Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents

Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine and other drugs of abuse on brain function. We therefore examined the effect of repeated cocaine treatment on glutamate receptor subunit expr...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 16; no. 1; pp. 274 - 282
Main Authors Fitzgerald, LW, Ortiz, J, Hamedani, AG, Nestler, EJ
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 01.01.1996
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine and other drugs of abuse on brain function. We therefore examined the effect of repeated cocaine treatment on glutamate receptor subunit expression in central dopamine (DA) pathways implicated in many of cocaine's behavioral actions. By immunoblotting procedures using subunit-specific antibodies, we found that repeated, but not acute, cocaine treatment increased the levels of immunoreactivity of GluR1 (an AMPA receptor subunit) and NMDAR1 (an NMDA receptor subunit) in the ventral tegmental area (VTA), a nucleus containing mesolimbic DA neurons. In contrast, chronic cocaine treatment did not alter levels of GluR2 (an AMPA receptor subunit), NMDA2A/B (NMDA receptor subunits), or GluR6/7 (kainate receptor subunits) in this brain region. Moreover, GluR1 and NMDAR1 levels were not regulated in other regions of the mesolimbic or nigrostriatal DA pathways, including the substantia nigra. Because several drugs of abuse and stress can elicit common and cross-sensitizing effects on mesolimbic DA function, we next examined whether repeated morphine and stress treatments would regulate these proteins similarly in the VTA. Although morphine delivered by subcutaneous pellet implantation had no significant effect on subunit levels, morphine delivered intermittently by subcutaneous injections of escalating doses elevated GluR1 levels in the VTA. Repeated restraint stress also paradigm (2 stressors/d under variable conditions) increased both GluR1 and NMDAR1 levels in this brain region. Unlike cocaine, morphine, and stress, repeated treatment with other psychotropic drugs (haloperidol, raclopride, sertraline, and desipramine) that lack reinforcing or sensitizing properties did not regulate GluR1 or NMDAR1 subunit levels in the VTA. Increased glutamate receptor subunit expression in the VTA may represent an important molecular mechanism by which drugs of abuse and stress exert common, long-term effects on mesolimbic DA function.
AbstractList Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine and other drugs of abuse on brain function. We therefore examined the effect of repeated cocaine treatment on glutamate receptor subunit expression in central dopamine (DA) pathways implicated in many of cocaine's behavioral actions. By immunoblotting procedures using subunit-specific antibodies, we found that repeated, but not acute, cocaine treatment increased the levels of immunoreactivity of GluR1 (an AMPA receptor subunit) and NMDAR1 (an NMDA receptor subunit) in the ventral tegmental area (VTA), a nucleus containing mesolimbic DA neurons. In contrast, chronic cocaine treatment did not alter levels of GluR2 (an AMPA receptor subunit), NMDA2A/B (NMDA receptor subunits), or GluR6/7 (kainate receptor subunits) in this brain region. Moreover, GluR1 and NMDAR1 levels were not regulated in other regions of the mesolimbic or nigrostriatal DA pathways, including the substantia nigra. Because several drugs of abuse and stress can elicit common and cross-sensitizing effects on mesolimbic DA function, we next examined whether repeated morphine and stress treatments would regulate these proteins similarly in the VTA. Although morphine delivered by subcutaneous pellet implantation had no significant effect on subunit levels, morphine delivered intermittently by subcutaneous injections of escalating doses elevated GluR1 levels in the VTA. Repeated restraint stress also paradigm (2 stressors/d under variable conditions) increased both GluR1 and NMDAR1 levels in this brain region. Unlike cocaine, morphine, and stress, repeated treatment with other psychotropic drugs (haloperidol, raclopride, sertraline, and desipramine) that lack reinforcing or sensitizing properties did not regulate GluR1 or NMDAR1 subunit levels in the VTA. Increased glutamate receptor subunit expression in the VTA may represent an important molecular mechanism by which drugs of abuse and stress exert common, long-term effects on mesolimbic DA function.
Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine and other drugs of abuse on brain function. We therefore examined the effect of repeated cocaine treatment on glutamate receptor subunit expression in central dopamine (DA) pathways implicated in many of cocaine's behavioral actions. By immunoblotting procedures using subunit-specific antibodies, we found that repeated, but not acute, cocaine treatment increased the levels of immunoreactivity of GluR1 (an AMPA receptor subunit) and NMDAR1 (an NMDA receptor subunit) in the ventral tegmental area (VTA), a nucleus containing mesolimbic DA neurons. In contrast, chronic cocaine treatment did not alter levels of GluR2 (an AMPA receptor subunit), NMDA2A/B (NMDA receptor subunits), or GluR6/7 (kainate receptor subunits) in this brain region. Moreover, GluR1 and NMDAR1 levels were not regulated in other regions of the mesolimbic or nigrostriatal DA pathways, including the substantia nigra. Because several drugs of abuse and stress can elicit common and cross-sensitizing effects on mesolimbic DA function, we next examined whether repeated morphine and stress treatments would regulate these proteins similarly in the VTA. Although morphine delivered by subcutaneous pellet implantation had no significant effect on subunit levels, morphine delivered intermittently by subcutaneous injections of escalating doses elevated GluR1 levels in the VTA. Repeated restraint stress also increased GluR1 levels in the VTA, whereas an unpredictable stress paradigm (2 stressors/d under variable conditions) increased both GluR1 and NMDAR1 levels in this brain region. Unlike cocaine, morphine, and stress, repeated treatment with other psychotropic drugs (haloperidol, raclopride, sertraline, and desipramine) that lack reinforcing or sensitizing properties did not regulate GluR1 or NMDAR1 subunit levels in the VTA. Increased glutamate receptor subunit expression in the VTA may represent an important molecular mechanism by which drugs of abuse and stress exert common, long-term effects on mesolimbic DA function.
Author Ortiz, J
Nestler, EJ
Fitzgerald, LW
Hamedani, AG
AuthorAffiliation Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven 06508, USA
AuthorAffiliation_xml – name: Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven 06508, USA
Author_xml – sequence: 1
  fullname: Fitzgerald, LW
– sequence: 2
  fullname: Ortiz, J
– sequence: 3
  fullname: Hamedani, AG
– sequence: 4
  fullname: Nestler, EJ
BackLink https://www.ncbi.nlm.nih.gov/pubmed/8613793$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1v0zAUtdDQ6AY_AclCgrcUO3HtZA9IU_fB0NikwZ6tG_c29ZQ4xXZW2A_j9-G01QRPPPnqnHPP_fA9Igeud0jIO86mfJYXHx8cDr4Pxk65zBjPGMuVmPKqki_IJCmqLBeMH5BJwlkmhRKvyFEID4wxxbg6JIel5IWqign5feaHJtB-SaEeAlJwCxqixxCodcYjJCyukOLP9Qja3o3ay3a441vtzdez0xQ27RChg4jUo8F17D0NQz04G0efrYOHSB_RRQ8tjdh0KUwRpBIn1PRdl5xhAesIMRUJFBLQUJPGDFlAF2y0TzYh0KTE8Jq8XEIb8M3-PSb3F-ff55-z69vLq_npdWZEyWImF1XNC0BZIud5LUCoWubFLBfCAOSg8toUojSmTtwMoUaQLG14YXIFqlLFMfm0810PdYcLs-tfr73twP_SPVj9L-PsSjf9o5YzVapiNPiwN_D9jwFD1J0NBtsWHPZD0EqVlaxE8V8hTz83k4wl4clOuN2Nx-VzN5zp8Tz0l5vz-7vbb_MrzaVmXG_PQ4_nkZLf_j3Pc-r-HhL_fsevbLPaWI86dNC2Sc31ZrNJflwns-IPvULNUw
CitedBy_id crossref_primary_10_1016_j_neuroscience_2010_05_056
crossref_primary_10_1016_S0028_3908_98_00022_7
crossref_primary_10_1016_S0006_8993_97_00753_1
crossref_primary_10_1038_npp_2010_134
crossref_primary_10_1016_j_alcohol_2017_10_004
crossref_primary_10_1016_j_neuropharm_2011_12_011
crossref_primary_10_1002__SICI_1098_2396_199707_26_3_269__AID_SYN8_3_0_CO_2_5
crossref_primary_10_1046_j_0953_816x_2001_01652_x
crossref_primary_10_1046_j_1460_9568_2000_00040_x
crossref_primary_10_1038_sj_npp_1301045
crossref_primary_10_1016_S0006_8993_98_00925_1
crossref_primary_10_1016_S0306_4530_02_00062_8
crossref_primary_10_1155_2014_294149
crossref_primary_10_1016_j_bbr_2004_08_010
crossref_primary_10_1016_S0306_4522_02_00975_2
crossref_primary_10_1038_npp_2008_89
crossref_primary_10_1016_j_neulet_2005_04_037
crossref_primary_10_1016_j_neulet_2019_134367
crossref_primary_10_1300_J374v01n03_04
crossref_primary_10_1016_j_pbb_2005_09_003
crossref_primary_10_1016_S0163_7258_03_00029_9
crossref_primary_10_1007_s00213_005_0190_5
crossref_primary_10_1038_nn2054
crossref_primary_10_1016_S0014_2999_97_01400_3
crossref_primary_10_1007_s00213_004_2023_3
crossref_primary_10_1523_JNEUROSCI_18_22_09547_1998
crossref_primary_10_1002_syn_10304
crossref_primary_10_1242_jeb_014399
crossref_primary_10_1111_j_1530_0277_2008_00749_x
crossref_primary_10_1523_JNEUROSCI_19_20_09081_1999
crossref_primary_10_1038_sj_npp_1301033
crossref_primary_10_3390_biom10060947
crossref_primary_10_1046_j_1471_4159_1999_0722397_x
crossref_primary_10_1016_S0896_6273_00_81154_X
crossref_primary_10_1523_JNEUROSCI_17_21_08596_1997
crossref_primary_10_1016_j_neubiorev_2017_09_022
crossref_primary_10_1016_S0165_0173_97_00021_0
crossref_primary_10_1111_j_1460_9568_2007_05774_x
crossref_primary_10_1016_j_biopha_2022_113346
crossref_primary_10_1038_sj_npp_1301039
crossref_primary_10_1016_j_pbb_2011_04_020
crossref_primary_10_1016_j_pbb_2008_12_007
crossref_primary_10_1111_ejn_12490
crossref_primary_10_1016_S0165_6147_00_01792_2
crossref_primary_10_1111_j_1471_4159_2009_05992_x
crossref_primary_10_1016_j_neuropharm_2010_06_008
crossref_primary_10_1016_j_neuroscience_2003_12_007
crossref_primary_10_1523_JNEUROSCI_20_15_05575_2000
crossref_primary_10_1016_j_bbr_2010_11_050
crossref_primary_10_7554_eLife_15448
crossref_primary_10_1111_j_1460_9568_2008_06397_x
crossref_primary_10_1523_JNEUROSCI_6014_10_2011
crossref_primary_10_1016_j_biopsych_2005_09_018
crossref_primary_10_1016_S0304_3940_01_01681_0
crossref_primary_10_1016_j_neuropharm_2011_01_028
crossref_primary_10_1101_lm_81404
crossref_primary_10_1124_jpet_103_054965
crossref_primary_10_1038_s41380_023_02235_4
crossref_primary_10_1097_00008877_200209000_00014
crossref_primary_10_1006_nbdi_2002_0518
crossref_primary_10_1016_j_ynstr_2020_100250
crossref_primary_10_1038_sj_mp_4001269
crossref_primary_10_1016_S0896_6273_03_00461_6
crossref_primary_10_1177_1744806920911543
crossref_primary_10_1111_j_1749_6632_2002_tb04153_x
crossref_primary_10_1016_j_drugalcdep_2008_07_012
crossref_primary_10_1016_j_neuroscience_2007_09_069
crossref_primary_10_1016_j_neubiorev_2008_09_009
crossref_primary_10_1007_s12035_014_8636_6
crossref_primary_10_1038_sj_mp_4001021
crossref_primary_10_1146_annurev_pharmtox_010617_052735
crossref_primary_10_2174_1570159X17666190617101726
crossref_primary_10_1196_annals_1296_032
crossref_primary_10_1016_j_ijdevneu_2004_06_005
crossref_primary_10_1006_nbdi_2002_0530
crossref_primary_10_1523_JNEUROSCI_23_06_02112_2003
crossref_primary_10_1016_S0006_8993_97_01319_X
crossref_primary_10_1523_JNEUROSCI_1474_05_2005
crossref_primary_10_1016_j_neubiorev_2013_12_006
crossref_primary_10_1016_S0278_5846_99_00094_9
crossref_primary_10_1038_npp_2008_80
crossref_primary_10_3390_ph4070976
crossref_primary_10_1111_j_1365_2826_2007_01557_x
crossref_primary_10_1126_science_277_5327_812
crossref_primary_10_1016_j_neuropharm_2004_07_005
crossref_primary_10_1016_S0006_8993_99_01245_7
crossref_primary_10_3389_fphar_2014_00116
crossref_primary_10_1111_j_1749_6632_2009_05144_x
crossref_primary_10_1523_JNEUROSCI_3453_14_2015
crossref_primary_10_1016_j_eplepsyres_2010_06_010
crossref_primary_10_1021_acs_analchem_5b00555
crossref_primary_10_1515_REVNEURO_2008_19_4_5_227
crossref_primary_10_1093_ijnp_pyad060
crossref_primary_10_1523_JNEUROSCI_19_08_03213_1999
crossref_primary_10_1111_j_1440_1681_2008_05004_x
crossref_primary_10_1196_annals_1300_029
crossref_primary_10_17816_RCF203229_254
crossref_primary_10_1016_j_brainres_2006_10_028
crossref_primary_10_1523_JNEUROSCI_0951_10_2010
crossref_primary_10_1016_j_euroneuro_2016_01_010
crossref_primary_10_3389_fncel_2014_00466
crossref_primary_10_1016_j_neubiorev_2009_11_023
crossref_primary_10_1038_sj_npp_1300946
crossref_primary_10_1046_j_1460_9568_1999_00736_x
crossref_primary_10_1016_S0006_3223_01_01362_2
crossref_primary_10_2144_05393PS01
crossref_primary_10_1111_j_1365_2826_2005_01285_x
crossref_primary_10_1523_JNEUROSCI_4773_08_2009
crossref_primary_10_1016_j_neulet_2014_01_032
crossref_primary_10_1016_j_neuroscience_2006_12_038
crossref_primary_10_1080_10550490902925946
crossref_primary_10_1097_FBP_0000000000000449
crossref_primary_10_1002__SICI_1098_2396_19991201_34_3_169__AID_SYN1_3_0_CO_2_C
crossref_primary_10_3389_fcell_2020_619199
crossref_primary_10_1016_S0306_4522_99_00361_9
crossref_primary_10_1002__SICI_1096_9861_20000131_417_1_103__AID_CNE8_3_0_CO_2_L
crossref_primary_10_1016_j_neulet_2018_02_011
crossref_primary_10_1016_j_pbb_2008_08_006
crossref_primary_10_1196_annals_1300_012
crossref_primary_10_1016_j_neulet_2005_11_030
crossref_primary_10_1016_j_ejphar_2007_06_046
crossref_primary_10_1002_cne_21866
crossref_primary_10_1016_S0166_4328_02_00038_4
crossref_primary_10_1007_BF02255968
crossref_primary_10_1046_j_1471_4159_2003_01740_x
crossref_primary_10_1111_j_1460_9568_2007_05689_x
crossref_primary_10_1016_S0896_6273_00_80110_5
crossref_primary_10_1073_pnas_97_24_13360
crossref_primary_10_1016_j_bbr_2019_112176
crossref_primary_10_1016_j_neuropharm_2004_07_025
crossref_primary_10_1007_s00429_017_1544_6
crossref_primary_10_1016_j_neuropharm_2004_06_027
crossref_primary_10_1101_cshperspect_a039362
crossref_primary_10_1038_sj_npp_1301101
crossref_primary_10_1515_REVNEURO_2001_12_2_95
crossref_primary_10_1016_S0006_8993_97_00712_9
crossref_primary_10_1515_REVNEURO_2005_16_4_277
crossref_primary_10_1016_S0306_4522_00_00115_9
crossref_primary_10_1016_S0376_8716_98_00072_6
crossref_primary_10_1111_j_1471_4159_2011_07571_x
crossref_primary_10_1016_j_neuropharm_2004_06_021
crossref_primary_10_1016_j_pharmthera_2012_01_010
crossref_primary_10_3390_ijms24010388
crossref_primary_10_1007_s00210_005_0016_3
crossref_primary_10_1016_S0169_328X_01_00110_3
crossref_primary_10_1038_npp_2010_61
crossref_primary_10_1097_00008877_200006000_00005
crossref_primary_10_1111_eos_12936
crossref_primary_10_1007_s00213_010_2086_2
crossref_primary_10_1016_j_pnpbp_2004_05_043
crossref_primary_10_1016_j_biopsych_2013_09_005
crossref_primary_10_1111_j_1460_9568_2004_03712_x
crossref_primary_10_1016_j_ejphar_2003_11_062
crossref_primary_10_1097_FBP_0000000000000105
crossref_primary_10_52547_phypha_26_4_6
crossref_primary_10_1111_j_1471_4159_2004_02392_x
crossref_primary_10_1046_j_1471_4159_1999_0720157_x
crossref_primary_10_1016_S0014_2999_02_01301_8
crossref_primary_10_1016_S0006_8993_00_02951_6
crossref_primary_10_1046_j_1471_4159_2003_01824_x
crossref_primary_10_1016_j_pbb_2008_09_016
crossref_primary_10_1016_S0028_3908_99_00073_8
crossref_primary_10_1523_JNEUROSCI_17_01_00011_1997
crossref_primary_10_1016_j_neubiorev_2019_10_015
crossref_primary_10_1007_s00213_017_4612_y
crossref_primary_10_1007_s00213_007_1024_4
crossref_primary_10_1016_S0959_4388_97_80094_3
crossref_primary_10_1523_JNEUROSCI_1958_08_2008
crossref_primary_10_1523_JNEUROSCI_18_23_09989_1998
crossref_primary_10_1016_S0301_0082_97_00090_7
crossref_primary_10_1111_j_1471_4159_2005_03517_x
crossref_primary_10_1016_S0892_0362_99_00028_8
crossref_primary_10_1124_pr_115_010967
crossref_primary_10_1093_ijnp_pyz019
crossref_primary_10_1016_S0166_4328_96_00158_1
crossref_primary_10_1016_S0376_8716_98_00043_X
crossref_primary_10_1016_j_neuron_2008_07_010
crossref_primary_10_1007_BF02461389
crossref_primary_10_1111_acer_13781
crossref_primary_10_1016_S0028_3908_98_00015_X
crossref_primary_10_1016_j_bcp_2023_115578
crossref_primary_10_1016_j_brainres_2005_09_051
crossref_primary_10_1002_syn_20640
crossref_primary_10_1016_S0163_7258_01_00163_2
crossref_primary_10_1046_j_1460_9568_2001_02009_x
crossref_primary_10_1016_j_ejphar_2024_176489
crossref_primary_10_1016_S0166_2236_02_02289_0
crossref_primary_10_1096_fj_09_133223
crossref_primary_10_1523_JNEUROSCI_17_24_09393_1997
crossref_primary_10_1146_annurev_pharmtox_39_1_221
crossref_primary_10_1002_iub_292
crossref_primary_10_1016_j_bbi_2009_01_014
crossref_primary_10_1038_nn_2300
crossref_primary_10_1038_npp_2009_190
crossref_primary_10_1371_journal_pone_0038325
crossref_primary_10_1007_s00406_014_0572_y
crossref_primary_10_1097_FBP_0000000000000080
crossref_primary_10_3389_fnbeh_2018_00309
crossref_primary_10_1021_acschemneuro_7b00281
crossref_primary_10_1523_JNEUROSCI_17_20_07890_1997
crossref_primary_10_1016_j_yebeh_2010_06_043
crossref_primary_10_1016_j_neuropharm_2010_12_031
crossref_primary_10_1016_j_neuropharm_2010_12_033
crossref_primary_10_1111_j_1369_1600_2000_tb00204_x
crossref_primary_10_1016_j_expneurol_2011_03_016
crossref_primary_10_1016_j_neuroscience_2009_10_009
crossref_primary_10_1016_j_neubiorev_2009_02_005
crossref_primary_10_1523_JNEUROSCI_16_15_04707_1996
crossref_primary_10_1523_JNEUROSCI_20_23_08701_2000
crossref_primary_10_1016_j_pbb_2024_173711
crossref_primary_10_1016_j_neulet_2006_04_017
crossref_primary_10_1007_s00213_022_06209_2
crossref_primary_10_1016_j_bbi_2009_01_003
crossref_primary_10_1016_j_lfs_2006_02_040
crossref_primary_10_1111_j_1471_4159_2005_03178_x
crossref_primary_10_1016_j_neuroscience_2005_10_006
crossref_primary_10_1016_j_neuropharm_2004_09_004
crossref_primary_10_1016_S0306_4522_01_00274_3
crossref_primary_10_1016_S0301_0082_00_00033_2
crossref_primary_10_1016_j_ijdevneu_2019_06_004
crossref_primary_10_1152_physrev_2001_81_1_299
crossref_primary_10_1186_1471_2202_9_39
crossref_primary_10_1016_j_tins_2007_01_006
crossref_primary_10_1016_S0166_2236_99_01539_8
crossref_primary_10_1006_smns_1997_0109
crossref_primary_10_1016_j_neulet_2005_04_102
crossref_primary_10_1523_JNEUROSCI_2966_10_2010
crossref_primary_10_1080_13556219872191
crossref_primary_10_1016_j_biopsych_2008_05_029
crossref_primary_10_1523_JNEUROSCI_1312_04_2004
crossref_primary_10_1523_JNEUROSCI_18_01_00488_1998
crossref_primary_10_1016_j_brs_2021_11_003
crossref_primary_10_1016_j_bbr_2013_06_018
crossref_primary_10_1038_sj_npp_1301080
crossref_primary_10_1016_S0165_3806_98_00100_X
crossref_primary_10_1038_35079077
crossref_primary_10_1016_S0028_3908_01_00146_0
crossref_primary_10_1016_S0361_9230_97_00089_0
crossref_primary_10_1038_bjp_2008_77
crossref_primary_10_1523_JNEUROSCI_0062_05_2005
crossref_primary_10_1016_j_biopsych_2007_02_006
crossref_primary_10_1016_j_conb_2013_03_005
crossref_primary_10_1002_syn_20601
crossref_primary_10_1016_S0006_8993_97_01001_9
crossref_primary_10_1017_S1092852900005216
crossref_primary_10_1016_j_ejphar_2005_10_017
crossref_primary_10_1016_j_lfs_2020_117400
crossref_primary_10_1016_j_ijdevneu_2010_06_009
crossref_primary_10_1080_1354750X_2022_2049367
crossref_primary_10_1016_S0896_6273_03_00021_7
crossref_primary_10_1007_s10072_021_05778_y
crossref_primary_10_1523_JNEUROSCI_1749_12_2013
crossref_primary_10_1016_j_neuropharm_2008_07_011
crossref_primary_10_1523_JNEUROSCI_4127_03_2004
crossref_primary_10_1126_science_278_5335_58
crossref_primary_10_1016_j_tips_2004_02_005
crossref_primary_10_1007_s00213_011_2548_1
crossref_primary_10_1016_j_lfs_2009_11_005
crossref_primary_10_1080_14656566_2020_1732349
crossref_primary_10_1007_s00403_012_1261_1
crossref_primary_10_1038_sj_npp_1300781
crossref_primary_10_1111_j_1460_9568_2005_04110_x
crossref_primary_10_1111_j_1530_0277_1997_tb04483_x
crossref_primary_10_1016_j_neuron_2006_01_016
crossref_primary_10_1093_ilar_47_1_39
crossref_primary_10_1590_S1516_44461999000100012
crossref_primary_10_1016_j_neuron_2008_05_028
crossref_primary_10_1007_BF03033236
crossref_primary_10_1016_S0376_8716_99_00107_6
crossref_primary_10_1046_j_1471_4159_2002_01083_x
crossref_primary_10_1016_S0163_7258_02_00302_9
crossref_primary_10_1046_j_1471_4159_2000_0752040_x
crossref_primary_10_1126_science_282_5397_2272
crossref_primary_10_1523_JNEUROSCI_2608_10_2011
crossref_primary_10_1016_S0306_4522_97_00243_1
crossref_primary_10_1124_jpet_103_053264
crossref_primary_10_1016_j_neuroscience_2007_10_019
crossref_primary_10_1016_j_physbeh_2017_07_024
crossref_primary_10_1002_syn_20176
crossref_primary_10_1038_sj_bdj_2008_932
crossref_primary_10_1007_s00213_011_2551_6
crossref_primary_10_1523_JNEUROSCI_2252_05_2005
crossref_primary_10_1016_j_neubiorev_2012_07_001
crossref_primary_10_1097_00001756_200202110_00003
crossref_primary_10_1007_s10519_006_9115_2
crossref_primary_10_1002_1098_2396_20010301_39_3_239__AID_SYN1005_3_0_CO_2_B
crossref_primary_10_1016_j_physbeh_2005_06_027
crossref_primary_10_1038_npp_2012_168
crossref_primary_10_1016_j_jep_2024_118040
crossref_primary_10_1111_ejn_12464
crossref_primary_10_1038_sj_npp_1300533
crossref_primary_10_1523_JNEUROSCI_2828_16_2017
crossref_primary_10_1002_syn_10132
crossref_primary_10_3390_ijms21217951
crossref_primary_10_1111_j_1460_9568_2005_03979_x
crossref_primary_10_2165_00023210_200115010_00004
crossref_primary_10_1016_j_jneumeth_2008_08_005
crossref_primary_10_1074_jbc_M310410200
crossref_primary_10_1016_S0306_4522_01_00483_3
crossref_primary_10_1007_s11481_005_9008_9
crossref_primary_10_1523_JNEUROSCI_3661_06_2007
crossref_primary_10_1046_j_1471_4159_1999_0731529_x
crossref_primary_10_1007_s12035_020_02145_4
crossref_primary_10_1007_s12640_014_9502_z
crossref_primary_10_1016_j_bcp_2007_06_039
crossref_primary_10_1016_j_pbb_2024_173752
crossref_primary_10_1074_jbc_M009105200
crossref_primary_10_1523_JNEUROSCI_21_12_04451_2001
crossref_primary_10_1016_j_neuroscience_2004_04_025
crossref_primary_10_1007_BF01291780
crossref_primary_10_1016_j_neuroscience_2009_08_023
crossref_primary_10_1016_S0006_8993_02_03947_1
crossref_primary_10_1016_S0169_328X_03_00180_3
crossref_primary_10_1124_pr_109_001933
crossref_primary_10_1002__SICI_1098_2396_199905_32_2_119__AID_SYN5_3_0_CO_2_F
crossref_primary_10_1016_j_brainresbull_2009_08_016
ContentType Journal Article
Copyright 1996 by Society for Neuroscience 1996
Copyright_xml – notice: 1996 by Society for Neuroscience 1996
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
5PM
DOI 10.1523/jneurosci.16-01-00274.1996
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 282
ExternalDocumentID 10_1523_JNEUROSCI_16_01_00274_1996
8613793
www16_1_274
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: DA08227
– fundername: NIDA NIH HHS
  grantid: DA00203
– fundername: NIDA NIH HHS
  grantid: DA07359
GroupedDBID -
08R
2WC
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
18M
1CY
34G
39C
AAFWJ
ABBAR
ACGUR
AFCFT
AFHIN
AFOSN
AHWXS
AI.
AOIJS
BTFSW
CGR
CUY
CVF
ECM
EIF
H~9
NPM
TR2
W8F
YBU
YHG
YKV
YNH
YSK
YYP
AAYXX
CITATION
7TK
7X8
5PM
ID FETCH-LOGICAL-c480t-6d9b13ae68e112b4a47b6235244caa2a72bc348ccbb4a5eabea60523dc27a7973
IEDL.DBID RPM
ISSN 0270-6474
IngestDate Tue Sep 17 21:12:44 EDT 2024
Fri Oct 25 22:52:13 EDT 2024
Fri Oct 25 10:47:53 EDT 2024
Thu Sep 26 18:44:33 EDT 2024
Sat Sep 28 07:32:03 EDT 2024
Tue Nov 10 19:19:56 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-6d9b13ae68e112b4a47b6235244caa2a72bc348ccbb4a5eabea60523dc27a7973
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.jneurosci.org/content/jneuro/16/1/274.full.pdf
PMID 8613793
PQID 17015600
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6578737
proquest_miscellaneous_77896943
proquest_miscellaneous_17015600
crossref_primary_10_1523_JNEUROSCI_16_01_00274_1996
pubmed_primary_8613793
highwire_smallpub1_www16_1_274
ProviderPackageCode RHF
RHI
PublicationCentury 1900
PublicationDate 19960101
1996-Jan
1996-01-01
PublicationDateYYYYMMDD 1996-01-01
PublicationDate_xml – month: 01
  year: 1996
  text: 19960101
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 1996
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
SSID ssj0007017
Score 2.094358
Snippet Behavioral and electrophysiological evidence suggests that glutamatergic neurotransmission plays an important role in some of the long-term effects of cocaine...
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 274
SubjectTerms Animals
Antibody Specificity
Blotting, Western
Cocaine - pharmacology
Dopamine - physiology
Drug Tolerance
Male
Morphine - pharmacology
Neuronal Plasticity - drug effects
Rats
Rats, Sprague-Dawley
Receptors, Glutamate - drug effects
Receptors, Glutamate - immunology
Receptors, Glutamate - ultrastructure
Receptors, Kainic Acid - drug effects
Receptors, Kainic Acid - immunology
Receptors, N-Methyl-D-Aspartate - drug effects
Receptors, N-Methyl-D-Aspartate - immunology
Sensitivity and Specificity
Stress, Physiological - physiopathology
Ventral Tegmental Area - chemistry
Ventral Tegmental Area - ultrastructure
Title Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents
URI http://www.jneurosci.org/cgi/content/abstract/16/1/274
https://www.ncbi.nlm.nih.gov/pubmed/8613793
https://search.proquest.com/docview/17015600
https://search.proquest.com/docview/77896943
https://pubmed.ncbi.nlm.nih.gov/PMC6578737
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbWSUi7IGBMFEbxAXFLm9ROnHCrOsYYWsWvSbtZz85rqdSm1ZJMwB_G38ezk1QUwYVbFL84Vt5n-3vO52fGXo7noVHu12CuRBLIGGyQAtpAgpEWcovCeIHsLLm4lpc38c0Bi7u9MF60b81yWKzWw2L51Wsrt2s76nRiow9X08TBTKhRj_UIoF2I3g6_KvTH7FK4RXGRVLLNNEoB1-hy5uRxn6fvhlETRruYzO3XS47YvZQmNpWJ_fmpyxn8N_75p4zyt3np_AG73xJKPmka_pAdYPGIHU8KCqbX3_kr7iWefu38mP08u60XJd_MOZi6RA5FzpvNInxZOPpI94gQcvzWymMLZ_t2VX-KvO3s6mxClwtCKxDTRU7DJW4paudlbWoaHFw9vgbCFb9rGswrXDQnCHCgV7zmhHHCPoccto0OoOT-yCPuv0hQOkl9tfxBcyoHt_GrfMyuz998mV4E7cENgZVpWAVJnplIACYpEp0zEqQyRLNiohIWYAxqbKyQqbWGymIEg5C45encjhWoTIkTdlhsCnzCuMXQYCYEhpbGGmlApfM4BKIhYRyiwj4Tnbv0tsnPoV1cQ7Xpnbt1lOgw0t7d2rm7zwadZ3W5htWKHBlpwh4ZRpqs-uxF529N_c39RIECN3WpXf56xxL_baFUmiWZFH120uBj17AWYn2m9oCzK3epvvdLqAf4lN8t4p_-95PP2FGjN3eLR6fssLqt8TnRqcoMWO_9x3TgO9EvrJ4kfw
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEGIv3MZEuGx-QLylTWonTnirOkY31grBhvZmHTtuV9GmVZMg2A_j93HsJBWd4AHeovjEuX3H_o79-ZiQ171JoISdGswEi30egfYTMNrnoLiGTBumnEB2HA8v-dlVdLVDonYtjBPtazXr5PNFJ59dO23laqG7rU6s-3E0iC3MmOjeIXfRX4O4DdKbBlgEbqNdDLgwMuKCN7lGMeTqno2tQO7z4LQT1oG0jcrsir14j9xLsGsTKdvuodqswX9ioLeFlL_1TCcPyZf2nWpBytdOVaqOvrmV7vGfX_oRedBwVdqvix-THZM_Ifv9HOP0xQ_6hjr1qBuW3yc_j9fVtKDLCQVVFYZCntF6HQqd5ZaZ4jnkmtR8b5S3ubV9P68-hc52PDru4-EUHQGQRBuKLbFZlcs1LSpVYbtj63E1IGTpt_pL0NJM680JKOAt3lJ0H3QrChmsaolBQd1uStR9ar-wav1ydoPdNQW7pqx4Si5P3l0Mhn6zJ4SveRKUfpylKmRg4sQgU1QcuFDI4CJkKRqgB6KnNOOJ1grLIgPKQGxHvjPdEyBSwQ7Ibr7MzTNCtQmUSRkzgcZmjCsQySQKABlOEAVGGI-wFgdyVaf-kDZkwtrkBkcyjGUQSocjaXHkkcMWMrJYwHyOCAkl_mE0DCVaeeSoBZJEV7bzM5CbZVVImxrfEtC_WwiRpHHKmUcOauBtHqzBrkfEFiI35TaL-HYJ4sxlE29w9fy_rzwi94cXo3N5fjr-8ILs1bJ2O0b1kuyW68q8QtZWqkPno78A_H9FjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgCLSX8TEmwsfmB8Rb2qR24oS3qqVsg1UTMGnixbp23FLRplWTTLAfxu_j2kmqdYKXvUX1rdOk59rn2sf3EvK2NwmUsFuDmWCxzyPQfgJG-xwU15Bpw5QTyI7j4wt-ehld3ij15UT7Ws06-XzRyWc_nLZytdDdVifWPT8bxBZmTHRX2aR7nzxAnw2SNlBvBmERuGK7GHRhdMQFb_KNYtjVPR1bkdzXwUknrINpG5nZU3vxLnmY4PQmUrY9S7WZg__FQm-LKW_MTqPH5Hv7XLUo5WenKlVHX99K-XinB39C9hrOSvu1yVNyz-TPyH4_x3h98Zu-o05F6pbn98mf4bqaFnQ5oaCqwlDIM1qfR6Gz3DJU_Aw5JzW_GgVubm0_zqsvobMdnw37eDlFhwAk04biiGxW5XJNi0pVOP7YflwPCF16Vb8NWpppXaSAAt7iPUU3QveikMGqlhoU1FVVou51-4VV7Zeza5y2KdizZcVzcjH68G1w7De1IXzNk6D04yxVIQMTJwYZo-LAhUImFyFb0QA9ED2lGU-0VtgWGVAGYrsCnumeAJEKdkB28mVuXhCqTaBMypgJNA5nXIFIJlEAyHSCKDDCeIS1WJCrOgWItKET9iY3WJJhLINQOixJiyWPHLawkcUC5nNESSjxX0bDUKKVR45aMEl0abtPA7lZVoW0KfItEf2_hRBJGqeceeSgBt_mhzX49YjYQuWm3WYT325BrLms4g22Xt75m0fk0flwJD-fjD-9Iru1ut0uVb0mO-W6Mm-QvJXq0LnpX_WxSA0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drugs+of+abuse+and+stress+increase+the+expression+of+GluR1+and+NMDAR1+glutamate+receptor+subunits+in+the+rat+ventral+tegmental+area%3A+common+adaptations+among+cross-sensitizing+agents&rft.jtitle=The+Journal+of+neuroscience&rft.au=Fitzgerald%2C+LW&rft.au=Ortiz%2C+J&rft.au=Hamedani%2C+AG&rft.au=Nestler%2C+EJ&rft.date=1996-01-01&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=16&rft.issue=1&rft.spage=274&rft.epage=282&rft_id=info:doi/10.1523%2FJNEUROSCI.16-01-00274.1996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_16_01_00274_1996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon