discuss its roles in the immune system, including innate and adaptive immune cells. We also discuss the antagonism of GCN2 and mTOR pathways in immune cells. A better understanding of GCN2's functions and signaling pathways in the immune system under physiological, stressful, and pathological situations will be beneficial to the development of potential therapies for many immune-relevant diseases. |
Audience | Academic |
Author | Zhao, Yong Guo, Han Hou, Yangxiao Wei, Dong Lei, Tong Zhao, Chenxu |
AuthorAffiliation | 1 State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 3 Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China 2 University of Chinese Academy of Sciences, Beijing 100049, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China – name: 2 University of Chinese Academy of Sciences, Beijing 100049, China – name: 3 Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China |
Author_xml | – sequence: 1 givenname: Chenxu surname: Zhao fullname: Zhao, Chenxu – sequence: 2 givenname: Han orcidid: 0000-0003-3270-5868 surname: Guo fullname: Guo, Han – sequence: 3 givenname: Yangxiao surname: Hou fullname: Hou, Yangxiao – sequence: 4 givenname: Tong surname: Lei fullname: Lei, Tong – sequence: 5 givenname: Dong surname: Wei fullname: Wei, Dong – sequence: 6 givenname: Yong orcidid: 0000-0003-2850-3008 surname: Zhao fullname: Zhao, Yong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36901714$$D View this record in MEDLINE/PubMed |
BookMark | eNptks9LHTEQx0NR6o_21nMJ9OKhz-Z3dk9FHtYKaqG255DNTjSP3eQ12S30vzcPtT5FckiYfOY782XmAO3EFAGhD5Qcc96SL2E1FiaIFKyRb9A-FYwtCFF6Z-u9hw5KWRHCOJPtW7THVUuopmIfNZfzMIX1APhnGqDg5PF0C_h6ylAKvoZYUsZnyyuGQ8Tn4zhHwEsYhvIO7Xo7FHj_cB-i399Ofy2_Ly5-nJ0vTy4WTjRkWjS649wLTZSwnWe2ttB3WvHGNRyUUsBkp4VT3lNHoFFOdwKYbmgvpOgp5Yfo673ueu5G6B3EKdvBrHMYbf5nkg3m-U8Mt-Ym_TWUVL-E8qpw9KCQ058ZymTGUFz1YCOkuZhaTdHal5YV_fQCXaU5x-pvQ0lGWybUE3VjBzAh-lQLu42oOdGyMpK1ulLHr1D19DAGV2foQ40_S_i47fS_xcdhVYDdAy6nUjJ448Jkp5A2xsNQHZvNRpjtjahJn18kPeq-it8B-02zXA |
CitedBy_id | crossref_primary_10_1186_s10020_025_01099_4 crossref_primary_10_1038_s41467_023_41511_3 crossref_primary_10_1134_S0022093023050137 crossref_primary_10_1016_j_fsi_2024_109727 crossref_primary_10_3389_fragi_2024_1447370 crossref_primary_10_3390_biomedicines11102703 crossref_primary_10_31857_S086981392309011X crossref_primary_10_3389_fcell_2023_1271141 crossref_primary_10_1002_eji_202350836 crossref_primary_10_3390_ijms25094845 crossref_primary_10_3390_genes14101922 crossref_primary_10_1038_s41584_024_01184_8 |
Cites_doi | 10.1007/s13238-018-0504-0 10.1093/nar/gkt563 10.1016/S1097-2765(00)00108-8 10.4049/jimmunol.1201214 10.3892/mmr.2015.4595 10.1007/s00262-019-02441-6 10.1042/BST20130210 10.1242/jcs.105395 10.1074/jbc.M404009200 10.1152/ajprenal.00272.2011 10.1158/2326-6066.CIR-20-0226 10.1101/gad.1069003 10.1128/MCB.20.8.2706-2717.2000 10.1080/15548627.2021.1909406 10.1080/2162402X.2016.1240858 10.3390/cells8020104 10.1111/j.1432-0436.2006.00085.x 10.1111/gtc.12625 10.1128/MCB.00946-13 10.1038/nrm2249 10.1007/s10637-011-9700-y 10.1371/journal.pone.0182143 10.1165/rcmb.2021-0541OC 10.1146/annurev.micro.59.031805.133833 10.1159/000320551 10.1091/mbc.E14-10-1438 10.1242/jcs.035428 10.1016/j.immuni.2005.03.013 10.1016/j.celrep.2016.10.079 10.1016/j.molcel.2021.02.037 10.3892/mmr.2021.11994 10.1097/BOR.0000000000000083 10.1126/sciimmunol.aax8189 10.1016/j.bbi.2013.12.012 10.1016/j.cell.2009.07.034 10.1016/j.bbrc.2008.10.161 10.14348/molcells.2016.2358 10.1126/scisignal.aaa0899 10.1371/journal.pgen.1005212 10.1042/BJ20140852 10.1016/S0960-9822(02)01037-0 10.1016/j.chom.2012.04.012 10.1126/science.1246829 10.18632/aging.100216 10.1007/s00253-009-2411-z 10.1126/science.1172638 10.1126/science.1187532 10.1021/acs.jmedchem.2c00736 10.1091/mbc.01-05-0221 10.1074/jbc.M110.121947 10.1083/jcb.200408003 10.1371/journal.pgen.1004991 10.1074/jbc.C300133200 10.1074/jbc.M113.461970 10.1111/imm.12502 10.1038/cddiscovery.2015.65 10.1038/labinvest.2012.173 10.1186/1475-2875-8-99 10.1002/iub.1090 10.1038/s41589-021-00947-8 10.1038/nchembio.790 10.1128/mr.52.2.248-273.1988 10.4049/jimmunol.1302316 10.1016/j.stem.2022.06.004 10.1038/srep27698 10.1186/1471-2121-10-64 10.7554/eLife.35551 10.1007/s00018-012-1252-6 10.1016/j.bbrc.2008.09.063 10.1038/s41419-022-05346-y 10.1128/mr.56.2.291-315.1992 10.1073/pnas.0400541101 10.1101/gad.269324.115 10.1016/j.tips.2017.11.007 10.1074/jbc.M111.248898 10.1074/jbc.M404559200 10.1016/j.jid.2017.04.029 10.1016/j.molcel.2012.08.003 10.1074/jbc.M112.445270 10.1038/ni.2556 10.1038/srep32886 10.1073/pnas.1103922108 10.18632/oncotarget.11626 10.1152/ajpendo.00015.2013 10.1074/jbc.272.19.12544 10.1091/mbc.e05-03-0268 10.1046/j.1432-1327.1999.00780.x 10.1089/ars.2013.5455 10.1016/j.bbrc.2017.02.038 10.1083/jcb.201511073 10.1371/journal.pgen.1008693 10.1016/j.jbc.2021.101257 10.7554/eLife.81083 10.3945/an.112.002113 10.1007/s00726-010-0783-0 10.1038/nrm1618 10.1128/MCB.15.8.4497 10.1016/S1097-2765(00)00028-9 10.1073/pnas.1504276112 10.1016/j.bbrc.2011.08.028 10.1152/ajpendo.00063.2013 10.1128/MCB.22.19.6681-6688.2002 10.1016/j.cmet.2022.06.010 10.1016/j.bbrc.2011.10.027 10.1146/annurev-biochem-060713-035802 10.1016/j.humimm.2013.08.268 10.1074/jbc.271.40.24989 10.1038/s41387-021-00164-1 10.1128/MCB.00183-10 10.7554/eLife.14295 10.1101/gad.995802 10.1016/j.ijpara.2013.08.005 10.1016/j.redox.2018.04.009 10.3389/fragi.2022.944466 10.1016/j.jaci.2019.04.028 10.1073/pnas.2121251119 10.1016/S0021-9258(19)63976-1 10.1016/j.cub.2020.06.081 10.1146/annurev.bi.60.070191.003441 10.1038/ni.1688 10.1186/s12915-016-0301-2 10.1091/mbc.e07-01-0053 10.2741/2854 10.1038/s41419-021-04417-w 10.1073/pnas.1204176109 10.1016/j.cell.2007.09.042 10.1158/1078-0432.CCR-11-0482 10.15252/embr.201642195 10.1038/nature17186 10.1016/j.yexcr.2018.05.003 10.1128/MCB.19.12.8422 10.1186/1478-811X-9-22 10.1016/j.bbadis.2018.07.012 10.1371/journal.pone.0010522 10.1016/j.jneuroim.2016.05.014 10.1016/j.bbamcr.2014.04.006 10.1042/BCJ20170871 10.1073/pnas.1117736109 10.4161/cc.27270 10.1074/jbc.M408571200 10.1093/genetics/154.2.787 10.1016/j.cell.2009.01.042 10.1007/s11255-016-1377-x 10.1074/jbc.M203827200 10.1101/gad.17355911 10.1016/j.celrep.2017.10.096 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms24054285 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC10002013 A751925297 36901714 10_3390_ijms24054285 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31930041 – fundername: National Natural Science Foundation grantid: 31930041 – fundername: the National Key Research and Development Program of China grantid: 2017YFA0105002; 2017YFA0104402 – fundername: the Knowledge Innovation Program of the Chinese Academy of Sciences grantid: XDA16030301 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC PMFND 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c480t-87b33f47064abf2a023db7638c83e666e25b74c6ff1c0e86c7b4e2781d454d113 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:37:45 EDT 2025 Tue Aug 05 08:33:35 EDT 2025 Fri Jul 25 19:56:21 EDT 2025 Tue Jun 17 21:06:11 EDT 2025 Tue Jun 10 20:34:20 EDT 2025 Wed Feb 19 02:25:13 EST 2025 Thu Apr 24 23:05:32 EDT 2025 Tue Jul 01 02:03:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | immune system GCN2 stress tumor protein kinase |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-87b33f47064abf2a023db7638c83e666e25b74c6ff1c0e86c7b4e2781d454d113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-3270-5868 0000-0003-2850-3008 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms24054285 |
PMID | 36901714 |
PQID | 2785219246 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10002013 proquest_miscellaneous_2786102375 proquest_journals_2785219246 gale_infotracmisc_A751925297 gale_infotracacademiconefile_A751925297 pubmed_primary_36901714 crossref_citationtrail_10_3390_ijms24054285 crossref_primary_10_3390_ijms24054285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230221 |
PublicationDateYYYYMMDD | 2023-02-21 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230221 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Merrick (ref_56) 1992; 56 Foerster (ref_109) 2022; 18 ref_14 Munn (ref_138) 2005; 22 Peidis (ref_22) 2010; 2 Querec (ref_122) 2009; 10 Suraweera (ref_32) 2012; 48 Sinclair (ref_134) 2013; 14 Fougeray (ref_107) 2012; 189 Sahu (ref_94) 2016; 18 Carlson (ref_147) 2014; 192 ref_16 Li (ref_89) 2022; 29 Hedbacker (ref_51) 2008; 13 Eleftheriadis (ref_117) 2015; 146 Kubota (ref_37) 2003; 278 Kwon (ref_67) 2011; 108 Lewerenz (ref_40) 2014; 20 Yerbes (ref_78) 2022; 13 Kang (ref_98) 2017; 216 Miyamoto (ref_30) 2002; 277 Wang (ref_143) 2019; 144 Ren (ref_76) 2018; 368 Pereira (ref_44) 2005; 280 Zhang (ref_81) 2002; 22 ref_28 Rodland (ref_38) 2014; 13 Vattem (ref_64) 2004; 101 Xu (ref_119) 2013; 305 Rabbani (ref_33) 2012; 42 Liu (ref_127) 2014; 34 Maurin (ref_106) 2013; 41 Kedersha (ref_59) 2002; 13 Eleftheriadis (ref_135) 2016; 13 Taniuchi (ref_2) 2016; 6 Miles (ref_92) 2021; 297 ref_70 Hamanaka (ref_104) 2005; 16 Keil (ref_142) 2016; 297 Holcik (ref_60) 2005; 6 Guo (ref_149) 2016; 17 Averous (ref_79) 2011; 413 Rai (ref_19) 2006; 74 Krohn (ref_102) 2008; 121 Dong (ref_13) 2000; 6 Orsini (ref_141) 2014; 37 Ye (ref_114) 2015; 29 Hu (ref_86) 2018; 7 Arriazu (ref_128) 2013; 93 Arriazu (ref_91) 2010; 26 Damgaard (ref_71) 2011; 25 Tattoli (ref_121) 2012; 11 Santoyo (ref_55) 1997; 272 Eleftheriadis (ref_90) 2021; 23 Cherkasova (ref_50) 2010; 30 Dokladal (ref_68) 2021; 81 Hinnebusch (ref_58) 2014; 83 Grallert (ref_4) 2013; 41 Ishimura (ref_95) 2016; 5 Ghavidel (ref_29) 2007; 131 Martin (ref_103) 2013; 126 Guo (ref_73) 2018; 9 Jackson (ref_125) 2022; 65 Dey (ref_124) 2021; 9 Harding (ref_62) 2000; 6 ref_145 Wengrod (ref_115) 2015; 8 Cherkasova (ref_36) 2003; 17 Roffe (ref_45) 2013; 288 Donnelly (ref_3) 2013; 70 Nomura (ref_34) 2008; 376 Castilho (ref_26) 2014; 1843 Balasubramanian (ref_84) 2013; 304 Toboz (ref_132) 2022; 119 Anthony (ref_82) 2004; 279 Murguia (ref_83) 2012; 64 Donze (ref_48) 1999; 19 Berlanga (ref_10) 1999; 265 Sonenberg (ref_61) 2009; 136 Averous (ref_113) 2016; 6 Zaidi (ref_74) 2011; 17 Cordova (ref_87) 2022; 11 (ref_126) 2021; 11 Sundrud (ref_144) 2009; 324 Nomura (ref_35) 2010; 86 Ravindran (ref_123) 2014; 343 Konrad (ref_18) 2014; 44 Hinnebusch (ref_7) 1988; 52 Cai (ref_24) 2011; 301 Eleftheriadis (ref_25) 2016; 48 Missiaen (ref_88) 2022; 34 Ye (ref_118) 2012; 109 Wei (ref_101) 2015; 26 Jin (ref_116) 2021; 12 Baird (ref_8) 2012; 3 Collier (ref_97) 2017; 137 Koryga (ref_1) 2016; 17 Halaby (ref_6) 2019; 4 Zhu (ref_12) 1996; 271 ref_69 Rashidi (ref_148) 2020; 69 Wang (ref_133) 2021; 35 Sonner (ref_137) 2016; 5 Fennell (ref_17) 2009; 8 Liu (ref_66) 2018; 1864 Staschke (ref_39) 2010; 285 Planes (ref_77) 2018; 475 Tang (ref_27) 2022; 18 Zid (ref_99) 2009; 139 Cheong (ref_139) 2018; 39 Ravindran (ref_110) 2016; 531 Averous (ref_65) 2004; 279 Deng (ref_21) 2002; 12 Lu (ref_63) 2004; 167 Wek (ref_11) 1995; 15 Wang (ref_96) 2018; 17 Roobol (ref_47) 2015; 465 Adams (ref_52) 2011; 9 Tarumoto (ref_53) 2013; 288 Sood (ref_54) 2000; 154 Visweswaraiah (ref_42) 2011; 286 Valbuena (ref_9) 2012; 125 You (ref_72) 2018; 23 Chaveroux (ref_93) 2011; 415 Ravishankar (ref_130) 2012; 109 Anderson (ref_140) 2020; 30 Ravishankar (ref_131) 2015; 112 Keller (ref_146) 2012; 8 Xia (ref_75) 2016; 2 Xiao (ref_100) 2016; 7 Yang (ref_23) 2000; 20 Hardie (ref_49) 2007; 8 Nakamura (ref_80) 2017; 485 ref_105 Dowling (ref_112) 2010; 328 Xia (ref_108) 2016; 39 Fingar (ref_111) 2002; 16 ref_46 Colonna (ref_129) 2014; 26 Hinnebusch (ref_15) 2005; 59 Eleftheriadis (ref_136) 2013; 74 Kazemi (ref_41) 2007; 18 Vasudevan (ref_120) 2017; 21 Habibi (ref_31) 2012; 30 Sattlegger (ref_43) 2004; 279 Srivastava (ref_20) 2022; 3 ref_5 Hershey (ref_57) 1991; 60 Alves (ref_85) 2009; 378 |
References_xml | – volume: 9 start-page: 966 year: 2018 ident: ref_73 article-title: GCN2 deficiency protects mice from denervation-induced skeletal muscle atrophy via inhibiting FoxO3a nuclear translocation publication-title: Protein Cell doi: 10.1007/s13238-018-0504-0 – volume: 41 start-page: 7683 year: 2013 ident: ref_106 article-title: The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt563 – volume: 6 start-page: 1099 year: 2000 ident: ref_62 article-title: Regulated translation initiation controls stress-induced gene expression in mammalian cells publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)00108-8 – volume: 189 start-page: 2954 year: 2012 ident: ref_107 article-title: Tryptophan depletion and the kinase GCN2 mediate IFN-gamma-induced autophagy publication-title: J. Immunol. doi: 10.4049/jimmunol.1201214 – volume: 13 start-page: 925 year: 2016 ident: ref_135 article-title: Indoleamine 2,3-dioxygenase downregulates T-cell receptor complex zetachain and cMyc, and reduces proliferation, lactate dehydrogenase levels and mitochondrial glutaminase in human Tcells publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2015.4595 – volume: 69 start-page: 81 year: 2020 ident: ref_148 article-title: GCN2 is essential for CD8(+) T cell survival and function in murine models of malignant glioma publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-019-02441-6 – volume: 41 start-page: 1687 year: 2013 ident: ref_4 article-title: GCN2, an old dog with new tricks publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20130210 – volume: 125 start-page: 5955 year: 2012 ident: ref_9 article-title: Fission yeast TORC1 prevents eIF2alpha phosphorylation in response to nitrogen and amino acids via Gcn2 kinase publication-title: J. Cell. Sci. doi: 10.1242/jcs.105395 – volume: 279 start-page: 29952 year: 2004 ident: ref_43 article-title: YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino acid control when overexpressed publication-title: J. Biol. Chem. doi: 10.1074/jbc.M404009200 – volume: 301 start-page: F1202 year: 2011 ident: ref_24 article-title: Phosphorylation of eIF2alpha via the general control kinase, GCN2, modulates the ability of renal medullary cells to survive high urea stress publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00272.2011 – volume: 9 start-page: 514 year: 2021 ident: ref_124 article-title: IDO1 Signaling through GCN2 in a Subpopulation of Gr-1(+) Cells Shifts the IFNgamma/IL6 Balance to Promote Neovascularization publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-20-0226 – volume: 17 start-page: 859 year: 2003 ident: ref_36 article-title: Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2 publication-title: Genes Dev. doi: 10.1101/gad.1069003 – volume: 20 start-page: 2706 year: 2000 ident: ref_23 article-title: Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.8.2706-2717.2000 – volume: 18 start-page: 86 year: 2022 ident: ref_109 article-title: How autophagy controls the intestinal epithelial barrier publication-title: Autophagy doi: 10.1080/15548627.2021.1909406 – volume: 5 start-page: e1240858 year: 2016 ident: ref_137 article-title: The stress kinase GCN2 does not mediate suppression of antitumor T cell responses by tryptophan catabolism in experimental melanomas publication-title: Oncoimmunology doi: 10.1080/2162402X.2016.1240858 – ident: ref_145 doi: 10.3390/cells8020104 – volume: 74 start-page: 583 year: 2006 ident: ref_19 article-title: Disruption of the ifkA and ifkB genes results in altered cell adhesion, morphological defects and a propensity to form pre-stalk O cells during development of Dictyostelium publication-title: Differentiation doi: 10.1111/j.1432-0436.2006.00085.x – volume: 23 start-page: 786 year: 2018 ident: ref_72 article-title: eIF2alpha kinases PERK and GCN2 act on FOXO to potentiate FOXO activity publication-title: Genes Cells doi: 10.1111/gtc.12625 – volume: 34 start-page: 428 year: 2014 ident: ref_127 article-title: GCN2-dependent metabolic stress is essential for endotoxemic cytokine induction and pathology publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00946-13 – volume: 8 start-page: 774 year: 2007 ident: ref_49 article-title: AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2249 – volume: 30 start-page: 1361 year: 2012 ident: ref_31 article-title: Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia publication-title: Invest. New Drugs doi: 10.1007/s10637-011-9700-y – volume: 126 start-page: 3010 year: 2013 ident: ref_103 article-title: New roles of the fission yeast eIF2alpha kinases Hri1 and Gcn2 in response to nutritional stress publication-title: J. Cell Sci. – ident: ref_28 doi: 10.1371/journal.pone.0182143 – ident: ref_5 doi: 10.1165/rcmb.2021-0541OC – volume: 59 start-page: 407 year: 2005 ident: ref_15 article-title: Translational regulation of GCN4 and the general amino acid control of yeast publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.59.031805.133833 – volume: 26 start-page: 281 year: 2010 ident: ref_91 article-title: Amino acid deprivation decreases intracellular levels of reactive oxygen species in hepatic stellate cells publication-title: Cell. Physiol. Biochem. doi: 10.1159/000320551 – volume: 26 start-page: 1044 year: 2015 ident: ref_101 article-title: Involvement of general control nonderepressible kinase 2 in cancer cell apoptosis by posttranslational mechanisms publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E14-10-1438 – volume: 121 start-page: 4047 year: 2008 ident: ref_102 article-title: The G1-S checkpoint in fission yeast is not a general DNA damage checkpoint publication-title: J. Cell Sci. doi: 10.1242/jcs.035428 – volume: 22 start-page: 633 year: 2005 ident: ref_138 article-title: GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase publication-title: Immunity doi: 10.1016/j.immuni.2005.03.013 – volume: 17 start-page: 2247 year: 2016 ident: ref_149 article-title: Stress Kinase GCN2 Controls the Proliferative Fitness and Trafficking of Cytotoxic T Cells Independent of Environmental Amino Acid Sensing publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.10.079 – volume: 81 start-page: 1879 year: 2021 ident: ref_68 article-title: Global phosphoproteomics pinpoints uncharted Gcn2-mediated mechanisms of translational control publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.02.037 – volume: 23 start-page: 355 year: 2021 ident: ref_90 article-title: The effect of anti-HLA class I antibodies on the immunological properties of human glomerular endothelial cells and their modification by mTOR inhibition or GCN2 kinase activation publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2021.11994 – volume: 26 start-page: 459 year: 2014 ident: ref_129 article-title: Beyond apoptosis in lupus publication-title: Curr. Opin. Rheumatol. doi: 10.1097/BOR.0000000000000083 – volume: 4 start-page: eaax8189 year: 2019 ident: ref_6 article-title: GCN2 drives macrophage and MDSC function and immunosuppression in the tumor microenvironment publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aax8189 – volume: 37 start-page: 177 year: 2014 ident: ref_141 article-title: GCN2 kinase plays an important role triggering the remission phase of experimental autoimmune encephalomyelitis (EAE) in mice publication-title: Brain Behav. Immun. doi: 10.1016/j.bbi.2013.12.012 – volume: 139 start-page: 149 year: 2009 ident: ref_99 article-title: 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila publication-title: Cell doi: 10.1016/j.cell.2009.07.034 – volume: 378 start-page: 41 year: 2009 ident: ref_85 article-title: GCN2 activation and eIF2alpha phosphorylation in the maturation of mouse oocytes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.10.161 – volume: 39 start-page: 410 year: 2016 ident: ref_108 article-title: Arginine Supplementation Recovered the IFN-gamma-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2alpha Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells publication-title: Mol. Cells doi: 10.14348/molcells.2016.2358 – volume: 8 start-page: ra27 year: 2015 ident: ref_115 article-title: Phosphorylation of eIF2alpha triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma publication-title: Sci. Signal. doi: 10.1126/scisignal.aaa0899 – ident: ref_105 doi: 10.1371/journal.pgen.1005212 – volume: 465 start-page: 213 year: 2015 ident: ref_47 article-title: p58IPK is an inhibitor of the eIF2alpha kinase GCN2 and its localization and expression underpin protein synthesis and ER processing capacity publication-title: Biochem. J. doi: 10.1042/BJ20140852 – volume: 12 start-page: 1279 year: 2002 ident: ref_21 article-title: Activation of GCN2 in UV-irradiated cells inhibits translation publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01037-0 – volume: 11 start-page: 563 year: 2012 ident: ref_121 article-title: Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.04.012 – volume: 343 start-page: 313 year: 2014 ident: ref_123 article-title: Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation publication-title: Science doi: 10.1126/science.1246829 – volume: 2 start-page: 669 year: 2010 ident: ref_22 article-title: HDAC pharmacological inhibition promotes cell death through the eIF2alpha kinases PKR and GCN2 publication-title: Aging doi: 10.18632/aging.100216 – volume: 86 start-page: 1887 year: 2010 ident: ref_35 article-title: Methylglyoxal activates Gcn2 to phosphorylate eIF2alpha independently of the TOR pathway in Saccharomyces cerevisiae publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2411-z – volume: 324 start-page: 1334 year: 2009 ident: ref_144 article-title: Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response publication-title: Science doi: 10.1126/science.1172638 – volume: 328 start-page: 1172 year: 2010 ident: ref_112 article-title: mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs publication-title: Science doi: 10.1126/science.1187532 – volume: 65 start-page: 12895 year: 2022 ident: ref_125 article-title: Potent GCN2 Inhibitor Capable of Reversing MDSC-Driven T Cell Suppression Demonstrates In Vivo Efficacy as a Single Agent and in Combination with Anti-Angiogenesis Therapy publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.2c00736 – volume: 13 start-page: 195 year: 2002 ident: ref_59 article-title: Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules publication-title: Mol. Biol. Cell doi: 10.1091/mbc.01-05-0221 – volume: 285 start-page: 16893 year: 2010 ident: ref_39 article-title: Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.121947 – volume: 167 start-page: 27 year: 2004 ident: ref_63 article-title: Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response publication-title: J. Cell Biol. doi: 10.1083/jcb.200408003 – ident: ref_16 doi: 10.1371/journal.pgen.1004991 – volume: 278 start-page: 20457 year: 2003 ident: ref_37 article-title: Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C300133200 – volume: 288 start-page: 10860 year: 2013 ident: ref_45 article-title: IMPACT is a developmentally regulated protein in neurons that opposes the eukaryotic initiation factor 2alpha kinase GCN2 in the modulation of neurite outgrowth publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.461970 – volume: 146 start-page: 292 year: 2015 ident: ref_117 article-title: Indoleamine 2,3-dioxygenase depletes tryptophan, activates general control non-derepressible 2 kinase and down-regulates key enzymes involved in fatty acid synthesis in primary human CD4+ T cells publication-title: Immunology doi: 10.1111/imm.12502 – volume: 2 start-page: 15065 year: 2016 ident: ref_75 article-title: Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-gamma-induced malignant transformation of primary bovine mammary epithelial cells publication-title: Cell Death Discov. doi: 10.1038/cddiscovery.2015.65 – volume: 93 start-page: 303 year: 2013 ident: ref_128 article-title: GCN2 kinase is a key regulator of fibrogenesis and acute and chronic liver injury induced by carbon tetrachloride in mice publication-title: Lab. Investig. doi: 10.1038/labinvest.2012.173 – volume: 8 start-page: 99 year: 2009 ident: ref_17 article-title: PfeIK1, a eukaryotic initiation factor 2alpha kinase of the human malaria parasite Plasmodium falciparum, regulates stress-response to amino-acid starvation publication-title: Malar. J. doi: 10.1186/1475-2875-8-99 – volume: 64 start-page: 971 year: 2012 ident: ref_83 article-title: New functions of protein kinase Gcn2 in yeast and mammals publication-title: IUBMB Life doi: 10.1002/iub.1090 – volume: 18 start-page: 207 year: 2022 ident: ref_27 article-title: GCN2 kinase activation by ATP-competitive kinase inhibitors publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-021-00947-8 – volume: 8 start-page: 311 year: 2012 ident: ref_146 article-title: Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.790 – volume: 52 start-page: 248 year: 1988 ident: ref_7 article-title: Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae publication-title: Microbiol. Rev. doi: 10.1128/mr.52.2.248-273.1988 – volume: 192 start-page: 2167 year: 2014 ident: ref_147 article-title: Halofuginone-induced amino acid starvation regulates Stat3-dependent Th17 effector function and reduces established autoimmune inflammation publication-title: J. Immunol. doi: 10.4049/jimmunol.1302316 – volume: 29 start-page: 1119 year: 2022 ident: ref_89 article-title: Amino acid catabolism regulates hematopoietic stem cell proteostasis via a GCN2-eIF2alpha axis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2022.06.004 – volume: 6 start-page: 27698 year: 2016 ident: ref_113 article-title: GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism publication-title: Sci. Rep. doi: 10.1038/srep27698 – ident: ref_69 doi: 10.1186/1471-2121-10-64 – volume: 7 start-page: e35551 year: 2018 ident: ref_86 article-title: Ssd1 and Gcn2 suppress global translation efficiency in replicatively aged yeast while their activation extends lifespan publication-title: Elife doi: 10.7554/eLife.35551 – volume: 70 start-page: 3493 year: 2013 ident: ref_3 article-title: The eIF2alpha kinases: Their structures and functions publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-012-1252-6 – volume: 376 start-page: 738 year: 2008 ident: ref_34 article-title: Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: Methylglyoxal attenuates protein synthesis through phosphorylation of eIF2alpha publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.09.063 – volume: 13 start-page: 906 year: 2022 ident: ref_78 article-title: Limiting glutamine utilization activates a GCN2/TRAIL-R2/Caspase-8 apoptotic pathway in glutamine-addicted tumor cells publication-title: Cell Death Dis. doi: 10.1038/s41419-022-05346-y – volume: 56 start-page: 291 year: 1992 ident: ref_56 article-title: Mechanism and regulation of eukaryotic protein synthesis publication-title: Microbiol. Rev. doi: 10.1128/mr.56.2.291-315.1992 – volume: 101 start-page: 11269 year: 2004 ident: ref_64 article-title: Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0400541101 – volume: 29 start-page: 2331 year: 2015 ident: ref_114 article-title: GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2 publication-title: Genes Dev. doi: 10.1101/gad.269324.115 – volume: 39 start-page: 307 year: 2018 ident: ref_139 article-title: Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy—Challenges and Opportunities publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2017.11.007 – volume: 286 start-page: 36568 year: 2011 ident: ref_42 article-title: Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.248898 – volume: 279 start-page: 36553 year: 2004 ident: ref_82 article-title: Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M404559200 – volume: 137 start-page: 1924 year: 2017 ident: ref_97 article-title: Human Keratinocyte Differentiation Requires Translational Control by the eIF2alpha Kinase GCN2 publication-title: J. Invest. Dermatol. doi: 10.1016/j.jid.2017.04.029 – volume: 48 start-page: 242 year: 2012 ident: ref_32 article-title: Failure of amino acid homeostasis causes cell death following proteasome inhibition publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.08.003 – volume: 288 start-page: 19260 year: 2013 ident: ref_53 article-title: Receptor for activated C-kinase (RACK1) homolog Cpc2 facilitates the general amino acid control response through Gcn2 kinase in fission yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.445270 – volume: 14 start-page: 500 year: 2013 ident: ref_134 article-title: Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation publication-title: Nat. Immunol. doi: 10.1038/ni.2556 – volume: 6 start-page: 32886 year: 2016 ident: ref_2 article-title: Integrated stress response of vertebrates is regulated by four eIF2alpha kinases publication-title: Sci. Rep. doi: 10.1038/srep32886 – volume: 108 start-page: 19635 year: 2011 ident: ref_67 article-title: Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1103922108 – volume: 7 start-page: 63679 year: 2016 ident: ref_100 article-title: Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase publication-title: Oncotarget doi: 10.18632/oncotarget.11626 – volume: 304 start-page: E789 year: 2013 ident: ref_84 article-title: Asparagine synthetase: Regulation by cell stress and involvement in tumor biology publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00015.2013 – volume: 272 start-page: 12544 year: 1997 ident: ref_55 article-title: Cloning and characterization of a cDNA encoding a protein synthesis initiation factor-2alpha (eIF-2alpha) kinase from Drosophila melanogaster. Homology To yeast GCN2 protein kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.19.12544 – volume: 16 start-page: 5493 year: 2005 ident: ref_104 article-title: PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-03-0268 – volume: 265 start-page: 754 year: 1999 ident: ref_10 article-title: Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1999.00780.x – volume: 20 start-page: 2907 year: 2014 ident: ref_40 article-title: Phosphoinositide 3-kinases upregulate system xc(-) via eukaryotic initiation factor 2alpha and activating transcription factor 4—A pathway active in glioblastomas and epilepsy publication-title: Antioxid. Redox Signal doi: 10.1089/ars.2013.5455 – volume: 485 start-page: 484 year: 2017 ident: ref_80 article-title: A new role of GCN2 in the nucleolus publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.02.038 – volume: 216 start-page: 115 year: 2017 ident: ref_98 article-title: 4E-BP is a target of the GCN2-ATF4 pathway during Drosophila development and aging publication-title: J. Cell Biol. doi: 10.1083/jcb.201511073 – ident: ref_14 doi: 10.1371/journal.pgen.1008693 – volume: 297 start-page: 101257 year: 2021 ident: ref_92 article-title: The eIF2 kinase GCN2 directs keratinocyte collective cell migration during wound healing via coordination of reactive oxygen species and amino acids publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.101257 – volume: 11 start-page: e81083 year: 2022 ident: ref_87 article-title: GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis publication-title: Elife doi: 10.7554/eLife.81083 – volume: 18 start-page: 200 year: 2016 ident: ref_94 article-title: Argininosuccinate Synthetase 1 Loss in Invasive Bladder Cancer Regulates Survival through General Control Nonderepressible 2 Kinase-Mediated Eukaryotic Initiation Factor 2alpha Activity and Is Targetable by Pegylated Arginine Deiminase publication-title: Am. J. Pathol. – volume: 3 start-page: 307 year: 2012 ident: ref_8 article-title: Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism publication-title: Adv. Nutr. doi: 10.3945/an.112.002113 – volume: 42 start-page: 1133 year: 2012 ident: ref_33 article-title: Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome publication-title: Amino Acids doi: 10.1007/s00726-010-0783-0 – volume: 6 start-page: 318 year: 2005 ident: ref_60 article-title: Translational control in stress and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1618 – volume: 15 start-page: 4497 year: 1995 ident: ref_11 article-title: The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.8.4497 – volume: 6 start-page: 269 year: 2000 ident: ref_13 article-title: Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)00028-9 – volume: 112 start-page: 10774 year: 2015 ident: ref_131 article-title: The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1504276112 – volume: 413 start-page: 24 year: 2011 ident: ref_79 article-title: Amino acid deprivation regulates the stress-inducible gene p8 via the GCN2/ATF4 pathway publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.08.028 – volume: 305 start-page: E1007 year: 2013 ident: ref_119 article-title: GCN2 regulates the CCAAT enhancer binding protein beta and hepatic gluconeogenesis publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00063.2013 – volume: 22 start-page: 6681 year: 2002 ident: ref_81 article-title: The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.19.6681-6688.2002 – volume: 34 start-page: 1151 year: 2022 ident: ref_88 article-title: GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment publication-title: Cell Metab. doi: 10.1016/j.cmet.2022.06.010 – volume: 415 start-page: 120 year: 2011 ident: ref_93 article-title: Identification of GCN2 as new redox regulator for oxidative stress prevention in vivo publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.10.027 – volume: 83 start-page: 779 year: 2014 ident: ref_58 article-title: The scanning mechanism of eukaryotic translation initiation publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060713-035802 – volume: 74 start-page: 1501 year: 2013 ident: ref_136 article-title: Inhibition of indoleamine 2,3-dioxygenase in mixed lymphocyte reaction affects glucose influx and enzymes involved in aerobic glycolysis and glutaminolysis in alloreactive T-cells publication-title: Hum. Immunol. doi: 10.1016/j.humimm.2013.08.268 – volume: 271 start-page: 24989 year: 1996 ident: ref_12 article-title: Histidyl-tRNA synthetase-related sequences in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.40.24989 – volume: 11 start-page: 20 year: 2021 ident: ref_126 article-title: Amino acid metabolism and signalling pathways: Potential targets in the control of infection and immunity publication-title: Nutr. Diabetes doi: 10.1038/s41387-021-00164-1 – volume: 30 start-page: 2862 year: 2010 ident: ref_50 article-title: Snf1 promotes phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 by activating Gcn2 and inhibiting phosphatases Glc7 and Sit4 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00183-10 – volume: 5 start-page: e14295 year: 2016 ident: ref_95 article-title: Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation publication-title: Elife doi: 10.7554/eLife.14295 – volume: 16 start-page: 1472 year: 2002 ident: ref_111 article-title: Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E publication-title: Genes Dev. doi: 10.1101/gad.995802 – volume: 44 start-page: 139 year: 2014 ident: ref_18 article-title: GCN2-like eIF2alpha kinase manages the amino acid starvation response in Toxoplasma gondii publication-title: Int. J. Parasitol. doi: 10.1016/j.ijpara.2013.08.005 – volume: 17 start-page: 25 year: 2018 ident: ref_96 article-title: GCN2 deficiency ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress publication-title: Redox Biol. doi: 10.1016/j.redox.2018.04.009 – volume: 3 start-page: 944466 year: 2022 ident: ref_20 article-title: The Role of GCN2 Kinase in Mediating the Effects of Amino Acids on Longevity and Feeding Behaviour in Drosophila publication-title: Front. Aging doi: 10.3389/fragi.2022.944466 – volume: 144 start-page: 1091 year: 2019 ident: ref_143 article-title: The amino acid sensor general control nonderepressible 2 (GCN2) controls TH9 cells and allergic airway inflammation publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2019.04.028 – volume: 35 start-page: e21652 year: 2021 ident: ref_133 article-title: Activation of GCN2 in macrophages promotes white adipose tissue browning and lipolysis under leucine deprivation publication-title: FASEB J. – volume: 119 start-page: e2121251119 year: 2022 ident: ref_132 article-title: The amino acid sensor GCN2 controls red blood cell clearance and iron metabolism through regulation of liver macrophages publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2121251119 – volume: 279 start-page: 15706 year: 2004 ident: ref_65 article-title: Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)63976-1 – volume: 30 start-page: R921 year: 2020 ident: ref_140 article-title: The tumor microenvironment publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.06.081 – volume: 60 start-page: 717 year: 1991 ident: ref_57 article-title: Translational control in mammalian cells publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.60.070191.003441 – volume: 10 start-page: 116 year: 2009 ident: ref_122 article-title: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans publication-title: Nat. Immunol. doi: 10.1038/ni.1688 – ident: ref_46 doi: 10.1186/s12915-016-0301-2 – volume: 18 start-page: 3635 year: 2007 ident: ref_41 article-title: A novel function of eIF2alpha kinases as inducers of the phosphoinositide-3 kinase signaling pathway publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-01-0053 – volume: 13 start-page: 2408 year: 2008 ident: ref_51 article-title: SNF1/AMPK pathways in yeast publication-title: Front. Biosci. doi: 10.2741/2854 – volume: 12 start-page: 1127 year: 2021 ident: ref_116 article-title: Amino acid deprivation induces AKT activation by inducing GCN2/ATF4/REDD1 axis publication-title: Cell Death Dis. doi: 10.1038/s41419-021-04417-w – volume: 109 start-page: 6904 year: 2012 ident: ref_118 article-title: Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1204176109 – volume: 131 start-page: 915 year: 2007 ident: ref_29 article-title: Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint publication-title: Cell doi: 10.1016/j.cell.2007.09.042 – volume: 17 start-page: 6118 year: 2011 ident: ref_74 article-title: The two faces of interferon-gamma in cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-0482 – volume: 17 start-page: 1374 year: 2016 ident: ref_1 article-title: The integrated stress response publication-title: EMBO Rep. doi: 10.15252/embr.201642195 – volume: 531 start-page: 523 year: 2016 ident: ref_110 article-title: The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation publication-title: Nature doi: 10.1038/nature17186 – volume: 368 start-page: 236 year: 2018 ident: ref_76 article-title: Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-kappaB-GCN2/eIF2alpha signaling pathway in mammary epithelial cells in vitro and in vivo publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2018.05.003 – volume: 19 start-page: 8422 year: 1999 ident: ref_48 article-title: Hsp90 binds and regulates Gcn2, the ligand-inducible kinase of the alpha subunit of eukaryotic translation initiation factor 2 [corrected] publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.12.8422 – volume: 9 start-page: 22 year: 2011 ident: ref_52 article-title: RACK1, A multifaceted scaffolding protein: Structure and function publication-title: Cell Commun. Signal. doi: 10.1186/1478-811X-9-22 – volume: 1864 start-page: 3257 year: 2018 ident: ref_66 article-title: GCN2 deficiency protects against high fat diet induced hepatic steatosis and insulin resistance in mice publication-title: Biochim. Biophys. Acta Mol. Basis. Dis. doi: 10.1016/j.bbadis.2018.07.012 – ident: ref_70 doi: 10.1371/journal.pone.0010522 – volume: 297 start-page: 117 year: 2016 ident: ref_142 article-title: General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation publication-title: J. Neuroimmunol. doi: 10.1016/j.jneuroim.2016.05.014 – volume: 1843 start-page: 1948 year: 2014 ident: ref_26 article-title: Keeping the eIF2 alpha kinase Gcn2 in check publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2014.04.006 – volume: 475 start-page: 1523 year: 2018 ident: ref_77 article-title: The Gcn2-eIF2alpha pathway connects iron and amino acid homeostasis in Saccharomyces cerevisiae publication-title: Biochem. J. doi: 10.1042/BCJ20170871 – volume: 109 start-page: 3909 year: 2012 ident: ref_130 article-title: Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1117736109 – volume: 13 start-page: 453 year: 2014 ident: ref_38 article-title: Crosstalk between the Tor and Gcn2 pathways in response to different stresses publication-title: Cell Cycle doi: 10.4161/cc.27270 – volume: 280 start-page: 28316 year: 2005 ident: ref_44 article-title: IMPACT, a protein preferentially expressed in the mouse brain, binds GCN1 and inhibits GCN2 activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408571200 – volume: 154 start-page: 787 year: 2000 ident: ref_54 article-title: A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha publication-title: Genetics doi: 10.1093/genetics/154.2.787 – volume: 136 start-page: 731 year: 2009 ident: ref_61 article-title: Regulation of translation initiation in eukaryotes: Mechanisms and biological targets publication-title: Cell doi: 10.1016/j.cell.2009.01.042 – volume: 48 start-page: 1731 year: 2016 ident: ref_25 article-title: Activation of general control nonderepressible 2 kinase protects human glomerular endothelial cells from harmful high-glucose-induced molecular pathways publication-title: Int. Urol. Nephrol. doi: 10.1007/s11255-016-1377-x – volume: 277 start-page: 28810 year: 2002 ident: ref_30 article-title: Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A publication-title: J. Biol. Chem. doi: 10.1074/jbc.M203827200 – volume: 25 start-page: 2057 year: 2011 ident: ref_71 article-title: Translational coregulation of 5’TOP mRNAs by TIA-1 and TIAR publication-title: Genes Dev. doi: 10.1101/gad.17355911 – volume: 21 start-page: 2039 year: 2017 ident: ref_120 article-title: The GCN2-ATF4 Signaling Pathway Induces 4E-BP to Bias Translation and Boost Antimicrobial Peptide Synthesis in Response to Bacterial Infection publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.10.096 |
SSID | ssj0023259 |
Score | 2.447228 |
SecondaryResourceType | review_article |
Snippet | The serine/threonine-protein kinase general control nonderepressible 2 (GCN2) is a well-known stress sensor that responds to amino acid starvation and other... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4285 |
SubjectTerms | Amino acids Amino Acids - metabolism Cell cycle Endoplasmic reticulum Genetic translation Heat shock proteins Homeostasis Humans Kinases Oxidative stress Phosphatase Phosphorylation Physiological aspects Protein kinases Protein Serine-Threonine Kinases - metabolism Protein synthesis Review Roles Signal Transduction Stress, Physiological T cells T-Lymphocyte Subsets - metabolism Transfer RNA Yeast |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RIqReEI9SAm1lJFAPKOo6dmLnVFUrloLUHigr7S1KbEddtCTLPg78e2Yc73aD1J49iZwZzyuemQ_go7DC5rkdxFyJKpa65HFptYu1RG8mZY1RNPU7X99kV2P5fZJOwg-3ZSir3NhEb6hta-gf-XmiNHoazBayi_mfmFCj6HY1QGjswVMaXUYlXWpyn3CJxIOlcfRBcZbmWVf4LjDNP5_--r1EZ5Zi9J32XNL_hnnHM_WrJnfc0OgFPA_xI7vsBP4SnrjmFTzrECX_vgZ9HQoE2Q-a1MTammGEx259Rwi7xZy1XbCvw5uETRv2jXpDHBu62Wx5COPRl5_DqziAI8RG6sEKrVglRC0VhhRlVSclfq2t0Fhoo4XDnMQlaaWkyeqam4HTmVGVdMhEbmUqLefiDew3bePeAstFKUxSiZTXaDcHGsXqO2RRQY0VZR3B5w1_ChMmhxOAxazADIK4WexyM4JPW-p5NzHjAbozYnVBioRvM2XoB8A90Uiq4lJhcJmkSa4iOO5RogKY_vJGWEVQwGVxf1wi-LBdpiepqKxx7drTZDS5QuFejjrZbncsCKhLcRmB7kl9S0BjufsrzfTOj-fm_nqXi3eP7-s9HBB0vW-P58ewv1qs3QkGOKvq1J_if6LI9mY priority: 102 providerName: ProQuest |
Title | Multiple Roles of the Stress Sensor GCN2 in Immune Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36901714 https://www.proquest.com/docview/2785219246 https://www.proquest.com/docview/2786102375 https://pubmed.ncbi.nlm.nih.gov/PMC10002013 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED_xoUm8TBtsEMYqI4F4mDLq2IndB4SgonxIrRCsUt-ixHFEp5JCWyT477lL0qhhQ-IlLz5Hzp1997v4PgD2RCKSVitpulyJ2JU64m6UaOtqidZMyhRRNOU7d3vBRV9eDfzBEsy7jZYMnP7XtaN-Uv3J6Pfz48sxHvgj8jjRZT8c_r2fomHyEUn7y7CKNknREe3K6j4BYUPeNo1-eLikoIsQ-H9m14zTWxW9YKPq8ZMLBqnzBT6XSJKdFKL_Cks2W4dPRW_Jlw3Q3TJUkN1QzSY2ThliPXab54awW_RexxN23u55bJixS8oSsaxtR6PpN-h3zv60L9yyTYJrpG7OUJ_FQqRSIbiI4tSL8GuTGNWGNlpY9E6s58dKmiBNuWlaHRgVS-spBKrSlwnn4jusZOPMbgFriUgYLxY-T1GDNjUKOM-VxaNqEhGlDvya8yc0ZQ1xamUxCtGXIG6Gi9x0YL-ifihqZ7xDd0CsDknI-DYTlZkBuCYqThWeKISZnu-1lAM7NUo8CqY-PBdWON9JIS4fIQq6mYEDu9UwzaTwssyOn3KagGpYKFzLZiHbasWCWnYpLh3QNalXBFSguz6SDe_yQt08v-jlYvvDH_gD1qiffZ4zz3dgZTZ5sj8R9cziBiyrgcKn7pw3YPX0rHd90yA75Dfyrf4KtlYBeg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASNRcUBR40di54BQtVB2aXcPtJX2lia2I7baJqW7Feqf4jcydpLtBgluPXuSjMYz_mbieQC844abNDVRSCUvQqFyGuZG2VAJRDMhSvSiXb3zeJIMj8W3aTzdgN9dLYxLq-zORH9Qm1q7f-Q7TCpEGowWkk_nP0M3NcrdrnYjNBq12LdXvzBkW3wcfcb93WZs78vRYBi2UwVCLVS0RPMvOC-FRCzOi5LlCFqmQCtTWnGLzrxlcSGFTsqS6siqRMtCWPw6NSIWhlKO770FtxF4I2dRcnod4HHmh7NRxLwwidOkSbTnPI12ZqdnCwTPGL39uAeBfwPBGhL2szTXYG_vAdxv_VWy2yjYQ9iw1SO400ywvHoMatwmJJLvrjMUqUuCHiU59BUo5BBj5PqCfB1MGJlVZORqUSwZ2Pl88QSOb0RsT2Gzqiv7HEjKc65ZwWNa4jkdKVQjX5GLB4I2PC8D-NDJJ9Ntp3I3MGOeYcTipJmtSzOA7RX1edOh4x90752oM2e4-Dadt_UHyJNrgZXtSnRmWcxSGcBWjxINTveXu83KWoNfZNfqGcDb1bJ70iWxVba-9DSJ65QhkZdnzd6uOOZuMJikIgDV2_UVgWsD3l-pZj98O3Dqr5Mpf_F_vt7A3eHR-CA7GE32X8I9hoz40ny6BZvLi0v7Cp2rZfHaazSBk5s2oT84hTJc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhAXxBtDgUWi4oCseB_2rg8IVSmhoTRClEq5ufY-RKrULk0q1L_Gr2PWjzRGglvPO7ZGszPzzdjzAHjDDTdpaqKQSl6EQuU0zI2yoRKIZkI4jKJ9v_PBJNk7Ep-n8XQDfne9ML6ssvOJtaM2lfbfyAdMKkQazBaSgWvLIr7ujj6c_Qz9Bin_p7Vbp9GoyL69_IXp2-L9eBfvepux0cfvw72w3TAQaqGiJbqCgnMnJOJyXjiWI4CZAi1OacUtBvaWxYUUOnGO6siqRMtCWOSEGhELQynH996Am5LH1NuYnF4le5zVi9oo4l-YxGnSFN1znkaD2cnpAoE0xsg_7sHh36Cwhor9is01CBzdg7tt7Ep2GmW7Dxu2fAC3mm2Wlw9BHbTFieSbnxJFKkcwuiSHdTcKOcR8uTonn4YTRmYlGfu-FEuGdj5fPIKjaxHbY9gsq9I-BZLynGtWoAAd-uxIoUrV3bnoHLThuQvgXSefTLdTy_3yjHmG2YuXZrYuzQC2V9RnzbSOf9C99aLOvBHj23Te9iIgT34cVrYjMbBlMUtlAFs9SjQ-3T_uLitrjX-RXalqAK9Xx_5JX9BW2uqipkn81AyJvDxp7nbFMfdLwiQVAajera8I_Ejw_kk5-1GPBqf1r2XKn_2fr1dwG40n-zKe7D-HOwz5qLv06RZsLs8v7AuMs5bFy1qhCRxftwX9AZjiNpI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Roles+of+the+Stress+Sensor+GCN2+in+Immune+Cells&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Zhao%2C+Chenxu&rft.au=Guo%2C+Han&rft.au=Hou%2C+Yangxiao&rft.au=Lei%2C+Tong&rft.date=2023-02-21&rft.pub=MDPI+AG&rft.issn=1422-0067&rft.volume=24&rft.issue=5&rft_id=info:doi/10.3390%2Fijms24054285&rft.externalDocID=A751925297 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |