Turbulence-permitting air pollution simulation for the Stuttgart metropolitan area

Air pollution is one of the major challenges in urban areas. It can have a major impact on human health and society and is currently a subject of several litigations in European courts. Information on the level of air pollution is based on near-surface measurements, which are often irregularly distr...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 21; no. 6; pp. 4575 - 4597
Main Authors Schwitalla, Thomas, Bauer, Hans-Stefan, Warrach-Sagi, Kirsten, Bönisch, Thomas, Wulfmeyer, Volker
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 24.03.2021
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Air pollution is one of the major challenges in urban areas. It can have a major impact on human health and society and is currently a subject of several litigations in European courts. Information on the level of air pollution is based on near-surface measurements, which are often irregularly distributed along the main traffic roads and provide almost no information about the residential areas and office districts in the cities. To further enhance the process understanding and give scientific support to decision makers, we developed a prototype for an air quality forecasting system (AQFS) within the EU demonstration project “Open Forecast”. For AQFS, the Weather Research and Forecasting model together with its coupled chemistry component (WRF-Chem) is applied for the Stuttgart metropolitan area in Germany. Three model domains from 1.25 km down to a turbulence-permitting resolution of 50 m were used, and a single-layer urban canopy model was active in all domains. As a demonstration case study, 21 January 2019 was selected, which was a heavily polluted day with observed PM10 concentrations exceeding 50 µg m−3. Our results show that the model is able to reasonably simulate the diurnal cycle of surface fluxes and 2 m temperatures as well as evolution of the stable and shallow boundary layer typically occurring in wintertime in Stuttgart. The simulated fields of particulates with a diameter of less than 10 µm (PM10) and nitrogen dioxide (NO2) allow a clear statement about the most heavily polluted areas apart from the irregularly distributed measurement sites. Together with information about the vertical distribution of PM10 and NO2 from the model, AQFS will serve as a valuable tool for air quality forecasting and has the potential of being applied to other cities around the world.
AbstractList Air pollution is one of the major challenges in urban areas. It can have a major impact on human health and society and is currently a subject of several litigations in European courts. Information on the level of air pollution is based on near-surface measurements, which are often irregularly distributed along the main traffic roads and provide almost no information about the residential areas and office districts in the cities. To further enhance the process understanding and give scientific support to decision makers, we developed a prototype for an air quality forecasting system (AQFS) within the EU demonstration project "Open Forecast". For AQFS, the Weather Research and Forecasting model together with its coupled chemistry component (WRF-Chem) is applied for the Stuttgart metropolitan area in Germany. Three model domains from 1.25 km down to a turbulence-permitting resolution of 50 m were used, and a single-layer urban canopy model was active in all domains. As a demonstration case study, 21 January 2019 was selected, which was a heavily polluted day with observed PM.sub.10 concentrations exceeding 50 µg m.sup.-3. Our results show that the model is able to reasonably simulate the diurnal cycle of surface fluxes and 2 m temperatures as well as evolution of the stable and shallow boundary layer typically occurring in wintertime in Stuttgart. The simulated fields of particulates with a diameter of less than 10 µm (PM.sub.10) and nitrogen dioxide (NO.sub.2) allow a clear statement about the most heavily polluted areas apart from the irregularly distributed measurement sites. Together with information about the vertical distribution of PM.sub.10 and NO.sub.2 from the model, AQFS will serve as a valuable tool for air quality forecasting and has the potential of being applied to other cities around the world.
Air pollution is one of the major challenges in urban areas. It can have a major impact on human health and society and is currently a subject of several litigations in European courts. Information on the level of air pollution is based on near-surface measurements, which are often irregularly distributed along the main traffic roads and provide almost no information about the residential areas and office districts in the cities. To further enhance the process understanding and give scientific support to decision makers, we developed a prototype for an air quality forecasting system (AQFS) within the EU demonstration project “Open Forecast”.For AQFS, the Weather Research and Forecasting model together with its coupled chemistry component (WRF-Chem) is applied for the Stuttgart metropolitan area in Germany. Three model domains from 1.25 km down to a turbulence-permitting resolution of 50 m were used, and a single-layer urban canopy model was active in all domains. As a demonstration case study, 21 January 2019 was selected, which was a heavily polluted day with observed PM10 concentrations exceeding 50 µgm-3.Our results show that the model is able to reasonably simulate the diurnal cycle of surface fluxes and 2 m temperatures as well as evolution of the stable and shallow boundary layer typically occurring in wintertime in Stuttgart. The simulated fields of particulates with a diameter of less than 10 µm (PM10) and nitrogen dioxide (NO2) allow a clear statement about the most heavily polluted areas apart from the irregularly distributed measurement sites. Together with information about the vertical distribution of PM10 and NO2 from the model, AQFS will serve as a valuable tool for air quality forecasting and has the potential of being applied to other cities around the world.
Air pollution is one of the major challenges in urban areas. It can have a major impact on human health and society and is currently a subject of several litigations in European courts. Information on the level of air pollution is based on near-surface measurements, which are often irregularly distributed along the main traffic roads and provide almost no information about the residential areas and office districts in the cities. To further enhance the process understanding and give scientific support to decision makers, we developed a prototype for an air quality forecasting system (AQFS) within the EU demonstration project “Open Forecast”. For AQFS, the Weather Research and Forecasting model together with its coupled chemistry component (WRF-Chem) is applied for the Stuttgart metropolitan area in Germany. Three model domains from 1.25 km down to a turbulence-permitting resolution of 50 m were used, and a single-layer urban canopy model was active in all domains. As a demonstration case study, 21 January 2019 was selected, which was a heavily polluted day with observed PM10 concentrations exceeding 50 µg m−3. Our results show that the model is able to reasonably simulate the diurnal cycle of surface fluxes and 2 m temperatures as well as evolution of the stable and shallow boundary layer typically occurring in wintertime in Stuttgart. The simulated fields of particulates with a diameter of less than 10 µm (PM10) and nitrogen dioxide (NO2) allow a clear statement about the most heavily polluted areas apart from the irregularly distributed measurement sites. Together with information about the vertical distribution of PM10 and NO2 from the model, AQFS will serve as a valuable tool for air quality forecasting and has the potential of being applied to other cities around the world.
Air pollution is one of the major challenges in urban areas. It can have a major impact on human health and society and is currently a subject of several litigations in European courts. Information on the level of air pollution is based on near-surface measurements, which are often irregularly distributed along the main traffic roads and provide almost no information about the residential areas and office districts in the cities. To further enhance the process understanding and give scientific support to decision makers, we developed a prototype for an air quality forecasting system (AQFS) within the EU demonstration project “Open Forecast”. For AQFS, the Weather Research and Forecasting model together with its coupled chemistry component (WRF-Chem) is applied for the Stuttgart metropolitan area in Germany. Three model domains from 1.25  km down to a turbulence-permitting resolution of 50  m were used, and a single-layer urban canopy model was active in all domains. As a demonstration case study, 21 January 2019 was selected, which was a heavily polluted day with observed PM10 concentrations exceeding 50  µg m−3 . Our results show that the model is able to reasonably simulate the diurnal cycle of surface fluxes and 2 m temperatures as well as evolution of the stable and shallow boundary layer typically occurring in wintertime in Stuttgart. The simulated fields of particulates with a diameter of less than 10  µm ( PM10 ) and nitrogen dioxide ( NO2 ) allow a clear statement about the most heavily polluted areas apart from the irregularly distributed measurement sites. Together with information about the vertical distribution of PM10 and NO2 from the model, AQFS will serve as a valuable tool for air quality forecasting and has the potential of being applied to other cities around the world.
Air pollution is one of the major challenges in urban areas. It can have a major impact on human health and society and is currently a subject of several litigations in European courts. Information on the level of air pollution is based on near-surface measurements, which are often irregularly distributed along the main traffic roads and provide almost no information about the residential areas and office districts in the cities. To further enhance the process understanding and give scientific support to decision makers, we developed a prototype for an air quality forecasting system (AQFS) within the EU demonstration project "Open Forecast".
Audience Academic
Author Bauer, Hans-Stefan
Schwitalla, Thomas
Bönisch, Thomas
Warrach-Sagi, Kirsten
Wulfmeyer, Volker
Author_xml – sequence: 1
  givenname: Thomas
  orcidid: 0000-0002-7898-8499
  surname: Schwitalla
  fullname: Schwitalla, Thomas
– sequence: 2
  givenname: Hans-Stefan
  surname: Bauer
  fullname: Bauer, Hans-Stefan
– sequence: 3
  givenname: Kirsten
  surname: Warrach-Sagi
  fullname: Warrach-Sagi, Kirsten
– sequence: 4
  givenname: Thomas
  surname: Bönisch
  fullname: Bönisch, Thomas
– sequence: 5
  givenname: Volker
  orcidid: 0000-0003-4882-2524
  surname: Wulfmeyer
  fullname: Wulfmeyer, Volker
BookMark eNp1Uk1r3DAQFSWFJmnvPRp66sGJZH1YPobQj4VAIEnPYiSPt1psy5VkaP99tLuhdEuLDhqG956eZt4FOZvDjIS8Z_RKsk5cg1vqhtVCtrJuaMNekXOmNK1b3oizP-o35CKlHaWNpEyck4enNdp1xNlhvWCcfM5-3lbgY7WEcVyzD3OV_LSOcCiHEKv8HavHvOa8hZirCXMMBeszzBVEhLfk9QBjwncv9yX59vnT0-3X-u7-y-b25q52QtNct0Ix2Spqde86bRvhlFY4cNrCIIGjUhSVVcpRqrmS1jpgosOuYwwtcMkvyeao2wfYmSX6CeIvE8CbQyPErSn-vBvRqN4OGoWwsucCNFrb91oxIUULrGW8aH04ai0x_FgxZbMLa5yLfVMGJbjgzeHFF9QWiqifh5AjuMknZ26UVIwrrnRBXf0DVU6Pk3dla4Mv_RPCxxNCwWT8Waa7pmQ2jw-nWHrEuhhSijj8_jijZh8EU4JgGmb2QTD7IBSK-oviyq722yy-_Ph_4jOeBrgu
CitedBy_id crossref_primary_10_3390_atmos15010111
crossref_primary_10_5194_nhess_22_3701_2022
crossref_primary_10_3390_s24175767
Cites_doi 10.1002/qj.2947
10.1525/elementa.319
10.1007/s00704-009-0143-8
10.1088/1755-1315/1/1/012043
10.1016/j.envpol.2011.04.030
10.5194/gmd-8-2515-2015
10.5194/gmd-2020-306-supplement
10.5194/acp-20-9311-2020
10.5194/gmd-9-1201-2016
10.1007/978-94-007-7756-9_25
10.5194/acp-19-7409-2019
10.1007/s00382-013-1727-7
10.1017/S0022112096004697
10.5194/acp-11-1769-2011
10.1016/j.atmosenv.2015.10.094
10.1175/JTECH-D-13-00076.1
10.2151/jmsj.2020-049
10.1029/2002JD002853
10.1371/journal.pone.0105992
10.1002/asl.377
10.1127/metz/2019/0913
10.1175/MWR-D-10-05013.1
10.5194/gmd-10-4145-2017
10.1007/s00382-018-4521-8
10.1029/2005RG000183
10.1002/2014RG000475
10.5194/gmd-9-3699-2016
10.1029/2001JD000384
10.5194/gmd-10-2397-2017
10.1007/s10546-014-9973-8
10.3354/cr01018
10.5194/gmd-8-975-2015
10.1175/JCLI-D-12-00558.1
10.1029/2008JD009944
10.1007/s10546-017-0331-5
10.5194/acp-19-3515-2019
10.1029/2012JD018143
10.5194/acp-17-7083-2017
10.1175/JAMC-D-15-0300.1
10.1175/2008MWR2387.1
10.5194/acp-9-8661-2009
10.5194/essd-13-367-2021
10.1007/s13351-016-6012-3
10.5194/gmd-14-1171-2021
10.2151/jmsj.82.67
10.1175/JAS-D-15-0341.1
10.3390/rs12020340
10.3133/ofr20111073
10.5194/gmd-13-1959-2020
10.5194/acp-20-1977-2020
10.5194/gmd-5-1589-2012
10.5194/acp-18-8203-2018
10.3389/feart.2014.00027
10.5194/gmd-12-4571-2019
10.5194/gmd-9-4339-2016
10.5194/gmd-2020-175-supplement
10.1029/2010JD015140
10.1023/A:1016099921195
10.1029/98JD02397
10.1007/s00704-019-02881-1
10.1002/2015JD023927
10.1029/2010JD015139
10.1029/JD095iD10p16343
10.1016/j.atmosenv.2005.04.027
10.1016/S1352-2310(98)00006-5
10.5194/gmd-8-1659-2015
10.1007/s10546-018-0420-0
10.5194/gmd-10-189-2017
10.1002/qj.754
10.1504/IJEP.2004.005530
10.1016/j.uclim.2019.100454
10.1175/MWR3199.1
10.5194/gmd-8-2777-2015
10.1002/qj.2378
10.1002/qj.2652
10.1175/MWR-D-11-00056.1
10.5194/acp-14-10963-2014
10.1029/2019JD030317
10.1175/BAMS-D-11-00167.1
10.5194/gmd-11-2493-2018
10.1016/j.atmosenv.2014.10.056
10.5194/gmd-4-419-2011
10.5194/acp-20-15061-2020
10.1080/16000870.2020.1761740
10.5194/gmd-9-4439-2016
10.1127/metz/2019/0909
10.1371/journal.pone.0125814
10.5194/gmd-13-1335-2020
ContentType Journal Article
Copyright COPYRIGHT 2021 Copernicus GmbH
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2021 Copernicus GmbH
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOA
DOI 10.5194/acp-21-4575-2021
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Chemistry
EISSN 1680-7324
EndPage 4597
ExternalDocumentID oai_doaj_org_article_6dbf8e44b5d34a8ebbdd8614547a1713
A656136368
10_5194_acp_21_4575_2021
GeographicLocations Germany
Europe
GeographicLocations_xml – name: Germany
– name: Europe
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
BBORY
PMFND
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
ID FETCH-LOGICAL-c480t-74615760b8dc98b24c686ef307af5a3e660e6b66c008365bbca149e9911eba353
IEDL.DBID BENPR
ISSN 1680-7324
1680-7316
IngestDate Wed Aug 27 01:10:05 EDT 2025
Fri Jul 25 22:53:08 EDT 2025
Tue Jun 17 21:23:45 EDT 2025
Tue Jun 10 20:36:17 EDT 2025
Fri Jun 27 03:48:45 EDT 2025
Tue Jul 01 02:01:22 EDT 2025
Thu Apr 24 22:51:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-74615760b8dc98b24c686ef307af5a3e660e6b66c008365bbca149e9911eba353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4882-2524
0000-0002-7898-8499
OpenAccessLink https://www.proquest.com/docview/2504343235?pq-origsite=%requestingapplication%
PQID 2504343235
PQPubID 105744
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_6dbf8e44b5d34a8ebbdd8614547a1713
proquest_journals_2504343235
gale_infotracmisc_A656136368
gale_infotracacademiconefile_A656136368
gale_incontextgauss_ISR_A656136368
crossref_primary_10_5194_acp_21_4575_2021
crossref_citationtrail_10_5194_acp_21_4575_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-24
PublicationDateYYYYMMDD 2021-03-24
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-24
  day: 24
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2021
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref78
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref85
– ident: ref33
  doi: 10.1002/qj.2947
– ident: ref56
  doi: 10.1525/elementa.319
– ident: ref77
  doi: 10.1007/s00704-009-0143-8
– ident: ref9
  doi: 10.1088/1755-1315/1/1/012043
– ident: ref5
  doi: 10.1016/j.envpol.2011.04.030
– ident: ref62
  doi: 10.5194/gmd-8-2515-2015
– ident: ref99
– ident: ref57
  doi: 10.5194/gmd-2020-306-supplement
– ident: ref89
  doi: 10.5194/acp-20-9311-2020
– ident: ref104
  doi: 10.5194/gmd-9-1201-2016
– ident: ref78
  doi: 10.1007/978-94-007-7756-9_25
– ident: ref10
  doi: 10.5194/acp-19-7409-2019
– ident: ref98
  doi: 10.1007/s00382-013-1727-7
– ident: ref49
  doi: 10.1017/S0022112096004697
– ident: ref73
  doi: 10.5194/acp-11-1769-2011
– ident: ref21
  doi: 10.1016/j.atmosenv.2015.10.094
– ident: ref103
  doi: 10.1175/JTECH-D-13-00076.1
– ident: ref82
– ident: ref92
  doi: 10.2151/jmsj.2020-049
– ident: ref39
  doi: 10.1029/2002JD002853
– ident: ref34
  doi: 10.1371/journal.pone.0105992
– ident: ref70
  doi: 10.1002/asl.377
– ident: ref80
  doi: 10.1127/metz/2019/0913
– ident: ref16
– ident: ref2
  doi: 10.1175/MWR-D-10-05013.1
– ident: ref59
  doi: 10.5194/gmd-10-4145-2017
– ident: ref12
  doi: 10.1007/s00382-018-4521-8
– ident: ref29
– ident: ref22
  doi: 10.1029/2005RG000183
– ident: ref74
  doi: 10.1002/2014RG000475
– ident: ref60
  doi: 10.5194/gmd-9-3699-2016
– ident: ref15
– ident: ref88
– ident: ref79
  doi: 10.1029/2001JD000384
– ident: ref58
  doi: 10.5194/gmd-10-2397-2017
– ident: ref86
  doi: 10.1007/s10546-014-9973-8
– ident: ref28
  doi: 10.3354/cr01018
– ident: ref23
  doi: 10.5194/gmd-8-975-2015
– ident: ref65
  doi: 10.1175/JCLI-D-12-00558.1
– ident: ref41
  doi: 10.1029/2008JD009944
– ident: ref100
– ident: ref94
– ident: ref105
  doi: 10.1007/s10546-017-0331-5
– ident: ref8
– ident: ref18
– ident: ref42
  doi: 10.5194/acp-19-3515-2019
– ident: ref84
  doi: 10.1029/2012JD018143
– ident: ref32
  doi: 10.5194/acp-17-7083-2017
– ident: ref54
  doi: 10.1175/JAMC-D-15-0300.1
– ident: ref91
  doi: 10.1175/2008MWR2387.1
– ident: ref96
  doi: 10.5194/acp-9-8661-2009
– ident: ref31
  doi: 10.5194/essd-13-367-2021
– ident: ref44
  doi: 10.1007/s13351-016-6012-3
– ident: ref48
  doi: 10.5194/gmd-14-1171-2021
– ident: ref20
– ident: ref81
– ident: ref53
  doi: 10.2151/jmsj.82.67
– ident: ref72
  doi: 10.1175/JAS-D-15-0341.1
– ident: ref97
  doi: 10.3390/rs12020340
– ident: ref14
  doi: 10.3133/ofr20111073
– ident: ref83
  doi: 10.5194/gmd-13-1959-2020
– ident: ref40
  doi: 10.5194/acp-20-1977-2020
– ident: ref11
– ident: ref17
– ident: ref95
  doi: 10.5194/gmd-5-1589-2012
– ident: ref52
  doi: 10.5194/acp-18-8203-2018
– ident: ref37
  doi: 10.3389/feart.2014.00027
– ident: ref55
  doi: 10.5194/gmd-12-4571-2019
– ident: ref51
  doi: 10.5194/gmd-9-4339-2016
– ident: ref75
  doi: 10.5194/gmd-2020-175-supplement
– ident: ref101
  doi: 10.1029/2010JD015140
– ident: ref66
  doi: 10.1023/A:1016099921195
– ident: ref7
  doi: 10.1029/98JD02397
– ident: ref69
  doi: 10.1007/s00704-019-02881-1
– ident: ref68
  doi: 10.1002/2015JD023927
– ident: ref71
  doi: 10.1029/2010JD015139
– ident: ref87
  doi: 10.1029/JD095iD10p16343
– ident: ref30
  doi: 10.1016/j.atmosenv.2005.04.027
– ident: ref1
  doi: 10.1016/S1352-2310(98)00006-5
– ident: ref76
  doi: 10.5194/gmd-8-1659-2015
– ident: ref47
  doi: 10.1007/s10546-018-0420-0
– ident: ref26
  doi: 10.5194/gmd-10-189-2017
– ident: ref13
  doi: 10.1002/qj.754
– ident: ref19
– ident: ref93
– ident: ref67
  doi: 10.1504/IJEP.2004.005530
– ident: ref90
  doi: 10.1016/j.uclim.2019.100454
– ident: ref36
  doi: 10.1175/MWR3199.1
– ident: ref61
  doi: 10.5194/gmd-8-2777-2015
– ident: ref102
  doi: 10.1002/qj.2378
– ident: ref6
  doi: 10.1002/qj.2652
– ident: ref43
  doi: 10.1175/MWR-D-11-00056.1
– ident: ref50
  doi: 10.5194/acp-14-10963-2014
– ident: ref38
  doi: 10.1029/2019JD030317
– ident: ref3
  doi: 10.1175/BAMS-D-11-00167.1
– ident: ref46
  doi: 10.5194/gmd-11-2493-2018
– ident: ref24
  doi: 10.1016/j.atmosenv.2014.10.056
– ident: ref25
  doi: 10.5194/gmd-4-419-2011
– ident: ref45
  doi: 10.5194/acp-20-15061-2020
– ident: ref4
  doi: 10.1080/16000870.2020.1761740
– ident: ref27
  doi: 10.5194/gmd-9-4439-2016
– ident: ref63
  doi: 10.1127/metz/2019/0909
– ident: ref35
  doi: 10.1371/journal.pone.0125814
– ident: ref64
  doi: 10.5194/gmd-13-1335-2020
SSID ssj0025014
Score 2.3594878
Snippet Air pollution is one of the major challenges in urban areas. It can have a major impact on human health and society and is currently a subject of several...
Air pollution is one of the major challenges in urban areas. It can have a major impact on human health and society and is currently a subject of several...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4575
SubjectTerms Aerodynamics
Air pollution
Air pollution measurements
Air quality
Air quality forecasting
Analysis
Atmospheric boundary layer
Boundary layers
Chemistry
Diameters
Diurnal cycle
Diurnal variations
Domains
Environmental aspects
Fluxes
Forecasting
Mathematical models
Meteorological research
Metropolitan areas
Nitrogen dioxide
Numerical weather forecasting
Particulate matter
Particulates
Plant cover
Prototypes
Residential areas
Simulation
Surface fluxes
Traffic
Traffic information
Turbulence
Urban areas
Vertical distribution
Weather forecasting
Wind
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT70goCACBVkIFXGwNrGdsffYVlSlUjn0Q-rNsh2nWqndXe1m_z8zjrfqHoALxyQTyXke22_i8TzGvta2x6grJBGmSQndhE5YsI0AYzqvbBf6rHV4-QvOb_XFXXv3TOqLcsLG8sAjcBNAc5u0Dm2ntLcphK6zuKa02vjGZL1aiWveNpgqoRbtllGoBbYWpM00blAiW9ETH5dCYtyEPAVdRDY7C1Ku2_-n2TkvOWev2MvCFfnx2MbX7EWav2HVJdLcxSr_DedH_PRhhpwzXx2wq5sNgpSPEYklZbnkpGbuZyu-JElj6gS-nj0WyS6OhJUjAeTXw2YY7hEL_piGLJswQ87IPRLKt-z27MfN6bkoogkialsPwmjkKAbqYLs4tUHqCBZSj0PZ961XCaBOEAAikS9oQ4geg6SENLFJwatWvWN788U8vWe8T9J3SmmAaa9ba4Lxsje99jVMZWjqik22yLlYKoqTsMWDw8iCsHaItZONI6wdYV2x709vLMdqGn-xPaHOeLKjOtj5BnqHK97h_uUdFftCXemo0sWcUmnu_Wa9dj-vr9wxUOwECmzFvhWjfoHtj76cTEAUqDjWjuXhjiUOxbj7eOsxrkwFa5drxGklVfvhf3zRR7ZP6FAanNSHbG9YbdIn5EVD-JyHwG_umQhw
  priority: 102
  providerName: Directory of Open Access Journals
Title Turbulence-permitting air pollution simulation for the Stuttgart metropolitan area
URI https://www.proquest.com/docview/2504343235
https://doaj.org/article/6dbf8e44b5d34a8ebbdd8614547a1713
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELbY9gAvCAaIjFFZCIF4sJrEjuM-oa1aGUidoNvE3izbcapKWxOa9P9z57pFfWBPVZuLlN5dLt9nX-4j5GOqamBd1jM78pyJzFZMSZUxWZaV4aqyddA6nF7Jy1vx4664iwtuXWyr3NbEUKirxuEa-TCM2hI858XX9g9D1SjcXY0SGgfkCEqwAvJ1dH5x9XO2o1y4a4aUS6qUoUbTZqMSUIsYGteyHPgT4BVIlTzbezCF-f3_q9Lh0TN5QZ5HzEjPNkF-SZ745TF5Ot5KtR2TZArQt1mFFXL6iY7vF4BDw7dXZHazBseFV4tYi50vodGZmsWKtihzjIGh3eIhynhRALEUQCG97td9P4fEog--D1IKC8CR1ADIfE1uJxc340sWhRSYEyrtWSkAt5QytapyI2Vz4aSSvobb29SF4V7K1EsrpUNAJgtrnQHi5AE6Zt4aXvA35HDZLP1bQmufm4pzIeWoFoUqbWnyuqyFSeUot1makOHWi9rFKeModnGvgW2g3zX4XeeZRr9r9HtCvuzOaDcTNh6xPcfA7OxwNnb4oVnNdbzVtIQEU14IW1RcGOWtrSoFKKQQpcmAkyfkA4ZV4_SLJbbXzM266_T365k-k8inJJcqIZ-jUd3A9TsT31YAL-DArD3L0z1LCL3bP7zNHh3LQ6f_JfPJ44ffkWf4v7HpLRen5LBfrf17QEG9HZADNfk2iAmPn5Ppr9-DsKbwFxwECBQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLam7TAuiA0QGQMsxA9xsJrYjuMeEBqF0rJ1h62TdjN24lSVtrY0qRD_FH8j77lJUQ_stmOSFyl677P9vfj5fYS8iXUJWZfzzHW9YDJxBdNKJ0xlWWGFLlwZtA5H52pwJb9fp9c75E97FgbLKts5MUzUxTzHf-Sd0GpLCi7ST4ufDFWjcHe1ldBYw-LU__4FKVv1cfgF4vuW8_7XcW_AGlUBlksd1yyTsIhnKna6yLvacZkrrXwJWLdlaoVXKvbKKZUjO1Gpc7mFLMIDj0q8s0ElAqb8PSlEF0eU7n_bJHi4R4cJntIxQ0Wo9bYocCTZsfmCccjWgB0BMHmytQwGtYD_rQlhoes_Ig8bhkpP1pA6IDt-dkj2e60w3CGJRkC058vwP56-o72bKbDecPWYXIxXEKZwkIktsM4mlFVTO13SBYoqIwxoNb1tRMMoUGYKFJRe1qu6ngCM6a2vg3DDFFgrtUBpn5Cre3HwU7I7m8_8M0JLz20hhFSqW8pUZy6zvMxKaWPV5S6JI9JpvWjypqc5SmvcGMht0O8G_G54YtDvBv0ekQ-bNxbrfh532H7GwGzssBN3uDFfTkwzsI0COGsvpUsLIa32zhWFBs6TyswmWSIi8hrDarDXxgyLeSZ2VVVmeHlhThRmb0ooHZH3jVE5h-_PbXM2AryA7bm2LI-3LCH0-fbjFj2mmYwq82_oHN39-BXZH4xHZ-ZseH76nDxAH2C5HZfHZLdervwL4F-1exlAT8mP-x5lfwH-jj8t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLWmTgJe-BggCgMsxId48Jo4juM-ILR1VCujE-xD25uxHaeq2NrSpkLw0_gr_BnudZOiIrG3PfDY5lZqnOPrc-Lrewh5HqkCVJf1zLZ9wkRsc6akipnMstwkKrdF8DrsH8i9E_H-LD1bIz_rszBYVlnnxJCo87HDd-St0GpLJDxJW0VVFvFxt_t28pWhgxTutNZ2GguI7Pvv30C-zd70duFZv-C8--64s8cqhwHmhIpKlglY0DMZWZW7trJcOKmkLwD3pkhN4qWMvLRSOmQqMrXWGVAUHjhV7K0JjhGQ_tfh7lLeIOs73f6n06Xcwx07lHtSRQz9oRabpMCYRMu4CeOg3YArAUx5vLIoBu-Af60QYdnr3iK_6gFbVLt82ZqXdsv9-KuX5P85orfJzYqN0-3F9LlD1vxog1zv1CZ4G6TZB1Exnoa9B_qSds6HwPDDp7vk8HgOkAyHttgEa4pCCTk1wymdoIE0Qp7OhheVQRoFeUCBbtOjcl6WA5iy9MKXwaRiCAydGqDv98jJldzufdIYjUf-AaGF5yZPEiFluxCpymxmeJEVwkSyzW0cNUmrxoh2Vf92tBE516DjEFUaUKV5rBFVGlHVJK-Xv5gsepdcEruDsFvGYdfx8MV4OtBVEtMSpq7yQtg0T4RR3to8V8DvUpGZOIuTJnmGoNXYV2SEeBqY-Wyme0eHeluiUpWJVE3yqgoqxvD_nanOgcAoYCuylcjNlUh49G71co1rXSXemf4D6oeXX35KrgHa9Yfewf4jcgOHACsLudgkjXI694-Bapb2STWnKfl81aD_DR57i9U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turbulence-permitting+air+pollution+simulation+for+the+Stuttgart+metropolitan+area&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Schwitalla%2C+Thomas&rft.au=Bauer%2C+Hans-Stefan&rft.au=Warrach-Sagi%2C+Kirsten&rft.au=B%C3%B6nisch%2C+Thomas&rft.date=2021-03-24&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=21&rft.issue=6&rft.spage=4575&rft_id=info:doi/10.5194%2Facp-21-4575-2021&rft.externalDBID=ISR&rft.externalDocID=A656136368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon