Determining Emission Lines for in situ Compositional Analysis of Sputter-deposited MgO Films Using Optical Emission Spectroscopy
In situ elemental analysis is required to improve the yield and quality of sputter-deposited metal oxide films by detecting the films whose compositions are deviated from the required compositions. In this study, the author proposed a method to determine the MgO film composition by measuring the int...
Saved in:
Published in | E-journal of surface science and nanotechnology Vol. 23; no. 1; pp. 29 - 35 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Japan Society of Vacuum and Surface Science
01.03.2025
公益社団法人 日本表面真空学会 Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1348-0391 1348-0391 |
DOI | 10.1380/ejssnt.2025-009 |
Cover
Loading…
Abstract | In situ elemental analysis is required to improve the yield and quality of sputter-deposited metal oxide films by detecting the films whose compositions are deviated from the required compositions. In this study, the author proposed a method to determine the MgO film composition by measuring the intensities of the Mg emission lines and O I 777.3 nm line during sputter deposition. Linearity (R2 value) between the emission intensity ratios of the Mg lines to the O I 777.3 nm line and Mg/O atomic ratio in the films was investigated. The Mg I 518.4 and 517.3 nm lines exhibited R2 values higher than 0.80, and showed the properties that (1) they did not overlap with other emission lines and (2) their intensities exhibited a dependence on the input power to the MgO target and chamber pressure, similar to that of the O I 777.3 nm line, which were consistent with the properties of the Zn emission lines that can accurately determine the ZnO films compositions. Therefore, searching emission lines that satisfy the two properties is a powerful approach for the in situ elemental analysis of sputter-deposited metal oxide films. |
---|---|
AbstractList | In situ elemental analysis is required to improve the yield and quality of sputter-deposited metal oxide films by detecting the films whose compositions are deviated from the required compositions. In this study, the author proposed a method to determine the MgO film composition by measuring the intensities of the Mg emission lines and O I 777.3 nm line during sputter deposition. Linearity (R2 value) between the emission intensity ratios of the Mg lines to the O I 777.3 nm line and Mg/O atomic ratio in the films was investigated. The Mg I 518.4 and 517.3 nm lines exhibited R2 values higher than 0.80, and showed the properties that (1) they did not overlap with other emission lines and (2) their intensities exhibited a dependence on the input power to the MgO target and chamber pressure, similar to that of the O I 777.3 nm line, which were consistent with the properties of the Zn emission lines that can accurately determine the ZnO films compositions. Therefore, searching emission lines that satisfy the two properties is a powerful approach for the in situ elemental analysis of sputter-deposited metal oxide films. |
ArticleNumber | 2025-009 |
Author | Imashuku, Susumu |
Author_xml | – sequence: 1 fullname: Imashuku, Susumu organization: Institute for Materials Research, Tohoku University |
BackLink | https://cir.nii.ac.jp/crid/1390303620064892544$$DView record in CiNii |
BookMark | eNpNkM1vEzEQxS1UJNrCmasluG7rz931sQopVArKoeVsOd5xcJS1F9s55MafjpeFqJfnkea9n8bvBl2FGAChj5TcUd6TezjkHModI0w2hKg36Jpy0TeEK3r1an6HbnI-EMI73rXX6PcXKJBGH3zY4_Xoc_Yx4I0PkLGLCfuAsy8nvIrjFOtUt-aIH6qcs884Ovw8nUpFNAP8NcCAv--3-NEfx4x_5Bm7nYq3NXXBP09gS4rZxun8Hr115pjhw7_3Fr08rl9W35rN9uvT6mHTWNGT0rSMDUL10HfM7TopB07A7Xa9lJS1XBEJ1lgujFXUCmIcZQoGIl2r3CAY8Fv0acFOKf46QS76EE-pfiNrzmjfcSaZqq77xWXrdTmB01Pyo0lnTYmeW9ZLy3puWdeWa-Lzkgjea-tnpfUcTnjLCGlFr5gUotrWi-2Qi9nDBWtSreYIFyzXdJb_-Mve_jRJQ-B_ACL4mGs |
Cites_doi | 10.1143/JJAP.30.1091 10.2355/isijinternational.ISIJINT-2023-129 10.1007/978-1-4615-0215-9 10.1016/0040-6090(93)90014-G 10.1016/j.proche.2016.07.016 10.1007/978-1-4899-2617-3_8 10.1149/2.0071504jss 10.1016/j.sab.2022.106457 10.1088/0022-3727/34/21/301 10.1063/1.357415 10.1016/0925-4005(94)01266-K 10.1002/xrs.1300100311 10.1063/1.106766 10.1088/0022-3727/33/4/201 10.1016/S0040-6090(99)00442-3 10.1063/1.339708 10.1016/S0040-6090(96)09274-7 10.1016/j.sab.2023.106842 10.1007/s11085-023-10217-8 10.1016/j.vacuum.2003.12.125 10.1143/JJAP.27.L1524 10.1016/S0022-0248(99)00847-7 |
ContentType | Journal Article |
Copyright | 2025 The author(s) 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The author(s) – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RYH AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
DOI | 10.1380/ejssnt.2025-009 |
DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1348-0391 |
EndPage | 35 |
ExternalDocumentID | 10_1380_ejssnt_2025_009 article_ejssnt_23_1_23_2025_009_article_char_en |
GroupedDBID | 29G 2WC 5GY ADBBV ADDVE ALMA_UNASSIGNED_HOLDINGS BCNDV CS3 DU5 E3Z EBS EJD GROUPED_DOAJ GX1 HH5 JSF JSH KQ8 M~E OK1 OVT RJT RNS RZJ TR2 XSB RYH AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c480t-622d498e872fb755d30efbb8551263905ecac34ac91c40af129ed05f69fd42e3 |
ISSN | 1348-0391 |
IngestDate | Thu Jul 24 01:45:06 EDT 2025 Sun Jul 06 05:06:12 EDT 2025 Fri Jun 27 01:01:54 EDT 2025 Wed Sep 03 06:30:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c480t-622d498e872fb755d30efbb8551263905ecac34ac91c40af129ed05f69fd42e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://dx.doi.org/10.1380/ejssnt.2025-009 |
PQID | 3218732529 |
PQPubID | 1996353 |
PageCount | 7 |
ParticipantIDs | proquest_journals_3218732529 crossref_primary_10_1380_ejssnt_2025_009 nii_cinii_1390303620064892544 jstage_primary_article_ejssnt_23_1_23_2025_009_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | E-journal of surface science and nanotechnology |
PublicationTitleAlternate | e-J. Surf. Sci. Nanotechnol. |
PublicationTitle_FL | eJSSNT e-JSSNT e-J. Surf. Sci. Nanotech e-J. Surf. Sci. Nanotechnol |
PublicationYear | 2025 |
Publisher | The Japan Society of Vacuum and Surface Science 公益社団法人 日本表面真空学会 Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Society of Vacuum and Surface Science – name: 公益社団法人 日本表面真空学会 – name: Japan Science and Technology Agency |
References | [3] K. Ellmer, J. Phys. D 34, 3097 (2001). [9] S. Imashuku, Spectrochim. Acta B 212, 106842 (2024). [25] NIST Atomic Spectra Database (version 5.9), https://physics.nist.gov/asd (accessed). [4] H. Meixner, J. Gerblinger, U. Lampe, and M. Fleischer, Sens. Actuators B 23, 119 (1995). [10] K. Harada, N. Fujimori, and S. Yazu, Jpn. J. Appl. Phys. 27, L1524 (1988). [14] M. Tonouchi, Y. Sakaguchi, and T. Kobayashi, J. Appl. Phys. 62, 961 (1987). [13] M. M. Sung, C. Kim, C. G. Kim, and Y. Kim, J. Cryst. Growth 210, 651 (2000). [23] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin, L. Sawyer, and J. R. Micheal, Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. (Springer New York, NY, 2003). [12] K. H. Nam, M. J. Jung, J. G. Han, T. Kopte, U. Hartung, and C. Peters, Vacuum 75, 1 (2004). [19] S. Imashuku, High Temp. Corros. Mater. 101, 79 (2024). [18] S. J. Rho, S. M. Jeong, H. K. Baik, and K. M. Song, Thin Solid Films 355–356, 55 (1999). [1] K. B. Sundaram and A. Khan, Thin Solid Films 295, 87 (1997). [21] R. H. Packwood and J. D. Brown, X-Ray Spectrom. 10, 138 (1981). [20] S. Imashuku, ISIJ Int. 63, 1869 (2023). [5] N. Nafarizal, Procedia Chem. 20, 93 (2016). [16] F. Wang, S. Müller, and R. Wördenweber, Thin Solid Films 232, 232 (1993). [22] G. F. Bastin and H. J. M. Heijligers, in: Electron Probe Quantitation, edited by K. F. J. Heinrich and D. E. Newbury (Springer New York, NY, 1991) p. 145. [7] S. Imashuku, H. Narita, and K. Wagatsuma, Spectrochim. Acta B 194, 106457 (2022). [2] K. Ellmer, J. Phys. D 33, R17 (2000). [17] M. Z. Tseng, W. N. Jiang, and E. L. Hu, J. Appl. Phys. 76, 3562 (1994). [15] W.-Y. Hsu and R. Raj, Appl. Phys. Lett. 60, 3105 (1992). [24] W. R. B. Charles and H. Corliss, Experimental Transition Probabilities for Spectral Lines of Seventy Elements (U.S. National Bureau of Standards, Washington, 1962). [6] C.-H. Choi, L.-Y. Lin, C.-C. Cheng, and C. Chang, ECS J. Solid State Sci. Technol. 4, P3044 (2015). [11] Y. Kaneko, N. Mikoshiba, and T. Yamashita, Jpn. J. Appl. Phys. 30, 1091 (1991). [8] S. Imashuku, J. Vac. Sci. Technol. B 41, 034002 (2023). 22 23 24 25 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: [4] H. Meixner, J. Gerblinger, U. Lampe, and M. Fleischer, Sens. Actuators B 23, 119 (1995). – reference: [25] NIST Atomic Spectra Database (version 5.9), https://physics.nist.gov/asd (accessed). – reference: [18] S. J. Rho, S. M. Jeong, H. K. Baik, and K. M. Song, Thin Solid Films 355–356, 55 (1999). – reference: [10] K. Harada, N. Fujimori, and S. Yazu, Jpn. J. Appl. Phys. 27, L1524 (1988). – reference: [3] K. Ellmer, J. Phys. D 34, 3097 (2001). – reference: [24] W. R. B. Charles and H. Corliss, Experimental Transition Probabilities for Spectral Lines of Seventy Elements (U.S. National Bureau of Standards, Washington, 1962). – reference: [17] M. Z. Tseng, W. N. Jiang, and E. L. Hu, J. Appl. Phys. 76, 3562 (1994). – reference: [15] W.-Y. Hsu and R. Raj, Appl. Phys. Lett. 60, 3105 (1992). – reference: [8] S. Imashuku, J. Vac. Sci. Technol. B 41, 034002 (2023). – reference: [1] K. B. Sundaram and A. Khan, Thin Solid Films 295, 87 (1997). – reference: [7] S. Imashuku, H. Narita, and K. Wagatsuma, Spectrochim. Acta B 194, 106457 (2022). – reference: [6] C.-H. Choi, L.-Y. Lin, C.-C. Cheng, and C. Chang, ECS J. Solid State Sci. Technol. 4, P3044 (2015). – reference: [22] G. F. Bastin and H. J. M. Heijligers, in: Electron Probe Quantitation, edited by K. F. J. Heinrich and D. E. Newbury (Springer New York, NY, 1991) p. 145. – reference: [21] R. H. Packwood and J. D. Brown, X-Ray Spectrom. 10, 138 (1981). – reference: [20] S. Imashuku, ISIJ Int. 63, 1869 (2023). – reference: [2] K. Ellmer, J. Phys. D 33, R17 (2000). – reference: [19] S. Imashuku, High Temp. Corros. Mater. 101, 79 (2024). – reference: [5] N. Nafarizal, Procedia Chem. 20, 93 (2016). – reference: [11] Y. Kaneko, N. Mikoshiba, and T. Yamashita, Jpn. J. Appl. Phys. 30, 1091 (1991). – reference: [9] S. Imashuku, Spectrochim. Acta B 212, 106842 (2024). – reference: [13] M. M. Sung, C. Kim, C. G. Kim, and Y. Kim, J. Cryst. Growth 210, 651 (2000). – reference: [16] F. Wang, S. Müller, and R. Wördenweber, Thin Solid Films 232, 232 (1993). – reference: [12] K. H. Nam, M. J. Jung, J. G. Han, T. Kopte, U. Hartung, and C. Peters, Vacuum 75, 1 (2004). – reference: [23] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. E. Lyman, E. Lifshin, L. Sawyer, and J. R. Micheal, Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. (Springer New York, NY, 2003). – reference: [14] M. Tonouchi, Y. Sakaguchi, and T. Kobayashi, J. Appl. Phys. 62, 961 (1987). – ident: 11 doi: 10.1143/JJAP.30.1091 – ident: 20 doi: 10.2355/isijinternational.ISIJINT-2023-129 – ident: 23 doi: 10.1007/978-1-4615-0215-9 – ident: 16 doi: 10.1016/0040-6090(93)90014-G – ident: 5 doi: 10.1016/j.proche.2016.07.016 – ident: 22 doi: 10.1007/978-1-4899-2617-3_8 – ident: 6 doi: 10.1149/2.0071504jss – ident: 7 doi: 10.1016/j.sab.2022.106457 – ident: 3 doi: 10.1088/0022-3727/34/21/301 – ident: 17 doi: 10.1063/1.357415 – ident: 24 – ident: 4 doi: 10.1016/0925-4005(94)01266-K – ident: 21 doi: 10.1002/xrs.1300100311 – ident: 15 doi: 10.1063/1.106766 – ident: 2 doi: 10.1088/0022-3727/33/4/201 – ident: 18 doi: 10.1016/S0040-6090(99)00442-3 – ident: 14 doi: 10.1063/1.339708 – ident: 1 doi: 10.1016/S0040-6090(96)09274-7 – ident: 9 doi: 10.1016/j.sab.2023.106842 – ident: 19 doi: 10.1007/s11085-023-10217-8 – ident: 12 doi: 10.1016/j.vacuum.2003.12.125 – ident: 10 doi: 10.1143/JJAP.27.L1524 – ident: 8 – ident: 13 doi: 10.1016/S0022-0248(99)00847-7 – ident: 25 |
SSID | ssj0037376 |
Score | 2.3354347 |
Snippet | In situ elemental analysis is required to improve the yield and quality of sputter-deposited metal oxide films by detecting the films whose compositions are... |
SourceID | proquest crossref nii jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 29 |
SubjectTerms | Composition In situ analysis Magnesium oxide Metal oxide film Metal oxides MgO Optical emission spectroscopy Oxide coatings Spectrum analysis Sputter deposition Zinc oxide |
Title | Determining Emission Lines for in situ Compositional Analysis of Sputter-deposited MgO Films Using Optical Emission Spectroscopy |
URI | https://www.jstage.jst.go.jp/article/ejssnt/23/1/23_2025-009/_article/-char/en https://cir.nii.ac.jp/crid/1390303620064892544 https://www.proquest.com/docview/3218732529 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | e-Journal of Surface Science and Nanotechnology, 2025/03/01, Vol.23(1), pp.29-35 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKQIIL4lMUtskHDkhThhfbrX1BQqNjIMEOFKm3KHHskUHTak0uHBB_Ou85TpquQxpcrCpNn9y8n59_fnkfhLzUKhsdZamJHMvSSMCeFWVSppFTMjOSGa6aap-fR6dfxceZnA0Gv_rZJVV2aH5em1fyP1qFa6BXzJL9B812QuECfAb9wggahvFGOn4XYlnwuD8BhaHnC0_Z1hdZQFfGqqhqv-ZDbBYqpFeG5MvS96mOcutvAPL56fzs4KT4MV8dNMEEZ8vG2d2Jx4b1FZbAXCw33ghPol4RilV96VIsXhssB3rny7RcVFuO_A_zdPWt_l6HCKF6Xvf9ELFcB2IF08kFJus1vbcO7TXXgr1t8os3cBWMp-5tw00Rky0Dz31EpL0A6RgJi9Nger2Xte_vr2xxXeChf3-nWNIISFBA4vM_b8dwzEDD_n7WhQjxMffNCbt_EUpDgYDXV2awwWruXACxx4oNt8qi2NrjPXGZPiD3w4mDvm3g85AMbPmI3D1uG_09Jr97MKKtnqmHEQUY0aKkCCO6ASPawoguHN2CEQUYUQ8j6mFEA4zW4vswekKmJ5Pp8WkUGnNERihWRaM4zoVWVo1jl42lzDmzLssUsO8YGC-T1qSGi9ToIyNY6oBT2pxJN9IuF7HlT8lOuSjtM0KtUbl02PhIS5E7oEZap0wByzRCi5Eaklftc02WTfmV5C86HJI3zXPvbgzrsruRJ0c4tD_ovsf8RjAnQ7IH-kpMgSMcjJhnd8jZlcZCfkOy22oyCStqlXCgyGMey1g_v_lUX5B76xW0S3aqy9ruAbetsn3vE9r3MPwDv3SrbQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+Emission+Lines+for+in+situ+Compositional+Analysis+of+Sputter-deposited+MgO+Films+Using+Optical+Emission+Spectroscopy&rft.jtitle=E-journal+of+surface+science+and+nanotechnology&rft.au=Imashuku%2C+Susumu&rft.date=2025-03-01&rft.issn=1348-0391&rft.eissn=1348-0391&rft.volume=23&rft.issue=1&rft.spage=29&rft.epage=35&rft_id=info:doi/10.1380%2Fejssnt.2025-009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1380_ejssnt_2025_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1348-0391&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1348-0391&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1348-0391&client=summon |