Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents
Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine and other drugs of abuse on brain function. We therefore examined the effect of repeated cocaine treatment on glutamate receptor subunit expr...
Saved in:
Published in | The Journal of neuroscience Vol. 16; no. 1; pp. 274 - 282 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
01.01.1996
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine and other drugs of abuse on brain function. We therefore examined the effect of repeated cocaine treatment on glutamate receptor subunit expression in central dopamine (DA) pathways implicated in many of cocaine's behavioral actions. By immunoblotting procedures using subunit-specific antibodies, we found that repeated, but not acute, cocaine treatment increased the levels of immunoreactivity of GluR1 (an AMPA receptor subunit) and NMDAR1 (an NMDA receptor subunit) in the ventral tegmental area (VTA), a nucleus containing mesolimbic DA neurons. In contrast, chronic cocaine treatment did not alter levels of GluR2 (an AMPA receptor subunit), NMDA2A/B (NMDA receptor subunits), or GluR6/7 (kainate receptor subunits) in this brain region. Moreover, GluR1 and NMDAR1 levels were not regulated in other regions of the mesolimbic or nigrostriatal DA pathways, including the substantia nigra. Because several drugs of abuse and stress can elicit common and cross-sensitizing effects on mesolimbic DA function, we next examined whether repeated morphine and stress treatments would regulate these proteins similarly in the VTA. Although morphine delivered by subcutaneous pellet implantation had no significant effect on subunit levels, morphine delivered intermittently by subcutaneous injections of escalating doses elevated GluR1 levels in the VTA. Repeated restraint stress also paradigm (2 stressors/d under variable conditions) increased both GluR1 and NMDAR1 levels in this brain region. Unlike cocaine, morphine, and stress, repeated treatment with other psychotropic drugs (haloperidol, raclopride, sertraline, and desipramine) that lack reinforcing or sensitizing properties did not regulate GluR1 or NMDAR1 subunit levels in the VTA. Increased glutamate receptor subunit expression in the VTA may represent an important molecular mechanism by which drugs of abuse and stress exert common, long-term effects on mesolimbic DA function. |
---|---|
AbstractList | Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine and other drugs of abuse on brain function. We therefore examined the effect of repeated cocaine treatment on glutamate receptor subunit expression in central dopamine (DA) pathways implicated in many of cocaine's behavioral actions. By immunoblotting procedures using subunit-specific antibodies, we found that repeated, but not acute, cocaine treatment increased the levels of immunoreactivity of GluR1 (an AMPA receptor subunit) and NMDAR1 (an NMDA receptor subunit) in the ventral tegmental area (VTA), a nucleus containing mesolimbic DA neurons. In contrast, chronic cocaine treatment did not alter levels of GluR2 (an AMPA receptor subunit), NMDA2A/B (NMDA receptor subunits), or GluR6/7 (kainate receptor subunits) in this brain region. Moreover, GluR1 and NMDAR1 levels were not regulated in other regions of the mesolimbic or nigrostriatal DA pathways, including the substantia nigra. Because several drugs of abuse and stress can elicit common and cross-sensitizing effects on mesolimbic DA function, we next examined whether repeated morphine and stress treatments would regulate these proteins similarly in the VTA. Although morphine delivered by subcutaneous pellet implantation had no significant effect on subunit levels, morphine delivered intermittently by subcutaneous injections of escalating doses elevated GluR1 levels in the VTA. Repeated restraint stress also paradigm (2 stressors/d under variable conditions) increased both GluR1 and NMDAR1 levels in this brain region. Unlike cocaine, morphine, and stress, repeated treatment with other psychotropic drugs (haloperidol, raclopride, sertraline, and desipramine) that lack reinforcing or sensitizing properties did not regulate GluR1 or NMDAR1 subunit levels in the VTA. Increased glutamate receptor subunit expression in the VTA may represent an important molecular mechanism by which drugs of abuse and stress exert common, long-term effects on mesolimbic DA function. Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine and other drugs of abuse on brain function. We therefore examined the effect of repeated cocaine treatment on glutamate receptor subunit expression in central dopamine (DA) pathways implicated in many of cocaine's behavioral actions. By immunoblotting procedures using subunit-specific antibodies, we found that repeated, but not acute, cocaine treatment increased the levels of immunoreactivity of GluR1 (an AMPA receptor subunit) and NMDAR1 (an NMDA receptor subunit) in the ventral tegmental area (VTA), a nucleus containing mesolimbic DA neurons. In contrast, chronic cocaine treatment did not alter levels of GluR2 (an AMPA receptor subunit), NMDA2A/B (NMDA receptor subunits), or GluR6/7 (kainate receptor subunits) in this brain region. Moreover, GluR1 and NMDAR1 levels were not regulated in other regions of the mesolimbic or nigrostriatal DA pathways, including the substantia nigra. Because several drugs of abuse and stress can elicit common and cross-sensitizing effects on mesolimbic DA function, we next examined whether repeated morphine and stress treatments would regulate these proteins similarly in the VTA. Although morphine delivered by subcutaneous pellet implantation had no significant effect on subunit levels, morphine delivered intermittently by subcutaneous injections of escalating doses elevated GluR1 levels in the VTA. Repeated restraint stress also increased GluR1 levels in the VTA, whereas an unpredictable stress paradigm (2 stressors/d under variable conditions) increased both GluR1 and NMDAR1 levels in this brain region. Unlike cocaine, morphine, and stress, repeated treatment with other psychotropic drugs (haloperidol, raclopride, sertraline, and desipramine) that lack reinforcing or sensitizing properties did not regulate GluR1 or NMDAR1 subunit levels in the VTA. Increased glutamate receptor subunit expression in the VTA may represent an important molecular mechanism by which drugs of abuse and stress exert common, long-term effects on mesolimbic DA function. |
Author | Ortiz, J Nestler, EJ Fitzgerald, LW Hamedani, AG |
AuthorAffiliation | Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven 06508, USA |
AuthorAffiliation_xml | – name: Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven 06508, USA |
Author_xml | – sequence: 1 fullname: Fitzgerald, LW – sequence: 2 fullname: Ortiz, J – sequence: 3 fullname: Hamedani, AG – sequence: 4 fullname: Nestler, EJ |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8613793$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1v0zAUtdDQ6AY_AclCgrcUO3HtZA9IU_fB0NikwZ6tG_c29ZQ4xXZW2A_j9-G01QRPPPnqnHPP_fA9Igeud0jIO86mfJYXHx8cDr4Pxk65zBjPGMuVmPKqki_IJCmqLBeMH5BJwlkmhRKvyFEID4wxxbg6JIel5IWqign5feaHJtB-SaEeAlJwCxqixxCodcYjJCyukOLP9Qja3o3ay3a441vtzdez0xQ27RChg4jUo8F17D0NQz04G0efrYOHSB_RRQ8tjdh0KUwRpBIn1PRdl5xhAesIMRUJFBLQUJPGDFlAF2y0TzYh0KTE8Jq8XEIb8M3-PSb3F-ff55-z69vLq_npdWZEyWImF1XNC0BZIud5LUCoWubFLBfCAOSg8toUojSmTtwMoUaQLG14YXIFqlLFMfm0810PdYcLs-tfr73twP_SPVj9L-PsSjf9o5YzVapiNPiwN_D9jwFD1J0NBtsWHPZD0EqVlaxE8V8hTz83k4wl4clOuN2Nx-VzN5zp8Tz0l5vz-7vbb_MrzaVmXG_PQ4_nkZLf_j3Pc-r-HhL_fsevbLPaWI86dNC2Sc31ZrNJflwns-IPvULNUw |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2010_05_056 crossref_primary_10_1016_S0028_3908_98_00022_7 crossref_primary_10_1016_S0006_8993_97_00753_1 crossref_primary_10_1038_npp_2010_134 crossref_primary_10_1016_j_alcohol_2017_10_004 crossref_primary_10_1016_j_neuropharm_2011_12_011 crossref_primary_10_1002__SICI_1098_2396_199707_26_3_269__AID_SYN8_3_0_CO_2_5 crossref_primary_10_1046_j_0953_816x_2001_01652_x crossref_primary_10_1046_j_1460_9568_2000_00040_x crossref_primary_10_1038_sj_npp_1301045 crossref_primary_10_1016_S0006_8993_98_00925_1 crossref_primary_10_1016_S0306_4530_02_00062_8 crossref_primary_10_1155_2014_294149 crossref_primary_10_1016_j_bbr_2004_08_010 crossref_primary_10_1016_S0306_4522_02_00975_2 crossref_primary_10_1038_npp_2008_89 crossref_primary_10_1016_j_neulet_2005_04_037 crossref_primary_10_1016_j_neulet_2019_134367 crossref_primary_10_1300_J374v01n03_04 crossref_primary_10_1016_j_pbb_2005_09_003 crossref_primary_10_1016_S0163_7258_03_00029_9 crossref_primary_10_1007_s00213_005_0190_5 crossref_primary_10_1038_nn2054 crossref_primary_10_1016_S0014_2999_97_01400_3 crossref_primary_10_1007_s00213_004_2023_3 crossref_primary_10_1523_JNEUROSCI_18_22_09547_1998 crossref_primary_10_1002_syn_10304 crossref_primary_10_1242_jeb_014399 crossref_primary_10_1111_j_1530_0277_2008_00749_x crossref_primary_10_1523_JNEUROSCI_19_20_09081_1999 crossref_primary_10_1038_sj_npp_1301033 crossref_primary_10_3390_biom10060947 crossref_primary_10_1046_j_1471_4159_1999_0722397_x crossref_primary_10_1016_S0896_6273_00_81154_X crossref_primary_10_1523_JNEUROSCI_17_21_08596_1997 crossref_primary_10_1016_j_neubiorev_2017_09_022 crossref_primary_10_1016_S0165_0173_97_00021_0 crossref_primary_10_1111_j_1460_9568_2007_05774_x crossref_primary_10_1016_j_biopha_2022_113346 crossref_primary_10_1038_sj_npp_1301039 crossref_primary_10_1016_j_pbb_2011_04_020 crossref_primary_10_1016_j_pbb_2008_12_007 crossref_primary_10_1111_ejn_12490 crossref_primary_10_1016_S0165_6147_00_01792_2 crossref_primary_10_1111_j_1471_4159_2009_05992_x crossref_primary_10_1016_j_neuropharm_2010_06_008 crossref_primary_10_1016_j_neuroscience_2003_12_007 crossref_primary_10_1523_JNEUROSCI_20_15_05575_2000 crossref_primary_10_1016_j_bbr_2010_11_050 crossref_primary_10_7554_eLife_15448 crossref_primary_10_1111_j_1460_9568_2008_06397_x crossref_primary_10_1523_JNEUROSCI_6014_10_2011 crossref_primary_10_1016_j_biopsych_2005_09_018 crossref_primary_10_1016_S0304_3940_01_01681_0 crossref_primary_10_1016_j_neuropharm_2011_01_028 crossref_primary_10_1101_lm_81404 crossref_primary_10_1124_jpet_103_054965 crossref_primary_10_1038_s41380_023_02235_4 crossref_primary_10_1097_00008877_200209000_00014 crossref_primary_10_1006_nbdi_2002_0518 crossref_primary_10_1016_j_ynstr_2020_100250 crossref_primary_10_1038_sj_mp_4001269 crossref_primary_10_1016_S0896_6273_03_00461_6 crossref_primary_10_1177_1744806920911543 crossref_primary_10_1111_j_1749_6632_2002_tb04153_x crossref_primary_10_1016_j_drugalcdep_2008_07_012 crossref_primary_10_1016_j_neuroscience_2007_09_069 crossref_primary_10_1016_j_neubiorev_2008_09_009 crossref_primary_10_1007_s12035_014_8636_6 crossref_primary_10_1038_sj_mp_4001021 crossref_primary_10_1146_annurev_pharmtox_010617_052735 crossref_primary_10_2174_1570159X17666190617101726 crossref_primary_10_1196_annals_1296_032 crossref_primary_10_1016_j_ijdevneu_2004_06_005 crossref_primary_10_1006_nbdi_2002_0530 crossref_primary_10_1523_JNEUROSCI_23_06_02112_2003 crossref_primary_10_1016_S0006_8993_97_01319_X crossref_primary_10_1523_JNEUROSCI_1474_05_2005 crossref_primary_10_1016_j_neubiorev_2013_12_006 crossref_primary_10_1016_S0278_5846_99_00094_9 crossref_primary_10_1038_npp_2008_80 crossref_primary_10_3390_ph4070976 crossref_primary_10_1111_j_1365_2826_2007_01557_x crossref_primary_10_1126_science_277_5327_812 crossref_primary_10_1016_j_neuropharm_2004_07_005 crossref_primary_10_1016_S0006_8993_99_01245_7 crossref_primary_10_3389_fphar_2014_00116 crossref_primary_10_1111_j_1749_6632_2009_05144_x crossref_primary_10_1523_JNEUROSCI_3453_14_2015 crossref_primary_10_1016_j_eplepsyres_2010_06_010 crossref_primary_10_1021_acs_analchem_5b00555 crossref_primary_10_1515_REVNEURO_2008_19_4_5_227 crossref_primary_10_1093_ijnp_pyad060 crossref_primary_10_1523_JNEUROSCI_19_08_03213_1999 crossref_primary_10_1111_j_1440_1681_2008_05004_x crossref_primary_10_1196_annals_1300_029 crossref_primary_10_17816_RCF203229_254 crossref_primary_10_1016_j_brainres_2006_10_028 crossref_primary_10_1523_JNEUROSCI_0951_10_2010 crossref_primary_10_1016_j_euroneuro_2016_01_010 crossref_primary_10_3389_fncel_2014_00466 crossref_primary_10_1016_j_neubiorev_2009_11_023 crossref_primary_10_1038_sj_npp_1300946 crossref_primary_10_1046_j_1460_9568_1999_00736_x crossref_primary_10_1016_S0006_3223_01_01362_2 crossref_primary_10_2144_05393PS01 crossref_primary_10_1111_j_1365_2826_2005_01285_x crossref_primary_10_1523_JNEUROSCI_4773_08_2009 crossref_primary_10_1016_j_neulet_2014_01_032 crossref_primary_10_1016_j_neuroscience_2006_12_038 crossref_primary_10_1080_10550490902925946 crossref_primary_10_1097_FBP_0000000000000449 crossref_primary_10_1002__SICI_1098_2396_19991201_34_3_169__AID_SYN1_3_0_CO_2_C crossref_primary_10_3389_fcell_2020_619199 crossref_primary_10_1016_S0306_4522_99_00361_9 crossref_primary_10_1002__SICI_1096_9861_20000131_417_1_103__AID_CNE8_3_0_CO_2_L crossref_primary_10_1016_j_neulet_2018_02_011 crossref_primary_10_1016_j_pbb_2008_08_006 crossref_primary_10_1196_annals_1300_012 crossref_primary_10_1016_j_neulet_2005_11_030 crossref_primary_10_1016_j_ejphar_2007_06_046 crossref_primary_10_1002_cne_21866 crossref_primary_10_1016_S0166_4328_02_00038_4 crossref_primary_10_1007_BF02255968 crossref_primary_10_1046_j_1471_4159_2003_01740_x crossref_primary_10_1111_j_1460_9568_2007_05689_x crossref_primary_10_1016_S0896_6273_00_80110_5 crossref_primary_10_1073_pnas_97_24_13360 crossref_primary_10_1016_j_bbr_2019_112176 crossref_primary_10_1016_j_neuropharm_2004_07_025 crossref_primary_10_1007_s00429_017_1544_6 crossref_primary_10_1016_j_neuropharm_2004_06_027 crossref_primary_10_1101_cshperspect_a039362 crossref_primary_10_1038_sj_npp_1301101 crossref_primary_10_1515_REVNEURO_2001_12_2_95 crossref_primary_10_1016_S0006_8993_97_00712_9 crossref_primary_10_1515_REVNEURO_2005_16_4_277 crossref_primary_10_1016_S0306_4522_00_00115_9 crossref_primary_10_1016_S0376_8716_98_00072_6 crossref_primary_10_1111_j_1471_4159_2011_07571_x crossref_primary_10_1016_j_neuropharm_2004_06_021 crossref_primary_10_1016_j_pharmthera_2012_01_010 crossref_primary_10_3390_ijms24010388 crossref_primary_10_1007_s00210_005_0016_3 crossref_primary_10_1016_S0169_328X_01_00110_3 crossref_primary_10_1038_npp_2010_61 crossref_primary_10_1097_00008877_200006000_00005 crossref_primary_10_1111_eos_12936 crossref_primary_10_1007_s00213_010_2086_2 crossref_primary_10_1016_j_pnpbp_2004_05_043 crossref_primary_10_1016_j_biopsych_2013_09_005 crossref_primary_10_1111_j_1460_9568_2004_03712_x crossref_primary_10_1016_j_ejphar_2003_11_062 crossref_primary_10_1097_FBP_0000000000000105 crossref_primary_10_52547_phypha_26_4_6 crossref_primary_10_1111_j_1471_4159_2004_02392_x crossref_primary_10_1046_j_1471_4159_1999_0720157_x crossref_primary_10_1016_S0014_2999_02_01301_8 crossref_primary_10_1016_S0006_8993_00_02951_6 crossref_primary_10_1046_j_1471_4159_2003_01824_x crossref_primary_10_1016_j_pbb_2008_09_016 crossref_primary_10_1016_S0028_3908_99_00073_8 crossref_primary_10_1523_JNEUROSCI_17_01_00011_1997 crossref_primary_10_1016_j_neubiorev_2019_10_015 crossref_primary_10_1007_s00213_017_4612_y crossref_primary_10_1007_s00213_007_1024_4 crossref_primary_10_1016_S0959_4388_97_80094_3 crossref_primary_10_1523_JNEUROSCI_1958_08_2008 crossref_primary_10_1523_JNEUROSCI_18_23_09989_1998 crossref_primary_10_1016_S0301_0082_97_00090_7 crossref_primary_10_1111_j_1471_4159_2005_03517_x crossref_primary_10_1016_S0892_0362_99_00028_8 crossref_primary_10_1124_pr_115_010967 crossref_primary_10_1093_ijnp_pyz019 crossref_primary_10_1016_S0166_4328_96_00158_1 crossref_primary_10_1016_S0376_8716_98_00043_X crossref_primary_10_1016_j_neuron_2008_07_010 crossref_primary_10_1007_BF02461389 crossref_primary_10_1111_acer_13781 crossref_primary_10_1016_S0028_3908_98_00015_X crossref_primary_10_1016_j_bcp_2023_115578 crossref_primary_10_1016_j_brainres_2005_09_051 crossref_primary_10_1002_syn_20640 crossref_primary_10_1016_S0163_7258_01_00163_2 crossref_primary_10_1046_j_1460_9568_2001_02009_x crossref_primary_10_1016_j_ejphar_2024_176489 crossref_primary_10_1016_S0166_2236_02_02289_0 crossref_primary_10_1096_fj_09_133223 crossref_primary_10_1523_JNEUROSCI_17_24_09393_1997 crossref_primary_10_1146_annurev_pharmtox_39_1_221 crossref_primary_10_1002_iub_292 crossref_primary_10_1016_j_bbi_2009_01_014 crossref_primary_10_1038_nn_2300 crossref_primary_10_1038_npp_2009_190 crossref_primary_10_1371_journal_pone_0038325 crossref_primary_10_1007_s00406_014_0572_y crossref_primary_10_1097_FBP_0000000000000080 crossref_primary_10_3389_fnbeh_2018_00309 crossref_primary_10_1021_acschemneuro_7b00281 crossref_primary_10_1523_JNEUROSCI_17_20_07890_1997 crossref_primary_10_1016_j_yebeh_2010_06_043 crossref_primary_10_1016_j_neuropharm_2010_12_031 crossref_primary_10_1016_j_neuropharm_2010_12_033 crossref_primary_10_1111_j_1369_1600_2000_tb00204_x crossref_primary_10_1016_j_expneurol_2011_03_016 crossref_primary_10_1016_j_neuroscience_2009_10_009 crossref_primary_10_1016_j_neubiorev_2009_02_005 crossref_primary_10_1523_JNEUROSCI_16_15_04707_1996 crossref_primary_10_1523_JNEUROSCI_20_23_08701_2000 crossref_primary_10_1016_j_pbb_2024_173711 crossref_primary_10_1016_j_neulet_2006_04_017 crossref_primary_10_1007_s00213_022_06209_2 crossref_primary_10_1016_j_bbi_2009_01_003 crossref_primary_10_1016_j_lfs_2006_02_040 crossref_primary_10_1111_j_1471_4159_2005_03178_x crossref_primary_10_1016_j_neuroscience_2005_10_006 crossref_primary_10_1016_j_neuropharm_2004_09_004 crossref_primary_10_1016_S0306_4522_01_00274_3 crossref_primary_10_1016_S0301_0082_00_00033_2 crossref_primary_10_1016_j_ijdevneu_2019_06_004 crossref_primary_10_1152_physrev_2001_81_1_299 crossref_primary_10_1186_1471_2202_9_39 crossref_primary_10_1016_j_tins_2007_01_006 crossref_primary_10_1016_S0166_2236_99_01539_8 crossref_primary_10_1006_smns_1997_0109 crossref_primary_10_1016_j_neulet_2005_04_102 crossref_primary_10_1523_JNEUROSCI_2966_10_2010 crossref_primary_10_1080_13556219872191 crossref_primary_10_1016_j_biopsych_2008_05_029 crossref_primary_10_1523_JNEUROSCI_1312_04_2004 crossref_primary_10_1523_JNEUROSCI_18_01_00488_1998 crossref_primary_10_1016_j_brs_2021_11_003 crossref_primary_10_1016_j_bbr_2013_06_018 crossref_primary_10_1038_sj_npp_1301080 crossref_primary_10_1016_S0165_3806_98_00100_X crossref_primary_10_1038_35079077 crossref_primary_10_1016_S0028_3908_01_00146_0 crossref_primary_10_1016_S0361_9230_97_00089_0 crossref_primary_10_1038_bjp_2008_77 crossref_primary_10_1523_JNEUROSCI_0062_05_2005 crossref_primary_10_1016_j_biopsych_2007_02_006 crossref_primary_10_1016_j_conb_2013_03_005 crossref_primary_10_1002_syn_20601 crossref_primary_10_1016_S0006_8993_97_01001_9 crossref_primary_10_1017_S1092852900005216 crossref_primary_10_1016_j_ejphar_2005_10_017 crossref_primary_10_1016_j_lfs_2020_117400 crossref_primary_10_1016_j_ijdevneu_2010_06_009 crossref_primary_10_1080_1354750X_2022_2049367 crossref_primary_10_1016_S0896_6273_03_00021_7 crossref_primary_10_1007_s10072_021_05778_y crossref_primary_10_1523_JNEUROSCI_1749_12_2013 crossref_primary_10_1016_j_neuropharm_2008_07_011 crossref_primary_10_1523_JNEUROSCI_4127_03_2004 crossref_primary_10_1126_science_278_5335_58 crossref_primary_10_1016_j_tips_2004_02_005 crossref_primary_10_1007_s00213_011_2548_1 crossref_primary_10_1016_j_lfs_2009_11_005 crossref_primary_10_1080_14656566_2020_1732349 crossref_primary_10_1007_s00403_012_1261_1 crossref_primary_10_1038_sj_npp_1300781 crossref_primary_10_1111_j_1460_9568_2005_04110_x crossref_primary_10_1111_j_1530_0277_1997_tb04483_x crossref_primary_10_1016_j_neuron_2006_01_016 crossref_primary_10_1093_ilar_47_1_39 crossref_primary_10_1590_S1516_44461999000100012 crossref_primary_10_1016_j_neuron_2008_05_028 crossref_primary_10_1007_BF03033236 crossref_primary_10_1016_S0376_8716_99_00107_6 crossref_primary_10_1046_j_1471_4159_2002_01083_x crossref_primary_10_1016_S0163_7258_02_00302_9 crossref_primary_10_1046_j_1471_4159_2000_0752040_x crossref_primary_10_1126_science_282_5397_2272 crossref_primary_10_1523_JNEUROSCI_2608_10_2011 crossref_primary_10_1016_S0306_4522_97_00243_1 crossref_primary_10_1124_jpet_103_053264 crossref_primary_10_1016_j_neuroscience_2007_10_019 crossref_primary_10_1016_j_physbeh_2017_07_024 crossref_primary_10_1002_syn_20176 crossref_primary_10_1038_sj_bdj_2008_932 crossref_primary_10_1007_s00213_011_2551_6 crossref_primary_10_1523_JNEUROSCI_2252_05_2005 crossref_primary_10_1016_j_neubiorev_2012_07_001 crossref_primary_10_1097_00001756_200202110_00003 crossref_primary_10_1007_s10519_006_9115_2 crossref_primary_10_1002_1098_2396_20010301_39_3_239__AID_SYN1005_3_0_CO_2_B crossref_primary_10_1016_j_physbeh_2005_06_027 crossref_primary_10_1038_npp_2012_168 crossref_primary_10_1016_j_jep_2024_118040 crossref_primary_10_1111_ejn_12464 crossref_primary_10_1038_sj_npp_1300533 crossref_primary_10_1523_JNEUROSCI_2828_16_2017 crossref_primary_10_1002_syn_10132 crossref_primary_10_3390_ijms21217951 crossref_primary_10_1111_j_1460_9568_2005_03979_x crossref_primary_10_2165_00023210_200115010_00004 crossref_primary_10_1016_j_jneumeth_2008_08_005 crossref_primary_10_1074_jbc_M310410200 crossref_primary_10_1016_S0306_4522_01_00483_3 crossref_primary_10_1007_s11481_005_9008_9 crossref_primary_10_1523_JNEUROSCI_3661_06_2007 crossref_primary_10_1046_j_1471_4159_1999_0731529_x crossref_primary_10_1007_s12035_020_02145_4 crossref_primary_10_1007_s12640_014_9502_z crossref_primary_10_1016_j_bcp_2007_06_039 crossref_primary_10_1016_j_pbb_2024_173752 crossref_primary_10_1074_jbc_M009105200 crossref_primary_10_1523_JNEUROSCI_21_12_04451_2001 crossref_primary_10_1016_j_neuroscience_2004_04_025 crossref_primary_10_1007_BF01291780 crossref_primary_10_1016_j_neuroscience_2009_08_023 crossref_primary_10_1016_S0006_8993_02_03947_1 crossref_primary_10_1016_S0169_328X_03_00180_3 crossref_primary_10_1124_pr_109_001933 crossref_primary_10_1002__SICI_1098_2396_199905_32_2_119__AID_SYN5_3_0_CO_2_F crossref_primary_10_1016_j_brainresbull_2009_08_016 |
ContentType | Journal Article |
Copyright | 1996 by Society for Neuroscience 1996 |
Copyright_xml | – notice: 1996 by Society for Neuroscience 1996 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 5PM |
DOI | 10.1523/jneurosci.16-01-00274.1996 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 282 |
ExternalDocumentID | 10_1523_JNEUROSCI_16_01_00274_1996 8613793 www16_1_274 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: DA08227 – fundername: NIDA NIH HHS grantid: DA00203 – fundername: NIDA NIH HHS grantid: DA07359 |
GroupedDBID | - 08R 2WC 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL VH1 WH7 WOQ X X7M XJT ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 18M 1CY 34G 39C AAFWJ ABBAR ACGUR AFCFT AFHIN AFOSN AHWXS AI. AOIJS BTFSW CGR CUY CVF ECM EIF H~9 NPM TR2 W8F YBU YHG YKV YNH YSK YYP AAYXX CITATION 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c480t-6d9b13ae68e112b4a47b6235244caa2a72bc348ccbb4a5eabea60523dc27a7973 |
IEDL.DBID | RPM |
ISSN | 0270-6474 |
IngestDate | Tue Sep 17 21:12:44 EDT 2024 Fri Oct 25 22:52:13 EDT 2024 Fri Oct 25 10:47:53 EDT 2024 Thu Sep 26 18:44:33 EDT 2024 Sat Sep 28 07:32:03 EDT 2024 Tue Nov 10 19:19:56 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-6d9b13ae68e112b4a47b6235244caa2a72bc348ccbb4a5eabea60523dc27a7973 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/16/1/274.full.pdf |
PMID | 8613793 |
PQID | 17015600 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6578737 proquest_miscellaneous_77896943 proquest_miscellaneous_17015600 crossref_primary_10_1523_JNEUROSCI_16_01_00274_1996 pubmed_primary_8613793 highwire_smallpub1_www16_1_274 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 1900 |
PublicationDate | 19960101 1996-Jan 1996-01-01 |
PublicationDateYYYYMMDD | 1996-01-01 |
PublicationDate_xml | – month: 01 year: 1996 text: 19960101 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 1996 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
SSID | ssj0007017 |
Score | 2.094358 |
Snippet | Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine... |
SourceID | pubmedcentral proquest crossref pubmed highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 274 |
SubjectTerms | Animals Antibody Specificity Blotting, Western Cocaine - pharmacology Dopamine - physiology Drug Tolerance Male Morphine - pharmacology Neuronal Plasticity - drug effects Rats Rats, Sprague-Dawley Receptors, Glutamate - drug effects Receptors, Glutamate - immunology Receptors, Glutamate - ultrastructure Receptors, Kainic Acid - drug effects Receptors, Kainic Acid - immunology Receptors, N-Methyl-D-Aspartate - drug effects Receptors, N-Methyl-D-Aspartate - immunology Sensitivity and Specificity Stress, Physiological - physiopathology Ventral Tegmental Area - chemistry Ventral Tegmental Area - ultrastructure |
Title | Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents |
URI | http://www.jneurosci.org/cgi/content/abstract/16/1/274 https://www.ncbi.nlm.nih.gov/pubmed/8613793 https://search.proquest.com/docview/17015600 https://search.proquest.com/docview/77896943 https://pubmed.ncbi.nlm.nih.gov/PMC6578737 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbWSUi7IGBMFEbxAXFLm9ROnHCrOsYYWsWvSbtZz85rqdSm1ZJMwB_G38ezk1QUwYVbFL84Vt5n-3vO52fGXo7noVHu12CuRBLIGGyQAtpAgpEWcovCeIHsLLm4lpc38c0Bi7u9MF60b81yWKzWw2L51Wsrt2s76nRiow9X08TBTKhRj_UIoF2I3g6_KvTH7FK4RXGRVLLNNEoB1-hy5uRxn6fvhlETRruYzO3XS47YvZQmNpWJ_fmpyxn8N_75p4zyt3np_AG73xJKPmka_pAdYPGIHU8KCqbX3_kr7iWefu38mP08u60XJd_MOZi6RA5FzpvNInxZOPpI94gQcvzWymMLZ_t2VX-KvO3s6mxClwtCKxDTRU7DJW4paudlbWoaHFw9vgbCFb9rGswrXDQnCHCgV7zmhHHCPoccto0OoOT-yCPuv0hQOkl9tfxBcyoHt_GrfMyuz998mV4E7cENgZVpWAVJnplIACYpEp0zEqQyRLNiohIWYAxqbKyQqbWGymIEg5C45encjhWoTIkTdlhsCnzCuMXQYCYEhpbGGmlApfM4BKIhYRyiwj4Tnbv0tsnPoV1cQ7Xpnbt1lOgw0t7d2rm7zwadZ3W5htWKHBlpwh4ZRpqs-uxF529N_c39RIECN3WpXf56xxL_baFUmiWZFH120uBj17AWYn2m9oCzK3epvvdLqAf4lN8t4p_-95PP2FGjN3eLR6fssLqt8TnRqcoMWO_9x3TgO9EvrJ4kfw |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEGIv3MZEuGx-QLylTWonTnirOkY31grBhvZmHTtuV9GmVZMg2A_j93HsJBWd4AHeovjEuX3H_o79-ZiQ171JoISdGswEi30egfYTMNrnoLiGTBumnEB2HA8v-dlVdLVDonYtjBPtazXr5PNFJ59dO23laqG7rU6s-3E0iC3MmOjeIXfRX4O4DdKbBlgEbqNdDLgwMuKCN7lGMeTqno2tQO7z4LQT1oG0jcrsir14j9xLsGsTKdvuodqswX9ioLeFlL_1TCcPyZf2nWpBytdOVaqOvrmV7vGfX_oRedBwVdqvix-THZM_Ifv9HOP0xQ_6hjr1qBuW3yc_j9fVtKDLCQVVFYZCntF6HQqd5ZaZ4jnkmtR8b5S3ubV9P68-hc52PDru4-EUHQGQRBuKLbFZlcs1LSpVYbtj63E1IGTpt_pL0NJM680JKOAt3lJ0H3QrChmsaolBQd1uStR9ar-wav1ydoPdNQW7pqx4Si5P3l0Mhn6zJ4SveRKUfpylKmRg4sQgU1QcuFDI4CJkKRqgB6KnNOOJ1grLIgPKQGxHvjPdEyBSwQ7Ibr7MzTNCtQmUSRkzgcZmjCsQySQKABlOEAVGGI-wFgdyVaf-kDZkwtrkBkcyjGUQSocjaXHkkcMWMrJYwHyOCAkl_mE0DCVaeeSoBZJEV7bzM5CbZVVImxrfEtC_WwiRpHHKmUcOauBtHqzBrkfEFiI35TaL-HYJ4sxlE29w9fy_rzwi94cXo3N5fjr-8ILs1bJ2O0b1kuyW68q8QtZWqkPno78A_H9FjQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgCLSX8TEmwsfmB8Rb2qR24oS3qqVsg1UTMGnixbp23FLRplWTTLAfxu_j2kmqdYKXvUX1rdOk59rn2sf3EvK2NwmUsFuDmWCxzyPQfgJG-xwU15Bpw5QTyI7j4wt-ehld3ij15UT7Ws06-XzRyWc_nLZytdDdVifWPT8bxBZmTHRX2aR7nzxAnw2SNlBvBmERuGK7GHRhdMQFb_KNYtjVPR1bkdzXwUknrINpG5nZU3vxLnmY4PQmUrY9S7WZg__FQm-LKW_MTqPH5Hv7XLUo5WenKlVHX99K-XinB39C9hrOSvu1yVNyz-TPyH4_x3h98Zu-o05F6pbn98mf4bqaFnQ5oaCqwlDIM1qfR6Gz3DJU_Aw5JzW_GgVubm0_zqsvobMdnw37eDlFhwAk04biiGxW5XJNi0pVOP7YflwPCF16Vb8NWpppXaSAAt7iPUU3QveikMGqlhoU1FVVou51-4VV7Zeza5y2KdizZcVzcjH68G1w7De1IXzNk6D04yxVIQMTJwYZo-LAhUImFyFb0QA9ED2lGU-0VtgWGVAGYrsCnumeAJEKdkB28mVuXhCqTaBMypgJNA5nXIFIJlEAyHSCKDDCeIS1WJCrOgWItKET9iY3WJJhLINQOixJiyWPHLawkcUC5nNESSjxX0bDUKKVR45aMEl0abtPA7lZVoW0KfItEf2_hRBJGqeceeSgBt_mhzX49YjYQuWm3WYT325BrLms4g22Xt75m0fk0flwJD-fjD-9Iru1ut0uVb0mO-W6Mm-QvJXq0LnpX_WxSA0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drugs+of+abuse+and+stress+increase+the+expression+of+GluR1+and+NMDAR1+glutamate+receptor+subunits+in+the+rat+ventral+tegmental+area%3A+common+adaptations+among+cross-sensitizing+agents&rft.jtitle=The+Journal+of+neuroscience&rft.au=Fitzgerald%2C+LW&rft.au=Ortiz%2C+J&rft.au=Hamedani%2C+AG&rft.au=Nestler%2C+EJ&rft.date=1996-01-01&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=16&rft.issue=1&rft.spage=274&rft.epage=282&rft_id=info:doi/10.1523%2FJNEUROSCI.16-01-00274.1996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_16_01_00274_1996 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |