A Minimal Set of Electrodes for Motor Imagery BCI to Control an Assistive Device in Chronic Stroke Subjects: A Multi-Session Study

The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge to reduce the electrode preparation time and have a good reliability. This study aims to find a minimal set of electrodes for an individual st...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 19; no. 6; pp. 617 - 627
Main Authors Tam, Wing-Kin, Tong, Kai-yu, Meng, Fei, Gao, Shangkai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge to reduce the electrode preparation time and have a good reliability. This study aims to find a minimal set of electrodes for an individual stroke subject for motor imagery to control an assistive device using functional electrical stimulation for 20 sessions with accuracy higher than 90%. The characteristics of this minimal electrode set were evaluated with two popular algorithms: Fisher's criterion and support-vector machine recursive feature elimination (SVM-RFE). The number of calibration sessions for channel selection required for robust control of these 20 sessions was also investigated. Five chronic stroke patients were recruited for the study. Our results suggested that the number of calibration sessions for channel selection did not have a significant effect on the classification accuracy. A performance index devised in this study showed that one training day with 12 electrodes using the SVM-RFE method achieved the best balance between the number of electrodes and accuracy in the 20-session data. Generally, 8-36 channels were required to maintain accuracy higher than 90% in 20 BCI training sessions for chronic stroke patients.
AbstractList The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge to reduce the electrode preparation time and have a good reliability. This study aims to find a minimal set of electrodes for an individual stroke subject for motor imagery to control an assistive device using functional electrical stimulation for 20 sessions with accuracy higher than 90%. The characteristics of this minimal electrode set were evaluated with two popular algorithms: Fisher's criterion and support-vector machine recursive feature elimination (SVM-RFE). The number of calibration sessions for channel selection required for robust control of these 20 sessions was also investigated. Five chronic stroke patients were recruited for the study. Our results suggested that the number of calibration sessions for channel selection did not have a significant effect on the classification accuracy. A performance index devised in this study showed that one training day with 12 electrodes using the SVM-RFE method achieved the best balance between the number of electrodes and accuracy in the 20-session data. Generally, 8-36 channels were required to maintain accuracy higher than 90% in 20 BCI training sessions for chronic stroke patients.
The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge to reduce the electrode preparation time and have a good reliability. This study aims to find a minimal set of electrodes for an individual stroke subject for motor imagery to control an assistive device using functional electrical stimulation for 20 sessions with accuracy higher than 90%. The characteristics of this minimal electrode set were evaluated with two popular algorithms: Fisher's criterion and support-vector machine recursive feature elimination (SVM-RFE). The number of calibration sessions for channel selection required for robust control of these 20 sessions was also investigated. Five chronic stroke patients were recruited for the study. Our results suggested that the number of calibration sessions for channel selection did not have a significant effect on the classification accuracy. A performance index devised in this study showed that one training day with 12 electrodes using the SVM-RFE method achieved the best balance between the number of electrodes and accuracy in the 20-session data. Generally, 8-36 channels were required to maintain accuracy higher than 90% in 20 BCI training sessions for chronic stroke patients.The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge to reduce the electrode preparation time and have a good reliability. This study aims to find a minimal set of electrodes for an individual stroke subject for motor imagery to control an assistive device using functional electrical stimulation for 20 sessions with accuracy higher than 90%. The characteristics of this minimal electrode set were evaluated with two popular algorithms: Fisher's criterion and support-vector machine recursive feature elimination (SVM-RFE). The number of calibration sessions for channel selection required for robust control of these 20 sessions was also investigated. Five chronic stroke patients were recruited for the study. Our results suggested that the number of calibration sessions for channel selection did not have a significant effect on the classification accuracy. A performance index devised in this study showed that one training day with 12 electrodes using the SVM-RFE method achieved the best balance between the number of electrodes and accuracy in the 20-session data. Generally, 8-36 channels were required to maintain accuracy higher than 90% in 20 BCI training sessions for chronic stroke patients.
Author Gao, Shangkai
Meng, Fei
Tong, Kai-yu
Tam, Wing-Kin
Author_xml – sequence: 1
  givenname: Wing-Kin
  surname: Tam
  fullname: Tam, Wing-Kin
  email: teris.tamwk@polyu.edu.hk
  organization: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
– sequence: 2
  givenname: Kai-yu
  surname: Tong
  fullname: Tong, Kai-yu
  email: kytong@ieee.org
  organization: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
– sequence: 3
  givenname: Fei
  surname: Meng
  fullname: Meng, Fei
  email: mf99@mails.tsinghua.edu.cn
  organization: Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
– sequence: 4
  givenname: Shangkai
  surname: Gao
  fullname: Gao, Shangkai
  email: gsk-dea@tsinghua.edu.cn
  organization: Department of Biomedical Engineering, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21984520$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URP_AFwAJWVzgksV2nNjpbUkXWKkFiZRz5DgT8JK1i-1U2ms_OQ679NBDxcW2NL83M9Z7p-jIOgsIvaRkQSmp3l9_ab6tFoxQumC0lAVnT9AJLQqZEUbJ0fzOecZzRo7RaQgbQqgoC_EMHTNaSV4wcoLulvjKWLNVI24gYjfg1Qg6etdDwIPz-MrFdK636gf4Hf5Qr3F0uHY2ISNWFi9DMCGaW8AXcGs0YGNx_dM7azRuEvQLcDN1m9QznOM0bBqjyRpIKmcTMPW75-jpoMYALw73Gfr-cXVdf84uv35a18vLTHNJYibKShMhqMpz3edDKfOB9irvCl723cCoGlIZaFl1nVCpSAgvByE0U3xgnYT8DL3d973x7vcEIbZbEzSMo7LgptBWtOCSS1b8B0krzoWYyXePkrQUlFU07Z3QNw_QjZu8TT9O_TirJCtJgl4foKnbQt_e-GSN37X_DEsA2wPauxA8DPcIJe2civZvKto5Fe0hFUkkH4i0iSqa2UVlxselr_ZSAwD3s9KmaRuZ_wEifMLX
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_cmpb_2015_08_010
crossref_primary_10_1016_j_cmpb_2020_105722
crossref_primary_10_1109_TBME_2017_2667579
crossref_primary_10_1007_s10916_018_1106_3
crossref_primary_10_1155_2020_8882764
crossref_primary_10_3389_fnbot_2023_1271967
crossref_primary_10_1016_j_iswa_2022_200080
crossref_primary_10_3390_electronics13030565
crossref_primary_10_1016_j_asoc_2018_11_031
crossref_primary_10_1109_TNSRE_2024_3434983
crossref_primary_10_1109_TIFS_2018_2825940
crossref_primary_10_1109_ACCESS_2023_3328618
crossref_primary_10_1088_1741_2552_14_1_011001
crossref_primary_10_1088_1741_2560_11_3_036001
crossref_primary_10_1016_j_irbm_2021_02_008
crossref_primary_10_1080_10447318_2013_780869
crossref_primary_10_3389_fnins_2020_00809
crossref_primary_10_3389_fnhum_2020_00338
crossref_primary_10_1371_journal_pone_0067543
crossref_primary_10_1016_j_jneumeth_2013_11_009
crossref_primary_10_1088_1741_2552_aa86d0
crossref_primary_10_1186_s42490_019_0022_z
crossref_primary_10_3389_fnins_2022_884420
crossref_primary_10_3389_fpubh_2022_1030656
crossref_primary_10_3390_brainsci14050462
crossref_primary_10_1155_2019_3817124
crossref_primary_10_1097_NPT_0000000000000063
crossref_primary_10_1109_JBHI_2019_2922976
crossref_primary_10_1016_j_apmr_2024_04_001
crossref_primary_10_1088_1741_2560_13_6_065002
crossref_primary_10_1109_TNSRE_2019_2903685
crossref_primary_10_1109_TNSRE_2023_3281855
crossref_primary_10_32397_tesea_vol5_n2_579
crossref_primary_10_1016_j_neuroimage_2013_10_028
crossref_primary_10_1016_j_pneurobio_2013_12_007
crossref_primary_10_1371_journal_pone_0099289
crossref_primary_10_1016_j_apmr_2015_07_012
crossref_primary_10_1088_1741_2552_ac1ade
crossref_primary_10_1371_journal_pone_0121896
crossref_primary_10_5626_JCSE_2013_7_2_139
crossref_primary_10_1109_TBME_2014_2312397
crossref_primary_10_1109_TNSRE_2015_2466079
crossref_primary_10_1007_s11760_022_02142_1
crossref_primary_10_1142_S0129065715500136
crossref_primary_10_1142_S012918312350047X
crossref_primary_10_1007_s11571_019_09560_x
crossref_primary_10_1109_TCYB_2019_2963709
crossref_primary_10_1088_1741_2552_ac0583
crossref_primary_10_1007_s11768_021_00070_y
crossref_primary_10_1016_j_eswa_2014_09_048
crossref_primary_10_1111_1744_1633_70002
crossref_primary_10_1088_1741_2560_10_3_036015
crossref_primary_10_1155_2014_286505
crossref_primary_10_1088_1741_2552_aa904c
crossref_primary_10_1016_j_cmpb_2013_01_012
crossref_primary_10_1016_j_clinph_2014_10_007
crossref_primary_10_1016_j_clinph_2014_12_033
crossref_primary_10_1109_ACCESS_2019_2915614
crossref_primary_10_1109_JSEN_2020_3033256
crossref_primary_10_3389_fnbot_2024_1502560
crossref_primary_10_1016_j_pmrj_2017_04_016
crossref_primary_10_1371_journal_pone_0188293
crossref_primary_10_1016_j_jneumeth_2014_05_007
crossref_primary_10_1088_1741_2552_ab377d
crossref_primary_10_1186_s12938_018_0534_0
crossref_primary_10_1016_j_eswa_2023_122356
crossref_primary_10_1186_s12984_018_0431_6
crossref_primary_10_1007_s11571_021_09721_x
crossref_primary_10_1016_j_eswa_2024_125364
Cites_doi 10.1161/hs1101.097401
10.1161/01.STR.0000017100.68294.52
10.1023/A:1012487302797
10.1152/jn.1995.73.1.373
10.1016/j.neuroimage.2003.08.017
10.1023/A:1023437823106
10.1109/ICICIC.2008.196
10.1016/S1388-2457(99)00141-8
10.1161/01.STR.30.8.1510
10.1109/TBME.2006.888836
10.1109/TNSRE.2006.875548
10.1007/BF00994018
10.1007/s11517-008-0327-x
10.1016/S1388-2457(02)00057-3
10.1109/NER.2009.5109282
10.1088/1741-2560/5/3/007
10.1007/11861898_41
10.1093/oso/9780198538493.001.0001
10.7551/mitpress/7503.003.0099
10.1109/TBME.2004.827827
10.1145/1961189.1961199
10.1155/ASP.2005.3103
10.1016/j.compbiomed.2009.02.004
10.1161/STROKEAHA.107.505313
10.1111/j.1552-6569.2007.00180.x
10.1016/S1388-2457(98)00038-8
10.1088/1741-2560/4/3/012
10.1016/S1388-2457(01)00697-6
10.1155/ASP.2005.3152
10.1016/j.clinph.2003.11.038
10.1088/1741-2560/5/3/005
10.1371/journal.pone.0000637
10.1177/1545968309338191
10.1097/00004356-198112000-00001
10.1109/IJCNN.2004.1381116
10.1109/TNSRE.2006.875642
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2011.2168542
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
MEDLINE
Technology Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 627
ExternalDocumentID 2554220921
21984520
10_1109_TNSRE_2011_2168542
6034528
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c480t-769c0771a33cd3f683f1da3b546dbf21afc07e169bb7a83f0046f77c2a4f2b8e3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 02:04:38 EDT 2025
Fri Jul 11 12:40:31 EDT 2025
Fri Jul 11 04:38:10 EDT 2025
Fri Jul 25 04:55:45 EDT 2025
Thu Apr 03 07:07:43 EDT 2025
Tue Jul 01 00:43:10 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Wed Aug 27 02:51:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-769c0771a33cd3f683f1da3b546dbf21afc07e169bb7a83f0046f77c2a4f2b8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 21984520
PQID 914298260
PQPubID 85423
PageCount 11
ParticipantIDs proquest_miscellaneous_1671291077
proquest_journals_914298260
proquest_miscellaneous_915484825
pubmed_primary_21984520
crossref_primary_10_1109_TNSRE_2011_2168542
ieee_primary_6034528
crossref_citationtrail_10_1109_TNSRE_2011_2168542
proquest_miscellaneous_911944775
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-Dec.
2011-12-00
2011-Dec
20111201
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-Dec.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
ref37
ref36
ref31
ref30
ref33
ref11
ref10
ref2
ang (ref32) 2009
ref39
ref17
ref38
ref16
ref19
krauledat (ref13) 2007; 19
muller-gerking (ref15) 1999; 110
wang (ref14) 2010
ref24
stephan (ref40) 1995; 73
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
zhou (ref35) 2007
ref8
hill (ref6) 2006
ref7
ref9
ref4
ref3
ref5
cheng (ref23) 2004; 115
bishop (ref18) 1995
wolpaw (ref1) 2002; 113
References_xml – ident: ref11
  doi: 10.1161/hs1101.097401
– ident: ref39
  doi: 10.1161/01.STR.0000017100.68294.52
– ident: ref21
  doi: 10.1023/A:1012487302797
– volume: 73
  start-page: 373
  year: 1995
  ident: ref40
  article-title: Functional anatomy of the mental representation of upper extremity movements in healthy subjects.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1995.73.1.373
– ident: ref12
  doi: 10.1016/j.neuroimage.2003.08.017
– ident: ref37
  doi: 10.1023/A:1023437823106
– ident: ref34
  doi: 10.1109/ICICIC.2008.196
– ident: ref36
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref10
  doi: 10.1161/01.STR.30.8.1510
– ident: ref16
  doi: 10.1109/TBME.2006.888836
– ident: ref4
  doi: 10.1109/TNSRE.2006.875548
– ident: ref19
  doi: 10.1007/BF00994018
– ident: ref20
  doi: 10.1007/s11517-008-0327-x
– volume: 113
  start-page: 767
  year: 2002
  ident: ref1
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref31
  doi: 10.1109/NER.2009.5109282
– ident: ref8
  doi: 10.1088/1741-2560/5/3/007
– start-page: 404
  year: 2006
  ident: ref6
  article-title: Classifying event-related desynchronization in EEG, ECoG and MEG signals
  publication-title: Pattern Recognition
  doi: 10.1007/11861898_41
– start-page: 5981
  year: 2009
  ident: ref32
  article-title: A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation
  publication-title: Proc Annu Int Conf IEEE Eng Medicine Biology Soc
– year: 1995
  ident: ref18
  publication-title: Neural Networks for Pattern Recognition
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 19
  start-page: 753
  year: 2007
  ident: ref13
  article-title: Reducing calibration time for brain-computer interfaces: A clustering approach
  publication-title: Advances Neural Information Processing Syst
  doi: 10.7551/mitpress/7503.003.0099
– ident: ref7
  doi: 10.1109/TBME.2004.827827
– ident: ref22
  doi: 10.1145/1961189.1961199
– ident: ref9
  doi: 10.1155/ASP.2005.3103
– ident: ref29
  doi: 10.1016/j.compbiomed.2009.02.004
– ident: ref3
  doi: 10.1161/STROKEAHA.107.505313
– ident: ref38
  doi: 10.1111/j.1552-6569.2007.00180.x
– volume: 110
  start-page: 787
  year: 1999
  ident: ref15
  article-title: Designing optimal spatial fiters for single-trial EEG classification in a movement task
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(98)00038-8
– ident: ref5
  doi: 10.1088/1741-2560/4/3/012
– ident: ref26
  doi: 10.1016/S1388-2457(01)00697-6
– ident: ref2
  doi: 10.1155/ASP.2005.3152
– volume: 115
  start-page: 745
  year: 2004
  ident: ref23
  article-title: Mu rhythm-based cursor control: An offline analysis
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2003.11.038
– ident: ref30
  doi: 10.1088/1741-2560/5/3/005
– ident: ref33
  doi: 10.1371/journal.pone.0000637
– ident: ref28
  doi: 10.1177/1545968309338191
– ident: ref27
  doi: 10.1097/00004356-198112000-00001
– start-page: 455
  year: 2007
  ident: ref35
  article-title: Channel selection in EEG-based prediction of shoulder/elbow movement intentions involving stroke patients: A computational approach
  publication-title: Proc IEEE Symp Computational Intelligence Bioinformatics Computational Biology
– year: 2010
  ident: ref14
  publication-title: Brain-Computer Interfaces Revolutionizing Human-Computer Interaction
– ident: ref17
  doi: 10.1109/IJCNN.2004.1381116
– ident: ref25
  doi: 10.1109/TNSRE.2006.875642
– ident: ref24
  doi: 10.1023/A:1023437823106
SSID ssj0017657
Score 2.3548324
Snippet The brain-computer interface (BCI) system has been developed to assist people with motor disability. To make the system more user-friendly, it is a challenge...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 617
SubjectTerms Accuracy
Adult
Aged
Algorithms
Band pass filters
Brain - physiology
Brain modeling
Brain-computer interface (BCI)
Calibration
Cerebral Cortex - physiology
Channels
Chronic Disease
Data Interpretation, Statistical
Devices
Electric Stimulation
electrical stimulation
Electrodes
Electroencephalography
Female
Functional Laterality - physiology
Humans
Imagery
Imagination - physiology
Male
Middle Aged
Motors
Movement - physiology
Online Systems
Patient rehabilitation
Psychomotor Performance - physiology
Self-Help Devices
Stroke
Stroke Rehabilitation
Strokes
Support Vector Machine
support vector machine (SVM)
Support vector machines
Training
User-Computer Interface
Title A Minimal Set of Electrodes for Motor Imagery BCI to Control an Assistive Device in Chronic Stroke Subjects: A Multi-Session Study
URI https://ieeexplore.ieee.org/document/6034528
https://www.ncbi.nlm.nih.gov/pubmed/21984520
https://www.proquest.com/docview/914298260
https://www.proquest.com/docview/1671291077
https://www.proquest.com/docview/911944775
https://www.proquest.com/docview/915484825
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrjwKo9QQIMEXCDb2HHshFtZtmqRtofuVuotcvyQVm0TxGaRypFfzth5iCJacdpInmSdeDyezzP-hpC3aOGYllbHguUIULiSseIVjXNmKkWNU7rwB4XnJ-LojH89z863yMfxLIy1NiSf2Ym_DLF80-iN3yrbF0nKM5Zvk20Ebt1ZrTFiIEVg9cQJzGOesmQ4IJMU-8uTxemsY-tkVOQZZ4ECuMjxYcmN9SgUWLnd1wxrzuEDMh9626WaXEw2bTXRP_8icvzf13lI7vfOJxx02vKIbNn6MXn3J9EwLDuWAXgPpzc4vHfJrwOYr-rVFQotbAuNg1lXQsfYNaDrC_MG8TscX3lWjGv4PD2GtoFplwoPqgbUBG9Qflj4Yr19glUNPTcvLFDowgKaMb8vtP4E-Gc-1TFedLwh4PMdr5-Qs8PZcnoU9xUcYs3zpI2lKHQiJVVpqk3qRJ46alRaZVyYyjGqHDZbKoqqkgobPVp3UmqmuGNVbtOnZKduavucgDbcGZNljquE46_KKmapKbgPI6k8iwgdxrHU_afxVTYuywBzkqIMalB6NSh7NYjIh_Gebx25x53Su34MR8l--CKyN6hL2c__dVlQXOcRuSUReTO24sT10RhV22azLqmQ6Gsh-pYRgVtkcCUqOJcyu0sEMSdHnB-RZ52ujh0cVPzFvzu-R-6FDfKQm_OS7LTfN_YVelht9TpMrd9rEyBv
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOcCFV3mE8hgk4ALZxo4TJ9zKstUuNHvobqXeIsd2pFVpUnWzSOXIL2fsPEQRrThtJE-yTjyeh2fmG0LeooRjShjlxyxBB4VL4UteUD9hupBUl1KltlA4m8fTY_71JDrZIh-HWhhjjEs-MyN76WL5ulYbe1S2Fwchj1hyi9xGvR_RtlpriBmI2OF64hbmPg9Z0JfIBOnecr44mrR4nYzGScSZAwFOE3xccEUjuRYr11ubTusc3CdZP9822eR0tGmKkfr5F5Tj_77QA3KvMz9hv-WXh2TLVI_Iuz-hhmHZ4gzAezi6guK9Q37tQ7aqVmdItDAN1CVM2iY62qwBjV_IavTgYXZmcTEu4fN4Bk0N4zYZHmQFyAtWpPww8MVYCQWrCjp0Xlgg0akBFGT2ZGj9CfDPbLKjv2iRQ8BmPF4-JscHk-V46nc9HHzFk6DxRZyqQAgqw1DpsIyTsKRahkXEY12UjMoShw2N06IQEgetv14KoZjkJSsSEz4h21VdmWcElOal1lFUchlw_JVRwQzVKbeBJJlEHqH9Ouaq-zS2z8b33Dk6QZo7NsgtG-QdG3jkw3DPeQvvcSP1jl3DgbJbPo_s9uySdxJgnacUNT36boFH3gyjuHVtPEZWpt6scxoLtLbQ_xYegWtoUBelnAsR3USCXidHT98jT1teHSbYs_jzf0_8NbkzXWaH-eFs_m2X3HXH5S5T5wXZbi425iXaW03xym2z35GPI7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Minimal+Set+of+Electrodes+for+Motor+Imagery+BCI+to+Control+an+Assistive+Device+in+Chronic+Stroke+Subjects%3A+A+Multi-Session+Study&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Tam%2C+Wing-Kin&rft.au=Tong%2C+Kai-yu&rft.au=Meng%2C+Fei&rft.au=Gao%2C+Shangkai&rft.date=2011-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=19&rft.issue=6&rft.spage=617&rft_id=info:doi/10.1109%2FTNSRE.2011.2168542&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2554220921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon