A Minimal Set of Electrodes for Motor Imagery BCI to Control an Assistive Device in Chronic Stroke Subjects: A Multi-Session Study
The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge to reduce the electrode preparation time and have a good reliability. This study aims to find a minimal set of electrodes for an individual st...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 19; no. 6; pp. 617 - 627 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge to reduce the electrode preparation time and have a good reliability. This study aims to find a minimal set of electrodes for an individual stroke subject for motor imagery to control an assistive device using functional electrical stimulation for 20 sessions with accuracy higher than 90%. The characteristics of this minimal electrode set were evaluated with two popular algorithms: Fisher's criterion and support-vector machine recursive feature elimination (SVM-RFE). The number of calibration sessions for channel selection required for robust control of these 20 sessions was also investigated. Five chronic stroke patients were recruited for the study. Our results suggested that the number of calibration sessions for channel selection did not have a significant effect on the classification accuracy. A performance index devised in this study showed that one training day with 12 electrodes using the SVM-RFE method achieved the best balance between the number of electrodes and accuracy in the 20-session data. Generally, 8-36 channels were required to maintain accuracy higher than 90% in 20 BCI training sessions for chronic stroke patients. |
---|---|
AbstractList | The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge to reduce the electrode preparation time and have a good reliability. This study aims to find a minimal set of electrodes for an individual stroke subject for motor imagery to control an assistive device using functional electrical stimulation for 20 sessions with accuracy higher than 90%. The characteristics of this minimal electrode set were evaluated with two popular algorithms: Fisher's criterion and support-vector machine recursive feature elimination (SVM-RFE). The number of calibration sessions for channel selection required for robust control of these 20 sessions was also investigated. Five chronic stroke patients were recruited for the study. Our results suggested that the number of calibration sessions for channel selection did not have a significant effect on the classification accuracy. A performance index devised in this study showed that one training day with 12 electrodes using the SVM-RFE method achieved the best balance between the number of electrodes and accuracy in the 20-session data. Generally, 8-36 channels were required to maintain accuracy higher than 90% in 20 BCI training sessions for chronic stroke patients. The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge to reduce the electrode preparation time and have a good reliability. This study aims to find a minimal set of electrodes for an individual stroke subject for motor imagery to control an assistive device using functional electrical stimulation for 20 sessions with accuracy higher than 90%. The characteristics of this minimal electrode set were evaluated with two popular algorithms: Fisher's criterion and support-vector machine recursive feature elimination (SVM-RFE). The number of calibration sessions for channel selection required for robust control of these 20 sessions was also investigated. Five chronic stroke patients were recruited for the study. Our results suggested that the number of calibration sessions for channel selection did not have a significant effect on the classification accuracy. A performance index devised in this study showed that one training day with 12 electrodes using the SVM-RFE method achieved the best balance between the number of electrodes and accuracy in the 20-session data. Generally, 8-36 channels were required to maintain accuracy higher than 90% in 20 BCI training sessions for chronic stroke patients.The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge to reduce the electrode preparation time and have a good reliability. This study aims to find a minimal set of electrodes for an individual stroke subject for motor imagery to control an assistive device using functional electrical stimulation for 20 sessions with accuracy higher than 90%. The characteristics of this minimal electrode set were evaluated with two popular algorithms: Fisher's criterion and support-vector machine recursive feature elimination (SVM-RFE). The number of calibration sessions for channel selection required for robust control of these 20 sessions was also investigated. Five chronic stroke patients were recruited for the study. Our results suggested that the number of calibration sessions for channel selection did not have a significant effect on the classification accuracy. A performance index devised in this study showed that one training day with 12 electrodes using the SVM-RFE method achieved the best balance between the number of electrodes and accuracy in the 20-session data. Generally, 8-36 channels were required to maintain accuracy higher than 90% in 20 BCI training sessions for chronic stroke patients. |
Author | Gao, Shangkai Meng, Fei Tong, Kai-yu Tam, Wing-Kin |
Author_xml | – sequence: 1 givenname: Wing-Kin surname: Tam fullname: Tam, Wing-Kin email: teris.tamwk@polyu.edu.hk organization: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong – sequence: 2 givenname: Kai-yu surname: Tong fullname: Tong, Kai-yu email: kytong@ieee.org organization: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong – sequence: 3 givenname: Fei surname: Meng fullname: Meng, Fei email: mf99@mails.tsinghua.edu.cn organization: Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong, China – sequence: 4 givenname: Shangkai surname: Gao fullname: Gao, Shangkai email: gsk-dea@tsinghua.edu.cn organization: Department of Biomedical Engineering, Tsinghua University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21984520$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URP_AFwAJWVzgksV2nNjpbUkXWKkFiZRz5DgT8JK1i-1U2ms_OQ679NBDxcW2NL83M9Z7p-jIOgsIvaRkQSmp3l9_ab6tFoxQumC0lAVnT9AJLQqZEUbJ0fzOecZzRo7RaQgbQqgoC_EMHTNaSV4wcoLulvjKWLNVI24gYjfg1Qg6etdDwIPz-MrFdK636gf4Hf5Qr3F0uHY2ISNWFi9DMCGaW8AXcGs0YGNx_dM7azRuEvQLcDN1m9QznOM0bBqjyRpIKmcTMPW75-jpoMYALw73Gfr-cXVdf84uv35a18vLTHNJYibKShMhqMpz3edDKfOB9irvCl723cCoGlIZaFl1nVCpSAgvByE0U3xgnYT8DL3d973x7vcEIbZbEzSMo7LgptBWtOCSS1b8B0krzoWYyXePkrQUlFU07Z3QNw_QjZu8TT9O_TirJCtJgl4foKnbQt_e-GSN37X_DEsA2wPauxA8DPcIJe2civZvKto5Fe0hFUkkH4i0iSqa2UVlxselr_ZSAwD3s9KmaRuZ_wEifMLX |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2015_08_010 crossref_primary_10_1016_j_cmpb_2020_105722 crossref_primary_10_1109_TBME_2017_2667579 crossref_primary_10_1007_s10916_018_1106_3 crossref_primary_10_1155_2020_8882764 crossref_primary_10_3389_fnbot_2023_1271967 crossref_primary_10_1016_j_iswa_2022_200080 crossref_primary_10_3390_electronics13030565 crossref_primary_10_1016_j_asoc_2018_11_031 crossref_primary_10_1109_TNSRE_2024_3434983 crossref_primary_10_1109_TIFS_2018_2825940 crossref_primary_10_1109_ACCESS_2023_3328618 crossref_primary_10_1088_1741_2552_14_1_011001 crossref_primary_10_1088_1741_2560_11_3_036001 crossref_primary_10_1016_j_irbm_2021_02_008 crossref_primary_10_1080_10447318_2013_780869 crossref_primary_10_3389_fnins_2020_00809 crossref_primary_10_3389_fnhum_2020_00338 crossref_primary_10_1371_journal_pone_0067543 crossref_primary_10_1016_j_jneumeth_2013_11_009 crossref_primary_10_1088_1741_2552_aa86d0 crossref_primary_10_1186_s42490_019_0022_z crossref_primary_10_3389_fnins_2022_884420 crossref_primary_10_3389_fpubh_2022_1030656 crossref_primary_10_3390_brainsci14050462 crossref_primary_10_1155_2019_3817124 crossref_primary_10_1097_NPT_0000000000000063 crossref_primary_10_1109_JBHI_2019_2922976 crossref_primary_10_1016_j_apmr_2024_04_001 crossref_primary_10_1088_1741_2560_13_6_065002 crossref_primary_10_1109_TNSRE_2019_2903685 crossref_primary_10_1109_TNSRE_2023_3281855 crossref_primary_10_32397_tesea_vol5_n2_579 crossref_primary_10_1016_j_neuroimage_2013_10_028 crossref_primary_10_1016_j_pneurobio_2013_12_007 crossref_primary_10_1371_journal_pone_0099289 crossref_primary_10_1016_j_apmr_2015_07_012 crossref_primary_10_1088_1741_2552_ac1ade crossref_primary_10_1371_journal_pone_0121896 crossref_primary_10_5626_JCSE_2013_7_2_139 crossref_primary_10_1109_TBME_2014_2312397 crossref_primary_10_1109_TNSRE_2015_2466079 crossref_primary_10_1007_s11760_022_02142_1 crossref_primary_10_1142_S0129065715500136 crossref_primary_10_1142_S012918312350047X crossref_primary_10_1007_s11571_019_09560_x crossref_primary_10_1109_TCYB_2019_2963709 crossref_primary_10_1088_1741_2552_ac0583 crossref_primary_10_1007_s11768_021_00070_y crossref_primary_10_1016_j_eswa_2014_09_048 crossref_primary_10_1111_1744_1633_70002 crossref_primary_10_1088_1741_2560_10_3_036015 crossref_primary_10_1155_2014_286505 crossref_primary_10_1088_1741_2552_aa904c crossref_primary_10_1016_j_cmpb_2013_01_012 crossref_primary_10_1016_j_clinph_2014_10_007 crossref_primary_10_1016_j_clinph_2014_12_033 crossref_primary_10_1109_ACCESS_2019_2915614 crossref_primary_10_1109_JSEN_2020_3033256 crossref_primary_10_3389_fnbot_2024_1502560 crossref_primary_10_1016_j_pmrj_2017_04_016 crossref_primary_10_1371_journal_pone_0188293 crossref_primary_10_1016_j_jneumeth_2014_05_007 crossref_primary_10_1088_1741_2552_ab377d crossref_primary_10_1186_s12938_018_0534_0 crossref_primary_10_1016_j_eswa_2023_122356 crossref_primary_10_1186_s12984_018_0431_6 crossref_primary_10_1007_s11571_021_09721_x crossref_primary_10_1016_j_eswa_2024_125364 |
Cites_doi | 10.1161/hs1101.097401 10.1161/01.STR.0000017100.68294.52 10.1023/A:1012487302797 10.1152/jn.1995.73.1.373 10.1016/j.neuroimage.2003.08.017 10.1023/A:1023437823106 10.1109/ICICIC.2008.196 10.1016/S1388-2457(99)00141-8 10.1161/01.STR.30.8.1510 10.1109/TBME.2006.888836 10.1109/TNSRE.2006.875548 10.1007/BF00994018 10.1007/s11517-008-0327-x 10.1016/S1388-2457(02)00057-3 10.1109/NER.2009.5109282 10.1088/1741-2560/5/3/007 10.1007/11861898_41 10.1093/oso/9780198538493.001.0001 10.7551/mitpress/7503.003.0099 10.1109/TBME.2004.827827 10.1145/1961189.1961199 10.1155/ASP.2005.3103 10.1016/j.compbiomed.2009.02.004 10.1161/STROKEAHA.107.505313 10.1111/j.1552-6569.2007.00180.x 10.1016/S1388-2457(98)00038-8 10.1088/1741-2560/4/3/012 10.1016/S1388-2457(01)00697-6 10.1155/ASP.2005.3152 10.1016/j.clinph.2003.11.038 10.1088/1741-2560/5/3/005 10.1371/journal.pone.0000637 10.1177/1545968309338191 10.1097/00004356-198112000-00001 10.1109/IJCNN.2004.1381116 10.1109/TNSRE.2006.875642 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2011.2168542 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE Technology Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 627 |
ExternalDocumentID | 2554220921 21984520 10_1109_TNSRE_2011_2168542 6034528 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c480t-769c0771a33cd3f683f1da3b546dbf21afc07e169bb7a83f0046f77c2a4f2b8e3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 02:04:38 EDT 2025 Fri Jul 11 12:40:31 EDT 2025 Fri Jul 11 04:38:10 EDT 2025 Fri Jul 25 04:55:45 EDT 2025 Thu Apr 03 07:07:43 EDT 2025 Tue Jul 01 00:43:10 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Wed Aug 27 02:51:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-769c0771a33cd3f683f1da3b546dbf21afc07e169bb7a83f0046f77c2a4f2b8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 21984520 |
PQID | 914298260 |
PQPubID | 85423 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1671291077 proquest_journals_914298260 proquest_miscellaneous_915484825 pubmed_primary_21984520 crossref_primary_10_1109_TNSRE_2011_2168542 ieee_primary_6034528 crossref_citationtrail_10_1109_TNSRE_2011_2168542 proquest_miscellaneous_911944775 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-Dec. 2011-12-00 2011-Dec 20111201 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-Dec. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2011 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref34 ref12 ref37 ref36 ref31 ref30 ref33 ref11 ref10 ref2 ang (ref32) 2009 ref39 ref17 ref38 ref16 ref19 krauledat (ref13) 2007; 19 muller-gerking (ref15) 1999; 110 wang (ref14) 2010 ref24 stephan (ref40) 1995; 73 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 zhou (ref35) 2007 ref8 hill (ref6) 2006 ref7 ref9 ref4 ref3 ref5 cheng (ref23) 2004; 115 bishop (ref18) 1995 wolpaw (ref1) 2002; 113 |
References_xml | – ident: ref11 doi: 10.1161/hs1101.097401 – ident: ref39 doi: 10.1161/01.STR.0000017100.68294.52 – ident: ref21 doi: 10.1023/A:1012487302797 – volume: 73 start-page: 373 year: 1995 ident: ref40 article-title: Functional anatomy of the mental representation of upper extremity movements in healthy subjects. publication-title: J Neurophysiol doi: 10.1152/jn.1995.73.1.373 – ident: ref12 doi: 10.1016/j.neuroimage.2003.08.017 – ident: ref37 doi: 10.1023/A:1023437823106 – ident: ref34 doi: 10.1109/ICICIC.2008.196 – ident: ref36 doi: 10.1016/S1388-2457(99)00141-8 – ident: ref10 doi: 10.1161/01.STR.30.8.1510 – ident: ref16 doi: 10.1109/TBME.2006.888836 – ident: ref4 doi: 10.1109/TNSRE.2006.875548 – ident: ref19 doi: 10.1007/BF00994018 – ident: ref20 doi: 10.1007/s11517-008-0327-x – volume: 113 start-page: 767 year: 2002 ident: ref1 article-title: Brain-computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – ident: ref31 doi: 10.1109/NER.2009.5109282 – ident: ref8 doi: 10.1088/1741-2560/5/3/007 – start-page: 404 year: 2006 ident: ref6 article-title: Classifying event-related desynchronization in EEG, ECoG and MEG signals publication-title: Pattern Recognition doi: 10.1007/11861898_41 – start-page: 5981 year: 2009 ident: ref32 article-title: A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation publication-title: Proc Annu Int Conf IEEE Eng Medicine Biology Soc – year: 1995 ident: ref18 publication-title: Neural Networks for Pattern Recognition doi: 10.1093/oso/9780198538493.001.0001 – volume: 19 start-page: 753 year: 2007 ident: ref13 article-title: Reducing calibration time for brain-computer interfaces: A clustering approach publication-title: Advances Neural Information Processing Syst doi: 10.7551/mitpress/7503.003.0099 – ident: ref7 doi: 10.1109/TBME.2004.827827 – ident: ref22 doi: 10.1145/1961189.1961199 – ident: ref9 doi: 10.1155/ASP.2005.3103 – ident: ref29 doi: 10.1016/j.compbiomed.2009.02.004 – ident: ref3 doi: 10.1161/STROKEAHA.107.505313 – ident: ref38 doi: 10.1111/j.1552-6569.2007.00180.x – volume: 110 start-page: 787 year: 1999 ident: ref15 article-title: Designing optimal spatial fiters for single-trial EEG classification in a movement task publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(98)00038-8 – ident: ref5 doi: 10.1088/1741-2560/4/3/012 – ident: ref26 doi: 10.1016/S1388-2457(01)00697-6 – ident: ref2 doi: 10.1155/ASP.2005.3152 – volume: 115 start-page: 745 year: 2004 ident: ref23 article-title: Mu rhythm-based cursor control: An offline analysis publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2003.11.038 – ident: ref30 doi: 10.1088/1741-2560/5/3/005 – ident: ref33 doi: 10.1371/journal.pone.0000637 – ident: ref28 doi: 10.1177/1545968309338191 – ident: ref27 doi: 10.1097/00004356-198112000-00001 – start-page: 455 year: 2007 ident: ref35 article-title: Channel selection in EEG-based prediction of shoulder/elbow movement intentions involving stroke patients: A computational approach publication-title: Proc IEEE Symp Computational Intelligence Bioinformatics Computational Biology – year: 2010 ident: ref14 publication-title: Brain-Computer Interfaces Revolutionizing Human-Computer Interaction – ident: ref17 doi: 10.1109/IJCNN.2004.1381116 – ident: ref25 doi: 10.1109/TNSRE.2006.875642 – ident: ref24 doi: 10.1023/A:1023437823106 |
SSID | ssj0017657 |
Score | 2.3548324 |
Snippet | The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 617 |
SubjectTerms | Accuracy Adult Aged Algorithms Band pass filters Brain - physiology Brain modeling Brain-computer interface (BCI) Calibration Cerebral Cortex - physiology Channels Chronic Disease Data Interpretation, Statistical Devices Electric Stimulation electrical stimulation Electrodes Electroencephalography Female Functional Laterality - physiology Humans Imagery Imagination - physiology Male Middle Aged Motors Movement - physiology Online Systems Patient rehabilitation Psychomotor Performance - physiology Self-Help Devices Stroke Stroke Rehabilitation Strokes Support Vector Machine support vector machine (SVM) Support vector machines Training User-Computer Interface |
Title | A Minimal Set of Electrodes for Motor Imagery BCI to Control an Assistive Device in Chronic Stroke Subjects: A Multi-Session Study |
URI | https://ieeexplore.ieee.org/document/6034528 https://www.ncbi.nlm.nih.gov/pubmed/21984520 https://www.proquest.com/docview/914298260 https://www.proquest.com/docview/1671291077 https://www.proquest.com/docview/911944775 https://www.proquest.com/docview/915484825 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrjwKo9QQIMEXCDb2HHshFtZtmqRtofuVuotcvyQVm0TxGaRypFfzth5iCJacdpInmSdeDyezzP-hpC3aOGYllbHguUIULiSseIVjXNmKkWNU7rwB4XnJ-LojH89z863yMfxLIy1NiSf2Ym_DLF80-iN3yrbF0nKM5Zvk20Ebt1ZrTFiIEVg9cQJzGOesmQ4IJMU-8uTxemsY-tkVOQZZ4ECuMjxYcmN9SgUWLnd1wxrzuEDMh9626WaXEw2bTXRP_8icvzf13lI7vfOJxx02vKIbNn6MXn3J9EwLDuWAXgPpzc4vHfJrwOYr-rVFQotbAuNg1lXQsfYNaDrC_MG8TscX3lWjGv4PD2GtoFplwoPqgbUBG9Qflj4Yr19glUNPTcvLFDowgKaMb8vtP4E-Gc-1TFedLwh4PMdr5-Qs8PZcnoU9xUcYs3zpI2lKHQiJVVpqk3qRJ46alRaZVyYyjGqHDZbKoqqkgobPVp3UmqmuGNVbtOnZKduavucgDbcGZNljquE46_KKmapKbgPI6k8iwgdxrHU_afxVTYuywBzkqIMalB6NSh7NYjIh_Gebx25x53Su34MR8l--CKyN6hL2c__dVlQXOcRuSUReTO24sT10RhV22azLqmQ6Gsh-pYRgVtkcCUqOJcyu0sEMSdHnB-RZ52ujh0cVPzFvzu-R-6FDfKQm_OS7LTfN_YVelht9TpMrd9rEyBv |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcCFV3mE8hgk4ALZxo4TJ9zKstUuNHvobqXeIsd2pFVpUnWzSOXIL2fsPEQRrThtJE-yTjyeh2fmG0LeooRjShjlxyxBB4VL4UteUD9hupBUl1KltlA4m8fTY_71JDrZIh-HWhhjjEs-MyN76WL5ulYbe1S2Fwchj1hyi9xGvR_RtlpriBmI2OF64hbmPg9Z0JfIBOnecr44mrR4nYzGScSZAwFOE3xccEUjuRYr11ubTusc3CdZP9822eR0tGmKkfr5F5Tj_77QA3KvMz9hv-WXh2TLVI_Iuz-hhmHZ4gzAezi6guK9Q37tQ7aqVmdItDAN1CVM2iY62qwBjV_IavTgYXZmcTEu4fN4Bk0N4zYZHmQFyAtWpPww8MVYCQWrCjp0Xlgg0akBFGT2ZGj9CfDPbLKjv2iRQ8BmPF4-JscHk-V46nc9HHzFk6DxRZyqQAgqw1DpsIyTsKRahkXEY12UjMoShw2N06IQEgetv14KoZjkJSsSEz4h21VdmWcElOal1lFUchlw_JVRwQzVKbeBJJlEHqH9Ouaq-zS2z8b33Dk6QZo7NsgtG-QdG3jkw3DPeQvvcSP1jl3DgbJbPo_s9uySdxJgnacUNT36boFH3gyjuHVtPEZWpt6scxoLtLbQ_xYegWtoUBelnAsR3USCXidHT98jT1teHSbYs_jzf0_8NbkzXWaH-eFs_m2X3HXH5S5T5wXZbi425iXaW03xym2z35GPI7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Minimal+Set+of+Electrodes+for+Motor+Imagery+BCI+to+Control+an+Assistive+Device+in+Chronic+Stroke+Subjects%3A+A+Multi-Session+Study&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Tam%2C+Wing-Kin&rft.au=Tong%2C+Kai-yu&rft.au=Meng%2C+Fei&rft.au=Gao%2C+Shangkai&rft.date=2011-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=19&rft.issue=6&rft.spage=617&rft_id=info:doi/10.1109%2FTNSRE.2011.2168542&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2554220921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |