Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases

Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antiox...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 24; no. 7; p. 6053
Main Authors Lin, Da-Wei, Hsu, Yung-Chien, Chang, Cheng-Chih, Hsieh, Ching-Chuan, Lin, Chun-Liang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.03.2023
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms24076053

Cover

Loading…
Abstract Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
AbstractList Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
Audience Academic
Author Chang, Cheng-Chih
Lin, Da-Wei
Hsu, Yung-Chien
Lin, Chun-Liang
Hsieh, Ching-Chuan
AuthorAffiliation 3 Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
4 Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
6 Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
1 Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan
7 Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
2 Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
5 School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
AuthorAffiliation_xml – name: 2 Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
– name: 5 School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
– name: 4 Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
– name: 6 Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
– name: 1 Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan
– name: 7 Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
– name: 3 Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
Author_xml – sequence: 1
  givenname: Da-Wei
  orcidid: 0000-0003-1209-6743
  surname: Lin
  fullname: Lin, Da-Wei
– sequence: 2
  givenname: Yung-Chien
  surname: Hsu
  fullname: Hsu, Yung-Chien
– sequence: 3
  givenname: Cheng-Chih
  surname: Chang
  fullname: Chang, Cheng-Chih
– sequence: 4
  givenname: Ching-Chuan
  orcidid: 0000-0001-8554-328X
  surname: Hsieh
  fullname: Hsieh, Ching-Chuan
– sequence: 5
  givenname: Chun-Liang
  orcidid: 0000-0002-5710-8405
  surname: Lin
  fullname: Lin, Chun-Liang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37047024$$D View this record in MEDLINE/PubMed
BookMark eNptks1v1DAQxS1URD_gxhlZ4sKBLWM7sZMTqgotK7YgIThbjj3Z9Sqx2zhB2v8eR_1gW1U-2LJ_742eZ47JQYgBCXnL4FSIGj75bZ94AUpCKV6QI1ZwvgCQ6mDvfEiOU9oCcMHL-hU5FAoKBbw4IqtlSH69GRP1YYx03CC9ih3aqTMDvUK7McGnPtHY0h-_Lnim6HfvAu7oMmynYUdNcPSLT2gSptfkZWu6hG_u9hPy5-Lr7_Nvi9XPy-X52WphiwrGRekcd05Y0zBpTKNKbDi0BWfGSCZl3TrBmKo4YlWppqxazgSrsZC8ZbJyIE7I51vf66np0VkM42A6fT343gw7HY3Xj1-C3-h1_KsZQF2AKLLDhzuHId5MmEbd-2Sx60zAOCXNq_xtvAY2o--foNs4DSHn01zVtZQggP2n1qZD7UMbc2E7m-ozVbKal0rO1OkzVF4Oe29zX1uf7x8J3u0nfYh438AM8FvADjGlAVtt_WhGH-fgvsuJ9Twlen9KsujjE9G977P4P8D_u0Q
CitedBy_id crossref_primary_10_1016_j_phrs_2024_107301
crossref_primary_10_1080_0886022X_2024_2403653
crossref_primary_10_1016_j_lfs_2024_123046
crossref_primary_10_1016_j_lfs_2025_123410
crossref_primary_10_1016_j_phymed_2024_155661
crossref_primary_10_1186_s12950_024_00409_7
crossref_primary_10_3389_fendo_2025_1511730
crossref_primary_10_1007_s00210_024_03478_w
crossref_primary_10_1016_j_intimp_2024_113385
crossref_primary_10_1016_j_bbrc_2024_149972
crossref_primary_10_1080_00498254_2025_2465239
crossref_primary_10_1111_bph_16414
crossref_primary_10_3390_antiox13121519
crossref_primary_10_1134_S1607672924701217
crossref_primary_10_1186_s40360_025_00888_1
crossref_primary_10_4236_ym_2025_91006
crossref_primary_10_3390_ijms25116033
crossref_primary_10_1021_acsbiomaterials_4c02093
crossref_primary_10_3390_antiox13101224
crossref_primary_10_3390_biomedicines12051085
crossref_primary_10_1016_j_cbi_2023_110797
crossref_primary_10_1093_jpp_rgaf002
crossref_primary_10_3389_fphar_2024_1480629
Cites_doi 10.1016/j.cmet.2012.07.007
10.1371/journal.pone.0075076
10.1152/ajprenal.00421.2009
10.1016/j.cardfail.2014.10.001
10.1161/HYPERTENSIONAHA.115.05244
10.1155/2018/6730315
10.4093/dmj.2020.0168
10.33549/physiolres.932834
10.1186/1743-7075-11-2
10.1016/S1097-2765(03)00105-9
10.1007/s11356-019-04502-w
10.1083/jcb.201003138
10.2337/db09-1342
10.1128/MCB.23.20.7198-7209.2003
10.1161/HYPERTENSIONAHA.115.06062
10.1111/acel.13616
10.1016/j.redox.2018.02.013
10.1038/ki.2009.157
10.1080/03602530600971974
10.1002/2211-5463.13251
10.1038/nrm3270
10.1186/1471-2369-14-56
10.1074/jbc.R900010200
10.1067/mcp.2001.113989
10.1016/j.tox.2014.01.008
10.2337/db13-1830
10.1016/j.cmet.2012.07.005
10.1371/journal.pone.0045870
10.1016/j.redox.2022.102525
10.1007/s12192-010-0221-y
10.1089/ars.2016.6665
10.1159/000324694
10.3390/cells11040706
10.3390/antiox9080716
10.1093/ndt/gfx299
10.1016/j.ejphar.2020.173749
10.1038/s41598-017-08054-2
10.1073/pnas.0305902101
10.1038/s41467-020-19593-0
10.3389/fphar.2018.00512
10.1038/srep32229
10.1016/j.biopha.2018.06.123
10.1016/j.freeradbiomed.2015.04.022
10.1093/cvr/cvt150
10.1089/ars.2008.2027
10.1146/annurev-pharmtox-011613-135918
10.1016/j.redox.2013.10.007
10.1210/en.2017-00752
10.1128/MCB.01204-10
10.1590/s1677-5538.ibju.2018.0232
10.1016/j.arr.2018.06.003
10.1159/000487501
10.1126/scitranslmed.aba3613
10.1152/ajprenal.00501.2020
10.1016/j.apsb.2019.11.002
10.1089/ars.2006.8.1391
10.1111/dom.14503
10.1042/CS20160636
10.1083/jcb.200311055
10.1007/s00294-019-01026-1
10.1038/ncb2738
10.1016/j.freeradbiomed.2010.01.021
10.1186/s13568-020-01022-6
10.1016/S0140-6736(18)31694-5
10.1089/ars.2012.4604
10.1016/j.bbamcr.2008.01.002
10.1080/0886022X.2019.1643737
10.1371/journal.pone.0218986
10.1074/jbc.M314219200
10.1155/2020/7069052
10.1016/j.freeradbiomed.2013.03.024
10.1371/journal.pone.0152465
10.1016/j.exger.2017.11.018
10.1038/ki.2009.86
10.1161/HYPERTENSIONAHA.114.04760
10.1152/ajprenal.00376.2012
10.1159/000362906
10.1002/hep.31116
10.1016/j.tibs.2014.02.002
10.1093/toxres/tfab073
10.7150/thno.17853
10.1371/journal.pone.0047299
10.1016/j.yjmcc.2014.04.006
10.1016/j.cmet.2012.07.012
10.1158/0008-5472.CAN-12-3386
10.1074/jbc.M403061200
10.1073/pnas.1305687110
10.1056/NEJMoa1105351
10.3390/cancers12030569
10.1016/j.intimp.2021.108395
10.1074/jbc.M502551200
10.1038/ki.2009.286
10.3390/antiox9090783
10.1124/mol.112.081133
10.1016/j.freeradbiomed.2011.02.029
10.1016/j.kint.2020.07.036
10.2337/db20-1126
10.3390/ijms21134777
10.1172/JCI57748
10.1016/S0076-6879(02)48637-5
10.1111/1440-1681.12511
10.1038/ki.2013.357
10.1038/ki.2015.286
10.12659/AOT.884013
10.1152/ajpregu.00122.2017
10.1096/fj.201900217R
10.1073/pnas.220247197
10.1080/0886022X.2021.1963774
10.3109/00498254.2013.852705
10.1155/2019/4657651
10.1155/2019/3214196
10.1016/j.kint.2019.04.027
10.1016/j.freeradbiomed.2011.06.033
10.1155/2016/9825623
10.1016/j.clim.2016.06.011
10.1016/j.freeradbiomed.2015.05.034
10.1128/MCB.15.8.4184
10.1155/2020/1809408
10.3390/antiox11050845
10.1128/MCB.01408-13
10.1097/TP.0000000000000647
10.1002/med.21396
10.1007/s43440-022-00390-z
10.1371/journal.pone.0100715
10.3390/ijms23073525
10.1016/j.jnutbio.2011.10.012
10.1152/ajpheart.00196.2002
10.3390/antiox11010156
10.1002/mnfr.201200540
10.1074/jbc.M308439200
10.1016/j.ydbio.2008.04.041
10.1038/s41598-018-22913-6
10.1016/j.ekir.2020.03.030
10.2215/CJN.02400222
10.1084/jem.158.6.1836
10.1016/j.kint.2016.08.023
10.1152/ajprenal.00353.2010
10.1056/NEJMra1300575
10.1074/jbc.M109.093955
10.1073/pnas.93.25.14960
10.1007/s10753-022-01746-6
10.1016/j.cbi.2019.06.002
10.1002/art.38782
10.1016/S0021-9258(18)54815-8
10.1186/s12876-020-01453-2
10.1128/MCB.25.24.10895-10906.2005
10.2337/db11-1716
10.1167/iovs.07-1099
10.1016/j.freeradbiomed.2021.05.034
10.1038/nrneph.2017.31
10.1016/j.bbrc.2014.08.111
10.1101/gad.13.1.76
10.1007/s43440-020-00076-4
10.1016/j.taap.2010.03.016
10.1038/nrneph.2015.175
10.1161/CIRCRESAHA.118.312829
10.3390/antiox11101854
10.1016/j.fct.2011.07.008
10.1016/j.freeradbiomed.2015.06.014
10.1371/journal.pone.0163046
10.2337/db13-1743
10.1530/JOE-16-0322
10.1016/j.transproceed.2021.07.017
10.1016/j.heliyon.2022.e10515
10.3389/fncel.2021.787258
10.1155/2020/5695723
10.1016/j.freeradbiomed.2020.06.025
10.1152/ajprenal.00228.2016
10.1038/s41598-019-45539-8
10.1093/ajh/hpt160
10.3389/fimmu.2021.763760
10.1056/NEJMoa1306033
10.1074/jbc.M109.084590
10.1016/j.bcp.2008.02.029
10.1016/j.fct.2018.03.016
10.1038/sj.emboj.7601549
10.1126/sciadv.abb9614
10.1159/000327599
10.1006/bbrc.1997.6943
10.1042/CS20191088
10.1074/jbc.M101198200
10.1002/ctm2.382
10.1016/j.toxlet.2009.11.007
10.1177/1060028014546739
10.1038/ki.2013.343
10.1002/med.21330
10.1155/2016/1958174
10.1152/ajprenal.00469.2011
10.1016/j.taap.2008.05.022
10.1074/jbc.M611336200
10.1016/S0167-4781(00)00238-4
10.1016/j.jnutbio.2014.12.008
10.1073/pnas.0702027104
10.1083/jcb.200709049
10.1046/j.1365-2443.2001.00469.x
10.1016/j.micpath.2019.103688
10.1159/000487735
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.3390/ijms24076053
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library (subscription)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC10094034
A751925761
37047024
10_3390_ijms24076053
Genre Journal Article
Review
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: Chang-Gung Memorial Hospital, Chiayi, Taiwan
  grantid: CMRPG6K0221-3
– fundername: Chang Gung Memorial Hospital at Chiayi, Taiwan
  grantid: CMRPG6K0221-3
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c480t-5dd2dd3cab16aab75eb20f421aa61669fd311782ee887b58f21319e462f168d03
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:38:24 EDT 2025
Fri Sep 05 07:48:23 EDT 2025
Fri Jul 25 20:26:39 EDT 2025
Tue Jun 17 21:06:12 EDT 2025
Tue Jun 10 20:34:22 EDT 2025
Thu Apr 03 07:02:50 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
Tue Jul 01 02:03:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords acute kidney injury (AKI)
diabetes nephropathy
reactive oxygen species (ROS)
reduction-oxidation (redox)
chronic kidney disease (CKD)
nuclear factor erythroid 2-related factor 2 (NRF2)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-5dd2dd3cab16aab75eb20f421aa61669fd311782ee887b58f21319e462f168d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8554-328X
0000-0003-1209-6743
0000-0002-5710-8405
0000-0002-4500-0878
OpenAccessLink https://www.proquest.com/docview/2799660301?pq-origsite=%requestingapplication%
PMID 37047024
PQID 2799660301
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10094034
proquest_miscellaneous_2800629014
proquest_journals_2799660301
gale_infotracmisc_A751925761
gale_infotracacademiconefile_A751925761
pubmed_primary_37047024
crossref_citationtrail_10_3390_ijms24076053
crossref_primary_10_3390_ijms24076053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230323
PublicationDateYYYYMMDD 2023-03-23
PublicationDate_xml – month: 3
  year: 2023
  text: 20230323
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Luo (ref_167) 2015; 65
Harding (ref_74) 2003; 11
Venugopal (ref_34) 1996; 93
Torres (ref_141) 2013; 2013
Hayes (ref_22) 2014; 39
Tosi (ref_88) 2010; 16
Chen (ref_33) 2020; 71
Cruz (ref_144) 2011; 49
Pergola (ref_162) 2011; 365
Metcalf (ref_181) 2020; 6
He (ref_70) 2012; 82
Liu (ref_107) 2022; 58
Tapia (ref_142) 2018; 115
Ohsaki (ref_13) 2012; 302
ref_128
ref_127
Rush (ref_176) 2020; 99
Rutkowski (ref_53) 2010; 189
ref_129
Jiang (ref_40) 2015; 88 Pt B
Anthony (ref_69) 2012; 16
Akizawa (ref_146) 2013; 369
Layton (ref_10) 2016; 311
Canning (ref_37) 2015; 88
ref_71
Zhou (ref_124) 2021; 43
Shang (ref_149) 2015; 26
Warady (ref_159) 2022; 17
Bellezza (ref_32) 2012; 23
Malek (ref_79) 2015; 4
Klappa (ref_60) 2006; 8
Nioi (ref_25) 2005; 25
Zhu (ref_112) 2018; 2018
Wu (ref_46) 2014; 452
ref_155
Zhang (ref_172) 2010; 245
Baud (ref_12) 1983; 158
Wang (ref_169) 2015; 65
Tu (ref_55) 2004; 164
Li (ref_104) 2020; 10
Takasu (ref_134) 2015; 99
Gong (ref_123) 2019; 41
Kwon (ref_57) 2020; 10
Kong (ref_90) 2017; 33
Jiang (ref_158) 2014; 85
Nakai (ref_111) 2013; 27
Abdo (ref_179) 2014; 63
Xu (ref_9) 2018; 107
Mousavi (ref_135) 2021; 10
Lu (ref_98) 2020; 12
Stojak (ref_171) 2020; 2020
Jain (ref_42) 2007; 282
ref_87
Ishii (ref_190) 2002; 348
Binder (ref_180) 2019; 124
Dada (ref_19) 2011; 121
Aminzadeh (ref_154) 2014; 44
Tan (ref_175) 2014; 63
Kang (ref_44) 2010; 285
Oslowski (ref_67) 2012; 16
Itoh (ref_72) 1997; 236
Zhao (ref_138) 2016; 2016
Cohen (ref_194) 2015; 55
Chen (ref_45) 2017; 7
Zhao (ref_178) 2018; 159
Furfaro (ref_200) 2016; 2016
Wang (ref_29) 2013; 73
Sireesh (ref_105) 2018; 8
Brodsky (ref_15) 2002; 283
Seervi (ref_50) 2018; 106
Rossing (ref_163) 2019; 96
Moon (ref_114) 2021; 23
He (ref_73) 2001; 276
Shokeir (ref_122) 2015; 64
Pergola (ref_145) 2011; 33
Xu (ref_174) 2012; 61
ref_205
Wei (ref_85) 2020; 158
ref_204
Locker (ref_63) 2007; 26
Dikalov (ref_18) 2011; 51
Kim (ref_99) 2010; 298
Jiang (ref_108) 2010; 59
Dickinson (ref_3) 2016; 169
Yang (ref_132) 2021; 11
Zhang (ref_188) 2021; 12
Liu (ref_151) 2022; 8
Chin (ref_166) 2014; 20
Flyvbjerg (ref_6) 2017; 13
Qin (ref_183) 2016; 67
Soni (ref_198) 2022; 74
Potteti (ref_81) 2021; 320
Ragab (ref_120) 2020; 72
Okazaki (ref_185) 2020; 11
Rockey (ref_21) 2015; 372
Wang (ref_182) 2014; 72
Zhang (ref_202) 2006; 38
Han (ref_68) 2018; 16
Vaziri (ref_153) 2015; 86
Zhou (ref_143) 2019; 2019
Polat (ref_126) 2018; 44
Foreman (ref_2) 2018; 392
Venci (ref_192) 2014; 48
Tang (ref_125) 2022; 102
Li (ref_115) 2020; 134
ref_100
Itoh (ref_28) 1999; 13
Covarrubias (ref_48) 2008; 320
Lerner (ref_66) 2012; 16
Yang (ref_187) 2007; 104
ref_101
Liu (ref_118) 2014; 85
Shelton (ref_23) 2015; 88
Lv (ref_160) 2018; 43
Wang (ref_35) 2008; 49
Ashari (ref_133) 2023; 46
McMahon (ref_27) 2004; 279
Tanaka (ref_131) 2008; 231
Nezu (ref_82) 2016; 91
Chung (ref_91) 2014; 11
Zhao (ref_177) 2021; 70
Yang (ref_95) 2013; 61
Lee (ref_58) 2016; 6
Chan (ref_76) 2000; 1517
Baird (ref_38) 2013; 110
Dong (ref_110) 2017; 232
Kim (ref_51) 2016; 36
Boye (ref_64) 2019; 66
Khaleel (ref_137) 2019; 309
Kong (ref_150) 2021; 45
Li (ref_83) 2018; 45
Aminzadeh (ref_103) 2013; 1
Han (ref_65) 2013; 15
Dikalov (ref_17) 2013; 19
Sogawa (ref_92) 2017; 7
Motohashi (ref_26) 2004; 101
Rada (ref_41) 2011; 31
Shin (ref_140) 2010; 48
Ratliff (ref_11) 2016; 25
Fujiki (ref_97) 2019; 9
Radeke (ref_14) 1991; 266
Nagasu (ref_156) 2019; 33
Lu (ref_191) 2016; 36
Wu (ref_157) 2014; 66
Liu (ref_30) 2008; 1783
Jin (ref_96) 2020; 2020
Kannan (ref_189) 2013; 100
Zhang (ref_197) 2020; 2020
Katoh (ref_39) 2001; 6
Victor (ref_52) 2020; 892
Yuan (ref_186) 2020; 2020
Huang (ref_113) 2021; 11
Zhang (ref_43) 2021; 7
Leung (ref_75) 2003; 278
Lee (ref_106) 2009; 76
Thangapandiyan (ref_136) 2019; 26
Wang (ref_168) 2018; 314
Thomas (ref_16) 2008; 10
Tsai (ref_94) 2011; 50
Tapia (ref_139) 2010; 192
Wakabayashi (ref_36) 2014; 34
Zazueta (ref_206) 2018; 47
ref_59
Chen (ref_56) 2008; 181
Cullinan (ref_78) 2004; 279
Zoja (ref_148) 2013; 304
Hetz (ref_54) 2012; 13
Nguyen (ref_203) 2009; 284
Soetikno (ref_102) 2012; 57
Pi (ref_173) 2010; 285
Liu (ref_80) 2009; 76
Wada (ref_5) 2015; 12
Xu (ref_61) 2004; 6
Yoon (ref_121) 2008; 75
Tesch (ref_7) 2017; 131
Kocak (ref_116) 2016; 43
ref_170
Gu (ref_84) 2019; 137
Wu (ref_117) 2011; 300
Chevalier (ref_86) 2009; 75
Chin (ref_165) 2014; 39
Zhang (ref_109) 2018; 9
Li (ref_152) 2011; 33
Zhen (ref_119) 2021; 53
Kim (ref_93) 2011; 337
ref_195
Saha (ref_201) 2021; 15
ref_199
ref_31
Cullinan (ref_77) 2003; 23
Hosoya (ref_20) 2005; 280
Brewer (ref_62) 2000; 97
Itoh (ref_24) 1995; 15
Nangaku (ref_147) 2020; 5
Tian (ref_164) 2019; 371
(ref_89) 2021; 172
ref_184
ref_1
ref_49
ref_193
Zhang (ref_196) 2019; 2019
Lei (ref_8) 2014; 35
Wu (ref_130) 2014; 318
Zhu (ref_47) 2022; 21
ref_4
Schemmer (ref_161) 2013; 18
References_xml – volume: 16
  start-page: 250
  year: 2012
  ident: ref_66
  article-title: IRE1α Induces Thioredoxin-Interacting Protein to Activate the NLRP3 Inflammasome and Promote Programmed Cell Death under Irremediable ER Stress
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.07.007
– ident: ref_31
  doi: 10.1371/journal.pone.0075076
– volume: 298
  start-page: F662
  year: 2010
  ident: ref_99
  article-title: Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00421.2009
– volume: 20
  start-page: 953
  year: 2014
  ident: ref_166
  article-title: Risk Factors for Heart Failure in Patients with Type 2 Diabetes Mellitus and Stage 4 Chronic Kidney Disease Treated With Bardoxolone Methyl
  publication-title: J. Card. Fail.
  doi: 10.1016/j.cardfail.2014.10.001
– volume: 65
  start-page: 1055
  year: 2015
  ident: ref_169
  article-title: Thromboxane Prostanoid Receptors Enhance Contractions, Endothelin-1, and Oxidative Stress in Microvessels from Mice with Chronic Kidney Disease
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.115.05244
– volume: 2018
  start-page: 6730315
  year: 2018
  ident: ref_112
  article-title: Astaxanthin Promotes Nrf2/ARE Signaling to Alleviate Renal Fibronectin and Collagen IV Accumulation in Diabetic Rats
  publication-title: J. Diabetes Res.
  doi: 10.1155/2018/6730315
– volume: 45
  start-page: 909
  year: 2021
  ident: ref_150
  article-title: Sulforaphane Ameliorates Diabetes-Induced Renal Fibrosis through Epigenetic Up-Regulation of BMP-7
  publication-title: Diabetes Metab. J.
  doi: 10.4093/dmj.2020.0168
– volume: 64
  start-page: 313
  year: 2015
  ident: ref_122
  article-title: Activation of Nrf2 by Ischemic Preconditioning and Sulforaphane in Renal Ischemia/Reperfusion Injury: A Comparative Experimental Study
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.932834
– volume: 11
  start-page: 2
  year: 2014
  ident: ref_91
  article-title: Oleanolic acid attenuates renal fibrosis in mice with unilateral ureteral obstruction via facilitating nuclear translocation of Nrf2
  publication-title: Nutr. Metab.
  doi: 10.1186/1743-7075-11-2
– volume: 11
  start-page: 619
  year: 2003
  ident: ref_74
  article-title: An Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to Oxidative Stress
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00105-9
– volume: 26
  start-page: 12247
  year: 2019
  ident: ref_136
  article-title: Sulforaphane potentially attenuates arsenic-induced nephrotoxicity via the PI3K/Akt/Nrf2 pathway in albino Wistar rats
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-04502-w
– volume: 189
  start-page: 783
  year: 2010
  ident: ref_53
  article-title: Regulation of basal cellular physiology by the homeostatic unfolded protein response
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201003138
– volume: 59
  start-page: 850
  year: 2010
  ident: ref_108
  article-title: The Protective Role of Nrf2 in Streptozotocin-Induced Diabetic Nephropathy
  publication-title: Diabetes
  doi: 10.2337/db09-1342
– volume: 23
  start-page: 7198
  year: 2003
  ident: ref_77
  article-title: Nrf2 Is a Direct PERK Substrate and Effector of PERK-Dependent Cell Survival
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.20.7198-7209.2003
– volume: 67
  start-page: 107
  year: 2016
  ident: ref_183
  article-title: Nrf2-Mediated Cardiac Maladaptive Remodeling and Dysfunction in a Setting of Autophagy Insufficiency
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.115.06062
– volume: 21
  start-page: 13616
  year: 2022
  ident: ref_47
  article-title: Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response
  publication-title: Aging Cell
  doi: 10.1111/acel.13616
– volume: 16
  start-page: 32
  year: 2018
  ident: ref_68
  article-title: Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2018.02.013
– volume: 76
  start-page: 277
  year: 2009
  ident: ref_80
  article-title: Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice
  publication-title: Kidney Int.
  doi: 10.1038/ki.2009.157
– volume: 38
  start-page: 769
  year: 2006
  ident: ref_202
  article-title: Mechanistic Studies of the Nrf2-Keap1 Signaling Pathway
  publication-title: Drug Metab. Rev.
  doi: 10.1080/03602530600971974
– volume: 7
  start-page: 44
  year: 2021
  ident: ref_43
  article-title: Downregulation of XBP1 protects kidney against ischemia-reperfusion injury via suppressing HRD1-mediated NRF2 ubiquitylation
  publication-title: Cell Death Discov.
– volume: 11
  start-page: 2350
  year: 2021
  ident: ref_113
  article-title: Isoeucommin A attenuates kidney injury in diabetic nephropathy through the Nrf2/HO-1 pathway
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.13251
– volume: 13
  start-page: 89
  year: 2012
  ident: ref_54
  article-title: The unfolded protein response: Controlling cell fate decisions under ER stress and beyond
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3270
– ident: ref_100
  doi: 10.1186/1471-2369-14-56
– volume: 284
  start-page: 13291
  year: 2009
  ident: ref_203
  article-title: The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R900010200
– ident: ref_193
  doi: 10.1067/mcp.2001.113989
– volume: 2020
  start-page: 4678252
  year: 2020
  ident: ref_171
  article-title: Bardoxolone Methyl Displays Detrimental Effects on Endothelial Bioenergetics, Suppresses Endothelial ET-1 Release, and Increases Endothelial Permeability in Human Microvascular Endothelium
  publication-title: Oxidative Med. Cell. Longev.
– volume: 318
  start-page: 22
  year: 2014
  ident: ref_130
  article-title: Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway
  publication-title: Toxicology
  doi: 10.1016/j.tox.2014.01.008
– volume: 63
  start-page: 3483
  year: 2014
  ident: ref_179
  article-title: Catalase overexpression prevents nuclear factor erythroid 2-related factor 2 stimulation of renal angiotensinogen gene expression, hypertension, and kidney injury in diabetic mice
  publication-title: Diabetes
  doi: 10.2337/db13-1830
– volume: 16
  start-page: 265
  year: 2012
  ident: ref_67
  article-title: Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.07.005
– ident: ref_127
  doi: 10.1371/journal.pone.0045870
– volume: 58
  start-page: 102525
  year: 2022
  ident: ref_107
  article-title: Nrf2 deficiency deteriorates diabetic kidney disease in Akita model mice
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2022.102525
– volume: 16
  start-page: 57
  year: 2010
  ident: ref_88
  article-title: The Nrf2–Keap1 cellular defense pathway and heat shock protein 70 (Hsp70) response. Role in protection against oxidative stress in early neonatal unilateral ureteral obstruction (UUO)
  publication-title: Cell Stress Chaperon
  doi: 10.1007/s12192-010-0221-y
– volume: 25
  start-page: 119
  year: 2016
  ident: ref_11
  article-title: Oxidant Mechanisms in Renal Injury and Disease
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2016.6665
– volume: 33
  start-page: 289
  year: 2011
  ident: ref_152
  article-title: Attenuation of Glomerular Injury in Diabetic Mice with Tert-Butylhydroquinone through Nuclear Factor Erythroid 2-Related Factor 2-Dependent Antioxidant Gene Activation
  publication-title: Am. J. Nephrol.
  doi: 10.1159/000324694
– ident: ref_59
  doi: 10.3390/cells11040706
– ident: ref_195
  doi: 10.3390/antiox9080716
– volume: 33
  start-page: 771
  year: 2017
  ident: ref_90
  article-title: Nrf2 deficiency promotes the progression from acute tubular damage to chronic renal fibrosis following unilateral ureteral obstruction
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/gfx299
– volume: 892
  start-page: 173749
  year: 2020
  ident: ref_52
  article-title: Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2020.173749
– volume: 7
  start-page: 8801
  year: 2017
  ident: ref_92
  article-title: Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08054-2
– volume: 101
  start-page: 6379
  year: 2004
  ident: ref_26
  article-title: Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1–Nrf2 regulatory pathway
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0305902101
– volume: 11
  start-page: 5911
  year: 2020
  ident: ref_185
  article-title: Enhancer remodeling promotes tumor-initiating activity in NRF2-activated non-small cell lung cancers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19593-0
– volume: 9
  start-page: 512
  year: 2018
  ident: ref_109
  article-title: Paeonol Ameliorates Diabetic Renal Fibrosis Through Promoting the Activation of the Nrf2/ARE Pathway via Up-Regulating Sirt1
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00512
– volume: 6
  start-page: 32229
  year: 2016
  ident: ref_58
  article-title: Effect of BI-1 on insulin resistance through regulation of CYP2E1
  publication-title: Sci. Rep.
  doi: 10.1038/srep32229
– volume: 106
  start-page: 200
  year: 2018
  ident: ref_50
  article-title: ROS mediated ER stress induces Bax-Bak dependent and independent apoptosis in response to Thioridazine
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.06.123
– volume: 86
  start-page: 374
  year: 2015
  ident: ref_153
  article-title: Dose-dependent deleterious and salutary actions of the Nrf2 inducer dh404 in chronic kidney disease
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.04.022
– volume: 100
  start-page: 63
  year: 2013
  ident: ref_189
  article-title: Nrf2 deficiency prevents reductive stress-induced hypertrophic cardiomyopathy
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvt150
– volume: 10
  start-page: 1713
  year: 2008
  ident: ref_16
  article-title: Redox Control of Endothelial Function and Dysfunction: Molecular Mechanisms and Therapeutic Opportunities
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2008.2027
– volume: 55
  start-page: 55
  year: 2015
  ident: ref_194
  article-title: The Use of Biomarkers in Human Pharmacology (Phase I) Studies
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-011613-135918
– volume: 1
  start-page: 527
  year: 2013
  ident: ref_103
  article-title: The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores endothelial function impaired by reduced Nrf2 activity in chronic kidney disease
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2013.10.007
– volume: 159
  start-page: 836
  year: 2018
  ident: ref_178
  article-title: Nrf2 Deficiency Upregulates Intrarenal Angiotensin-Converting Enzyme-2 and Angiotensin 1-7 Receptor Expression and Attenuates Hypertension and Nephropathy in Diabetic Mice
  publication-title: Endocrinology
  doi: 10.1210/en.2017-00752
– volume: 31
  start-page: 1121
  year: 2011
  ident: ref_41
  article-title: SCF/beta-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01204-10
– volume: 44
  start-page: 1243
  year: 2018
  ident: ref_126
  article-title: Beneficial effects of Oltipraz, nuclear factor-erythroid–2-related factor 2 (Nrf2), on renal damage in unilateral ureteral obstruction rat model
  publication-title: Int. Braz. J. Urol.
  doi: 10.1590/s1677-5538.ibju.2018.0232
– volume: 47
  start-page: 31
  year: 2018
  ident: ref_206
  article-title: Nrf2: Molecular and epigenetic regulation during aging
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2018.06.003
– volume: 43
  start-page: 191
  year: 2018
  ident: ref_160
  article-title: The Association Between Oxidative Stress Alleviation via Sulforaphane-Induced Nrf2-HO-1/NQO-1 Signaling Pathway Activation and Chronic Renal Allograft Dysfunction Improvement
  publication-title: Kidney Blood Press Res.
  doi: 10.1159/000487501
– volume: 12
  start-page: eaba3613
  year: 2020
  ident: ref_98
  article-title: Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aba3613
– volume: 320
  start-page: F464
  year: 2021
  ident: ref_81
  article-title: Nrf2 mediates hypoxia-inducible HIF1α activation in kidney tubular epithelial cells
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00501.2020
– volume: 10
  start-page: 42
  year: 2020
  ident: ref_57
  article-title: Cytochrome P450 endoplasmic reticulum-associated degradation (ERAD): Therapeutic and pathophysiological implications
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2019.11.002
– volume: 8
  start-page: 1391
  year: 2006
  ident: ref_60
  article-title: The Endoplasmic Reticulum: Folding, Calcium Homeostasis, Signaling, and Redox Control
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2006.8.1391
– volume: 23
  start-page: 2561
  year: 2021
  ident: ref_114
  article-title: Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.14503
– volume: 131
  start-page: 2183
  year: 2017
  ident: ref_7
  article-title: Diabetic nephropathy—Is this an immune disorder?
  publication-title: Clin. Sci.
  doi: 10.1042/CS20160636
– volume: 164
  start-page: 341
  year: 2004
  ident: ref_55
  article-title: Oxidative protein folding in eukaryotes: Mechanisms and consequences
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200311055
– volume: 66
  start-page: 293
  year: 2019
  ident: ref_64
  article-title: eIF2α phosphorylation and the regulation of translation
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-019-01026-1
– volume: 15
  start-page: 481
  year: 2013
  ident: ref_65
  article-title: ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2738
– volume: 48
  start-page: 1051
  year: 2010
  ident: ref_140
  article-title: The NRF2–heme oxygenase-1 system modulates cyclosporin A-induced epithelial–mesenchymal transition and renal fibrosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2010.01.021
– volume: 10
  start-page: 87
  year: 2020
  ident: ref_104
  article-title: Cinnamtannin A2 protects the renal injury by attenuates the altered expression of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) expression in 5/6 nephrectomized rat model
  publication-title: AMB Express
  doi: 10.1186/s13568-020-01022-6
– volume: 392
  start-page: 2052
  year: 2018
  ident: ref_2
  article-title: Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31694-5
– volume: 19
  start-page: 1085
  year: 2013
  ident: ref_17
  article-title: Angiotensin II-Induced Production of Mitochondrial Reactive Oxygen Species: Potential Mechanisms and Relevance for Cardiovascular Disease
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.4604
– volume: 1783
  start-page: 713
  year: 2008
  ident: ref_30
  article-title: NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2008.01.002
– volume: 41
  start-page: 750
  year: 2019
  ident: ref_123
  article-title: Diabetes aggravates renal ischemia and reperfusion injury in rats by exacerbating oxidative stress, inflammation, and apoptosis
  publication-title: Ren. Fail.
  doi: 10.1080/0886022X.2019.1643737
– ident: ref_87
  doi: 10.1371/journal.pone.0218986
– volume: 279
  start-page: 20108
  year: 2004
  ident: ref_78
  article-title: PERK-dependent Activation of Nrf2 Contributes to Redox Homeostasis and Cell Survival following Endoplasmic Reticulum Stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M314219200
– volume: 2020
  start-page: 7069052
  year: 2020
  ident: ref_96
  article-title: Curcumin Improves the Renal Autophagy in Rat Experimental Membranous Nephropathy via Regulating the PI3K/AKT/mTOR and Nrf2/HO-1 Signaling Pathways
  publication-title: Biomed Res. Int.
  doi: 10.1155/2020/7069052
– volume: 61
  start-page: 285
  year: 2013
  ident: ref_95
  article-title: Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.03.024
– ident: ref_199
  doi: 10.1371/journal.pone.0152465
– volume: 107
  start-page: 98
  year: 2018
  ident: ref_9
  article-title: Immunity and Inflammation: From Jekyll to Hyde
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2017.11.018
– volume: 75
  start-page: 1145
  year: 2009
  ident: ref_86
  article-title: Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy
  publication-title: Kidney Int.
  doi: 10.1038/ki.2009.86
– volume: 65
  start-page: 896
  year: 2015
  ident: ref_167
  article-title: Activation of nuclear factor erythroid 2-related factor 2 coordinates dimethylarginine dimethylaminohydrolase/PPAR-gamma/endothelial nitric oxide synthase pathways that enhance nitric oxide generation in human glomerular endothelial cells
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.114.04760
– volume: 304
  start-page: F808
  year: 2013
  ident: ref_148
  article-title: Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects
  publication-title: Am. J. Physiol. Ren. Physiol.
  doi: 10.1152/ajprenal.00376.2012
– volume: 39
  start-page: 499
  year: 2014
  ident: ref_165
  article-title: Mechanisms Contributing to Adverse Cardiovascular Events in Patients with Type 2 Diabetes Mellitus and Stage 4 Chronic Kidney Disease Treated with Bardoxolone Methyl
  publication-title: Am. J. Nephrol.
  doi: 10.1159/000362906
– volume: 71
  start-page: 1787
  year: 2020
  ident: ref_33
  article-title: c-Jun NH2-Terminal Protein Kinase Phosphorylates the Nrf2-ECH Homology 6 Domain of Nuclear Factor Erythroid 2–Related Factor 2 and Downregulates Cytoprotective Genes in Acetaminophen-Induced Liver Injury in Mice
  publication-title: Hepatology
  doi: 10.1002/hep.31116
– volume: 39
  start-page: 199
  year: 2014
  ident: ref_22
  article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2014.02.002
– volume: 10
  start-page: 911
  year: 2021
  ident: ref_135
  article-title: The activation of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling blunts cholestasis-induced liver and kidney injury
  publication-title: Toxicol. Res.
  doi: 10.1093/toxres/tfab073
– volume: 7
  start-page: 2634
  year: 2017
  ident: ref_45
  article-title: Co-Activation of PKC-delta by CRIF1 Modulates Oxidative Stress in Bone Marrow Multipotent Mesenchymal Stromal Cells after Irradiation by Phosphorylating NRF2 Ser40
  publication-title: Theranostics
  doi: 10.7150/thno.17853
– ident: ref_129
  doi: 10.1371/journal.pone.0047299
– volume: 72
  start-page: 305
  year: 2014
  ident: ref_182
  article-title: Nrf2 enhances myocardial clearance of toxic ubiquitinated proteins
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2014.04.006
– volume: 16
  start-page: 135
  year: 2012
  ident: ref_69
  article-title: TXNIP Switches Tracks toward a Terminal UPR
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.07.012
– volume: 73
  start-page: 3097
  year: 2013
  ident: ref_29
  article-title: RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3386
– volume: 279
  start-page: 31556
  year: 2004
  ident: ref_27
  article-title: Redox-regulated Turnover of Nrf2 Is Determined by at Least Two Separate Protein Domains, the Redox-sensitive Neh2 Degron and the Redox-insensitive Neh6 Degron
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M403061200
– volume: 110
  start-page: 15259
  year: 2013
  ident: ref_38
  article-title: Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1305687110
– volume: 365
  start-page: 327
  year: 2011
  ident: ref_162
  article-title: Bardoxolone Methyl and Kidney Function in CKD with Type 2 Diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1105351
– volume: 337
  start-page: 583
  year: 2011
  ident: ref_93
  article-title: Role of Intrarenal Angiotensin System Activation, Oxidative Stress, Inflammation, and Impaired Nuclear Factor-Erythroid-2-Related Factor 2 Activity in the Progression of Focal Glomerulosclerosis
  publication-title: Experiment
– ident: ref_71
  doi: 10.3390/cancers12030569
– volume: 102
  start-page: 108395
  year: 2022
  ident: ref_125
  article-title: Dimethyl fumarate attenuates LPS induced septic acute kidney injury by suppression of NFkappaB p65 phosphorylation and macrophage activation
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2021.108395
– volume: 280
  start-page: 27244
  year: 2005
  ident: ref_20
  article-title: Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M502551200
– volume: 76
  start-page: 838
  year: 2009
  ident: ref_106
  article-title: Induction of heme oxygenase-1 protects against podocyte apoptosis under diabetic conditions
  publication-title: Kidney Int.
  doi: 10.1038/ki.2009.286
– ident: ref_101
  doi: 10.3390/antiox9090783
– volume: 82
  start-page: 887
  year: 2012
  ident: ref_70
  article-title: Redox Regulation by Nuclear Factor Erythroid 2-Related Factor 2: Gatekeeping for the Basal and Diabetes-Induced Expression of Thioredoxin-Interacting Protein
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.112.081133
– volume: 50
  start-page: 1503
  year: 2011
  ident: ref_94
  article-title: Antroquinonol reduces oxidative stress by enhancing the Nrf2 signaling pathway and inhibits inflammation and sclerosis in focal segmental glomerulosclerosis mice
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.02.029
– volume: 99
  start-page: 102
  year: 2020
  ident: ref_176
  article-title: Genetic or pharmacologic Nrf2 activation increases proteinuria in chronic kidney disease in mice
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2020.07.036
– volume: 70
  start-page: 1388
  year: 2021
  ident: ref_177
  article-title: Overexpression of Nrf2 in Renal Proximal Tubular Cells Stimulates Sodium–Glucose Cotransporter 2 Expression and Exacerbates Dysglycemia and Kidney Injury in Diabetic Mice
  publication-title: Diabetes
  doi: 10.2337/db20-1126
– ident: ref_205
  doi: 10.3390/ijms21134777
– volume: 121
  start-page: 1683
  year: 2011
  ident: ref_19
  article-title: Mitochondrial Ca2+ and ROS take center stage to orchestrate TNF-α–mediated inflammatory responses
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI57748
– volume: 348
  start-page: 182
  year: 2002
  ident: ref_190
  article-title: Roles of Nrf2 in activation of antioxidant enzyme genes via antioxidant responsive elements
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(02)48637-5
– volume: 43
  start-page: 230
  year: 2016
  ident: ref_116
  article-title: Effects of captopril, telmisartan and bardoxolone methyl (CDDO-Me) in ischemia-reperfusion-induced acute kidney injury in rats: An experimental comparative study
  publication-title: Clin. Exp. Pharmacol. Physiol.
  doi: 10.1111/1440-1681.12511
– volume: 85
  start-page: 134
  year: 2014
  ident: ref_118
  article-title: The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice
  publication-title: Kidney Int.
  doi: 10.1038/ki.2013.357
– volume: 88
  start-page: 1261
  year: 2015
  ident: ref_23
  article-title: Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney
  publication-title: Kidney Int.
  doi: 10.1038/ki.2015.286
– volume: 18
  start-page: 488
  year: 2013
  ident: ref_161
  article-title: Sulforaphane decreases kidney injury after transplantation in rats: Role of mitochondrial damage
  publication-title: Ann. Transplant.
  doi: 10.12659/AOT.884013
– volume: 314
  start-page: R399
  year: 2018
  ident: ref_168
  article-title: NRF2 prevents hypertension, increased ADMA, microvascular oxidative stress, and dysfunction in mice with two weeks of ANG II infusion
  publication-title: Am. J. Physiol. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00122.2017
– volume: 33
  start-page: 12253
  year: 2019
  ident: ref_156
  article-title: Bardoxolone methyl analog attenuates proteinuria-induced tubular damage by modulating mitochondrial function
  publication-title: FASEB J.
  doi: 10.1096/fj.201900217R
– volume: 97
  start-page: 12625
  year: 2000
  ident: ref_62
  article-title: PERK mediates cell-cycle exit during the mammalian unfolded protein response
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.220247197
– volume: 43
  start-page: 1229
  year: 2021
  ident: ref_124
  article-title: Dimethyl fumarate ameliorates endotoxin-induced acute kidney injury against macrophage oxidative stress
  publication-title: Ren. Fail.
  doi: 10.1080/0886022X.2021.1963774
– volume: 44
  start-page: 570
  year: 2014
  ident: ref_154
  article-title: The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores Nrf2 activity and attenuates oxidative stress, inflammation, and fibrosis in rats with chronic kidney disease
  publication-title: Xenobiotica
  doi: 10.3109/00498254.2013.852705
– volume: 36
  start-page: 2281
  year: 2016
  ident: ref_51
  article-title: Induction of Endoplasmic Reticulum Stress via Reactive Oxygen Species Mediated by Luteolin in Melanoma Cells
  publication-title: Anticancer Res.
– ident: ref_1
– volume: 2019
  start-page: 4657651
  year: 2019
  ident: ref_143
  article-title: Tert-Butylhydroquinone Treatment Alleviates Contrast-Induced Nephropathy in Rats by Activating the Nrf2/Sirt3/SOD2 Signaling Pathway
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2019/4657651
– volume: 2019
  start-page: 3214196
  year: 2019
  ident: ref_196
  article-title: New Insights into the Nrf-2/HO-1 Signaling Axis and Its Application in Pediatric Respiratory Diseases
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2019/3214196
– volume: 96
  start-page: 1030
  year: 2019
  ident: ref_163
  article-title: Effect of bardoxolone methyl on the urine albumin-to-creatinine ratio in patients with type 2 diabetes and stage 4 chronic kidney disease
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2019.04.027
– volume: 51
  start-page: 1289
  year: 2011
  ident: ref_18
  article-title: Cross talk between mitochondria and NADPH oxidases
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.06.033
– volume: 2016
  start-page: 9825623
  year: 2016
  ident: ref_138
  article-title: Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2016/9825623
– volume: 169
  start-page: 89
  year: 2016
  ident: ref_3
  article-title: Unraveling the immunopathogenesis of glomerular disease
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2016.06.011
– volume: 88
  start-page: 101
  year: 2015
  ident: ref_37
  article-title: Structural basis of Keap1 interactions with Nrf2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.05.034
– volume: 15
  start-page: 4184
  year: 1995
  ident: ref_24
  article-title: Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.8.4184
– volume: 2020
  start-page: 1809408
  year: 2020
  ident: ref_186
  article-title: The Role of Notch3 Signaling in Kidney Disease
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2020/1809408
– ident: ref_170
  doi: 10.3390/antiox11050845
– volume: 34
  start-page: 653
  year: 2014
  ident: ref_36
  article-title: Notch-Nrf2 Axis: Regulation of Nrf2 Gene Expression and Cytoprotection by Notch Signaling
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01408-13
– volume: 2013
  start-page: 135314
  year: 2013
  ident: ref_141
  article-title: Sulforaphane Attenuates Gentamicin-Induced Nephrotoxicity: Role of Mitochondrial Protection
  publication-title: Evid.-Based Complement. Altern. Med.
– volume: 99
  start-page: 1144
  year: 2015
  ident: ref_134
  article-title: Treatment with Dimethyl Fumarate Attenuates Calcineurin Inhibitor-induced Nephrotoxicity
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000000647
– volume: 36
  start-page: 924
  year: 2016
  ident: ref_191
  article-title: The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.21396
– volume: 74
  start-page: 557
  year: 2022
  ident: ref_198
  article-title: GSK-3beta-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders
  publication-title: Pharmacol. Rep.
  doi: 10.1007/s43440-022-00390-z
– ident: ref_184
  doi: 10.1371/journal.pone.0100715
– volume: 4
  start-page: 20
  year: 2015
  ident: ref_79
  article-title: Renal ischemia/reperfusion injury; from pathophysiology to treatment
  publication-title: J. Renal Inj. Prev.
– ident: ref_4
  doi: 10.3390/ijms23073525
– volume: 23
  start-page: 1583
  year: 2012
  ident: ref_32
  article-title: Inhibition of NF-kappaB nuclear translocation via HO-1 activation underlies alpha-tocopheryl succinate toxicity
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2011.10.012
– volume: 283
  start-page: H2130
  year: 2002
  ident: ref_15
  article-title: Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells
  publication-title: Am. J. Physiol. Circ. Physiol.
  doi: 10.1152/ajpheart.00196.2002
– ident: ref_155
  doi: 10.3390/antiox11010156
– volume: 57
  start-page: 1649
  year: 2012
  ident: ref_102
  article-title: Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201200540
– volume: 278
  start-page: 48021
  year: 2003
  ident: ref_75
  article-title: Deficiency of the Nrf1 and Nrf2 Transcription Factors Results in Early Embryonic Lethality and Severe Oxidative Stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308439200
– volume: 320
  start-page: 1
  year: 2008
  ident: ref_48
  article-title: Function of reactive oxygen species during animal development: Passive or active?
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2008.04.041
– volume: 8
  start-page: 5126
  year: 2018
  ident: ref_105
  article-title: Association of NF-E2 Related Factor 2 (Nrf2) and inflammatory cytokines in recent onset Type 2 Diabetes Mellitus
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22913-6
– volume: 5
  start-page: 879
  year: 2020
  ident: ref_147
  article-title: Randomized Clinical Trial on the Effect of Bardoxolone Methyl on GFR in Diabetic Kidney Disease Patients (TSUBAKI Study)
  publication-title: Kidney Int. Rep.
  doi: 10.1016/j.ekir.2020.03.030
– volume: 17
  start-page: 1763
  year: 2022
  ident: ref_159
  article-title: Effects of Bardoxolone Methyl in Alport Syndrome
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.02400222
– volume: 158
  start-page: 1836
  year: 1983
  ident: ref_12
  article-title: Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis is associated with stimulation of lipoxygenase activity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.158.6.1836
– volume: 91
  start-page: 387
  year: 2016
  ident: ref_82
  article-title: Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2016.08.023
– volume: 300
  start-page: F1180
  year: 2011
  ident: ref_117
  article-title: Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO-1
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00353.2010
– volume: 372
  start-page: 1138
  year: 2015
  ident: ref_21
  article-title: Fibrosis—A Common Pathway to Organ Injury and Failure
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1300575
– volume: 285
  start-page: 9292
  year: 2010
  ident: ref_173
  article-title: Deficiency in the Nuclear Factor E2-related Factor-2 Transcription Factor Results in Impaired Adipogenesis and Protects against Diet-induced Obesity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.093955
– volume: 93
  start-page: 14960
  year: 1996
  ident: ref_34
  article-title: Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase gene
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.25.14960
– volume: 46
  start-page: 453
  year: 2023
  ident: ref_133
  article-title: Dimethyl Fumarate Attenuates Di-(2-Ethylhexyl) Phthalate-Induced Nephrotoxicity Through the Nrf2/HO-1 and NF-kappaB Signaling Pathways
  publication-title: Inflammation
  doi: 10.1007/s10753-022-01746-6
– volume: 309
  start-page: 108689
  year: 2019
  ident: ref_137
  article-title: Contrast media (meglumine diatrizoate) aggravates renal inflammation, oxidative DNA damage and apoptosis in diabetic rats which is restored by sulforaphane through Nrf2/HO-1 reactivation
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2019.06.002
– volume: 66
  start-page: 3129
  year: 2014
  ident: ref_157
  article-title: Prevention of Murine Lupus Nephritis by Targeting Multiple Signaling Axes and Oxidative Stress Using a Synthetic Triterpenoid
  publication-title: Arthritis Rheumatol.
  doi: 10.1002/art.38782
– volume: 266
  start-page: 21025
  year: 1991
  ident: ref_14
  article-title: Functional expression of NADPH oxidase components (alpha- and beta-subunits of cytochrome b558 and 45-kDa flavoprotein) by intrinsic human glomerular mesangial cells
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54815-8
– ident: ref_204
  doi: 10.1186/s12876-020-01453-2
– volume: 25
  start-page: 10895
  year: 2005
  ident: ref_25
  article-title: The Carboxy-Terminal Neh3 Domain of Nrf2 Is Required for Transcriptional Activation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.24.10895-10906.2005
– volume: 61
  start-page: 3208
  year: 2012
  ident: ref_174
  article-title: Enhanced Nrf2 Activity Worsens Insulin Resistance, Impairs Lipid Accumulation in Adipose Tissue, and Increases Hepatic Steatosis in Leptin-Deficient Mice
  publication-title: Diabetes
  doi: 10.2337/db11-1716
– volume: 49
  start-page: 1671
  year: 2008
  ident: ref_35
  article-title: Essential Roles of the PI3 Kinase/Akt Pathway in Regulating Nrf2-Dependent Antioxidant Functions in the RPE
  publication-title: Investig. Opthalmol. Vis. Sci.
  doi: 10.1167/iovs.07-1099
– volume: 172
  start-page: 65
  year: 2021
  ident: ref_89
  article-title: Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2021.05.034
– volume: 13
  start-page: 311
  year: 2017
  ident: ref_6
  article-title: The role of the complement system in diabetic nephropathy
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2017.31
– volume: 452
  start-page: 554
  year: 2014
  ident: ref_46
  article-title: Rexinoid inhibits Nrf2-mediated transcription through retinoid X receptor alpha
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.08.111
– volume: 13
  start-page: 76
  year: 1999
  ident: ref_28
  article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.1.76
– volume: 72
  start-page: 969
  year: 2020
  ident: ref_120
  article-title: The dual reno- and neuro-protective effects of dimethyl fumarate against uremic encephalopathy in a renal ischemia/reperfusion model
  publication-title: Pharmacol. Rep.
  doi: 10.1007/s43440-020-00076-4
– volume: 245
  start-page: 326
  year: 2010
  ident: ref_172
  article-title: Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2010.03.016
– volume: 12
  start-page: 13
  year: 2015
  ident: ref_5
  article-title: Innate immunity in diabetes and diabetic nephropathy
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2015.175
– volume: 124
  start-page: 696
  year: 2019
  ident: ref_180
  article-title: Pak2 as a Novel Therapeutic Target for Cardioprotective Endoplasmic Reticulum Stress Response
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.312829
– ident: ref_128
  doi: 10.3390/antiox11101854
– volume: 49
  start-page: 2631
  year: 2011
  ident: ref_144
  article-title: Preventive effect of tert-butylhydroquinone on cisplatin-induced nephrotoxicity in rats
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2011.07.008
– volume: 88 Pt B
  start-page: 199
  year: 2015
  ident: ref_40
  article-title: p62 links autophagy and Nrf2 signaling
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.06.014
– ident: ref_49
  doi: 10.1371/journal.pone.0163046
– volume: 63
  start-page: 3091
  year: 2014
  ident: ref_175
  article-title: Derivative of Bardoxolone Methyl, dh404, in an Inverse Dose-Dependent Manner Lessens Diabetes-Associated Atherosclerosis and Improves Diabetic Kidney Disease
  publication-title: Diabetes
  doi: 10.2337/db13-1743
– volume: 232
  start-page: 71
  year: 2017
  ident: ref_110
  article-title: Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-16-0322
– volume: 53
  start-page: 2133
  year: 2021
  ident: ref_119
  article-title: Activation of Nrf2 Pathway by Dimethyl Fumarate Attenuates Renal Ischemia-Reperfusion Injury
  publication-title: Transplant. Proc.
  doi: 10.1016/j.transproceed.2021.07.017
– volume: 8
  start-page: e10515
  year: 2022
  ident: ref_151
  article-title: tBHQ attenuates podocyte injury in diabetic nephropathy by inhibiting NADPH oxidase-derived ROS generation via the Nrf2/HO-1 signalling pathway
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e10515
– volume: 15
  start-page: 787258
  year: 2021
  ident: ref_201
  article-title: A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer’s and Parkinson’s Diseases
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2021.787258
– volume: 2020
  start-page: 5695723
  year: 2020
  ident: ref_197
  article-title: The Nrf-2/HO-1 Signaling Axis: A Ray of Hope in Cardiovascular Diseases
  publication-title: Cardiol. Res. Pract.
  doi: 10.1155/2020/5695723
– volume: 158
  start-page: 1
  year: 2020
  ident: ref_85
  article-title: The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.06.025
– volume: 311
  start-page: F162
  year: 2016
  ident: ref_10
  article-title: Recent advances in renal hypoxia: Insights from bench experiments and computer simulations
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajprenal.00228.2016
– volume: 9
  start-page: 9245
  year: 2019
  ident: ref_97
  article-title: Tolvaptan activates the Nrf2/HO-1 antioxidant pathway through PERK phosphorylation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45539-8
– volume: 27
  start-page: 586
  year: 2013
  ident: ref_111
  article-title: Vitamin D Activates the Nrf2-Keap1 Antioxidant Pathway and Ameliorates Nephropathy in Diabetic Rats
  publication-title: Am. J. Hypertens.
  doi: 10.1093/ajh/hpt160
– volume: 12
  start-page: 763760
  year: 2021
  ident: ref_188
  article-title: Nrf2 Promotes Inflammation in Early Myocardial Ischemia-Reperfusion via Recruitment and Activation of Macrophages
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.763760
– volume: 369
  start-page: 2492
  year: 2013
  ident: ref_146
  article-title: Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1306033
– volume: 285
  start-page: 21258
  year: 2010
  ident: ref_44
  article-title: CR6-interacting Factor 1 (CRIF1) Regulates NF-E2-related Factor 2 (NRF2) Protein Stability by Proteasome-mediated Degradation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.084590
– volume: 75
  start-page: 2214
  year: 2008
  ident: ref_121
  article-title: Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2008.02.029
– volume: 115
  start-page: 185
  year: 2018
  ident: ref_142
  article-title: Sulforaphane prevents maleic acid-induced nephropathy by modulating renal hemodynamics, mitochondrial bioenergetics and oxidative stress
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2018.03.016
– volume: 26
  start-page: 795
  year: 2007
  ident: ref_63
  article-title: HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601549
– volume: 6
  start-page: eabb9614
  year: 2020
  ident: ref_181
  article-title: Beyond the cell factory: Homeostatic regulation of and by the UPRER
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb9614
– volume: 33
  start-page: 469
  year: 2011
  ident: ref_145
  article-title: Effect of Bardoxolone Methyl on Kidney Function in Patients with T2D and Stage 3b–4 CKD
  publication-title: Am. J. Nephrol.
  doi: 10.1159/000327599
– volume: 236
  start-page: 313
  year: 1997
  ident: ref_72
  article-title: An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.6943
– volume: 134
  start-page: 2469
  year: 2020
  ident: ref_115
  article-title: Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function
  publication-title: Clin. Sci.
  doi: 10.1042/CS20191088
– volume: 276
  start-page: 20858
  year: 2001
  ident: ref_73
  article-title: Identification of Activating Transcription Factor 4 (ATF4) as an Nrf2-interacting Protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M101198200
– volume: 11
  start-page: e382
  year: 2021
  ident: ref_132
  article-title: Dimethyl fumarate prevents ferroptosis to attenuate acute kidney injury by acting on NRF2
  publication-title: Clin. Transl. Med.
  doi: 10.1002/ctm2.382
– volume: 192
  start-page: 278
  year: 2010
  ident: ref_139
  article-title: Sulforaphane protects against cisplatin-induced nephrotoxicity
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2009.11.007
– volume: 48
  start-page: 1537
  year: 2014
  ident: ref_192
  article-title: Response to Comment on “Dimethyl Fumarate (Tecfidera): A New Oral Agent for Multiple Sclerosis”
  publication-title: Ann. Pharmacother.
  doi: 10.1177/1060028014546739
– volume: 85
  start-page: 333
  year: 2014
  ident: ref_158
  article-title: Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kappaB-mediated inflammatory response
  publication-title: Kidney Int.
  doi: 10.1038/ki.2013.343
– volume: 35
  start-page: 306
  year: 2014
  ident: ref_8
  article-title: Redox Regulation of Inflammation: Old Elements, a New Story
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.21330
– volume: 2016
  start-page: 1958174
  year: 2016
  ident: ref_200
  article-title: The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2016/1958174
– volume: 302
  start-page: F95
  year: 2012
  ident: ref_13
  article-title: Increase of sodium delivery stimulates the mitochondrial respiratory chain H2O2 production in rat renal medullary thick ascending limb
  publication-title: Am. J. Physiol. Renal Physiol.
  doi: 10.1152/ajprenal.00469.2011
– volume: 231
  start-page: 364
  year: 2008
  ident: ref_131
  article-title: Coordinated induction of Nrf2 target genes protects against iron nitrilotriacetate (FeNTA)-induced nephrotoxicity
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2008.05.022
– volume: 282
  start-page: 16502
  year: 2007
  ident: ref_42
  article-title: GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M611336200
– volume: 1517
  start-page: 19
  year: 2000
  ident: ref_76
  article-title: Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein
  publication-title: Biochim. Biophys. Acta BBA Gene Struct. Express.
  doi: 10.1016/S0167-4781(00)00238-4
– volume: 26
  start-page: 596
  year: 2015
  ident: ref_149
  article-title: Sulforaphane attenuation of experimental diabetic nephropathy involves GSK-3 beta/Fyn/Nrf2 signaling pathway
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/j.jnutbio.2014.12.008
– volume: 104
  start-page: 10813
  year: 2007
  ident: ref_187
  article-title: Regulation of the protein disulfide proteome by mitochondria in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0702027104
– volume: 181
  start-page: 1129
  year: 2008
  ident: ref_56
  article-title: Regulation of ROS signal transduction by NADPH oxidase 4 localization
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200709049
– volume: 6
  start-page: 857
  year: 2001
  ident: ref_39
  article-title: Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.2001.00469.x
– volume: 137
  start-page: 103688
  year: 2019
  ident: ref_84
  article-title: Polydatin prevents LPS-induced acute kidney injury through inhibiting inflammatory and oxidative responses
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2019.103688
– volume: 45
  start-page: 1677
  year: 2018
  ident: ref_83
  article-title: Resveratrol Alleviates Inflammatory Responses and Oxidative Stress in Rat Kidney Ischemia-Reperfusion Injury and H2O2-Induced NRK-52E Cells via the Nrf2/TLR4/NF-kappaB Pathway
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000487735
– volume: 6
  start-page: 1129
  year: 2004
  ident: ref_61
  article-title: Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response
  publication-title: Nature
– volume: 371
  start-page: 642
  year: 2019
  ident: ref_164
  article-title: Therapeutic Effects of Nrf2 Activation by Bardoxolone Methyl in Chronic Heart Failure
  publication-title: Experiment
SSID ssj0023259
Score 2.5092916
SecondaryResourceType review_article
Snippet Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6053
SubjectTerms Antioxidants
Antioxidants - metabolism
Antioxidants - therapeutic use
B cells
Chronic kidney failure
Diabetes
Diabetic nephropathies
Diabetic Nephropathies - metabolism
Diabetic nephropathy
Endoplasmic reticulum
Genes
Genetic aspects
Genetic transcription
Homeostasis
Humans
Inflammation
Kelch-Like ECH-Associated Protein 1 - metabolism
Kidney - metabolism
Kidney diseases
Kinases
Medical research
Medicine, Experimental
Mitochondria
NF-E2-Related Factor 2 - metabolism
Oxidation
Oxidative Stress
Proteins
Reactive Oxygen Species - metabolism
Review
Transcription factors
Tumor necrosis factor-TNF
Type 2 diabetes
Ubiquitin
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkhcKt6kFGQkEAcUNX7ksaeqha5aYFeoolJvkeOHSNU6Ldke-u-Z2WTDBgnOnkTW2J75PnseAO8S65TPpYy5NUmspqaKtaIndovewTmR-lWG93yRHZ-pL-fpeX_h1vZhlWubuDLUtjF0R74nckLmBOD3r29i6hpFr6t9C437sIUmuEgnsHV4tPh-OlAuKVbt0jh6oThLp1kX-i6R6O_VF1ct0RnE83LklP42zRu-aRw3ueGIZo9gu0eQ7KBb8sdwz4Un8KDrKXn3FL6dhJYId8vqsGwY4js2X7fAZXNHib51e9WyxrPF6UygFPta2-Du2Em4QAUzHSz73D3btM_gbHb049Nx3LdMiI0qkmWcWiuslUZXPNO6ylMkzolXgmudoRKm3krOERQ4h8alSgsvOJ5BpzLheVbYRD6HSWiCewlM59aryiivjCaWV2RTY4Tz3iObLgoZwce1zkrT1xOnthaXJfIK0nC5qeEI3g_S110djX_IfSD1l3S88G9G91kCOCcqVFUe5Ag5iSTxCHZHkngszHh4vYBlfyzb8s8miuDtMExfUqhZcM0tyhSUV0qvyxG86NZ7mLHME5UjqomgGO2EQYCKdY9HQv1zVbSbUwxnItXO_-f1Ch5SQ3uKchNyFybLX7fuNcKeZfWm39u_AY1HANQ
  priority: 102
  providerName: ProQuest
Title Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/37047024
https://www.proquest.com/docview/2799660301
https://www.proquest.com/docview/2800629014
https://pubmed.ncbi.nlm.nih.gov/PMC10094034
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zi9RAEC72QPBFvI2uQwuKDxJNpzvHPIisuuOuOoMsDsxb6PSBWXZ7dDMLzr-3anIw8XrJS1dCU1XdVV_qAngaGStdJkTIjY5COdZlqCSF2A1aB2vjxG0qvKez9HguPy6SxQ5000ZbBtZ_hXY0T2p-ef7y54_1GzzwrwlxImR_VZ1d1ARM0DMXu7CPNikl_Z7KPp6AbsNmbBr98Ajpgm5S4P94e2Ccfr-it2zUMH9yyyBNbsKN1pNkh43ob8GO9bfhWjNbcn0HPp_4moB3zSq_WjL089i0G4XLppYKfqv6omZLx2ankxip2KfKeLtmJ_4MGc2UN-x9E76p78J8cvT13XHYjk4ItcyjVZgYExsjtCp5qlSZJQigIydjrlTK03TsjOAcnQNr8ZIpk9zFHM-ilWnseJqbSNyDPb_09gEwlRknSy2d1IrQXp6OtY6tcw5RdZ6LAF50PCt021ecxlucF4gviMPFNocDeNZTf2_6afyD7jmxvyDB49e0aqsFcE_UsKo4zND1JLDEAzgYUOLx0MPlToBFp11FnBHMIzQYwJN-md6klDNvl1dIk1N9KUWZA7jfyLvfscgimaF3E0A-0ISegJp2D1d89W3TvJtTLmck5MP_b_sRXKfB9pTtFosD2FtdXtnH6P6syhHsZosMn_nkwwj23x7NvpyOyCAlo43O_wIC_AYX
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIgQviBtDgUWi4gFZ9R4-8oBQRQkJOR5QK_XN2HsIV3RdcCqUP8VvZCaOQ4wEb33e8Wo1x8583jkAXkXGKpdKGXKjo1ANdBkWip7YDXoHa0XsVhXes3kyOlGfTuPTHfjV1cJQWmV3J64ualNr-kd-IFKKzCmAf3fxPaSpUfS62o3QaNViYpc_EbI1b8dHKN99IYYfjt-PwvVUgVCrLFqEsTHCGKmLkidFUaYxYsvIKcGLIuFJMnBGco5-01q0vzLOnOCoplYlwvEkM5HEfa_BdSXlgHr1Z8OPG4AnxWo4G-7CwyQeJG2iPRJGB9XZeUPgCdGD7LnAvx3BlifsZ2luub3hHbi9jlfZYatgd2HH-ntwo51gubwP07FvCN43rPKLmmE0yWbdwF02s1RWXDXnDasdm38eCqRik8p4u2Rjf4biZIU37Kh9JGoewMmVsPIh7Pra28fAitQ4VWrllC4IU2bJQGthnXOI3bNMBvCm41mu193LaYjGtxxRDHE43-ZwAPsb6ou2a8c_6F4T-3MyZtxNF-uaBDwTtcXKD1MMcAmS8QD2epRohLq_3AkwX18CTf5HZQN4uVmmLymxzdv6EmkyqmKlt-wAHrXy3pxYppFKMYYKIOtpwoaAWoP3V3z1ddUinFPGaCTVk_-f6wXcHB3Ppvl0PJ88hVsCVZjy64Tcg93Fj0v7DAOuRfl8peUMvly1Wf0G6no8Bg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVKC-IG4MBRaJigdkxXv4ekCokEYNaaKqolLfjL2HSNU6BadC-Wv8OmZiO8RI8NbnHa9Wc-zM550D4E1grHKxlD43OvBVqgs_V_TEbtA7WCtCt6rwnkyjw1P1-Sw824JfbS0MpVW2d-LqojZzTf_I-yKmyJwC-L5r0iKOB8MPV999miBFL63tOI1aRcZ2-RPhW_V-NEBZ7wkxPPjy6dBvJgz4WiXBwg-NEcZInRc8yvMiDhFnBk4JnucRj6LUGck5-lBr0RaLMHGCo8paFQnHo8QEEve9BdsxesWkB9sfD6bHJ2u4J8VqVBvuw_0oTKM67V7KNOjPzi8rglKIJWTHIf7tFjb8Yjdnc8MJDu_B3SZ6Zfu1ut2HLVs-gNv1PMvlQzgalRWB_YrNysWcYWzJJu34XTaxVGQ8qy4rNndsejIUSMXGM1PaJRuV5yhclpeGDeono-oRnN4IMx9Dr5yX9imwPDZOFVo5pXNCmEmUai2scw6RfJJID961PMt008ucRmpcZIhpiMPZJoc92FtTX9U9PP5B95bYn5Fp4246byoU8EzUJCvbjzHcJYDGPdjtUKJJ6u5yK8CsuRKq7I8Ce_B6vUxfUppbaefXSJNQTSu9bHvwpJb3-sQyDlSMEZUHSUcT1gTUKLy7Us6-rRqGc8ofDaR69v9zvYI7aFLZ0Wg6fg47AjWYku2E3IXe4se1fYHR16J42ag5g683bVm_AQ8oQaE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+the+Molecular+Mechanisms+of+NRF2+in+Kidney+Injury+and+Diseases&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Lin%2C+Da-Wei&rft.au=Hsu%2C+Yung-Chien&rft.au=Chang%2C+Cheng-Chih&rft.au=Hsieh%2C+Ching-Chuan&rft.date=2023-03-23&rft.pub=MDPI+AG&rft.issn=1422-0067&rft.volume=24&rft.issue=7&rft_id=info:doi/10.3390%2Fijms24076053&rft.externalDocID=A751925761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon