Determining Emission Lines for in situ Compositional Analysis of Sputter-deposited MgO Films Using Optical Emission Spectroscopy

In situ elemental analysis is required to improve the yield and quality of sputter-deposited metal oxide films by detecting the films whose compositions are deviated from the required compositions. In this study, the author proposed a method to determine the MgO film composition by measuring the int...

Full description

Saved in:
Bibliographic Details
Published inE-journal of surface science and nanotechnology Vol. 23; no. 1; pp. 29 - 35
Main Author Imashuku, Susumu
Format Journal Article
LanguageEnglish
Published Tokyo The Japan Society of Vacuum and Surface Science 01.03.2025
公益社団法人 日本表面真空学会
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1348-0391
1348-0391
DOI10.1380/ejssnt.2025-009

Cover

Loading…
Abstract In situ elemental analysis is required to improve the yield and quality of sputter-deposited metal oxide films by detecting the films whose compositions are deviated from the required compositions. In this study, the author proposed a method to determine the MgO film composition by measuring the intensities of the Mg emission lines and O I 777.3 nm line during sputter deposition. Linearity (R2 value) between the emission intensity ratios of the Mg lines to the O I 777.3 nm line and Mg/O atomic ratio in the films was investigated. The Mg I 518.4 and 517.3 nm lines exhibited R2 values higher than 0.80, and showed the properties that (1) they did not overlap with other emission lines and (2) their intensities exhibited a dependence on the input power to the MgO target and chamber pressure, similar to that of the O I 777.3 nm line, which were consistent with the properties of the Zn emission lines that can accurately determine the ZnO films compositions. Therefore, searching emission lines that satisfy the two properties is a powerful approach for the in situ elemental analysis of sputter-deposited metal oxide films.
AbstractList In situ elemental analysis is required to improve the yield and quality of sputter-deposited metal oxide films by detecting the films whose compositions are deviated from the required compositions. In this study, the author proposed a method to determine the MgO film composition by measuring the intensities of the Mg emission lines and O I 777.3 nm line during sputter deposition. Linearity (R2 value) between the emission intensity ratios of the Mg lines to the O I 777.3 nm line and Mg/O atomic ratio in the films was investigated. The Mg I 518.4 and 517.3 nm lines exhibited R2 values higher than 0.80, and showed the properties that (1) they did not overlap with other emission lines and (2) their intensities exhibited a dependence on the input power to the MgO target and chamber pressure, similar to that of the O I 777.3 nm line, which were consistent with the properties of the Zn emission lines that can accurately determine the ZnO films compositions. Therefore, searching emission lines that satisfy the two properties is a powerful approach for the in situ elemental analysis of sputter-deposited metal oxide films.
ArticleNumber 2025-009
Author Imashuku, Susumu
Author_xml – sequence: 1
  fullname: Imashuku, Susumu
  organization: Institute for Materials Research, Tohoku University
BackLink https://cir.nii.ac.jp/crid/1390303620064892544$$DView record in CiNii
BookMark eNpNkM1vEzEQxS1UJNrCmasluG7rz931sQopVArKoeVsOd5xcJS1F9s55MafjpeFqJfnkea9n8bvBl2FGAChj5TcUd6TezjkHModI0w2hKg36Jpy0TeEK3r1an6HbnI-EMI73rXX6PcXKJBGH3zY4_Xoc_Yx4I0PkLGLCfuAsy8nvIrjFOtUt-aIH6qcs884Ovw8nUpFNAP8NcCAv--3-NEfx4x_5Bm7nYq3NXXBP09gS4rZxun8Hr115pjhw7_3Fr08rl9W35rN9uvT6mHTWNGT0rSMDUL10HfM7TopB07A7Xa9lJS1XBEJ1lgujFXUCmIcZQoGIl2r3CAY8Fv0acFOKf46QS76EE-pfiNrzmjfcSaZqq77xWXrdTmB01Pyo0lnTYmeW9ZLy3puWdeWa-Lzkgjea-tnpfUcTnjLCGlFr5gUotrWi-2Qi9nDBWtSreYIFyzXdJb_-Mve_jRJQ-B_ACL4mGs
Cites_doi 10.1143/JJAP.30.1091
10.2355/isijinternational.ISIJINT-2023-129
10.1007/978-1-4615-0215-9
10.1016/0040-6090(93)90014-G
10.1016/j.proche.2016.07.016
10.1007/978-1-4899-2617-3_8
10.1149/2.0071504jss
10.1016/j.sab.2022.106457
10.1088/0022-3727/34/21/301
10.1063/1.357415
10.1016/0925-4005(94)01266-K
10.1002/xrs.1300100311
10.1063/1.106766
10.1088/0022-3727/33/4/201
10.1016/S0040-6090(99)00442-3
10.1063/1.339708
10.1016/S0040-6090(96)09274-7
10.1016/j.sab.2023.106842
10.1007/s11085-023-10217-8
10.1016/j.vacuum.2003.12.125
10.1143/JJAP.27.L1524
10.1016/S0022-0248(99)00847-7
ContentType Journal Article
Copyright 2025 The author(s)
2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The author(s)
– notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
DOI 10.1380/ejssnt.2025-009
DatabaseName CiNii Complete
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1348-0391
EndPage 35
ExternalDocumentID 10_1380_ejssnt_2025_009
article_ejssnt_23_1_23_2025_009_article_char_en
GroupedDBID 29G
2WC
5GY
ADBBV
ADDVE
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CS3
DU5
E3Z
EBS
EJD
GROUPED_DOAJ
GX1
HH5
JSF
JSH
KQ8
M~E
OK1
OVT
RJT
RNS
RZJ
TR2
XSB
RYH
AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c480t-622d498e872fb755d30efbb8551263905ecac34ac91c40af129ed05f69fd42e3
ISSN 1348-0391
IngestDate Thu Jul 24 01:45:06 EDT 2025
Sun Jul 06 05:06:12 EDT 2025
Fri Jun 27 01:01:54 EDT 2025
Wed Sep 03 06:30:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c480t-622d498e872fb755d30efbb8551263905ecac34ac91c40af129ed05f69fd42e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://dx.doi.org/10.1380/ejssnt.2025-009
PQID 3218732529
PQPubID 1996353
PageCount 7
ParticipantIDs proquest_journals_3218732529
crossref_primary_10_1380_ejssnt_2025_009
nii_cinii_1390303620064892544
jstage_primary_article_ejssnt_23_1_23_2025_009_article_char_en
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle E-journal of surface science and nanotechnology
PublicationTitleAlternate e-J. Surf. Sci. Nanotechnol.
PublicationTitle_FL eJSSNT
e-JSSNT
e-J. Surf. Sci. Nanotech
e-J. Surf. Sci. Nanotechnol
PublicationYear 2025
Publisher The Japan Society of Vacuum and Surface Science
公益社団法人 日本表面真空学会
Japan Science and Technology Agency
Publisher_xml – name: The Japan Society of Vacuum and Surface Science
– name: 公益社団法人 日本表面真空学会
– name: Japan Science and Technology Agency
References [3] K. Ellmer, J. Phys. D 34, 3097 (2001).
[9] S. Imashuku, Spectrochim. Acta B 212, 106842 (2024).
[25] NIST Atomic Spectra Database (version 5.9), https://physics.nist.gov/asd (accessed).
[4] H. Meixner, J. Gerblinger, U. Lampe, and M. Fleischer, Sens. Actuators B 23, 119 (1995).
[10] K. Harada, N. Fujimori, and S. Yazu, Jpn. J. Appl. Phys. 27, L1524 (1988).
[14] M. Tonouchi, Y. Sakaguchi, and T. Kobayashi, J. Appl. Phys. 62, 961 (1987).
[13] M. M. Sung, C. Kim, C. G. Kim, and Y. Kim, J. Cryst. Growth 210, 651 (2000).
[23] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin, L. Sawyer, and J. R. Micheal, Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. (Springer New York, NY, 2003).
[12] K. H. Nam, M. J. Jung, J. G. Han, T. Kopte, U. Hartung, and C. Peters, Vacuum 75, 1 (2004).
[19] S. Imashuku, High Temp. Corros. Mater. 101, 79 (2024).
[18] S. J. Rho, S. M. Jeong, H. K. Baik, and K. M. Song, Thin Solid Films 355–356, 55 (1999).
[1] K. B. Sundaram and A. Khan, Thin Solid Films 295, 87 (1997).
[21] R. H. Packwood and J. D. Brown, X-Ray Spectrom. 10, 138 (1981).
[20] S. Imashuku, ISIJ Int. 63, 1869 (2023).
[5] N. Nafarizal, Procedia Chem. 20, 93 (2016).
[16] F. Wang, S. Müller, and R. Wördenweber, Thin Solid Films 232, 232 (1993).
[22] G. F. Bastin and H. J. M. Heijligers, in: Electron Probe Quantitation, edited by K. F. J. Heinrich and D. E. Newbury (Springer New York, NY, 1991) p. 145.
[7] S. Imashuku, H. Narita, and K. Wagatsuma, Spectrochim. Acta B 194, 106457 (2022).
[2] K. Ellmer, J. Phys. D 33, R17 (2000).
[17] M. Z. Tseng, W. N. Jiang, and E. L. Hu, J. Appl. Phys. 76, 3562 (1994).
[15] W.-Y. Hsu and R. Raj, Appl. Phys. Lett. 60, 3105 (1992).
[24] W. R. B. Charles and H. Corliss, Experimental Transition Probabilities for Spectral Lines of Seventy Elements (U.S. National Bureau of Standards, Washington, 1962).
[6] C.-H. Choi, L.-Y. Lin, C.-C. Cheng, and C. Chang, ECS J. Solid State Sci. Technol. 4, P3044 (2015).
[11] Y. Kaneko, N. Mikoshiba, and T. Yamashita, Jpn. J. Appl. Phys. 30, 1091 (1991).
[8] S. Imashuku, J. Vac. Sci. Technol. B 41, 034002 (2023).
22
23
24
25
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: [4] H. Meixner, J. Gerblinger, U. Lampe, and M. Fleischer, Sens. Actuators B 23, 119 (1995).
– reference: [25] NIST Atomic Spectra Database (version 5.9), https://physics.nist.gov/asd (accessed).
– reference: [18] S. J. Rho, S. M. Jeong, H. K. Baik, and K. M. Song, Thin Solid Films 355–356, 55 (1999).
– reference: [10] K. Harada, N. Fujimori, and S. Yazu, Jpn. J. Appl. Phys. 27, L1524 (1988).
– reference: [3] K. Ellmer, J. Phys. D 34, 3097 (2001).
– reference: [24] W. R. B. Charles and H. Corliss, Experimental Transition Probabilities for Spectral Lines of Seventy Elements (U.S. National Bureau of Standards, Washington, 1962).
– reference: [17] M. Z. Tseng, W. N. Jiang, and E. L. Hu, J. Appl. Phys. 76, 3562 (1994).
– reference: [15] W.-Y. Hsu and R. Raj, Appl. Phys. Lett. 60, 3105 (1992).
– reference: [8] S. Imashuku, J. Vac. Sci. Technol. B 41, 034002 (2023).
– reference: [1] K. B. Sundaram and A. Khan, Thin Solid Films 295, 87 (1997).
– reference: [7] S. Imashuku, H. Narita, and K. Wagatsuma, Spectrochim. Acta B 194, 106457 (2022).
– reference: [6] C.-H. Choi, L.-Y. Lin, C.-C. Cheng, and C. Chang, ECS J. Solid State Sci. Technol. 4, P3044 (2015).
– reference: [22] G. F. Bastin and H. J. M. Heijligers, in: Electron Probe Quantitation, edited by K. F. J. Heinrich and D. E. Newbury (Springer New York, NY, 1991) p. 145.
– reference: [21] R. H. Packwood and J. D. Brown, X-Ray Spectrom. 10, 138 (1981).
– reference: [20] S. Imashuku, ISIJ Int. 63, 1869 (2023).
– reference: [2] K. Ellmer, J. Phys. D 33, R17 (2000).
– reference: [19] S. Imashuku, High Temp. Corros. Mater. 101, 79 (2024).
– reference: [5] N. Nafarizal, Procedia Chem. 20, 93 (2016).
– reference: [11] Y. Kaneko, N. Mikoshiba, and T. Yamashita, Jpn. J. Appl. Phys. 30, 1091 (1991).
– reference: [9] S. Imashuku, Spectrochim. Acta B 212, 106842 (2024).
– reference: [13] M. M. Sung, C. Kim, C. G. Kim, and Y. Kim, J. Cryst. Growth 210, 651 (2000).
– reference: [16] F. Wang, S. Müller, and R. Wördenweber, Thin Solid Films 232, 232 (1993).
– reference: [12] K. H. Nam, M. J. Jung, J. G. Han, T. Kopte, U. Hartung, and C. Peters, Vacuum 75, 1 (2004).
– reference: [23] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin, L. Sawyer, and J. R. Micheal, Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. (Springer New York, NY, 2003).
– reference: [14] M. Tonouchi, Y. Sakaguchi, and T. Kobayashi, J. Appl. Phys. 62, 961 (1987).
– ident: 11
  doi: 10.1143/JJAP.30.1091
– ident: 20
  doi: 10.2355/isijinternational.ISIJINT-2023-129
– ident: 23
  doi: 10.1007/978-1-4615-0215-9
– ident: 16
  doi: 10.1016/0040-6090(93)90014-G
– ident: 5
  doi: 10.1016/j.proche.2016.07.016
– ident: 22
  doi: 10.1007/978-1-4899-2617-3_8
– ident: 6
  doi: 10.1149/2.0071504jss
– ident: 7
  doi: 10.1016/j.sab.2022.106457
– ident: 3
  doi: 10.1088/0022-3727/34/21/301
– ident: 17
  doi: 10.1063/1.357415
– ident: 24
– ident: 4
  doi: 10.1016/0925-4005(94)01266-K
– ident: 21
  doi: 10.1002/xrs.1300100311
– ident: 15
  doi: 10.1063/1.106766
– ident: 2
  doi: 10.1088/0022-3727/33/4/201
– ident: 18
  doi: 10.1016/S0040-6090(99)00442-3
– ident: 14
  doi: 10.1063/1.339708
– ident: 1
  doi: 10.1016/S0040-6090(96)09274-7
– ident: 9
  doi: 10.1016/j.sab.2023.106842
– ident: 19
  doi: 10.1007/s11085-023-10217-8
– ident: 12
  doi: 10.1016/j.vacuum.2003.12.125
– ident: 10
  doi: 10.1143/JJAP.27.L1524
– ident: 8
– ident: 13
  doi: 10.1016/S0022-0248(99)00847-7
– ident: 25
SSID ssj0037376
Score 2.3354347
Snippet In situ elemental analysis is required to improve the yield and quality of sputter-deposited metal oxide films by detecting the films whose compositions are...
SourceID proquest
crossref
nii
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 29
SubjectTerms Composition
In situ analysis
Magnesium oxide
Metal oxide film
Metal oxides
MgO
Optical emission spectroscopy
Oxide coatings
Spectrum analysis
Sputter deposition
Zinc oxide
Title Determining Emission Lines for in situ Compositional Analysis of Sputter-deposited MgO Films Using Optical Emission Spectroscopy
URI https://www.jstage.jst.go.jp/article/ejssnt/23/1/23_2025-009/_article/-char/en
https://cir.nii.ac.jp/crid/1390303620064892544
https://www.proquest.com/docview/3218732529
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX e-Journal of Surface Science and Nanotechnology, 2025/03/01, Vol.23(1), pp.29-35
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKQIIL4lMUtskHDkhThhfbrX1BQqNjIMEOFKm3KHHskUHTak0uHBB_Ou85TpquQxpcrCpNn9y8n59_fnkfhLzUKhsdZamJHMvSSMCeFWVSppFTMjOSGa6aap-fR6dfxceZnA0Gv_rZJVV2aH5em1fyP1qFa6BXzJL9B812QuECfAb9wggahvFGOn4XYlnwuD8BhaHnC0_Z1hdZQFfGqqhqv-ZDbBYqpFeG5MvS96mOcutvAPL56fzs4KT4MV8dNMEEZ8vG2d2Jx4b1FZbAXCw33ghPol4RilV96VIsXhssB3rny7RcVFuO_A_zdPWt_l6HCKF6Xvf9ELFcB2IF08kFJus1vbcO7TXXgr1t8os3cBWMp-5tw00Rky0Dz31EpL0A6RgJi9Nger2Xte_vr2xxXeChf3-nWNIISFBA4vM_b8dwzEDD_n7WhQjxMffNCbt_EUpDgYDXV2awwWruXACxx4oNt8qi2NrjPXGZPiD3w4mDvm3g85AMbPmI3D1uG_09Jr97MKKtnqmHEQUY0aKkCCO6ASPawoguHN2CEQUYUQ8j6mFEA4zW4vswekKmJ5Pp8WkUGnNERihWRaM4zoVWVo1jl42lzDmzLssUsO8YGC-T1qSGi9ToIyNY6oBT2pxJN9IuF7HlT8lOuSjtM0KtUbl02PhIS5E7oEZap0wByzRCi5Eaklftc02WTfmV5C86HJI3zXPvbgzrsruRJ0c4tD_ovsf8RjAnQ7IH-kpMgSMcjJhnd8jZlcZCfkOy22oyCStqlXCgyGMey1g_v_lUX5B76xW0S3aqy9ruAbetsn3vE9r3MPwDv3SrbQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+Emission+Lines+for+in+situ+Compositional+Analysis+of+Sputter-deposited+MgO+Films+Using+Optical+Emission+Spectroscopy&rft.jtitle=E-journal+of+surface+science+and+nanotechnology&rft.au=Imashuku%2C+Susumu&rft.date=2025-03-01&rft.issn=1348-0391&rft.eissn=1348-0391&rft.volume=23&rft.issue=1&rft.spage=29&rft.epage=35&rft_id=info:doi/10.1380%2Fejssnt.2025-009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1380_ejssnt_2025_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1348-0391&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1348-0391&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1348-0391&client=summon