Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases
Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antiox...
Saved in:
Published in | International journal of molecular sciences Vol. 24; no. 7; p. 6053 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms24076053 |
Cover
Loading…
Abstract | Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds. |
---|---|
AbstractList | Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds. Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds. |
Audience | Academic |
Author | Chang, Cheng-Chih Lin, Da-Wei Hsu, Yung-Chien Lin, Chun-Liang Hsieh, Ching-Chuan |
AuthorAffiliation | 3 Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan 4 Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan 6 Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan 1 Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan 7 Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan 2 Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan 5 School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan |
AuthorAffiliation_xml | – name: 2 Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan – name: 5 School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan – name: 4 Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan – name: 6 Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan – name: 1 Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan – name: 7 Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan – name: 3 Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan |
Author_xml | – sequence: 1 givenname: Da-Wei orcidid: 0000-0003-1209-6743 surname: Lin fullname: Lin, Da-Wei – sequence: 2 givenname: Yung-Chien surname: Hsu fullname: Hsu, Yung-Chien – sequence: 3 givenname: Cheng-Chih surname: Chang fullname: Chang, Cheng-Chih – sequence: 4 givenname: Ching-Chuan orcidid: 0000-0001-8554-328X surname: Hsieh fullname: Hsieh, Ching-Chuan – sequence: 5 givenname: Chun-Liang orcidid: 0000-0002-5710-8405 surname: Lin fullname: Lin, Chun-Liang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37047024$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1v1DAQxS1URD_gxhlZ4sKBLWM7sZMTqgotK7YgIThbjj3Z9Sqx2zhB2v8eR_1gW1U-2LJ_742eZ47JQYgBCXnL4FSIGj75bZ94AUpCKV6QI1ZwvgCQ6mDvfEiOU9oCcMHL-hU5FAoKBbw4IqtlSH69GRP1YYx03CC9ih3aqTMDvUK7McGnPtHY0h-_Lnim6HfvAu7oMmynYUdNcPSLT2gSptfkZWu6hG_u9hPy5-Lr7_Nvi9XPy-X52WphiwrGRekcd05Y0zBpTKNKbDi0BWfGSCZl3TrBmKo4YlWppqxazgSrsZC8ZbJyIE7I51vf66np0VkM42A6fT343gw7HY3Xj1-C3-h1_KsZQF2AKLLDhzuHId5MmEbd-2Sx60zAOCXNq_xtvAY2o--foNs4DSHn01zVtZQggP2n1qZD7UMbc2E7m-ozVbKal0rO1OkzVF4Oe29zX1uf7x8J3u0nfYh438AM8FvADjGlAVtt_WhGH-fgvsuJ9Twlen9KsujjE9G977P4P8D_u0Q |
CitedBy_id | crossref_primary_10_1016_j_phrs_2024_107301 crossref_primary_10_1080_0886022X_2024_2403653 crossref_primary_10_1016_j_lfs_2024_123046 crossref_primary_10_1016_j_lfs_2025_123410 crossref_primary_10_1016_j_phymed_2024_155661 crossref_primary_10_1186_s12950_024_00409_7 crossref_primary_10_3389_fendo_2025_1511730 crossref_primary_10_1007_s00210_024_03478_w crossref_primary_10_1016_j_intimp_2024_113385 crossref_primary_10_1016_j_bbrc_2024_149972 crossref_primary_10_1080_00498254_2025_2465239 crossref_primary_10_1111_bph_16414 crossref_primary_10_3390_antiox13121519 crossref_primary_10_1134_S1607672924701217 crossref_primary_10_1186_s40360_025_00888_1 crossref_primary_10_4236_ym_2025_91006 crossref_primary_10_3390_ijms25116033 crossref_primary_10_1021_acsbiomaterials_4c02093 crossref_primary_10_3390_antiox13101224 crossref_primary_10_3390_biomedicines12051085 crossref_primary_10_1016_j_cbi_2023_110797 crossref_primary_10_1093_jpp_rgaf002 crossref_primary_10_3389_fphar_2024_1480629 |
Cites_doi | 10.1016/j.cmet.2012.07.007 10.1371/journal.pone.0075076 10.1152/ajprenal.00421.2009 10.1016/j.cardfail.2014.10.001 10.1161/HYPERTENSIONAHA.115.05244 10.1155/2018/6730315 10.4093/dmj.2020.0168 10.33549/physiolres.932834 10.1186/1743-7075-11-2 10.1016/S1097-2765(03)00105-9 10.1007/s11356-019-04502-w 10.1083/jcb.201003138 10.2337/db09-1342 10.1128/MCB.23.20.7198-7209.2003 10.1161/HYPERTENSIONAHA.115.06062 10.1111/acel.13616 10.1016/j.redox.2018.02.013 10.1038/ki.2009.157 10.1080/03602530600971974 10.1002/2211-5463.13251 10.1038/nrm3270 10.1186/1471-2369-14-56 10.1074/jbc.R900010200 10.1067/mcp.2001.113989 10.1016/j.tox.2014.01.008 10.2337/db13-1830 10.1016/j.cmet.2012.07.005 10.1371/journal.pone.0045870 10.1016/j.redox.2022.102525 10.1007/s12192-010-0221-y 10.1089/ars.2016.6665 10.1159/000324694 10.3390/cells11040706 10.3390/antiox9080716 10.1093/ndt/gfx299 10.1016/j.ejphar.2020.173749 10.1038/s41598-017-08054-2 10.1073/pnas.0305902101 10.1038/s41467-020-19593-0 10.3389/fphar.2018.00512 10.1038/srep32229 10.1016/j.biopha.2018.06.123 10.1016/j.freeradbiomed.2015.04.022 10.1093/cvr/cvt150 10.1089/ars.2008.2027 10.1146/annurev-pharmtox-011613-135918 10.1016/j.redox.2013.10.007 10.1210/en.2017-00752 10.1128/MCB.01204-10 10.1590/s1677-5538.ibju.2018.0232 10.1016/j.arr.2018.06.003 10.1159/000487501 10.1126/scitranslmed.aba3613 10.1152/ajprenal.00501.2020 10.1016/j.apsb.2019.11.002 10.1089/ars.2006.8.1391 10.1111/dom.14503 10.1042/CS20160636 10.1083/jcb.200311055 10.1007/s00294-019-01026-1 10.1038/ncb2738 10.1016/j.freeradbiomed.2010.01.021 10.1186/s13568-020-01022-6 10.1016/S0140-6736(18)31694-5 10.1089/ars.2012.4604 10.1016/j.bbamcr.2008.01.002 10.1080/0886022X.2019.1643737 10.1371/journal.pone.0218986 10.1074/jbc.M314219200 10.1155/2020/7069052 10.1016/j.freeradbiomed.2013.03.024 10.1371/journal.pone.0152465 10.1016/j.exger.2017.11.018 10.1038/ki.2009.86 10.1161/HYPERTENSIONAHA.114.04760 10.1152/ajprenal.00376.2012 10.1159/000362906 10.1002/hep.31116 10.1016/j.tibs.2014.02.002 10.1093/toxres/tfab073 10.7150/thno.17853 10.1371/journal.pone.0047299 10.1016/j.yjmcc.2014.04.006 10.1016/j.cmet.2012.07.012 10.1158/0008-5472.CAN-12-3386 10.1074/jbc.M403061200 10.1073/pnas.1305687110 10.1056/NEJMoa1105351 10.3390/cancers12030569 10.1016/j.intimp.2021.108395 10.1074/jbc.M502551200 10.1038/ki.2009.286 10.3390/antiox9090783 10.1124/mol.112.081133 10.1016/j.freeradbiomed.2011.02.029 10.1016/j.kint.2020.07.036 10.2337/db20-1126 10.3390/ijms21134777 10.1172/JCI57748 10.1016/S0076-6879(02)48637-5 10.1111/1440-1681.12511 10.1038/ki.2013.357 10.1038/ki.2015.286 10.12659/AOT.884013 10.1152/ajpregu.00122.2017 10.1096/fj.201900217R 10.1073/pnas.220247197 10.1080/0886022X.2021.1963774 10.3109/00498254.2013.852705 10.1155/2019/4657651 10.1155/2019/3214196 10.1016/j.kint.2019.04.027 10.1016/j.freeradbiomed.2011.06.033 10.1155/2016/9825623 10.1016/j.clim.2016.06.011 10.1016/j.freeradbiomed.2015.05.034 10.1128/MCB.15.8.4184 10.1155/2020/1809408 10.3390/antiox11050845 10.1128/MCB.01408-13 10.1097/TP.0000000000000647 10.1002/med.21396 10.1007/s43440-022-00390-z 10.1371/journal.pone.0100715 10.3390/ijms23073525 10.1016/j.jnutbio.2011.10.012 10.1152/ajpheart.00196.2002 10.3390/antiox11010156 10.1002/mnfr.201200540 10.1074/jbc.M308439200 10.1016/j.ydbio.2008.04.041 10.1038/s41598-018-22913-6 10.1016/j.ekir.2020.03.030 10.2215/CJN.02400222 10.1084/jem.158.6.1836 10.1016/j.kint.2016.08.023 10.1152/ajprenal.00353.2010 10.1056/NEJMra1300575 10.1074/jbc.M109.093955 10.1073/pnas.93.25.14960 10.1007/s10753-022-01746-6 10.1016/j.cbi.2019.06.002 10.1002/art.38782 10.1016/S0021-9258(18)54815-8 10.1186/s12876-020-01453-2 10.1128/MCB.25.24.10895-10906.2005 10.2337/db11-1716 10.1167/iovs.07-1099 10.1016/j.freeradbiomed.2021.05.034 10.1038/nrneph.2017.31 10.1016/j.bbrc.2014.08.111 10.1101/gad.13.1.76 10.1007/s43440-020-00076-4 10.1016/j.taap.2010.03.016 10.1038/nrneph.2015.175 10.1161/CIRCRESAHA.118.312829 10.3390/antiox11101854 10.1016/j.fct.2011.07.008 10.1016/j.freeradbiomed.2015.06.014 10.1371/journal.pone.0163046 10.2337/db13-1743 10.1530/JOE-16-0322 10.1016/j.transproceed.2021.07.017 10.1016/j.heliyon.2022.e10515 10.3389/fncel.2021.787258 10.1155/2020/5695723 10.1016/j.freeradbiomed.2020.06.025 10.1152/ajprenal.00228.2016 10.1038/s41598-019-45539-8 10.1093/ajh/hpt160 10.3389/fimmu.2021.763760 10.1056/NEJMoa1306033 10.1074/jbc.M109.084590 10.1016/j.bcp.2008.02.029 10.1016/j.fct.2018.03.016 10.1038/sj.emboj.7601549 10.1126/sciadv.abb9614 10.1159/000327599 10.1006/bbrc.1997.6943 10.1042/CS20191088 10.1074/jbc.M101198200 10.1002/ctm2.382 10.1016/j.toxlet.2009.11.007 10.1177/1060028014546739 10.1038/ki.2013.343 10.1002/med.21330 10.1155/2016/1958174 10.1152/ajprenal.00469.2011 10.1016/j.taap.2008.05.022 10.1074/jbc.M611336200 10.1016/S0167-4781(00)00238-4 10.1016/j.jnutbio.2014.12.008 10.1073/pnas.0702027104 10.1083/jcb.200709049 10.1046/j.1365-2443.2001.00469.x 10.1016/j.micpath.2019.103688 10.1159/000487735 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.3390/ijms24076053 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Research Library (subscription) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC10094034 A751925761 37047024 10_3390_ijms24076053 |
Genre | Journal Article Review |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GrantInformation_xml | – fundername: Chang-Gung Memorial Hospital, Chiayi, Taiwan grantid: CMRPG6K0221-3 – fundername: Chang Gung Memorial Hospital at Chiayi, Taiwan grantid: CMRPG6K0221-3 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c480t-5dd2dd3cab16aab75eb20f421aa61669fd311782ee887b58f21319e462f168d03 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:38:24 EDT 2025 Fri Sep 05 07:48:23 EDT 2025 Fri Jul 25 20:26:39 EDT 2025 Tue Jun 17 21:06:12 EDT 2025 Tue Jun 10 20:34:22 EDT 2025 Thu Apr 03 07:02:50 EDT 2025 Thu Apr 24 23:09:39 EDT 2025 Tue Jul 01 02:03:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | acute kidney injury (AKI) diabetes nephropathy reactive oxygen species (ROS) reduction-oxidation (redox) chronic kidney disease (CKD) nuclear factor erythroid 2-related factor 2 (NRF2) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-5dd2dd3cab16aab75eb20f421aa61669fd311782ee887b58f21319e462f168d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8554-328X 0000-0003-1209-6743 0000-0002-5710-8405 0000-0002-4500-0878 |
OpenAccessLink | https://www.proquest.com/docview/2799660301?pq-origsite=%requestingapplication% |
PMID | 37047024 |
PQID | 2799660301 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10094034 proquest_miscellaneous_2800629014 proquest_journals_2799660301 gale_infotracmisc_A751925761 gale_infotracacademiconefile_A751925761 pubmed_primary_37047024 crossref_citationtrail_10_3390_ijms24076053 crossref_primary_10_3390_ijms24076053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230323 |
PublicationDateYYYYMMDD | 2023-03-23 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230323 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Luo (ref_167) 2015; 65 Harding (ref_74) 2003; 11 Venugopal (ref_34) 1996; 93 Torres (ref_141) 2013; 2013 Hayes (ref_22) 2014; 39 Tosi (ref_88) 2010; 16 Chen (ref_33) 2020; 71 Cruz (ref_144) 2011; 49 Pergola (ref_162) 2011; 365 Metcalf (ref_181) 2020; 6 He (ref_70) 2012; 82 Liu (ref_107) 2022; 58 Tapia (ref_142) 2018; 115 Ohsaki (ref_13) 2012; 302 ref_128 ref_127 Rush (ref_176) 2020; 99 Rutkowski (ref_53) 2010; 189 ref_129 Jiang (ref_40) 2015; 88 Pt B Anthony (ref_69) 2012; 16 Akizawa (ref_146) 2013; 369 Layton (ref_10) 2016; 311 Canning (ref_37) 2015; 88 ref_71 Zhou (ref_124) 2021; 43 Shang (ref_149) 2015; 26 Warady (ref_159) 2022; 17 Bellezza (ref_32) 2012; 23 Malek (ref_79) 2015; 4 Klappa (ref_60) 2006; 8 Nioi (ref_25) 2005; 25 Zhu (ref_112) 2018; 2018 Wu (ref_46) 2014; 452 ref_155 Zhang (ref_172) 2010; 245 Baud (ref_12) 1983; 158 Wang (ref_169) 2015; 65 Tu (ref_55) 2004; 164 Li (ref_104) 2020; 10 Takasu (ref_134) 2015; 99 Gong (ref_123) 2019; 41 Kwon (ref_57) 2020; 10 Kong (ref_90) 2017; 33 Jiang (ref_158) 2014; 85 Nakai (ref_111) 2013; 27 Abdo (ref_179) 2014; 63 Xu (ref_9) 2018; 107 Mousavi (ref_135) 2021; 10 Lu (ref_98) 2020; 12 Stojak (ref_171) 2020; 2020 Jain (ref_42) 2007; 282 ref_87 Ishii (ref_190) 2002; 348 Binder (ref_180) 2019; 124 Dada (ref_19) 2011; 121 Aminzadeh (ref_154) 2014; 44 Tan (ref_175) 2014; 63 Kang (ref_44) 2010; 285 Oslowski (ref_67) 2012; 16 Itoh (ref_72) 1997; 236 Zhao (ref_138) 2016; 2016 Cohen (ref_194) 2015; 55 Chen (ref_45) 2017; 7 Zhao (ref_178) 2018; 159 Furfaro (ref_200) 2016; 2016 Wang (ref_29) 2013; 73 Sireesh (ref_105) 2018; 8 Brodsky (ref_15) 2002; 283 Seervi (ref_50) 2018; 106 Rossing (ref_163) 2019; 96 Moon (ref_114) 2021; 23 He (ref_73) 2001; 276 Shokeir (ref_122) 2015; 64 Pergola (ref_145) 2011; 33 Xu (ref_174) 2012; 61 ref_205 Wei (ref_85) 2020; 158 ref_204 Locker (ref_63) 2007; 26 Dikalov (ref_18) 2011; 51 Kim (ref_99) 2010; 298 Jiang (ref_108) 2010; 59 Dickinson (ref_3) 2016; 169 Yang (ref_132) 2021; 11 Zhang (ref_188) 2021; 12 Liu (ref_151) 2022; 8 Chin (ref_166) 2014; 20 Flyvbjerg (ref_6) 2017; 13 Qin (ref_183) 2016; 67 Soni (ref_198) 2022; 74 Potteti (ref_81) 2021; 320 Ragab (ref_120) 2020; 72 Okazaki (ref_185) 2020; 11 Rockey (ref_21) 2015; 372 Wang (ref_182) 2014; 72 Zhang (ref_202) 2006; 38 Han (ref_68) 2018; 16 Vaziri (ref_153) 2015; 86 Zhou (ref_143) 2019; 2019 Polat (ref_126) 2018; 44 Foreman (ref_2) 2018; 392 Venci (ref_192) 2014; 48 Tang (ref_125) 2022; 102 Li (ref_115) 2020; 134 ref_100 Itoh (ref_28) 1999; 13 Covarrubias (ref_48) 2008; 320 Lerner (ref_66) 2012; 16 Yang (ref_187) 2007; 104 ref_101 Liu (ref_118) 2014; 85 Shelton (ref_23) 2015; 88 Lv (ref_160) 2018; 43 Wang (ref_35) 2008; 49 Ashari (ref_133) 2023; 46 McMahon (ref_27) 2004; 279 Tanaka (ref_131) 2008; 231 Nezu (ref_82) 2016; 91 Chung (ref_91) 2014; 11 Zhao (ref_177) 2021; 70 Yang (ref_95) 2013; 61 Lee (ref_58) 2016; 6 Chan (ref_76) 2000; 1517 Baird (ref_38) 2013; 110 Dong (ref_110) 2017; 232 Kim (ref_51) 2016; 36 Boye (ref_64) 2019; 66 Khaleel (ref_137) 2019; 309 Kong (ref_150) 2021; 45 Li (ref_83) 2018; 45 Aminzadeh (ref_103) 2013; 1 Han (ref_65) 2013; 15 Dikalov (ref_17) 2013; 19 Sogawa (ref_92) 2017; 7 Motohashi (ref_26) 2004; 101 Rada (ref_41) 2011; 31 Shin (ref_140) 2010; 48 Ratliff (ref_11) 2016; 25 Fujiki (ref_97) 2019; 9 Radeke (ref_14) 1991; 266 Nagasu (ref_156) 2019; 33 Lu (ref_191) 2016; 36 Wu (ref_157) 2014; 66 Liu (ref_30) 2008; 1783 Jin (ref_96) 2020; 2020 Kannan (ref_189) 2013; 100 Zhang (ref_197) 2020; 2020 Katoh (ref_39) 2001; 6 Victor (ref_52) 2020; 892 Yuan (ref_186) 2020; 2020 Huang (ref_113) 2021; 11 Zhang (ref_43) 2021; 7 Leung (ref_75) 2003; 278 Lee (ref_106) 2009; 76 Thangapandiyan (ref_136) 2019; 26 Wang (ref_168) 2018; 314 Thomas (ref_16) 2008; 10 Tsai (ref_94) 2011; 50 Tapia (ref_139) 2010; 192 Wakabayashi (ref_36) 2014; 34 Zazueta (ref_206) 2018; 47 ref_59 Chen (ref_56) 2008; 181 Cullinan (ref_78) 2004; 279 Zoja (ref_148) 2013; 304 Hetz (ref_54) 2012; 13 Nguyen (ref_203) 2009; 284 Soetikno (ref_102) 2012; 57 Pi (ref_173) 2010; 285 Liu (ref_80) 2009; 76 Wada (ref_5) 2015; 12 Xu (ref_61) 2004; 6 Yoon (ref_121) 2008; 75 Tesch (ref_7) 2017; 131 Kocak (ref_116) 2016; 43 ref_170 Gu (ref_84) 2019; 137 Wu (ref_117) 2011; 300 Chevalier (ref_86) 2009; 75 Chin (ref_165) 2014; 39 Zhang (ref_109) 2018; 9 Li (ref_152) 2011; 33 Zhen (ref_119) 2021; 53 Kim (ref_93) 2011; 337 ref_195 Saha (ref_201) 2021; 15 ref_199 ref_31 Cullinan (ref_77) 2003; 23 Hosoya (ref_20) 2005; 280 Brewer (ref_62) 2000; 97 Itoh (ref_24) 1995; 15 Nangaku (ref_147) 2020; 5 Tian (ref_164) 2019; 371 (ref_89) 2021; 172 ref_184 ref_1 ref_49 ref_193 Zhang (ref_196) 2019; 2019 Lei (ref_8) 2014; 35 Wu (ref_130) 2014; 318 Zhu (ref_47) 2022; 21 ref_4 Schemmer (ref_161) 2013; 18 |
References_xml | – volume: 16 start-page: 250 year: 2012 ident: ref_66 article-title: IRE1α Induces Thioredoxin-Interacting Protein to Activate the NLRP3 Inflammasome and Promote Programmed Cell Death under Irremediable ER Stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.07.007 – ident: ref_31 doi: 10.1371/journal.pone.0075076 – volume: 298 start-page: F662 year: 2010 ident: ref_99 article-title: Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00421.2009 – volume: 20 start-page: 953 year: 2014 ident: ref_166 article-title: Risk Factors for Heart Failure in Patients with Type 2 Diabetes Mellitus and Stage 4 Chronic Kidney Disease Treated With Bardoxolone Methyl publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2014.10.001 – volume: 65 start-page: 1055 year: 2015 ident: ref_169 article-title: Thromboxane Prostanoid Receptors Enhance Contractions, Endothelin-1, and Oxidative Stress in Microvessels from Mice with Chronic Kidney Disease publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.115.05244 – volume: 2018 start-page: 6730315 year: 2018 ident: ref_112 article-title: Astaxanthin Promotes Nrf2/ARE Signaling to Alleviate Renal Fibronectin and Collagen IV Accumulation in Diabetic Rats publication-title: J. Diabetes Res. doi: 10.1155/2018/6730315 – volume: 45 start-page: 909 year: 2021 ident: ref_150 article-title: Sulforaphane Ameliorates Diabetes-Induced Renal Fibrosis through Epigenetic Up-Regulation of BMP-7 publication-title: Diabetes Metab. J. doi: 10.4093/dmj.2020.0168 – volume: 64 start-page: 313 year: 2015 ident: ref_122 article-title: Activation of Nrf2 by Ischemic Preconditioning and Sulforaphane in Renal Ischemia/Reperfusion Injury: A Comparative Experimental Study publication-title: Physiol. Res. doi: 10.33549/physiolres.932834 – volume: 11 start-page: 2 year: 2014 ident: ref_91 article-title: Oleanolic acid attenuates renal fibrosis in mice with unilateral ureteral obstruction via facilitating nuclear translocation of Nrf2 publication-title: Nutr. Metab. doi: 10.1186/1743-7075-11-2 – volume: 11 start-page: 619 year: 2003 ident: ref_74 article-title: An Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to Oxidative Stress publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00105-9 – volume: 26 start-page: 12247 year: 2019 ident: ref_136 article-title: Sulforaphane potentially attenuates arsenic-induced nephrotoxicity via the PI3K/Akt/Nrf2 pathway in albino Wistar rats publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-04502-w – volume: 189 start-page: 783 year: 2010 ident: ref_53 article-title: Regulation of basal cellular physiology by the homeostatic unfolded protein response publication-title: J. Cell Biol. doi: 10.1083/jcb.201003138 – volume: 59 start-page: 850 year: 2010 ident: ref_108 article-title: The Protective Role of Nrf2 in Streptozotocin-Induced Diabetic Nephropathy publication-title: Diabetes doi: 10.2337/db09-1342 – volume: 23 start-page: 7198 year: 2003 ident: ref_77 article-title: Nrf2 Is a Direct PERK Substrate and Effector of PERK-Dependent Cell Survival publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.20.7198-7209.2003 – volume: 67 start-page: 107 year: 2016 ident: ref_183 article-title: Nrf2-Mediated Cardiac Maladaptive Remodeling and Dysfunction in a Setting of Autophagy Insufficiency publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.115.06062 – volume: 21 start-page: 13616 year: 2022 ident: ref_47 article-title: Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response publication-title: Aging Cell doi: 10.1111/acel.13616 – volume: 16 start-page: 32 year: 2018 ident: ref_68 article-title: Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis publication-title: Redox Biol. doi: 10.1016/j.redox.2018.02.013 – volume: 76 start-page: 277 year: 2009 ident: ref_80 article-title: Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice publication-title: Kidney Int. doi: 10.1038/ki.2009.157 – volume: 38 start-page: 769 year: 2006 ident: ref_202 article-title: Mechanistic Studies of the Nrf2-Keap1 Signaling Pathway publication-title: Drug Metab. Rev. doi: 10.1080/03602530600971974 – volume: 7 start-page: 44 year: 2021 ident: ref_43 article-title: Downregulation of XBP1 protects kidney against ischemia-reperfusion injury via suppressing HRD1-mediated NRF2 ubiquitylation publication-title: Cell Death Discov. – volume: 11 start-page: 2350 year: 2021 ident: ref_113 article-title: Isoeucommin A attenuates kidney injury in diabetic nephropathy through the Nrf2/HO-1 pathway publication-title: FEBS Open Bio doi: 10.1002/2211-5463.13251 – volume: 13 start-page: 89 year: 2012 ident: ref_54 article-title: The unfolded protein response: Controlling cell fate decisions under ER stress and beyond publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3270 – ident: ref_100 doi: 10.1186/1471-2369-14-56 – volume: 284 start-page: 13291 year: 2009 ident: ref_203 article-title: The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.R900010200 – ident: ref_193 doi: 10.1067/mcp.2001.113989 – volume: 2020 start-page: 4678252 year: 2020 ident: ref_171 article-title: Bardoxolone Methyl Displays Detrimental Effects on Endothelial Bioenergetics, Suppresses Endothelial ET-1 Release, and Increases Endothelial Permeability in Human Microvascular Endothelium publication-title: Oxidative Med. Cell. Longev. – volume: 318 start-page: 22 year: 2014 ident: ref_130 article-title: Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway publication-title: Toxicology doi: 10.1016/j.tox.2014.01.008 – volume: 63 start-page: 3483 year: 2014 ident: ref_179 article-title: Catalase overexpression prevents nuclear factor erythroid 2-related factor 2 stimulation of renal angiotensinogen gene expression, hypertension, and kidney injury in diabetic mice publication-title: Diabetes doi: 10.2337/db13-1830 – volume: 16 start-page: 265 year: 2012 ident: ref_67 article-title: Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.07.005 – ident: ref_127 doi: 10.1371/journal.pone.0045870 – volume: 58 start-page: 102525 year: 2022 ident: ref_107 article-title: Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice publication-title: Redox Biol. doi: 10.1016/j.redox.2022.102525 – volume: 16 start-page: 57 year: 2010 ident: ref_88 article-title: The Nrf2–Keap1 cellular defense pathway and heat shock protein 70 (Hsp70) response. Role in protection against oxidative stress in early neonatal unilateral ureteral obstruction (UUO) publication-title: Cell Stress Chaperon doi: 10.1007/s12192-010-0221-y – volume: 25 start-page: 119 year: 2016 ident: ref_11 article-title: Oxidant Mechanisms in Renal Injury and Disease publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2016.6665 – volume: 33 start-page: 289 year: 2011 ident: ref_152 article-title: Attenuation of Glomerular Injury in Diabetic Mice with Tert-Butylhydroquinone through Nuclear Factor Erythroid 2-Related Factor 2-Dependent Antioxidant Gene Activation publication-title: Am. J. Nephrol. doi: 10.1159/000324694 – ident: ref_59 doi: 10.3390/cells11040706 – ident: ref_195 doi: 10.3390/antiox9080716 – volume: 33 start-page: 771 year: 2017 ident: ref_90 article-title: Nrf2 deficiency promotes the progression from acute tubular damage to chronic renal fibrosis following unilateral ureteral obstruction publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfx299 – volume: 892 start-page: 173749 year: 2020 ident: ref_52 article-title: Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1 publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2020.173749 – volume: 7 start-page: 8801 year: 2017 ident: ref_92 article-title: Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice publication-title: Sci. Rep. doi: 10.1038/s41598-017-08054-2 – volume: 101 start-page: 6379 year: 2004 ident: ref_26 article-title: Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1–Nrf2 regulatory pathway publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0305902101 – volume: 11 start-page: 5911 year: 2020 ident: ref_185 article-title: Enhancer remodeling promotes tumor-initiating activity in NRF2-activated non-small cell lung cancers publication-title: Nat. Commun. doi: 10.1038/s41467-020-19593-0 – volume: 9 start-page: 512 year: 2018 ident: ref_109 article-title: Paeonol Ameliorates Diabetic Renal Fibrosis Through Promoting the Activation of the Nrf2/ARE Pathway via Up-Regulating Sirt1 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00512 – volume: 6 start-page: 32229 year: 2016 ident: ref_58 article-title: Effect of BI-1 on insulin resistance through regulation of CYP2E1 publication-title: Sci. Rep. doi: 10.1038/srep32229 – volume: 106 start-page: 200 year: 2018 ident: ref_50 article-title: ROS mediated ER stress induces Bax-Bak dependent and independent apoptosis in response to Thioridazine publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.06.123 – volume: 86 start-page: 374 year: 2015 ident: ref_153 article-title: Dose-dependent deleterious and salutary actions of the Nrf2 inducer dh404 in chronic kidney disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.04.022 – volume: 100 start-page: 63 year: 2013 ident: ref_189 article-title: Nrf2 deficiency prevents reductive stress-induced hypertrophic cardiomyopathy publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvt150 – volume: 10 start-page: 1713 year: 2008 ident: ref_16 article-title: Redox Control of Endothelial Function and Dysfunction: Molecular Mechanisms and Therapeutic Opportunities publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2008.2027 – volume: 55 start-page: 55 year: 2015 ident: ref_194 article-title: The Use of Biomarkers in Human Pharmacology (Phase I) Studies publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-011613-135918 – volume: 1 start-page: 527 year: 2013 ident: ref_103 article-title: The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores endothelial function impaired by reduced Nrf2 activity in chronic kidney disease publication-title: Redox Biol. doi: 10.1016/j.redox.2013.10.007 – volume: 159 start-page: 836 year: 2018 ident: ref_178 article-title: Nrf2 Deficiency Upregulates Intrarenal Angiotensin-Converting Enzyme-2 and Angiotensin 1-7 Receptor Expression and Attenuates Hypertension and Nephropathy in Diabetic Mice publication-title: Endocrinology doi: 10.1210/en.2017-00752 – volume: 31 start-page: 1121 year: 2011 ident: ref_41 article-title: SCF/beta-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01204-10 – volume: 44 start-page: 1243 year: 2018 ident: ref_126 article-title: Beneficial effects of Oltipraz, nuclear factor-erythroid–2-related factor 2 (Nrf2), on renal damage in unilateral ureteral obstruction rat model publication-title: Int. Braz. J. Urol. doi: 10.1590/s1677-5538.ibju.2018.0232 – volume: 47 start-page: 31 year: 2018 ident: ref_206 article-title: Nrf2: Molecular and epigenetic regulation during aging publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2018.06.003 – volume: 43 start-page: 191 year: 2018 ident: ref_160 article-title: The Association Between Oxidative Stress Alleviation via Sulforaphane-Induced Nrf2-HO-1/NQO-1 Signaling Pathway Activation and Chronic Renal Allograft Dysfunction Improvement publication-title: Kidney Blood Press Res. doi: 10.1159/000487501 – volume: 12 start-page: eaba3613 year: 2020 ident: ref_98 article-title: Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aba3613 – volume: 320 start-page: F464 year: 2021 ident: ref_81 article-title: Nrf2 mediates hypoxia-inducible HIF1α activation in kidney tubular epithelial cells publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00501.2020 – volume: 10 start-page: 42 year: 2020 ident: ref_57 article-title: Cytochrome P450 endoplasmic reticulum-associated degradation (ERAD): Therapeutic and pathophysiological implications publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2019.11.002 – volume: 8 start-page: 1391 year: 2006 ident: ref_60 article-title: The Endoplasmic Reticulum: Folding, Calcium Homeostasis, Signaling, and Redox Control publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2006.8.1391 – volume: 23 start-page: 2561 year: 2021 ident: ref_114 article-title: Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.14503 – volume: 131 start-page: 2183 year: 2017 ident: ref_7 article-title: Diabetic nephropathy—Is this an immune disorder? publication-title: Clin. Sci. doi: 10.1042/CS20160636 – volume: 164 start-page: 341 year: 2004 ident: ref_55 article-title: Oxidative protein folding in eukaryotes: Mechanisms and consequences publication-title: J. Cell Biol. doi: 10.1083/jcb.200311055 – volume: 66 start-page: 293 year: 2019 ident: ref_64 article-title: eIF2α phosphorylation and the regulation of translation publication-title: Curr. Genet. doi: 10.1007/s00294-019-01026-1 – volume: 15 start-page: 481 year: 2013 ident: ref_65 article-title: ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death publication-title: Nat. Cell Biol. doi: 10.1038/ncb2738 – volume: 48 start-page: 1051 year: 2010 ident: ref_140 article-title: The NRF2–heme oxygenase-1 system modulates cyclosporin A-induced epithelial–mesenchymal transition and renal fibrosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.01.021 – volume: 10 start-page: 87 year: 2020 ident: ref_104 article-title: Cinnamtannin A2 protects the renal injury by attenuates the altered expression of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) expression in 5/6 nephrectomized rat model publication-title: AMB Express doi: 10.1186/s13568-020-01022-6 – volume: 392 start-page: 2052 year: 2018 ident: ref_2 article-title: Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories publication-title: Lancet doi: 10.1016/S0140-6736(18)31694-5 – volume: 19 start-page: 1085 year: 2013 ident: ref_17 article-title: Angiotensin II-Induced Production of Mitochondrial Reactive Oxygen Species: Potential Mechanisms and Relevance for Cardiovascular Disease publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4604 – volume: 1783 start-page: 713 year: 2008 ident: ref_30 article-title: NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.01.002 – volume: 41 start-page: 750 year: 2019 ident: ref_123 article-title: Diabetes aggravates renal ischemia and reperfusion injury in rats by exacerbating oxidative stress, inflammation, and apoptosis publication-title: Ren. Fail. doi: 10.1080/0886022X.2019.1643737 – ident: ref_87 doi: 10.1371/journal.pone.0218986 – volume: 279 start-page: 20108 year: 2004 ident: ref_78 article-title: PERK-dependent Activation of Nrf2 Contributes to Redox Homeostasis and Cell Survival following Endoplasmic Reticulum Stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M314219200 – volume: 2020 start-page: 7069052 year: 2020 ident: ref_96 article-title: Curcumin Improves the Renal Autophagy in Rat Experimental Membranous Nephropathy via Regulating the PI3K/AKT/mTOR and Nrf2/HO-1 Signaling Pathways publication-title: Biomed Res. Int. doi: 10.1155/2020/7069052 – volume: 61 start-page: 285 year: 2013 ident: ref_95 article-title: Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.03.024 – ident: ref_199 doi: 10.1371/journal.pone.0152465 – volume: 107 start-page: 98 year: 2018 ident: ref_9 article-title: Immunity and Inflammation: From Jekyll to Hyde publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2017.11.018 – volume: 75 start-page: 1145 year: 2009 ident: ref_86 article-title: Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy publication-title: Kidney Int. doi: 10.1038/ki.2009.86 – volume: 65 start-page: 896 year: 2015 ident: ref_167 article-title: Activation of nuclear factor erythroid 2-related factor 2 coordinates dimethylarginine dimethylaminohydrolase/PPAR-gamma/endothelial nitric oxide synthase pathways that enhance nitric oxide generation in human glomerular endothelial cells publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.114.04760 – volume: 304 start-page: F808 year: 2013 ident: ref_148 article-title: Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00376.2012 – volume: 39 start-page: 499 year: 2014 ident: ref_165 article-title: Mechanisms Contributing to Adverse Cardiovascular Events in Patients with Type 2 Diabetes Mellitus and Stage 4 Chronic Kidney Disease Treated with Bardoxolone Methyl publication-title: Am. J. Nephrol. doi: 10.1159/000362906 – volume: 71 start-page: 1787 year: 2020 ident: ref_33 article-title: c-Jun NH2-Terminal Protein Kinase Phosphorylates the Nrf2-ECH Homology 6 Domain of Nuclear Factor Erythroid 2–Related Factor 2 and Downregulates Cytoprotective Genes in Acetaminophen-Induced Liver Injury in Mice publication-title: Hepatology doi: 10.1002/hep.31116 – volume: 39 start-page: 199 year: 2014 ident: ref_22 article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.02.002 – volume: 10 start-page: 911 year: 2021 ident: ref_135 article-title: The activation of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling blunts cholestasis-induced liver and kidney injury publication-title: Toxicol. Res. doi: 10.1093/toxres/tfab073 – volume: 7 start-page: 2634 year: 2017 ident: ref_45 article-title: Co-Activation of PKC-delta by CRIF1 Modulates Oxidative Stress in Bone Marrow Multipotent Mesenchymal Stromal Cells after Irradiation by Phosphorylating NRF2 Ser40 publication-title: Theranostics doi: 10.7150/thno.17853 – ident: ref_129 doi: 10.1371/journal.pone.0047299 – volume: 72 start-page: 305 year: 2014 ident: ref_182 article-title: Nrf2 enhances myocardial clearance of toxic ubiquitinated proteins publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2014.04.006 – volume: 16 start-page: 135 year: 2012 ident: ref_69 article-title: TXNIP Switches Tracks toward a Terminal UPR publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.07.012 – volume: 73 start-page: 3097 year: 2013 ident: ref_29 article-title: RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3386 – volume: 279 start-page: 31556 year: 2004 ident: ref_27 article-title: Redox-regulated Turnover of Nrf2 Is Determined by at Least Two Separate Protein Domains, the Redox-sensitive Neh2 Degron and the Redox-insensitive Neh6 Degron publication-title: J. Biol. Chem. doi: 10.1074/jbc.M403061200 – volume: 110 start-page: 15259 year: 2013 ident: ref_38 article-title: Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1305687110 – volume: 365 start-page: 327 year: 2011 ident: ref_162 article-title: Bardoxolone Methyl and Kidney Function in CKD with Type 2 Diabetes publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1105351 – volume: 337 start-page: 583 year: 2011 ident: ref_93 article-title: Role of Intrarenal Angiotensin System Activation, Oxidative Stress, Inflammation, and Impaired Nuclear Factor-Erythroid-2-Related Factor 2 Activity in the Progression of Focal Glomerulosclerosis publication-title: Experiment – ident: ref_71 doi: 10.3390/cancers12030569 – volume: 102 start-page: 108395 year: 2022 ident: ref_125 article-title: Dimethyl fumarate attenuates LPS induced septic acute kidney injury by suppression of NFkappaB p65 phosphorylation and macrophage activation publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2021.108395 – volume: 280 start-page: 27244 year: 2005 ident: ref_20 article-title: Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M502551200 – volume: 76 start-page: 838 year: 2009 ident: ref_106 article-title: Induction of heme oxygenase-1 protects against podocyte apoptosis under diabetic conditions publication-title: Kidney Int. doi: 10.1038/ki.2009.286 – ident: ref_101 doi: 10.3390/antiox9090783 – volume: 82 start-page: 887 year: 2012 ident: ref_70 article-title: Redox Regulation by Nuclear Factor Erythroid 2-Related Factor 2: Gatekeeping for the Basal and Diabetes-Induced Expression of Thioredoxin-Interacting Protein publication-title: Mol. Pharmacol. doi: 10.1124/mol.112.081133 – volume: 50 start-page: 1503 year: 2011 ident: ref_94 article-title: Antroquinonol reduces oxidative stress by enhancing the Nrf2 signaling pathway and inhibits inflammation and sclerosis in focal segmental glomerulosclerosis mice publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.02.029 – volume: 99 start-page: 102 year: 2020 ident: ref_176 article-title: Genetic or pharmacologic Nrf2 activation increases proteinuria in chronic kidney disease in mice publication-title: Kidney Int. doi: 10.1016/j.kint.2020.07.036 – volume: 70 start-page: 1388 year: 2021 ident: ref_177 article-title: Overexpression of Nrf2 in Renal Proximal Tubular Cells Stimulates Sodium–Glucose Cotransporter 2 Expression and Exacerbates Dysglycemia and Kidney Injury in Diabetic Mice publication-title: Diabetes doi: 10.2337/db20-1126 – ident: ref_205 doi: 10.3390/ijms21134777 – volume: 121 start-page: 1683 year: 2011 ident: ref_19 article-title: Mitochondrial Ca2+ and ROS take center stage to orchestrate TNF-α–mediated inflammatory responses publication-title: J. Clin. Investig. doi: 10.1172/JCI57748 – volume: 348 start-page: 182 year: 2002 ident: ref_190 article-title: Roles of Nrf2 in activation of antioxidant enzyme genes via antioxidant responsive elements publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(02)48637-5 – volume: 43 start-page: 230 year: 2016 ident: ref_116 article-title: Effects of captopril, telmisartan and bardoxolone methyl (CDDO-Me) in ischemia-reperfusion-induced acute kidney injury in rats: An experimental comparative study publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/1440-1681.12511 – volume: 85 start-page: 134 year: 2014 ident: ref_118 article-title: The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice publication-title: Kidney Int. doi: 10.1038/ki.2013.357 – volume: 88 start-page: 1261 year: 2015 ident: ref_23 article-title: Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney publication-title: Kidney Int. doi: 10.1038/ki.2015.286 – volume: 18 start-page: 488 year: 2013 ident: ref_161 article-title: Sulforaphane decreases kidney injury after transplantation in rats: Role of mitochondrial damage publication-title: Ann. Transplant. doi: 10.12659/AOT.884013 – volume: 314 start-page: R399 year: 2018 ident: ref_168 article-title: NRF2 prevents hypertension, increased ADMA, microvascular oxidative stress, and dysfunction in mice with two weeks of ANG II infusion publication-title: Am. J. Physiol. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00122.2017 – volume: 33 start-page: 12253 year: 2019 ident: ref_156 article-title: Bardoxolone methyl analog attenuates proteinuria-induced tubular damage by modulating mitochondrial function publication-title: FASEB J. doi: 10.1096/fj.201900217R – volume: 97 start-page: 12625 year: 2000 ident: ref_62 article-title: PERK mediates cell-cycle exit during the mammalian unfolded protein response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.220247197 – volume: 43 start-page: 1229 year: 2021 ident: ref_124 article-title: Dimethyl fumarate ameliorates endotoxin-induced acute kidney injury against macrophage oxidative stress publication-title: Ren. Fail. doi: 10.1080/0886022X.2021.1963774 – volume: 44 start-page: 570 year: 2014 ident: ref_154 article-title: The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores Nrf2 activity and attenuates oxidative stress, inflammation, and fibrosis in rats with chronic kidney disease publication-title: Xenobiotica doi: 10.3109/00498254.2013.852705 – volume: 36 start-page: 2281 year: 2016 ident: ref_51 article-title: Induction of Endoplasmic Reticulum Stress via Reactive Oxygen Species Mediated by Luteolin in Melanoma Cells publication-title: Anticancer Res. – ident: ref_1 – volume: 2019 start-page: 4657651 year: 2019 ident: ref_143 article-title: Tert-Butylhydroquinone Treatment Alleviates Contrast-Induced Nephropathy in Rats by Activating the Nrf2/Sirt3/SOD2 Signaling Pathway publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2019/4657651 – volume: 2019 start-page: 3214196 year: 2019 ident: ref_196 article-title: New Insights into the Nrf-2/HO-1 Signaling Axis and Its Application in Pediatric Respiratory Diseases publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2019/3214196 – volume: 96 start-page: 1030 year: 2019 ident: ref_163 article-title: Effect of bardoxolone methyl on the urine albumin-to-creatinine ratio in patients with type 2 diabetes and stage 4 chronic kidney disease publication-title: Kidney Int. doi: 10.1016/j.kint.2019.04.027 – volume: 51 start-page: 1289 year: 2011 ident: ref_18 article-title: Cross talk between mitochondria and NADPH oxidases publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.06.033 – volume: 2016 start-page: 9825623 year: 2016 ident: ref_138 article-title: Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2016/9825623 – volume: 169 start-page: 89 year: 2016 ident: ref_3 article-title: Unraveling the immunopathogenesis of glomerular disease publication-title: Clin. Immunol. doi: 10.1016/j.clim.2016.06.011 – volume: 88 start-page: 101 year: 2015 ident: ref_37 article-title: Structural basis of Keap1 interactions with Nrf2 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.05.034 – volume: 15 start-page: 4184 year: 1995 ident: ref_24 article-title: Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.8.4184 – volume: 2020 start-page: 1809408 year: 2020 ident: ref_186 article-title: The Role of Notch3 Signaling in Kidney Disease publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2020/1809408 – ident: ref_170 doi: 10.3390/antiox11050845 – volume: 34 start-page: 653 year: 2014 ident: ref_36 article-title: Notch-Nrf2 Axis: Regulation of Nrf2 Gene Expression and Cytoprotection by Notch Signaling publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01408-13 – volume: 2013 start-page: 135314 year: 2013 ident: ref_141 article-title: Sulforaphane Attenuates Gentamicin-Induced Nephrotoxicity: Role of Mitochondrial Protection publication-title: Evid.-Based Complement. Altern. Med. – volume: 99 start-page: 1144 year: 2015 ident: ref_134 article-title: Treatment with Dimethyl Fumarate Attenuates Calcineurin Inhibitor-induced Nephrotoxicity publication-title: Transplantation doi: 10.1097/TP.0000000000000647 – volume: 36 start-page: 924 year: 2016 ident: ref_191 article-title: The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update publication-title: Med. Res. Rev. doi: 10.1002/med.21396 – volume: 74 start-page: 557 year: 2022 ident: ref_198 article-title: GSK-3beta-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders publication-title: Pharmacol. Rep. doi: 10.1007/s43440-022-00390-z – ident: ref_184 doi: 10.1371/journal.pone.0100715 – volume: 4 start-page: 20 year: 2015 ident: ref_79 article-title: Renal ischemia/reperfusion injury; from pathophysiology to treatment publication-title: J. Renal Inj. Prev. – ident: ref_4 doi: 10.3390/ijms23073525 – volume: 23 start-page: 1583 year: 2012 ident: ref_32 article-title: Inhibition of NF-kappaB nuclear translocation via HO-1 activation underlies alpha-tocopheryl succinate toxicity publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2011.10.012 – volume: 283 start-page: H2130 year: 2002 ident: ref_15 article-title: Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells publication-title: Am. J. Physiol. Circ. Physiol. doi: 10.1152/ajpheart.00196.2002 – ident: ref_155 doi: 10.3390/antiox11010156 – volume: 57 start-page: 1649 year: 2012 ident: ref_102 article-title: Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201200540 – volume: 278 start-page: 48021 year: 2003 ident: ref_75 article-title: Deficiency of the Nrf1 and Nrf2 Transcription Factors Results in Early Embryonic Lethality and Severe Oxidative Stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308439200 – volume: 320 start-page: 1 year: 2008 ident: ref_48 article-title: Function of reactive oxygen species during animal development: Passive or active? publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2008.04.041 – volume: 8 start-page: 5126 year: 2018 ident: ref_105 article-title: Association of NF-E2 Related Factor 2 (Nrf2) and inflammatory cytokines in recent onset Type 2 Diabetes Mellitus publication-title: Sci. Rep. doi: 10.1038/s41598-018-22913-6 – volume: 5 start-page: 879 year: 2020 ident: ref_147 article-title: Randomized Clinical Trial on the Effect of Bardoxolone Methyl on GFR in Diabetic Kidney Disease Patients (TSUBAKI Study) publication-title: Kidney Int. Rep. doi: 10.1016/j.ekir.2020.03.030 – volume: 17 start-page: 1763 year: 2022 ident: ref_159 article-title: Effects of Bardoxolone Methyl in Alport Syndrome publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.02400222 – volume: 158 start-page: 1836 year: 1983 ident: ref_12 article-title: Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis is associated with stimulation of lipoxygenase activity publication-title: J. Exp. Med. doi: 10.1084/jem.158.6.1836 – volume: 91 start-page: 387 year: 2016 ident: ref_82 article-title: Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression publication-title: Kidney Int. doi: 10.1016/j.kint.2016.08.023 – volume: 300 start-page: F1180 year: 2011 ident: ref_117 article-title: Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO-1 publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00353.2010 – volume: 372 start-page: 1138 year: 2015 ident: ref_21 article-title: Fibrosis—A Common Pathway to Organ Injury and Failure publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1300575 – volume: 285 start-page: 9292 year: 2010 ident: ref_173 article-title: Deficiency in the Nuclear Factor E2-related Factor-2 Transcription Factor Results in Impaired Adipogenesis and Protects against Diet-induced Obesity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.093955 – volume: 93 start-page: 14960 year: 1996 ident: ref_34 article-title: Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase gene publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.25.14960 – volume: 46 start-page: 453 year: 2023 ident: ref_133 article-title: Dimethyl Fumarate Attenuates Di-(2-Ethylhexyl) Phthalate-Induced Nephrotoxicity Through the Nrf2/HO-1 and NF-kappaB Signaling Pathways publication-title: Inflammation doi: 10.1007/s10753-022-01746-6 – volume: 309 start-page: 108689 year: 2019 ident: ref_137 article-title: Contrast media (meglumine diatrizoate) aggravates renal inflammation, oxidative DNA damage and apoptosis in diabetic rats which is restored by sulforaphane through Nrf2/HO-1 reactivation publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2019.06.002 – volume: 66 start-page: 3129 year: 2014 ident: ref_157 article-title: Prevention of Murine Lupus Nephritis by Targeting Multiple Signaling Axes and Oxidative Stress Using a Synthetic Triterpenoid publication-title: Arthritis Rheumatol. doi: 10.1002/art.38782 – volume: 266 start-page: 21025 year: 1991 ident: ref_14 article-title: Functional expression of NADPH oxidase components (alpha- and beta-subunits of cytochrome b558 and 45-kDa flavoprotein) by intrinsic human glomerular mesangial cells publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54815-8 – ident: ref_204 doi: 10.1186/s12876-020-01453-2 – volume: 25 start-page: 10895 year: 2005 ident: ref_25 article-title: The Carboxy-Terminal Neh3 Domain of Nrf2 Is Required for Transcriptional Activation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.24.10895-10906.2005 – volume: 61 start-page: 3208 year: 2012 ident: ref_174 article-title: Enhanced Nrf2 Activity Worsens Insulin Resistance, Impairs Lipid Accumulation in Adipose Tissue, and Increases Hepatic Steatosis in Leptin-Deficient Mice publication-title: Diabetes doi: 10.2337/db11-1716 – volume: 49 start-page: 1671 year: 2008 ident: ref_35 article-title: Essential Roles of the PI3 Kinase/Akt Pathway in Regulating Nrf2-Dependent Antioxidant Functions in the RPE publication-title: Investig. Opthalmol. Vis. Sci. doi: 10.1167/iovs.07-1099 – volume: 172 start-page: 65 year: 2021 ident: ref_89 article-title: Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2021.05.034 – volume: 13 start-page: 311 year: 2017 ident: ref_6 article-title: The role of the complement system in diabetic nephropathy publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2017.31 – volume: 452 start-page: 554 year: 2014 ident: ref_46 article-title: Rexinoid inhibits Nrf2-mediated transcription through retinoid X receptor alpha publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.08.111 – volume: 13 start-page: 76 year: 1999 ident: ref_28 article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain publication-title: Genes Dev. doi: 10.1101/gad.13.1.76 – volume: 72 start-page: 969 year: 2020 ident: ref_120 article-title: The dual reno- and neuro-protective effects of dimethyl fumarate against uremic encephalopathy in a renal ischemia/reperfusion model publication-title: Pharmacol. Rep. doi: 10.1007/s43440-020-00076-4 – volume: 245 start-page: 326 year: 2010 ident: ref_172 article-title: Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2010.03.016 – volume: 12 start-page: 13 year: 2015 ident: ref_5 article-title: Innate immunity in diabetes and diabetic nephropathy publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2015.175 – volume: 124 start-page: 696 year: 2019 ident: ref_180 article-title: Pak2 as a Novel Therapeutic Target for Cardioprotective Endoplasmic Reticulum Stress Response publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.312829 – ident: ref_128 doi: 10.3390/antiox11101854 – volume: 49 start-page: 2631 year: 2011 ident: ref_144 article-title: Preventive effect of tert-butylhydroquinone on cisplatin-induced nephrotoxicity in rats publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2011.07.008 – volume: 88 Pt B start-page: 199 year: 2015 ident: ref_40 article-title: p62 links autophagy and Nrf2 signaling publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.06.014 – ident: ref_49 doi: 10.1371/journal.pone.0163046 – volume: 63 start-page: 3091 year: 2014 ident: ref_175 article-title: Derivative of Bardoxolone Methyl, dh404, in an Inverse Dose-Dependent Manner Lessens Diabetes-Associated Atherosclerosis and Improves Diabetic Kidney Disease publication-title: Diabetes doi: 10.2337/db13-1743 – volume: 232 start-page: 71 year: 2017 ident: ref_110 article-title: Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC publication-title: J. Endocrinol. doi: 10.1530/JOE-16-0322 – volume: 53 start-page: 2133 year: 2021 ident: ref_119 article-title: Activation of Nrf2 Pathway by Dimethyl Fumarate Attenuates Renal Ischemia-Reperfusion Injury publication-title: Transplant. Proc. doi: 10.1016/j.transproceed.2021.07.017 – volume: 8 start-page: e10515 year: 2022 ident: ref_151 article-title: tBHQ attenuates podocyte injury in diabetic nephropathy by inhibiting NADPH oxidase-derived ROS generation via the Nrf2/HO-1 signalling pathway publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e10515 – volume: 15 start-page: 787258 year: 2021 ident: ref_201 article-title: A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer’s and Parkinson’s Diseases publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2021.787258 – volume: 2020 start-page: 5695723 year: 2020 ident: ref_197 article-title: The Nrf-2/HO-1 Signaling Axis: A Ray of Hope in Cardiovascular Diseases publication-title: Cardiol. Res. Pract. doi: 10.1155/2020/5695723 – volume: 158 start-page: 1 year: 2020 ident: ref_85 article-title: The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.06.025 – volume: 311 start-page: F162 year: 2016 ident: ref_10 article-title: Recent advances in renal hypoxia: Insights from bench experiments and computer simulations publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajprenal.00228.2016 – volume: 9 start-page: 9245 year: 2019 ident: ref_97 article-title: Tolvaptan activates the Nrf2/HO-1 antioxidant pathway through PERK phosphorylation publication-title: Sci. Rep. doi: 10.1038/s41598-019-45539-8 – volume: 27 start-page: 586 year: 2013 ident: ref_111 article-title: Vitamin D Activates the Nrf2-Keap1 Antioxidant Pathway and Ameliorates Nephropathy in Diabetic Rats publication-title: Am. J. Hypertens. doi: 10.1093/ajh/hpt160 – volume: 12 start-page: 763760 year: 2021 ident: ref_188 article-title: Nrf2 Promotes Inflammation in Early Myocardial Ischemia-Reperfusion via Recruitment and Activation of Macrophages publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.763760 – volume: 369 start-page: 2492 year: 2013 ident: ref_146 article-title: Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1306033 – volume: 285 start-page: 21258 year: 2010 ident: ref_44 article-title: CR6-interacting Factor 1 (CRIF1) Regulates NF-E2-related Factor 2 (NRF2) Protein Stability by Proteasome-mediated Degradation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.084590 – volume: 75 start-page: 2214 year: 2008 ident: ref_121 article-title: Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2008.02.029 – volume: 115 start-page: 185 year: 2018 ident: ref_142 article-title: Sulforaphane prevents maleic acid-induced nephropathy by modulating renal hemodynamics, mitochondrial bioenergetics and oxidative stress publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2018.03.016 – volume: 26 start-page: 795 year: 2007 ident: ref_63 article-title: HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly publication-title: EMBO J. doi: 10.1038/sj.emboj.7601549 – volume: 6 start-page: eabb9614 year: 2020 ident: ref_181 article-title: Beyond the cell factory: Homeostatic regulation of and by the UPRER publication-title: Sci. Adv. doi: 10.1126/sciadv.abb9614 – volume: 33 start-page: 469 year: 2011 ident: ref_145 article-title: Effect of Bardoxolone Methyl on Kidney Function in Patients with T2D and Stage 3b–4 CKD publication-title: Am. J. Nephrol. doi: 10.1159/000327599 – volume: 236 start-page: 313 year: 1997 ident: ref_72 article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.6943 – volume: 134 start-page: 2469 year: 2020 ident: ref_115 article-title: Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function publication-title: Clin. Sci. doi: 10.1042/CS20191088 – volume: 276 start-page: 20858 year: 2001 ident: ref_73 article-title: Identification of Activating Transcription Factor 4 (ATF4) as an Nrf2-interacting Protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M101198200 – volume: 11 start-page: e382 year: 2021 ident: ref_132 article-title: Dimethyl fumarate prevents ferroptosis to attenuate acute kidney injury by acting on NRF2 publication-title: Clin. Transl. Med. doi: 10.1002/ctm2.382 – volume: 192 start-page: 278 year: 2010 ident: ref_139 article-title: Sulforaphane protects against cisplatin-induced nephrotoxicity publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2009.11.007 – volume: 48 start-page: 1537 year: 2014 ident: ref_192 article-title: Response to Comment on “Dimethyl Fumarate (Tecfidera): A New Oral Agent for Multiple Sclerosis” publication-title: Ann. Pharmacother. doi: 10.1177/1060028014546739 – volume: 85 start-page: 333 year: 2014 ident: ref_158 article-title: Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kappaB-mediated inflammatory response publication-title: Kidney Int. doi: 10.1038/ki.2013.343 – volume: 35 start-page: 306 year: 2014 ident: ref_8 article-title: Redox Regulation of Inflammation: Old Elements, a New Story publication-title: Med. Res. Rev. doi: 10.1002/med.21330 – volume: 2016 start-page: 1958174 year: 2016 ident: ref_200 article-title: The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2016/1958174 – volume: 302 start-page: F95 year: 2012 ident: ref_13 article-title: Increase of sodium delivery stimulates the mitochondrial respiratory chain H2O2 production in rat renal medullary thick ascending limb publication-title: Am. J. Physiol. Renal Physiol. doi: 10.1152/ajprenal.00469.2011 – volume: 231 start-page: 364 year: 2008 ident: ref_131 article-title: Coordinated induction of Nrf2 target genes protects against iron nitrilotriacetate (FeNTA)-induced nephrotoxicity publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2008.05.022 – volume: 282 start-page: 16502 year: 2007 ident: ref_42 article-title: GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M611336200 – volume: 1517 start-page: 19 year: 2000 ident: ref_76 article-title: Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein publication-title: Biochim. Biophys. Acta BBA Gene Struct. Express. doi: 10.1016/S0167-4781(00)00238-4 – volume: 26 start-page: 596 year: 2015 ident: ref_149 article-title: Sulforaphane attenuation of experimental diabetic nephropathy involves GSK-3 beta/Fyn/Nrf2 signaling pathway publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2014.12.008 – volume: 104 start-page: 10813 year: 2007 ident: ref_187 article-title: Regulation of the protein disulfide proteome by mitochondria in mammalian cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0702027104 – volume: 181 start-page: 1129 year: 2008 ident: ref_56 article-title: Regulation of ROS signal transduction by NADPH oxidase 4 localization publication-title: J. Cell Biol. doi: 10.1083/jcb.200709049 – volume: 6 start-page: 857 year: 2001 ident: ref_39 article-title: Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription publication-title: Genes Cells doi: 10.1046/j.1365-2443.2001.00469.x – volume: 137 start-page: 103688 year: 2019 ident: ref_84 article-title: Polydatin prevents LPS-induced acute kidney injury through inhibiting inflammatory and oxidative responses publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2019.103688 – volume: 45 start-page: 1677 year: 2018 ident: ref_83 article-title: Resveratrol Alleviates Inflammatory Responses and Oxidative Stress in Rat Kidney Ischemia-Reperfusion Injury and H2O2-Induced NRK-52E Cells via the Nrf2/TLR4/NF-kappaB Pathway publication-title: Cell Physiol. Biochem. doi: 10.1159/000487735 – volume: 6 start-page: 1129 year: 2004 ident: ref_61 article-title: Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response publication-title: Nature – volume: 371 start-page: 642 year: 2019 ident: ref_164 article-title: Therapeutic Effects of Nrf2 Activation by Bardoxolone Methyl in Chronic Heart Failure publication-title: Experiment |
SSID | ssj0023259 |
Score | 2.5092916 |
SecondaryResourceType | review_article |
Snippet | Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6053 |
SubjectTerms | Antioxidants Antioxidants - metabolism Antioxidants - therapeutic use B cells Chronic kidney failure Diabetes Diabetic nephropathies Diabetic Nephropathies - metabolism Diabetic nephropathy Endoplasmic reticulum Genes Genetic aspects Genetic transcription Homeostasis Humans Inflammation Kelch-Like ECH-Associated Protein 1 - metabolism Kidney - metabolism Kidney diseases Kinases Medical research Medicine, Experimental Mitochondria NF-E2-Related Factor 2 - metabolism Oxidation Oxidative Stress Proteins Reactive Oxygen Species - metabolism Review Transcription factors Tumor necrosis factor-TNF Type 2 diabetes Ubiquitin |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkhcKt6kFGQkEAcUNX7ksaeqha5aYFeoolJvkeOHSNU6Ldke-u-Z2WTDBgnOnkTW2J75PnseAO8S65TPpYy5NUmspqaKtaIndovewTmR-lWG93yRHZ-pL-fpeX_h1vZhlWubuDLUtjF0R74nckLmBOD3r29i6hpFr6t9C437sIUmuEgnsHV4tPh-OlAuKVbt0jh6oThLp1kX-i6R6O_VF1ct0RnE83LklP42zRu-aRw3ueGIZo9gu0eQ7KBb8sdwz4Un8KDrKXn3FL6dhJYId8vqsGwY4js2X7fAZXNHib51e9WyxrPF6UygFPta2-Du2Em4QAUzHSz73D3btM_gbHb049Nx3LdMiI0qkmWcWiuslUZXPNO6ylMkzolXgmudoRKm3krOERQ4h8alSgsvOJ5BpzLheVbYRD6HSWiCewlM59aryiivjCaWV2RTY4Tz3iObLgoZwce1zkrT1xOnthaXJfIK0nC5qeEI3g_S110djX_IfSD1l3S88G9G91kCOCcqVFUe5Ag5iSTxCHZHkngszHh4vYBlfyzb8s8miuDtMExfUqhZcM0tyhSUV0qvyxG86NZ7mLHME5UjqomgGO2EQYCKdY9HQv1zVbSbUwxnItXO_-f1Ch5SQ3uKchNyFybLX7fuNcKeZfWm39u_AY1HANQ priority: 102 providerName: ProQuest |
Title | Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37047024 https://www.proquest.com/docview/2799660301 https://www.proquest.com/docview/2800629014 https://pubmed.ncbi.nlm.nih.gov/PMC10094034 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zi9RAEC72QPBFvI2uQwuKDxJNpzvHPIisuuOuOoMsDsxb6PSBWXZ7dDMLzr-3anIw8XrJS1dCU1XdVV_qAngaGStdJkTIjY5COdZlqCSF2A1aB2vjxG0qvKez9HguPy6SxQ5000ZbBtZ_hXY0T2p-ef7y54_1GzzwrwlxImR_VZ1d1ARM0DMXu7CPNikl_Z7KPp6AbsNmbBr98Ajpgm5S4P94e2Ccfr-it2zUMH9yyyBNbsKN1pNkh43ob8GO9bfhWjNbcn0HPp_4moB3zSq_WjL089i0G4XLppYKfqv6omZLx2ankxip2KfKeLtmJ_4MGc2UN-x9E76p78J8cvT13XHYjk4ItcyjVZgYExsjtCp5qlSZJQigIydjrlTK03TsjOAcnQNr8ZIpk9zFHM-ilWnseJqbSNyDPb_09gEwlRknSy2d1IrQXp6OtY6tcw5RdZ6LAF50PCt021ecxlucF4gviMPFNocDeNZTf2_6afyD7jmxvyDB49e0aqsFcE_UsKo4zND1JLDEAzgYUOLx0MPlToBFp11FnBHMIzQYwJN-md6klDNvl1dIk1N9KUWZA7jfyLvfscgimaF3E0A-0ISegJp2D1d89W3TvJtTLmck5MP_b_sRXKfB9pTtFosD2FtdXtnH6P6syhHsZosMn_nkwwj23x7NvpyOyCAlo43O_wIC_AYX |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIgQviBtDgUWi4gFZ9R4-8oBQRQkJOR5QK_XN2HsIV3RdcCqUP8VvZCaOQ4wEb33e8Wo1x8583jkAXkXGKpdKGXKjo1ANdBkWip7YDXoHa0XsVhXes3kyOlGfTuPTHfjV1cJQWmV3J64ualNr-kd-IFKKzCmAf3fxPaSpUfS62o3QaNViYpc_EbI1b8dHKN99IYYfjt-PwvVUgVCrLFqEsTHCGKmLkidFUaYxYsvIKcGLIuFJMnBGco5-01q0vzLOnOCoplYlwvEkM5HEfa_BdSXlgHr1Z8OPG4AnxWo4G-7CwyQeJG2iPRJGB9XZeUPgCdGD7LnAvx3BlifsZ2luub3hHbi9jlfZYatgd2HH-ntwo51gubwP07FvCN43rPKLmmE0yWbdwF02s1RWXDXnDasdm38eCqRik8p4u2Rjf4biZIU37Kh9JGoewMmVsPIh7Pra28fAitQ4VWrllC4IU2bJQGthnXOI3bNMBvCm41mu193LaYjGtxxRDHE43-ZwAPsb6ou2a8c_6F4T-3MyZtxNF-uaBDwTtcXKD1MMcAmS8QD2epRohLq_3AkwX18CTf5HZQN4uVmmLymxzdv6EmkyqmKlt-wAHrXy3pxYppFKMYYKIOtpwoaAWoP3V3z1ddUinFPGaCTVk_-f6wXcHB3Ppvl0PJ88hVsCVZjy64Tcg93Fj0v7DAOuRfl8peUMvly1Wf0G6no8Bg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVKC-IG4MBRaJigdkxXv4ekCokEYNaaKqolLfjL2HSNU6BadC-Wv8OmZiO8RI8NbnHa9Wc-zM550D4E1grHKxlD43OvBVqgs_V_TEbtA7WCtCt6rwnkyjw1P1-Sw824JfbS0MpVW2d-LqojZzTf_I-yKmyJwC-L5r0iKOB8MPV999miBFL63tOI1aRcZ2-RPhW_V-NEBZ7wkxPPjy6dBvJgz4WiXBwg-NEcZInRc8yvMiDhFnBk4JnucRj6LUGck5-lBr0RaLMHGCo8paFQnHo8QEEve9BdsxesWkB9sfD6bHJ2u4J8VqVBvuw_0oTKM67V7KNOjPzi8rglKIJWTHIf7tFjb8Yjdnc8MJDu_B3SZ6Zfu1ut2HLVs-gNv1PMvlQzgalRWB_YrNysWcYWzJJu34XTaxVGQ8qy4rNndsejIUSMXGM1PaJRuV5yhclpeGDeono-oRnN4IMx9Dr5yX9imwPDZOFVo5pXNCmEmUai2scw6RfJJID961PMt008ucRmpcZIhpiMPZJoc92FtTX9U9PP5B95bYn5Fp4246byoU8EzUJCvbjzHcJYDGPdjtUKJJ6u5yK8CsuRKq7I8Ce_B6vUxfUppbaefXSJNQTSu9bHvwpJb3-sQyDlSMEZUHSUcT1gTUKLy7Us6-rRqGc8ofDaR69v9zvYI7aFLZ0Wg6fg47AjWYku2E3IXe4se1fYHR16J42ag5g683bVm_AQ8oQaE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+the+Molecular+Mechanisms+of+NRF2+in+Kidney+Injury+and+Diseases&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Lin%2C+Da-Wei&rft.au=Hsu%2C+Yung-Chien&rft.au=Chang%2C+Cheng-Chih&rft.au=Hsieh%2C+Ching-Chuan&rft.date=2023-03-23&rft.pub=MDPI+AG&rft.issn=1422-0067&rft.volume=24&rft.issue=7&rft_id=info:doi/10.3390%2Fijms24076053&rft.externalDocID=A751925761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |