The hubs of the human connectome are generally implicated in the anatomy of brain disorders
Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-dist...
Saved in:
Published in | Brain (London, England : 1878) Vol. 137; no. 8; pp. 2382 - 2395 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders. |
---|---|
AbstractList | Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders.Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders. Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders. See Sporns (doi: 10.1093/brain/awu148 ) for a scientific commentary on this article. Brain networks contain a minority of highly connected hub nodes with high topological value and biological cost. Using network analysis of DTI data from healthy volunteers, and meta-analyses of published MRI studies in 26 brain disorders, Crossley et al . show that lesions across disorders tend to be concentrated at hubs. Brain networks or ‘connectomes’ include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers ( n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome ( P < 10 −4 , permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs ( P < 0.05, permutation test), including schizophrenia and Alzheimer’s disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer’s disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders. |
Author | Carletti, Francesco Scott, Jessica Fox, Peter T. Bullmore, Edward T. McGuire, Philip Crossley, Nicolas A. Mechelli, Andrea |
Author_xml | – sequence: 1 givenname: Nicolas A. surname: Crossley fullname: Crossley, Nicolas A. – sequence: 2 givenname: Andrea surname: Mechelli fullname: Mechelli, Andrea – sequence: 3 givenname: Jessica surname: Scott fullname: Scott, Jessica – sequence: 4 givenname: Francesco surname: Carletti fullname: Carletti, Francesco – sequence: 5 givenname: Peter T. surname: Fox fullname: Fox, Peter T. – sequence: 6 givenname: Philip surname: McGuire fullname: McGuire, Philip – sequence: 7 givenname: Edward T. surname: Bullmore fullname: Bullmore, Edward T. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28608837$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/25057133$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcuLFDEQxoOsuLOrN8-Si-DBdvPu9EWQxRcseFlPHkJNUr0T6U7GpFuZ_96eh-sDT1VQv--r1wU5SzkhIU85e8VZJ6_WBWK6gh8zl-IBWXFlWCO4NmdkxRgzje00OycXtX5ljCspzCNyLjTTLZdyRb7cbpBu5nWluafTIR8hUZ9TQj_lESkUpHeYsMAw7Ggct0P0MGGgMR0EkGDhdnv9YRQaYs0lYKmPycMehopPTvGSfH739vb6Q3Pz6f3H6zc3jVeWTY3moHothdjH1gbN1qZtwUppdI9coegYGCY6DKCtD51UqHBhQ_Ct115ektdH3-28HjF4TNMyrNuWOELZuQzR_V1JcePu8nenOGtbqReDFyeDkr_NWCc3xupxGCBhnqvjWlkjmdV2QZ_92eu-ya-LLsDzEwDVw9AXSD7W35w1zFrZLtzLI-dLrrVgf49w5vaPdYdruuNjF1z8g_s4wRTzfqM4_F_0E9KTqnQ |
CitedBy_id | crossref_primary_10_1089_brain_2019_0705 crossref_primary_10_1002_brb3_1031 crossref_primary_10_1089_brain_2017_0494 crossref_primary_10_1038_s41598_020_61522_0 crossref_primary_10_1038_s41598_024_55753_8 crossref_primary_10_3389_fpsyt_2021_735623 crossref_primary_10_2217_fnl_2016_0022 crossref_primary_10_1016_j_nicl_2022_102941 crossref_primary_10_1007_s00259_022_05740_w crossref_primary_10_1016_j_neuroimage_2021_117980 crossref_primary_10_1016_j_neuroimage_2019_06_037 crossref_primary_10_1002_hbm_24578 crossref_primary_10_1016_j_neuroimage_2020_117220 crossref_primary_10_1007_s11682_019_00090_y crossref_primary_10_3389_fnins_2017_00125 crossref_primary_10_1186_s13195_023_01327_1 crossref_primary_10_1002_hbm_23486 crossref_primary_10_3390_brainsci7050050 crossref_primary_10_17116_neiro20248803181 crossref_primary_10_1038_s41598_017_17886_x crossref_primary_10_1016_j_eurpsy_2019_02_004 crossref_primary_10_1016_j_neuroimage_2017_02_007 crossref_primary_10_1073_pnas_1513302113 crossref_primary_10_1002_hbm_23479 crossref_primary_10_1007_s00429_015_0999_6 crossref_primary_10_1038_s41598_020_79845_3 crossref_primary_10_1002_hbm_25452 crossref_primary_10_1002_hbm_26543 crossref_primary_10_1016_j_bpsc_2018_03_003 crossref_primary_10_1016_j_tics_2022_09_006 crossref_primary_10_1016_j_nicl_2017_12_029 crossref_primary_10_1093_brain_awv075 crossref_primary_10_1016_j_neuroimage_2017_02_031 crossref_primary_10_1016_j_neuroimage_2019_06_055 crossref_primary_10_3389_fnsys_2021_648928 crossref_primary_10_1007_s00429_016_1264_3 crossref_primary_10_1016_j_neuroimage_2023_120265 crossref_primary_10_1016_j_nicl_2017_12_017 crossref_primary_10_1016_j_mri_2014_08_037 crossref_primary_10_1371_journal_pone_0230099 crossref_primary_10_3389_fncom_2022_891384 crossref_primary_10_1007_s00062_019_00802_3 crossref_primary_10_3389_fneur_2021_746493 crossref_primary_10_3389_fnins_2020_00541 crossref_primary_10_1017_S0033291716002609 crossref_primary_10_1073_pnas_2203682119 crossref_primary_10_1038_s41598_017_07846_w crossref_primary_10_1002_hbm_23017 crossref_primary_10_1038_srep43176 crossref_primary_10_1002_hbm_23018 crossref_primary_10_1002_osp4_362 crossref_primary_10_3389_fnins_2023_1217079 crossref_primary_10_1016_j_nicl_2016_09_020 crossref_primary_10_1007_s40263_018_0599_0 crossref_primary_10_1002_hbm_23452 crossref_primary_10_3389_fnagi_2022_999288 crossref_primary_10_1002_jnr_24773 crossref_primary_10_1038_s41531_022_00332_9 crossref_primary_10_1002_mp_17568 crossref_primary_10_1016_j_brainresbull_2024_110925 crossref_primary_10_1016_j_neuroimage_2020_116578 crossref_primary_10_3390_jcm9040990 crossref_primary_10_1523_JNEUROSCI_0754_16_2016 crossref_primary_10_1016_j_neubiorev_2016_08_036 crossref_primary_10_1038_s41598_020_60611_4 crossref_primary_10_1097_ANA_0000000000000550 crossref_primary_10_1016_j_neubiorev_2016_08_035 crossref_primary_10_1016_j_neuroimage_2017_02_058 crossref_primary_10_3389_fnbeh_2022_846919 crossref_primary_10_1097_j_pain_0000000000002480 crossref_primary_10_2139_ssrn_3339908 crossref_primary_10_1016_j_arr_2016_10_001 crossref_primary_10_1007_s00429_015_1096_6 crossref_primary_10_1016_j_neuroimage_2017_11_016 crossref_primary_10_1111_epi_13757 crossref_primary_10_1016_j_bpsc_2018_03_017 crossref_primary_10_1017_S0033291724000643 crossref_primary_10_1002_brb3_2553 crossref_primary_10_1002_cne_24009 crossref_primary_10_7554_eLife_41836 crossref_primary_10_1016_j_bpsc_2018_03_015 crossref_primary_10_1186_s12885_024_11865_y crossref_primary_10_1038_s41380_022_01916_w crossref_primary_10_1093_schbul_sby166 crossref_primary_10_1080_14737175_2023_2174016 crossref_primary_10_1016_j_schres_2021_04_001 crossref_primary_10_1111_cns_12449 crossref_primary_10_1016_j_jad_2020_11_122 crossref_primary_10_1038_s41598_024_80731_5 crossref_primary_10_1038_srep27964 crossref_primary_10_1016_j_jaac_2016_01_004 crossref_primary_10_1002_hipo_23215 crossref_primary_10_1016_j_ynstr_2021_100345 crossref_primary_10_3389_fnhum_2016_00158 crossref_primary_10_1098_rstb_2015_0362 crossref_primary_10_3389_fncir_2017_00038 crossref_primary_10_1080_00207454_2017_1387116 crossref_primary_10_1038_s41380_019_0554_6 crossref_primary_10_1073_pnas_1510619112 crossref_primary_10_1002_hbm_25403 crossref_primary_10_1038_s41598_020_65948_4 crossref_primary_10_1016_j_nicl_2017_11_025 crossref_primary_10_1016_j_tics_2015_11_005 crossref_primary_10_1016_j_neuron_2017_04_008 crossref_primary_10_1016_j_neuropsychologia_2019_03_019 crossref_primary_10_1002_hbm_24312 crossref_primary_10_1038_nrneurol_2016_84 crossref_primary_10_3233_JAD_220175 crossref_primary_10_1038_s41583_019_0177_6 crossref_primary_10_1038_s41562_017_0069 crossref_primary_10_1002_wps_21110 crossref_primary_10_1016_j_ynirp_2023_100178 crossref_primary_10_1002_hbm_24305 crossref_primary_10_1016_j_neuron_2019_08_037 crossref_primary_10_1038_s41582_021_00529_1 crossref_primary_10_1038_s41598_021_02908_6 crossref_primary_10_1126_sciadv_aau8535 crossref_primary_10_1016_j_neuroimage_2017_01_057 crossref_primary_10_1162_netn_a_00324 crossref_primary_10_1016_j_psychres_2022_114742 crossref_primary_10_5409_wjcp_v5_i3_330 crossref_primary_10_1016_j_neurobiolaging_2016_09_001 crossref_primary_10_1136_gpsych_2021_100523 crossref_primary_10_1093_cercor_bhab123 crossref_primary_10_3389_fnhum_2022_948706 crossref_primary_10_1063_5_0046047 crossref_primary_10_1089_neu_2017_5124 crossref_primary_10_1371_journal_pone_0154407 crossref_primary_10_3389_fnhum_2019_00017 crossref_primary_10_1016_j_jpsychires_2015_09_018 crossref_primary_10_1093_braincomms_fcad147 crossref_primary_10_1093_braincomms_fcae478 crossref_primary_10_1093_brain_awz009 crossref_primary_10_1007_s11682_015_9501_6 crossref_primary_10_1111_cns_12407 crossref_primary_10_1007_s00429_020_02133_3 crossref_primary_10_1016_j_biopsycho_2015_09_005 crossref_primary_10_1016_j_neuroimage_2018_09_036 crossref_primary_10_1073_pnas_2013232118 crossref_primary_10_1109_JPROC_2018_2825200 crossref_primary_10_3389_fnhum_2017_00169 crossref_primary_10_3934_mbe_2021303 crossref_primary_10_1016_j_isci_2023_106384 crossref_primary_10_1111_cns_12417 crossref_primary_10_1016_j_plrev_2022_03_001 crossref_primary_10_1089_brain_2016_0459 crossref_primary_10_1038_s41380_020_0770_0 crossref_primary_10_1093_brain_awy180 crossref_primary_10_3389_fnagi_2016_00215 crossref_primary_10_1093_braincomms_fcae459 crossref_primary_10_3389_fnins_2018_00860 crossref_primary_10_1038_s41583_023_00752_3 crossref_primary_10_1089_brain_2016_0455 crossref_primary_10_1017_S0033291718001010 crossref_primary_10_1016_j_neuroimage_2023_120270 crossref_primary_10_1162_netn_a_00362 crossref_primary_10_1176_appi_neuropsych_18080188 crossref_primary_10_1093_brain_awx279 crossref_primary_10_1007_s11682_019_00099_3 crossref_primary_10_1016_j_clinph_2016_02_017 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1080_15622975_2016_1274050 crossref_primary_10_3389_fncom_2019_00022 crossref_primary_10_1016_j_neunet_2017_07_009 crossref_primary_10_12688_wellcomeopenres_14572_1 crossref_primary_10_1093_cercor_bhz024 crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_1002_hbm_22992 crossref_primary_10_1002_brb3_2707 crossref_primary_10_1016_j_neuron_2017_03_037 crossref_primary_10_1371_journal_pbio_2005346 crossref_primary_10_1016_j_nicl_2019_101809 crossref_primary_10_1016_j_neurobiolaging_2018_11_005 crossref_primary_10_1016_j_neuroimage_2020_117252 crossref_primary_10_1371_journal_pone_0201772 crossref_primary_10_3389_fpsyt_2018_00537 crossref_primary_10_1007_s11682_022_00655_4 crossref_primary_10_1007_s11065_021_09481_9 crossref_primary_10_3389_fnagi_2015_00256 crossref_primary_10_1007_s00429_021_02319_3 crossref_primary_10_1038_s42003_024_07223_0 crossref_primary_10_1162_netn_a_00103 crossref_primary_10_18632_aging_102939 crossref_primary_10_1016_j_neuroimage_2021_118612 crossref_primary_10_1016_j_neuroimage_2020_117241 crossref_primary_10_3390_app14083463 crossref_primary_10_1093_schbul_sbw110 crossref_primary_10_3389_fnagi_2018_00365 crossref_primary_10_1080_17434440_2021_1909470 crossref_primary_10_1016_j_neuroimage_2020_117481 crossref_primary_10_1148_radiol_2016160274 crossref_primary_10_1162_netn_a_00339 crossref_primary_10_1371_journal_pone_0184325 crossref_primary_10_1007_s00259_023_06443_6 crossref_primary_10_1016_j_bpsc_2016_01_002 crossref_primary_10_1093_brain_aww194 crossref_primary_10_3389_fnbeh_2022_907707 crossref_primary_10_1017_S0033291717000058 crossref_primary_10_1212_WNL_0000000000003982 crossref_primary_10_1007_s11060_016_2328_1 crossref_primary_10_1212_WNL_0000000000002413 crossref_primary_10_1093_braincomms_fcac079 crossref_primary_10_1093_cercor_bhab356 crossref_primary_10_1186_s13024_023_00634_3 crossref_primary_10_1111_jcpp_12400 crossref_primary_10_1089_brain_2015_0360 crossref_primary_10_3389_fnagi_2021_680200 crossref_primary_10_1016_j_neuron_2016_07_031 crossref_primary_10_1089_brain_2015_0367 crossref_primary_10_1002_hbm_22830 crossref_primary_10_1176_appi_ajp_2019_18040380 crossref_primary_10_1186_s10194_021_01315_6 crossref_primary_10_1523_ENEURO_0111_17_2017 crossref_primary_10_3390_app14104197 crossref_primary_10_1016_j_biopsych_2014_08_009 crossref_primary_10_1016_j_nicl_2023_103523 crossref_primary_10_1162_netn_a_00395 crossref_primary_10_1016_j_neuron_2017_02_048 crossref_primary_10_1093_braincomms_fcac214 crossref_primary_10_1002_ana_26168 crossref_primary_10_1016_j_neuroimage_2019_116362 crossref_primary_10_3389_fnana_2016_00025 crossref_primary_10_1016_j_tics_2017_03_003 crossref_primary_10_1016_j_neunet_2021_04_027 crossref_primary_10_1038_srep30770 crossref_primary_10_1016_j_nicl_2022_103018 crossref_primary_10_1016_j_neurobiolaging_2020_09_007 crossref_primary_10_1016_j_cortex_2019_09_011 crossref_primary_10_1016_j_bpsc_2022_09_005 crossref_primary_10_1073_pnas_2218007120 crossref_primary_10_1162_netn_a_00140 crossref_primary_10_1002_hbm_23941 crossref_primary_10_1093_brain_awaa277 crossref_primary_10_1371_journal_pone_0146282 crossref_primary_10_1016_j_evopsy_2016_02_001 crossref_primary_10_1093_cercor_bhy313 crossref_primary_10_1016_j_neures_2018_07_005 crossref_primary_10_1038_s41598_023_32713_2 crossref_primary_10_1016_j_nicl_2019_102048 crossref_primary_10_1016_j_ynstr_2017_02_003 crossref_primary_10_1093_schbul_sbaa078 crossref_primary_10_1016_j_nicl_2022_103249 crossref_primary_10_1111_ejn_15664 crossref_primary_10_1162_netn_a_00133 crossref_primary_10_1038_s41598_024_84508_8 crossref_primary_10_1038_s41562_019_0659_6 crossref_primary_10_1016_j_nicl_2015_11_017 crossref_primary_10_1038_s41467_021_24306_2 crossref_primary_10_1016_j_mex_2020_100994 crossref_primary_10_1016_j_bandl_2017_08_006 crossref_primary_10_1016_j_neuroimage_2022_119721 crossref_primary_10_1016_j_dcn_2017_02_004 crossref_primary_10_1089_brain_2018_0584 crossref_primary_10_1111_ejn_15432 crossref_primary_10_3389_fnins_2020_588684 crossref_primary_10_1016_j_nicl_2017_06_025 crossref_primary_10_1093_schizbullopen_sgab033 crossref_primary_10_1007_s11682_021_00479_8 crossref_primary_10_1016_j_neuroimage_2016_04_066 crossref_primary_10_3389_fnhum_2021_647513 crossref_primary_10_1093_cercor_bhv063 crossref_primary_10_3389_fneur_2015_00228 crossref_primary_10_3389_fnagi_2024_1467054 crossref_primary_10_1002_hbm_26159 crossref_primary_10_1038_s41582_020_00428_x crossref_primary_10_1038_s41386_021_01156_6 crossref_primary_10_1111_jcpp_12838 crossref_primary_10_1016_j_pnpbp_2015_11_010 crossref_primary_10_1017_S0033291723000417 crossref_primary_10_1093_cercor_bhy330 crossref_primary_10_3389_fnagi_2015_00090 crossref_primary_10_1093_braincomms_fcz006 crossref_primary_10_1109_TMI_2015_2431294 crossref_primary_10_1093_cercor_bhx273 crossref_primary_10_1016_j_bbr_2016_06_043 crossref_primary_10_7554_eLife_70450 crossref_primary_10_1002_hbm_25093 crossref_primary_10_1016_S2215_0366_16_00045_6 crossref_primary_10_1002_hbm_22817 crossref_primary_10_1016_j_neuron_2017_11_039 crossref_primary_10_1016_j_evopsy_2016_01_007 crossref_primary_10_1016_j_tins_2020_05_001 crossref_primary_10_1016_j_neuroimage_2016_04_047 crossref_primary_10_1111_acps_12619 crossref_primary_10_3389_fneur_2018_01178 crossref_primary_10_3389_fnins_2019_00080 crossref_primary_10_1038_srep23153 crossref_primary_10_1002_hbm_26177 crossref_primary_10_1038_nrdp_2015_67 crossref_primary_10_1093_cercor_bhad012 crossref_primary_10_3389_fnins_2019_00096 crossref_primary_10_1126_sciadv_abb7187 crossref_primary_10_1002_jmri_28896 crossref_primary_10_1016_j_neuropharm_2020_108246 crossref_primary_10_1016_j_bpsc_2020_05_013 crossref_primary_10_1007_s00415_020_10245_3 crossref_primary_10_1073_pnas_1818523116 crossref_primary_10_1093_braincomms_fcad328 crossref_primary_10_1016_j_nicl_2022_103295 crossref_primary_10_1016_j_clinph_2016_04_013 crossref_primary_10_1038_s41598_019_54950_0 crossref_primary_10_1109_TIM_2023_3271740 crossref_primary_10_1002_hbm_25037 crossref_primary_10_1073_pnas_2018784118 crossref_primary_10_3389_fneur_2022_814940 crossref_primary_10_1002_hbm_25036 crossref_primary_10_1371_journal_pcbi_1005104 crossref_primary_10_1016_j_heliyon_2024_e28957 crossref_primary_10_1148_radiol_2018172808 crossref_primary_10_1097_WCO_0000000000000220 crossref_primary_10_1016_j_brainres_2015_02_002 crossref_primary_10_1186_s12888_024_06411_w crossref_primary_10_1523_JNEUROSCI_3188_14_2015 crossref_primary_10_3758_s13415_018_0645_x crossref_primary_10_1109_TNSRE_2021_3105991 crossref_primary_10_1038_s41598_019_42322_7 crossref_primary_10_1016_j_nicl_2020_102419 crossref_primary_10_1523_ENEURO_0275_18_2018 crossref_primary_10_1016_j_dcn_2016_05_002 crossref_primary_10_1177_1352458515625806 crossref_primary_10_1007_s12021_022_09610_6 crossref_primary_10_1007_s12474_017_0164_5 crossref_primary_10_1016_j_jpsychires_2017_01_018 crossref_primary_10_1007_s11682_018_9989_7 crossref_primary_10_1093_sleep_zsac030 crossref_primary_10_1161_STROKEAHA_119_025637 crossref_primary_10_1007_s00330_014_3541_y crossref_primary_10_1016_j_neuroimage_2016_03_049 crossref_primary_10_1177_0271678X211036606 crossref_primary_10_1007_s11060_018_2987_1 crossref_primary_10_1109_TNSRE_2022_3150834 crossref_primary_10_1016_j_biopsych_2019_05_015 crossref_primary_10_1523_JNEUROSCI_1089_17_2018 crossref_primary_10_1073_pnas_1720186115 crossref_primary_10_1093_brain_awu148 crossref_primary_10_1002_hbm_25287 crossref_primary_10_3390_biomedicines9010082 crossref_primary_10_1200_PO_20_00115 crossref_primary_10_1371_journal_pone_0115503 crossref_primary_10_1111_jon_12827 crossref_primary_10_1038_s41598_021_04462_7 crossref_primary_10_1176_appi_ajp_2019_19050560 crossref_primary_10_1016_j_nicl_2017_01_007 crossref_primary_10_1016_j_nicl_2021_102930 crossref_primary_10_1016_j_neuropharm_2018_04_031 crossref_primary_10_1016_j_nicl_2023_103392 crossref_primary_10_3389_fneur_2023_1135305 crossref_primary_10_1016_j_neurobiolaging_2015_04_015 crossref_primary_10_1097_j_pain_0000000000001480 crossref_primary_10_1038_s42003_024_06829_8 crossref_primary_10_1038_s41386_019_0322_y crossref_primary_10_1002_mrm_25790 crossref_primary_10_1142_S0129183118400077 crossref_primary_10_1038_s41467_017_01189_w crossref_primary_10_1017_S2045796015000074 crossref_primary_10_1038_s41380_024_02442_7 crossref_primary_10_1371_journal_pcbi_1005550 crossref_primary_10_1111_epi_17171 crossref_primary_10_1177_1756286419880664 crossref_primary_10_1097_WCO_0000000000000261 crossref_primary_10_3390_e20070491 crossref_primary_10_1016_j_neurobiolaging_2017_08_005 crossref_primary_10_1007_s00332_019_09545_4 crossref_primary_10_1007_s00429_021_02301_z crossref_primary_10_1017_S0033291724000801 crossref_primary_10_1089_photob_2019_4630 crossref_primary_10_1002_aur_1759 crossref_primary_10_1093_cercor_bhad075 crossref_primary_10_1016_j_neunet_2023_04_039 crossref_primary_10_1371_journal_pcbi_1005776 crossref_primary_10_3389_fnins_2022_856808 crossref_primary_10_1007_s12038_018_9813_y crossref_primary_10_1038_s41598_024_63716_2 crossref_primary_10_1016_j_tics_2024_11_010 crossref_primary_10_1007_s12264_014_1518_0 crossref_primary_10_1002_brb3_441 crossref_primary_10_1002_hbm_26587 crossref_primary_10_1002_dneu_22795 crossref_primary_10_1016_j_jad_2020_04_054 crossref_primary_10_1049_iet_syb_2015_0007 crossref_primary_10_1016_j_cortex_2017_02_011 crossref_primary_10_1097_j_pain_0000000000001696 crossref_primary_10_1111_ejn_16384 crossref_primary_10_1016_j_bbr_2022_113752 crossref_primary_10_3389_fneur_2018_00482 crossref_primary_10_1212_WNL_0000000000008525 crossref_primary_10_1016_j_neuroimage_2016_03_075 crossref_primary_10_1186_s12916_022_02363_8 crossref_primary_10_1002_hbm_23069 crossref_primary_10_17116_jnevro2016116111163_168 crossref_primary_10_1038_s41386_021_01152_w crossref_primary_10_1146_annurev_clinpsy_081219_115627 crossref_primary_10_1111_psyp_14671 crossref_primary_10_1089_brain_2023_0001 crossref_primary_10_3390_brainsci12101355 crossref_primary_10_1002_brb3_448 crossref_primary_10_1016_j_dadm_2016_12_004 crossref_primary_10_3389_fnhum_2014_01047 crossref_primary_10_31887_DCNS_2018_20_2_agriffa crossref_primary_10_1016_j_neuroimage_2017_09_009 crossref_primary_10_1007_s10548_025_01104_3 crossref_primary_10_1016_j_nicl_2025_103763 crossref_primary_10_1007_s12264_024_01214_1 crossref_primary_10_1371_journal_pcbi_1005989 crossref_primary_10_1038_s41598_021_95603_5 crossref_primary_10_3389_fnins_2024_1373264 crossref_primary_10_1007_s00429_022_02490_1 crossref_primary_10_1016_j_plrev_2018_12_004 crossref_primary_10_1038_s41467_021_21943_5 crossref_primary_10_1136_jnnp_2019_322402 crossref_primary_10_1038_s42003_021_01832_9 crossref_primary_10_1002_hbm_25308 crossref_primary_10_1016_j_neuroimage_2024_120866 crossref_primary_10_1007_s12021_022_09614_2 crossref_primary_10_1016_j_neurobiolaging_2021_07_005 crossref_primary_10_1073_pnas_1820754116 crossref_primary_10_1177_1352458517699875 crossref_primary_10_1007_s00702_016_1548_z crossref_primary_10_1093_brain_awx347 crossref_primary_10_3390_ijms21010143 crossref_primary_10_1016_j_jalz_2016_12_007 crossref_primary_10_3389_fnhum_2016_00476 crossref_primary_10_1371_journal_pone_0178798 crossref_primary_10_3390_ijms26031062 crossref_primary_10_1016_j_yebeh_2023_109407 crossref_primary_10_1016_j_schres_2023_02_007 crossref_primary_10_1016_S2215_0366_15_00308_9 crossref_primary_10_1016_j_dadm_2018_08_011 crossref_primary_10_1002_hbm_26650 crossref_primary_10_1016_j_ejpn_2023_05_009 crossref_primary_10_1002_hbm_26410 crossref_primary_10_1016_j_euroneuro_2017_11_018 crossref_primary_10_1038_nrn3950 crossref_primary_10_3389_fnins_2017_00238 crossref_primary_10_1007_s13246_023_01273_0 crossref_primary_10_1371_journal_pcbi_1005707 crossref_primary_10_1162_netn_a_00406 crossref_primary_10_1016_j_artmed_2023_102678 crossref_primary_10_1371_journal_pone_0155894 crossref_primary_10_1016_j_nicl_2018_06_029 crossref_primary_10_1016_j_bpsc_2016_08_003 crossref_primary_10_1002_hbm_23323 crossref_primary_10_1212_WNL_0000000000002167 crossref_primary_10_1523_ENEURO_0092_18_2018 crossref_primary_10_3389_fbioe_2020_00309 crossref_primary_10_1016_j_schres_2023_03_016 crossref_primary_10_1038_s41596_024_01023_w crossref_primary_10_1103_PhysRevE_111_034309 crossref_primary_10_1007_s00429_015_1162_0 crossref_primary_10_1007_s00415_016_8221_1 crossref_primary_10_1089_neu_2021_0450 crossref_primary_10_1038_s41398_020_0798_6 crossref_primary_10_3389_fpain_2023_1156108 crossref_primary_10_1016_j_drugalcdep_2024_112416 crossref_primary_10_1109_TNNLS_2023_3240403 crossref_primary_10_1093_brain_awv394 crossref_primary_10_1016_j_nicl_2015_06_007 crossref_primary_10_1089_brain_2020_0801 crossref_primary_10_1002_hbm_25769 crossref_primary_10_1038_s41398_021_01237_6 crossref_primary_10_1038_s41467_022_34367_6 crossref_primary_10_1016_j_mri_2019_01_019 crossref_primary_10_1016_j_neuroimage_2015_06_008 crossref_primary_10_1177_1073858419867083 crossref_primary_10_1016_j_bspc_2020_101864 crossref_primary_10_1371_journal_pbio_3000495 crossref_primary_10_1016_j_nicl_2021_102582 crossref_primary_10_1016_j_nicl_2021_102583 crossref_primary_10_3389_fnhum_2018_00128 crossref_primary_10_1016_j_bpsc_2017_11_004 crossref_primary_10_1038_s41598_019_56806_z crossref_primary_10_1371_journal_pone_0179823 crossref_primary_10_1177_1352458519837704 crossref_primary_10_1093_brain_awv145 crossref_primary_10_1016_j_neuroscience_2018_03_049 crossref_primary_10_3233_JAD_160735 crossref_primary_10_1038_s41467_022_32420_y crossref_primary_10_1093_cercor_bhz113 crossref_primary_10_1038_s41583_023_00731_8 crossref_primary_10_1002_hbm_23772 crossref_primary_10_1007_s00429_021_02318_4 crossref_primary_10_1007_s00406_022_01541_2 crossref_primary_10_1016_j_cccb_2023_100184 crossref_primary_10_1371_journal_pbio_1002177 crossref_primary_10_1002_hbm_24617 crossref_primary_10_1016_j_neuroimage_2020_117181 crossref_primary_10_3233_JAD_190174 crossref_primary_10_3389_fncir_2019_00047 crossref_primary_10_1016_j_nicl_2018_07_012 crossref_primary_10_1016_j_pnpbp_2020_110040 crossref_primary_10_3390_ijms20246193 crossref_primary_10_1016_j_neuroscience_2021_10_012 crossref_primary_10_1016_j_bpsc_2019_12_015 crossref_primary_10_1016_j_clinph_2017_05_010 crossref_primary_10_1523_JNEUROSCI_0579_23_2023 crossref_primary_10_1038_s41593_018_0188_z crossref_primary_10_1371_journal_pcbi_1003956 crossref_primary_10_1038_s41598_017_10778_0 crossref_primary_10_1093_brain_awx181 crossref_primary_10_1017_S1355617716000060 crossref_primary_10_1039_D4LC00546E crossref_primary_10_1038_s41380_018_0267_2 crossref_primary_10_4236_wjns_2021_114021 crossref_primary_10_1016_j_neuroimage_2015_04_033 crossref_primary_10_1038_srep29383 crossref_primary_10_1093_cercor_bhaa167 crossref_primary_10_1093_cercor_bhac346 crossref_primary_10_1016_j_neubiorev_2015_03_007 crossref_primary_10_1016_j_biopsych_2018_11_011 crossref_primary_10_3389_fncom_2016_00012 crossref_primary_10_1038_tp_2015_59 crossref_primary_10_3389_fpsyt_2022_845492 crossref_primary_10_1016_j_tics_2016_03_001 crossref_primary_10_1177_1352458519845109 crossref_primary_10_1016_j_neuropsychologia_2025_109080 crossref_primary_10_1016_j_neuroimage_2015_05_096 crossref_primary_10_1038_s41467_019_12764_8 crossref_primary_10_1038_srep42117 crossref_primary_10_3389_fneur_2022_825177 crossref_primary_10_1016_j_neuroimage_2019_01_032 crossref_primary_10_1007_s00234_020_02369_0 crossref_primary_10_3389_fnhum_2019_00146 crossref_primary_10_7554_eLife_34354 crossref_primary_10_1089_brain_2019_0686 crossref_primary_10_1093_braincomms_fcz013 crossref_primary_10_1177_10870547221085505 crossref_primary_10_1093_cercor_bhac115 crossref_primary_10_1016_j_schres_2015_03_012 crossref_primary_10_1016_j_chaos_2022_112018 crossref_primary_10_1038_s41380_021_01319_3 crossref_primary_10_1007_s11065_021_09512_5 crossref_primary_10_1038_s42003_021_02712_y crossref_primary_10_3389_fncom_2018_00091 crossref_primary_10_1002_hbm_26801 crossref_primary_10_1016_j_csbj_2020_06_039 crossref_primary_10_1093_cercor_bhz156 crossref_primary_10_1038_mp_2016_216 crossref_primary_10_1109_TPAMI_2021_3081744 crossref_primary_10_1162_netn_a_00246 crossref_primary_10_3389_fnins_2021_757838 crossref_primary_10_1177_1059712319847993 crossref_primary_10_1007_s11682_023_00809_y crossref_primary_10_1162_netn_a_00245 crossref_primary_10_1002_hbm_22633 crossref_primary_10_1016_j_dcn_2018_12_005 crossref_primary_10_1093_brain_awy008 crossref_primary_10_3389_fnins_2022_856366 crossref_primary_10_1016_j_bpsc_2022_02_008 crossref_primary_10_1016_j_dcn_2021_100957 crossref_primary_10_3233_JAD_170147 crossref_primary_10_1038_s41380_023_02199_5 crossref_primary_10_3389_fncir_2019_00083 crossref_primary_10_1162_netn_a_00232 crossref_primary_10_1016_j_scib_2022_11_012 crossref_primary_10_1093_neuros_nyaa400 crossref_primary_10_1016_j_pnpbp_2015_12_003 crossref_primary_10_1093_brain_aww297 crossref_primary_10_1093_schbul_sbv178 crossref_primary_10_1002_hbm_23952 crossref_primary_10_1093_braincomms_fcad069 crossref_primary_10_1093_brain_awx145 crossref_primary_10_1186_s40035_020_00200_7 crossref_primary_10_1038_s44220_023_00111_2 crossref_primary_10_1016_j_neuroimage_2015_04_009 crossref_primary_10_1177_21582440251328082 crossref_primary_10_1162_NETN_a_00025 crossref_primary_10_1093_cercor_bhz171 crossref_primary_10_1111_epi_13225 crossref_primary_10_1162_netn_a_00221 crossref_primary_10_1148_radiol_2017162696 crossref_primary_10_1162_netn_a_00223 crossref_primary_10_3389_fnmol_2024_1507033 crossref_primary_10_1007_s40846_017_0259_8 crossref_primary_10_1093_schbul_sbv146 crossref_primary_10_1038_nrn3901 crossref_primary_10_1073_pnas_1502052112 crossref_primary_10_1093_braincomms_fcad277 crossref_primary_10_1016_j_schres_2020_01_023 crossref_primary_10_1093_braincomms_fcad040 crossref_primary_10_1038_s41380_019_0464_7 crossref_primary_10_1002_hbm_22650 crossref_primary_10_3389_fnins_2018_00935 crossref_primary_10_1016_j_physrep_2019_12_004 crossref_primary_10_1016_j_neuroimage_2019_02_028 crossref_primary_10_1016_j_neuroimage_2021_118743 crossref_primary_10_1016_j_jad_2023_04_028 crossref_primary_10_1093_brain_awy252 crossref_primary_10_1038_s41598_023_43547_3 crossref_primary_10_1111_desc_12662 crossref_primary_10_1002_hbm_23976 crossref_primary_10_1016_j_bbih_2024_100877 crossref_primary_10_3390_app14188336 crossref_primary_10_1093_brain_awac360 crossref_primary_10_1016_j_clinph_2015_04_063 crossref_primary_10_3389_fpsyt_2021_763770 crossref_primary_10_1038_s41598_024_64845_4 crossref_primary_10_1038_s41598_018_37920_w crossref_primary_10_3389_fnins_2016_00381 crossref_primary_10_1162_netn_a_00040 crossref_primary_10_3389_fnana_2018_00111 crossref_primary_10_1038_s41467_023_43567_7 crossref_primary_10_1093_braincomms_fcab237 crossref_primary_10_1016_j_neuroimage_2019_02_018 crossref_primary_10_1038_s41398_017_0036_z crossref_primary_10_1016_j_nicl_2016_05_010 crossref_primary_10_31083_JIN25816 crossref_primary_10_3389_fncom_2016_00084 crossref_primary_10_3389_fneur_2017_00739 crossref_primary_10_1016_j_jad_2022_11_029 crossref_primary_10_1002_hbm_22954 crossref_primary_10_1016_j_nicl_2018_02_035 crossref_primary_10_1186_s12883_015_0400_7 crossref_primary_10_1016_j_nicl_2022_103105 crossref_primary_10_1093_brain_awz091 crossref_primary_10_1016_j_nicl_2018_01_002 crossref_primary_10_1016_j_bpsc_2022_01_007 crossref_primary_10_1093_schbul_sbw100 crossref_primary_10_1016_j_nbd_2022_105918 crossref_primary_10_1016_j_nicl_2018_08_008 crossref_primary_10_1093_braincomms_fcab241 crossref_primary_10_1177_0271678X17708692 crossref_primary_10_1016_j_neuroimage_2021_118040 crossref_primary_10_1038_s41467_022_34811_7 crossref_primary_10_1192_bjp_bp_114_154393 crossref_primary_10_1093_cercor_bhv171 crossref_primary_10_1371_journal_pone_0137484 crossref_primary_10_1016_j_nicl_2022_103139 crossref_primary_10_1017_S0033291715001361 crossref_primary_10_1038_s41598_021_97450_w crossref_primary_10_1038_s42003_022_04028_x crossref_primary_10_1162_netn_a_00260 crossref_primary_10_1109_TMI_2020_3042873 crossref_primary_10_1016_j_neuroimage_2021_118018 crossref_primary_10_1016_j_nicl_2018_08_015 crossref_primary_10_31083_j_jin2305102 crossref_primary_10_1038_s41598_021_00873_8 crossref_primary_10_1038_s41398_021_01232_x crossref_primary_10_1016_j_neurobiolaging_2016_08_013 crossref_primary_10_1016_j_neuroimage_2022_119414 crossref_primary_10_1057_s41599_021_01013_3 crossref_primary_10_1016_j_nicl_2018_01_028 crossref_primary_10_1016_j_neuropharm_2018_10_025 crossref_primary_10_1097_j_pain_0000000000001762 crossref_primary_10_1142_S0129065719500072 crossref_primary_10_1016_j_nicl_2018_08_027 crossref_primary_10_1002_mds_26309 crossref_primary_10_1111_andr_12684 crossref_primary_10_1002_hbm_23813 crossref_primary_10_3389_fpsyg_2017_01765 crossref_primary_10_3233_JAD_150249 crossref_primary_10_1161_STROKEAHA_115_009598 crossref_primary_10_3233_RNN_150511 crossref_primary_10_1016_j_neuroimage_2016_11_026 crossref_primary_10_3389_fnins_2016_00585 crossref_primary_10_1038_s41380_023_01949_9 crossref_primary_10_1162_netn_a_00087 crossref_primary_10_1016_j_dadm_2017_03_007 crossref_primary_10_3389_fnins_2019_01044 crossref_primary_10_1038_s41380_023_02157_1 crossref_primary_10_1097_WNR_0000000000001773 crossref_primary_10_3389_fnins_2016_00353 crossref_primary_10_1038_s41398_022_02115_5 crossref_primary_10_3389_fnagi_2020_592469 crossref_primary_10_1016_j_tics_2017_09_006 crossref_primary_10_1093_braincomms_fcae316 crossref_primary_10_7554_eLife_08440 crossref_primary_10_1016_j_nicl_2018_03_034 crossref_primary_10_1590_2237_6089_2015_0088 crossref_primary_10_1016_j_neuroimage_2015_01_007 crossref_primary_10_33667_2078_5631_2021_22_42_47 crossref_primary_10_1093_brain_awac388 crossref_primary_10_3389_fnins_2019_01056 crossref_primary_10_1109_TNNLS_2021_3107330 crossref_primary_10_1186_s13024_023_00690_9 crossref_primary_10_1093_brain_awz080 crossref_primary_10_1016_j_neuroimage_2021_118219 crossref_primary_10_1145_3023363 crossref_primary_10_1162_jocn_a_00810 crossref_primary_10_1016_j_neuroimage_2018_10_078 crossref_primary_10_1038_s41380_023_02279_6 crossref_primary_10_1002_jmri_27453 crossref_primary_10_1016_j_medp_2024_100038 crossref_primary_10_3389_fnhum_2019_00343 crossref_primary_10_1007_s00415_018_8846_3 crossref_primary_10_1093_brain_awac378 crossref_primary_10_1002_hbm_26056 crossref_primary_10_1016_j_msard_2022_103496 crossref_primary_10_1016_j_neuroimage_2015_03_057 crossref_primary_10_1007_s12264_021_00812_7 crossref_primary_10_1111_psyp_14159 crossref_primary_10_1016_j_drugalcdep_2022_109436 crossref_primary_10_1017_S0033291715002895 crossref_primary_10_1172_jci_insight_92641 crossref_primary_10_1016_j_jpsychires_2015_08_003 crossref_primary_10_1093_braincomms_fcab269 crossref_primary_10_1162_netn_a_00054 crossref_primary_10_3389_fnagi_2022_834145 crossref_primary_10_1162_netn_a_00291 crossref_primary_10_1038_s41380_019_0603_1 crossref_primary_10_1111_jcpp_12365 crossref_primary_10_1016_j_neubiorev_2023_105144 crossref_primary_10_1016_j_nicl_2018_03_005 crossref_primary_10_1177_25424823241307617 crossref_primary_10_3389_fneur_2017_00580 crossref_primary_10_1038_srep34156 crossref_primary_10_1016_j_neuroimage_2020_116654 crossref_primary_10_1007_s00406_021_01344_x crossref_primary_10_1093_cercor_bhv305 crossref_primary_10_1016_j_neurobiolaging_2020_03_009 crossref_primary_10_1016_j_neuroimage_2019_07_008 crossref_primary_10_3389_fninf_2022_886365 crossref_primary_10_1016_j_neubiorev_2017_03_018 crossref_primary_10_1016_j_neuropharm_2022_108989 crossref_primary_10_1016_j_schres_2016_01_025 crossref_primary_10_1016_j_nicl_2020_102530 crossref_primary_10_1093_cercor_bhv300 crossref_primary_10_1093_schbul_sbad047 crossref_primary_10_1016_j_npbr_2016_01_008 crossref_primary_10_1371_journal_pcbi_1006550 crossref_primary_10_1016_j_schres_2019_11_058 crossref_primary_10_1016_j_neuroimage_2022_119263 crossref_primary_10_1016_j_copsyc_2021_10_010 crossref_primary_10_3390_brainsci13101493 crossref_primary_10_1016_j_jad_2024_02_089 crossref_primary_10_1093_brain_awac180 crossref_primary_10_1016_j_neuroscience_2024_12_016 crossref_primary_10_1093_cercor_bhu246 crossref_primary_10_1007_s10548_022_00892_2 crossref_primary_10_1016_j_csda_2019_06_007 crossref_primary_10_1038_s41598_018_20123_8 crossref_primary_10_1093_scan_nsw154 crossref_primary_10_1098_rstb_2014_0165 crossref_primary_10_1098_rstb_2016_0011 crossref_primary_10_1016_j_neubiorev_2017_04_028 crossref_primary_10_1016_j_bpsc_2018_01_007 crossref_primary_10_1002_hbm_24078 crossref_primary_10_1515_revneuro_2017_0028 crossref_primary_10_1016_j_clineuro_2022_107481 crossref_primary_10_3389_fnins_2024_1305284 crossref_primary_10_1002_hbm_25161 crossref_primary_10_1142_S0129065716500039 crossref_primary_10_1098_rstb_2016_0006 crossref_primary_10_1016_j_jad_2016_11_015 crossref_primary_10_1016_j_nicl_2015_09_008 crossref_primary_10_1016_j_yebeh_2020_106948 crossref_primary_10_1038_s42003_024_05873_8 crossref_primary_10_1016_j_neubiorev_2021_01_010 crossref_primary_10_1016_j_nbd_2018_08_003 crossref_primary_10_1016_j_dcn_2018_02_001 crossref_primary_10_1016_j_neuroimage_2023_119962 crossref_primary_10_1016_j_bpsc_2018_01_013 crossref_primary_10_1016_j_neuroimage_2020_116611 crossref_primary_10_1016_j_schres_2020_11_026 crossref_primary_10_1093_cercor_bhu259 crossref_primary_10_1148_radiol_232454 crossref_primary_10_1089_brain_2020_0745 crossref_primary_10_1002_hbm_25105 crossref_primary_10_1038_s41598_022_07730_2 crossref_primary_10_1093_cercor_bhae039 crossref_primary_10_2174_1871527322666230221115328 crossref_primary_10_1016_j_pscychresns_2017_03_003 crossref_primary_10_1212_WNL_0000000000010731 crossref_primary_10_2147_JPR_S515047 crossref_primary_10_1002_hbm_24014 crossref_primary_10_1016_j_bpsc_2022_12_013 crossref_primary_10_1016_j_cmet_2017_07_015 crossref_primary_10_1017_S1355617715000995 crossref_primary_10_1016_j_wneu_2020_12_146 crossref_primary_10_1002_bdr2_1530 crossref_primary_10_1007_s40473_015_0056_z crossref_primary_10_1002_bdr2_1529 crossref_primary_10_1111_adb_13096 crossref_primary_10_1016_j_pscychresns_2022_111528 crossref_primary_10_1038_s41537_021_00157_0 crossref_primary_10_1038_s44220_024_00323_0 crossref_primary_10_1016_j_jneumeth_2015_06_016 crossref_primary_10_1002_hbm_24041 crossref_primary_10_1016_j_schres_2020_12_045 crossref_primary_10_1089_brain_2021_0049 crossref_primary_10_1016_j_jad_2021_05_018 crossref_primary_10_1002_hbm_24281 crossref_primary_10_1016_j_nic_2019_09_004 crossref_primary_10_1073_pnas_1922248117 crossref_primary_10_3389_fnins_2020_00051 crossref_primary_10_1111_ner_12339 crossref_primary_10_1038_s41467_020_15701_2 crossref_primary_10_1007_s11682_016_9533_6 crossref_primary_10_1002_hbm_26450 crossref_primary_10_1038_s41598_021_95932_5 crossref_primary_10_1016_j_neuroimage_2022_119211 crossref_primary_10_1016_j_nicl_2021_102619 crossref_primary_10_1093_brain_awad060 crossref_primary_10_1016_j_nicl_2021_102613 crossref_primary_10_1038_ncomms9414 crossref_primary_10_1016_j_neurobiolaging_2022_07_007 crossref_primary_10_1016_j_neuroscience_2020_08_037 crossref_primary_10_1016_j_biopsych_2019_10_026 crossref_primary_10_1161_STROKEAHA_119_025738 crossref_primary_10_1016_j_nicl_2016_01_022 crossref_primary_10_1016_j_media_2021_102162 crossref_primary_10_1016_j_yebeh_2015_06_005 crossref_primary_10_1002_brb3_329 |
Cites_doi | 10.1016/j.tins.2004.08.004 10.1016/j.tics.2013.09.015 10.1038/nn.3168 10.1093/cercor/bhs410 10.1371/journal.pcbi.1000408 10.1073/pnas.0601602103 10.1093/brain/aws056 10.1016/j.neuroimage.2012.06.081 10.1371/journal.pbio.0060159 10.1103/PhysRevLett.94.018102 10.1038/nrn2575 10.1523/JNEUROSCI.1443-09.2009 10.1073/pnas.1214900110 10.1371/journal.pone.0051250 10.1523/JNEUROSCI.4854-12.2013 10.1073/pnas.1010459107 10.1371/journal.pcbi.0010042 10.1038/35075138 10.1073/pnas.0506806103 10.1016/j.neuron.2009.03.024 10.1038/30918 10.1016/j.neuron.2012.03.004 10.1016/S1474-4422(13)70026-7 10.1093/cercor/bhq058 10.1038/nature03288 10.1016/j.neuroimage.2007.10.060 10.1523/JNEUROSCI.3874-05.2006 10.1111/epi.12581 10.1002/mrm.21890 10.1093/cercor/bhr388 10.1016/j.neuron.2011.06.031 10.1523/JNEUROSCI.0440-11.2011 10.1006/nimg.2001.0978 10.1385/NI:3:1:065 10.1137/070710111 10.1016/j.neuroimage.2008.06.012 10.1038/35019019 10.1523/JNEUROSCI.5062-08.2009 10.1002/hbm.22499 10.1093/cercor/bhn102 10.3389/neuro.11.037.2009 10.1523/JNEUROSCI.3784-12.2013 10.1016/j.neuron.2011.12.040 10.1073/pnas.82.13.4531 10.1002/hbm.20345 10.1002/hbm.20718 10.1016/j.neuroimage.2011.12.090 10.1371/journal.pcbi.0020095 10.1073/pnas.1203593109 10.1371/journal.pone.0046497 10.1073/pnas.0702332104 10.1162/jocn_a_00222 10.1038/nmeth.2482 10.1002/hbm.20141 10.1016/j.neuron.2013.07.035 10.31887/DCNS.2013.15.3/mrubinov 10.1212/WNL.0b013e31829a33f8 10.1371/journal.pone.0001049 10.1016/j.neuroimage.2009.12.027 10.1002/mrm.20426 10.1038/nrn3407 10.1073/pnas.1220826110 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuron.2013.01.002 10.1038/nrn789 10.1073/pnas.1111738109 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1371/journal.pcbi.1002582 10.1111/j.1460-9568.2007.05574.x 10.1038/nrn3214 10.1002/nbm.1543 10.1073/pnas.1208933109 10.1056/NEJM198403083101021 10.3389/fnins.2010.00200 10.1016/j.tics.2013.09.012 10.1126/science.1203659 10.1073/pnas.1303346110 10.1016/j.neuron.2011.03.018 10.1523/JNEUROSCI.3539-11.2011 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. 2014 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. – notice: The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. 2014 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/brain/awu132 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2395 |
ExternalDocumentID | PMC4107735 25057133 28608837 10_1093_brain_awu132 |
Genre | Meta-Analysis Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH074457 – fundername: Medical Research Council grantid: G1000183 – fundername: Wellcome Trust grantid: 095844 – fundername: Medical Research Council grantid: G0001354 |
GroupedDBID | --- -E4 -~X .2P .I3 .XZ .ZR 0R~ 1TH 23N 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXAL AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM C45 CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN ENERS F5P F9B FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MHKGH ML0 N9A NGC NLBLG NOMLY NOYVH NU- NVLIB O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO RZO TCURE TEORI TJX TLC TR2 VVN W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 .55 .GJ 1CY 354 3O- 41~ AAGKA AAPGJ AAQQT AAWDT AAYJJ ABDPE ABIME ABNGD ABPIB ABQTQ ABSMQ ABZEO ACBNA ACFRR ACPQN ACUKT ACVCV ACZBC ADMTO AEHUL AEKPW AFFNX AFFQV AFSHK AFYAG AGKRT AGMDO AI. AJDVS ANFBD APJGH AQDSO AQKUS ASAOO ASPBG ATDFG ATTQO AVNTJ AVWKF AZFZN BZKNY C1A CAG CXTWN DFGAJ EIHJH ELUNK FEDTE HVGLF IQODW M49 MBLQV MBTAY MVM N4W NTWIH O0~ OBFPC OHT O~Y PB- QBD RIG RNI RZF TCN TMA VH1 X7M XJT XOL YQJ ZCG ZGI ZKB ZXP AGQPQ AHGBF CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c480t-51a4f53221a4f78d50b677a83365fe14e290a6029eda58cd934e4ea4fddc7c5c3 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Thu Aug 21 18:42:36 EDT 2025 Fri Jul 11 02:15:08 EDT 2025 Mon Jul 21 06:05:56 EDT 2025 Wed Apr 02 07:25:06 EDT 2025 Tue Jul 01 00:46:07 EDT 2025 Thu Apr 24 23:02:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Human VBM Nervous system diseases Tractography topology Central nervous system graph analysis Anatomy rich club Encephalon tractography |
Language | English |
License | CC BY 4.0 The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c480t-51a4f53221a4f78d50b677a83365fe14e290a6029eda58cd934e4ea4fddc7c5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. See doi:10.1093/brain/awu148 for the scientific commentary on this article. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4107735 |
PMID | 25057133 |
PQID | 1548630858 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107735 proquest_miscellaneous_1548630858 pubmed_primary_25057133 pascalfrancis_primary_28608837 crossref_primary_10_1093_brain_awu132 crossref_citationtrail_10_1093_brain_awu132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Guimera ( key 20170425180421_awu132-B29) 2005; 433 Laird ( key 20170425180421_awu132-B41) 2005; 3 Jeong ( key 20170425180421_awu132-B35) 2001; 411 Kaiser ( key 20170425180421_awu132-B39) 2007; 25 Watts ( key 20170425180421_awu132-B75) 1998; 393 Calderwood ( key 20170425180421_awu132-B12) 2007; 104 Sporns ( key 20170425180421_awu132-B65) 2005; 1 Xiong ( key 20170425180421_awu132-B77) 2013; 14 Worbe ( key 20170425180421_awu132-B76) 2012; 135 Alstott ( key 20170425180421_awu132-B6) 2009; 5 Fox ( key 20170425180421_awu132-B24) 2002; 3 Newman ( key 20170425180421_awu132-B54) 2006; 103 Liu ( key 20170425180421_awu132-B45) 2012; 7 Liu ( key 20170425180421_awu132-B47) 2014; 24 van den Heuvel ( key 20170425180421_awu132-B71) 2011; 31 Iturria-Medina ( key 20170425180421_awu132-B32) 2010; 21 Jagust ( key 20170425180421_awu132-B34) 2013; 77 van den Heuvel ( key 20170425180421_awu132-B73) 2013; 17 Jones ( key 20170425180421_awu132-B37) 2013; 73 Menon ( key 20170425180421_awu132-B49) 2013; 17 Rubinov ( key 20170425180421_awu132-B61) 2010; 52 Saxena ( key 20170425180421_awu132-B62) 2011; 71 Seeley ( key 20170425180421_awu132-B63) 2009; 62 Sporns ( key 20170425180421_awu132-B64) 2007; 2 Eguiluz ( key 20170425180421_awu132-B20) 2005; 94 Kitzbichler ( key 20170425180421_awu132-B40) 2011; 31 Baggio ( key 20170425180421_awu132-B7) 2014 Rubinov ( key 20170425180421_awu132-B60) 2013; 15 Jones ( key 20170425180421_awu132-B36) 2010; 23 van den Heuvel ( key 20170425180421_awu132-B72) 2012; 109 Dehaene ( key 20170425180421_awu132-B19) 2011; 70 Fox ( key 20170425180421_awu132-B23) 2005; 25 Giessing ( key 20170425180421_awu132-B25) 2013; 33 Basser ( key 20170425180421_awu132-B8) 2000; 44 Towlson ( key 20170425180421_awu132-B67) 2013; 33 Zamora-Lopez ( key 20170425180421_awu132-B79) 2010; 4 Agosta ( key 20170425180421_awu132-B3) 2013; 81 Kaiser ( key 20170425180421_awu132-B38) 2006; 2 Gong ( key 20170425180421_awu132-B27) 2009; 19 Melov ( key 20170425180421_awu132-B48) 2004; 27 Vaishnavi ( key 20170425180421_awu132-B69) 2010; 107 Albert ( key 20170425180421_awu132-B4) 2000; 406 Iturria-Medina ( key 20170425180421_awu132-B33) 2008; 40 Bullmore ( key 20170425180421_awu132-B10) 2009; 10 Liu ( key 20170425180421_awu132-B46) 2014 Harriger ( key 20170425180421_awu132-B31) 2012; 7 de Haan ( key 20170425180421_awu132-B18) 2012; 8 Zhou ( key 20170425180421_awu132-B80) 2012; 73 Achard ( key 20170425180421_awu132-B1) 2012; 109 Liang ( key 20170425180421_awu132-B44) 2013; 110 van den Heuvel ( key 20170425180421_awu132-B70) 2009; 29 Mukhtar ( key 20170425180421_awu132-B53) 2011; 333 Gratton ( key 20170425180421_awu132-B28) 2012; 24 Meunier ( key 20170425180421_awu132-B50) 2010; 4 Vertes ( key 20170425180421_awu132-B74) 2012; 109 Achard ( key 20170425180421_awu132-B2) 2006; 26 Chen ( key 20170425180421_awu132-B14) 2006; 103 Goldstein ( key 20170425180421_awu132-B26) 2013; 12 Buckner ( key 20170425180421_awu132-B9) 2009; 29 Tomasi ( key 20170425180421_awu132-B66) 2013; 110 Zalesky ( key 20170425180421_awu132-B78) 2010; 50 Lancaster ( key 20170425180421_awu132-B42) 2007; 28 Tzourio-Mazoyer ( key 20170425180421_awu132-B68) 2002; 15 Eickhoff ( key 20170425180421_awu132-B21) 2009; 30 Bullmore ( key 20170425180421_awu132-B11) 2012; 13 Ransohoff ( key 20170425180421_awu132-B59) 2012; 15 Fornito ( key 20170425180421_awu132-B22) 2012; 62 Prusiner ( key 20170425180421_awu132-B57) 1984; 310 Hagmann ( key 20170425180421_awu132-B30) 2008; 6 Crossley ( key 20170425180421_awu132-B17) 2013; 110 Raj ( key 20170425180421_awu132-B58) 2012; 73 Meunier ( key 20170425180421_awu132-B51) 2009; 3 Pearson ( key 20170425180421_awu132-B55) 1985; 82 Chang ( key 20170425180421_awu132-B13) 2005; 53 Leemans ( key 20170425180421_awu132-B43) 2009; 61 Alexander-Bloch ( key 20170425180421_awu132-B5) 2013; 23 Craddock ( key 20170425180421_awu132-B16) 2013; 10 Power ( key 20170425180421_awu132-B56) 2013; 79 Clauset ( key 20170425180421_awu132-B15) 2009; 51 Morris ( key 20170425180421_awu132-B52) 2008; 42 25057132 - Brain. 2014 Aug;137(Pt 8):2117-8. doi: 10.1093/brain/awu148. 26205839 - Brain. 2015 Aug;138(Pt 8):e374. doi: 10.1093/brain/awv122. |
References_xml | – volume: 27 start-page: 601 year: 2004 ident: key 20170425180421_awu132-B48 article-title: Modeling mitochondrial function in aging neurons publication-title: Trends Neurosci doi: 10.1016/j.tins.2004.08.004 – volume: 17 start-page: 627 year: 2013 ident: key 20170425180421_awu132-B49 article-title: Developmental pathways to functional brain networks: emerging principles publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2013.09.015 – volume: 15 start-page: 1074 year: 2012 ident: key 20170425180421_awu132-B59 article-title: Animal models of multiple sclerosis: the good, the bad and the bottom line publication-title: Nat Neurosci doi: 10.1038/nn.3168 – volume: 24 start-page: 1422 year: 2014 ident: key 20170425180421_awu132-B47 article-title: Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease publication-title: Cereb Cortex doi: 10.1093/cercor/bhs410 – volume: 5 start-page: e1000408 year: 2009 ident: key 20170425180421_awu132-B6 article-title: Modeling the impact of lesions in the human brain publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000408 – volume: 103 start-page: 8577 year: 2006 ident: key 20170425180421_awu132-B54 article-title: Modularity and community structure in networks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0601602103 – volume: 135 start-page: 1937 issue: Pt 6 year: 2012 ident: key 20170425180421_awu132-B76 article-title: Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome publication-title: Brain doi: 10.1093/brain/aws056 – volume: 73 start-page: 239 year: 2013 ident: key 20170425180421_awu132-B37 article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.081 – volume: 6 start-page: e159 year: 2008 ident: key 20170425180421_awu132-B30 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060159 – volume: 94 start-page: 018102 year: 2005 ident: key 20170425180421_awu132-B20 article-title: Scale-free brain functional networks publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.94.018102 – volume: 10 start-page: 186 year: 2009 ident: key 20170425180421_awu132-B10 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat Rev Neurosci doi: 10.1038/nrn2575 – volume: 29 start-page: 7619 year: 2009 ident: key 20170425180421_awu132-B70 article-title: Efficiency of functional brain networks and intellectual performance publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1443-09.2009 – volume: 110 start-page: 1929 year: 2013 ident: key 20170425180421_awu132-B44 article-title: Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1214900110 – volume: 7 start-page: e51250 year: 2012 ident: key 20170425180421_awu132-B45 article-title: Hierarchical alteration of brain structural and functional networks in female migraine sufferers publication-title: PLoS One doi: 10.1371/journal.pone.0051250 – volume: 4 start-page: 1 year: 2010 ident: key 20170425180421_awu132-B79 article-title: Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks publication-title: Front Neuroinform – volume: 33 start-page: 5903 year: 2013 ident: key 20170425180421_awu132-B25 article-title: Human brain functional network changes associated with enhanced and impaired attentional task performance publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4854-12.2013 – volume: 107 start-page: 17757 year: 2010 ident: key 20170425180421_awu132-B69 article-title: Regional aerobic glycolysis in the human brain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1010459107 – volume: 1 start-page: e42 year: 2005 ident: key 20170425180421_awu132-B65 article-title: The human connectome: a structural description of the human brain publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0010042 – volume: 411 start-page: 41 year: 2001 ident: key 20170425180421_awu132-B35 article-title: Lethality and centrality in protein networks publication-title: Nature doi: 10.1038/35075138 – volume: 103 start-page: 4723 year: 2006 ident: key 20170425180421_awu132-B14 article-title: Wiring optimization can relate neuronal structure and function publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506806103 – volume: 62 start-page: 42 year: 2009 ident: key 20170425180421_awu132-B63 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron doi: 10.1016/j.neuron.2009.03.024 – volume: 393 start-page: 440 year: 1998 ident: key 20170425180421_awu132-B75 article-title: Collective dynamics of ‘small-world’ networks publication-title: Nature doi: 10.1038/30918 – volume: 73 start-page: 1216 year: 2012 ident: key 20170425180421_awu132-B80 article-title: Predicting regional neurodegeneration from the healthy brain functional connectome publication-title: Neuron doi: 10.1016/j.neuron.2012.03.004 – volume: 12 start-page: 368 year: 2013 ident: key 20170425180421_awu132-B26 article-title: Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment publication-title: Lancet Neurol doi: 10.1016/S1474-4422(13)70026-7 – volume: 21 start-page: 56 year: 2010 ident: key 20170425180421_awu132-B32 article-title: Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates publication-title: Cereb Cortex doi: 10.1093/cercor/bhq058 – volume: 433 start-page: 895 year: 2005 ident: key 20170425180421_awu132-B29 article-title: Functional cartography of complex metabolic networks publication-title: Nature doi: 10.1038/nature03288 – volume: 40 start-page: 1064 year: 2008 ident: key 20170425180421_awu132-B33 article-title: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.060 – volume: 26 start-page: 63 year: 2006 ident: key 20170425180421_awu132-B2 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3874-05.2006 – year: 2014 ident: key 20170425180421_awu132-B46 article-title: Disrupted anatomic white matter network in left mesial temporal lobe epilepsy publication-title: Epilepsia doi: 10.1111/epi.12581 – volume: 61 start-page: 1336 year: 2009 ident: key 20170425180421_awu132-B43 article-title: The B-matrix must be rotated when correcting for subject motion in DTI data publication-title: Magn Reson Med doi: 10.1002/mrm.21890 – volume: 23 start-page: 127 year: 2013 ident: key 20170425180421_awu132-B5 article-title: The anatomical distance of functional connections predicts brain network topology in health and schizophrenia publication-title: Cereb Cortex doi: 10.1093/cercor/bhr388 – volume: 71 start-page: 35 year: 2011 ident: key 20170425180421_awu132-B62 article-title: Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration publication-title: Neuron doi: 10.1016/j.neuron.2011.06.031 – volume: 31 start-page: 8259 year: 2011 ident: key 20170425180421_awu132-B40 article-title: Cognitive effort drives workspace configuration of human brain functional networks publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0440-11.2011 – volume: 15 start-page: 273 year: 2002 ident: key 20170425180421_awu132-B68 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 3 start-page: 65 year: 2005 ident: key 20170425180421_awu132-B41 article-title: BrainMap: the social evolution of a human brain mapping database publication-title: Neuroinformatics doi: 10.1385/NI:3:1:065 – volume: 51 start-page: 661 year: 2009 ident: key 20170425180421_awu132-B15 article-title: Power-law distributions in empirical data publication-title: SIAM Rev doi: 10.1137/070710111 – volume: 42 start-page: 1329 year: 2008 ident: key 20170425180421_awu132-B52 article-title: Probabilistic fibre tracking: differentiation of connections from chance events publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.06.012 – volume: 406 start-page: 378 year: 2000 ident: key 20170425180421_awu132-B4 article-title: Error and attack tolerance of complex networks publication-title: Nature doi: 10.1038/35019019 – volume: 29 start-page: 1860 year: 2009 ident: key 20170425180421_awu132-B9 article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5062-08.2009 – year: 2014 ident: key 20170425180421_awu132-B7 article-title: Functional brain networks and cognitive deficits in Parkinson's disease publication-title: Hum Brain Mapp doi: 10.1002/hbm.22499 – volume: 19 start-page: 524 year: 2009 ident: key 20170425180421_awu132-B27 article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography publication-title: Cereb Cortex doi: 10.1093/cercor/bhn102 – volume: 3 start-page: 37 year: 2009 ident: key 20170425180421_awu132-B51 article-title: Hierarchical modularity in human brain functional networks publication-title: Front Neuroinform doi: 10.3389/neuro.11.037.2009 – volume: 33 start-page: 6380 year: 2013 ident: key 20170425180421_awu132-B67 article-title: The rich club of the C. elegans neuronal connectome publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3784-12.2013 – volume: 73 start-page: 1204 year: 2012 ident: key 20170425180421_awu132-B58 article-title: A network diffusion model of disease progression in dementia publication-title: Neuron doi: 10.1016/j.neuron.2011.12.040 – volume: 82 start-page: 4531 year: 1985 ident: key 20170425180421_awu132-B55 article-title: Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.82.13.4531 – volume: 28 start-page: 1194 year: 2007 ident: key 20170425180421_awu132-B42 article-title: Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template publication-title: Hum Brain Mapp doi: 10.1002/hbm.20345 – volume: 30 start-page: 2907 year: 2009 ident: key 20170425180421_awu132-B21 article-title: Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty publication-title: Hum Brain Mapp doi: 10.1002/hbm.20718 – volume: 62 start-page: 2296 year: 2012 ident: key 20170425180421_awu132-B22 article-title: Schizophrenia, neuroimaging and connectomics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.090 – volume: 2 start-page: e95 year: 2006 ident: key 20170425180421_awu132-B38 article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0020095 – volume: 109 start-page: 11372 year: 2012 ident: key 20170425180421_awu132-B72 article-title: High-cost, high-capacity backbone for global brain communication publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1203593109 – volume: 7 start-page: e46497 year: 2012 ident: key 20170425180421_awu132-B31 article-title: Rich club organization of macaque cerebral cortex and its role in network communication publication-title: PLoS One doi: 10.1371/journal.pone.0046497 – volume: 104 start-page: 7606 year: 2007 ident: key 20170425180421_awu132-B12 article-title: Epstein-Barr virus and virus human protein interaction maps publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0702332104 – volume: 24 start-page: 1275 year: 2012 ident: key 20170425180421_awu132-B28 article-title: Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain publication-title: J Cogn Neurosci doi: 10.1162/jocn_a_00222 – volume: 10 start-page: 524 year: 2013 ident: key 20170425180421_awu132-B16 article-title: Imaging human connectomes at the macroscale publication-title: Nat Methods doi: 10.1038/nmeth.2482 – volume: 25 start-page: 185 year: 2005 ident: key 20170425180421_awu132-B23 article-title: BrainMap taxonomy of experimental design: description and evaluation publication-title: Hum Brain Mapp doi: 10.1002/hbm.20141 – volume: 79 start-page: 798 year: 2013 ident: key 20170425180421_awu132-B56 article-title: Evidence for hubs in human functional brain networks publication-title: Neuron doi: 10.1016/j.neuron.2013.07.035 – volume: 15 start-page: 339 year: 2013 ident: key 20170425180421_awu132-B60 article-title: Schizophrenia and abnormal brain network hubs publication-title: Dialogues Clin Neurosci doi: 10.31887/DCNS.2013.15.3/mrubinov – volume: 81 start-page: 134 year: 2013 ident: key 20170425180421_awu132-B3 article-title: Brain network connectivity assessed using graph theory in frontotemporal dementia publication-title: Neurology doi: 10.1212/WNL.0b013e31829a33f8 – volume: 2 start-page: e1049 year: 2007 ident: key 20170425180421_awu132-B64 article-title: Identification and classification of hubs in brain networks publication-title: PLoS One doi: 10.1371/journal.pone.0001049 – volume: 50 start-page: 970 year: 2010 ident: key 20170425180421_awu132-B78 article-title: Whole-brain anatomical networks: does the choice of nodes matter? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.027 – volume: 53 start-page: 1088 year: 2005 ident: key 20170425180421_awu132-B13 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn Reson Med doi: 10.1002/mrm.20426 – volume: 14 start-page: 128 year: 2013 ident: key 20170425180421_awu132-B77 article-title: Animal models of traumatic brain injury publication-title: Nat Rev Neurosci doi: 10.1038/nrn3407 – volume: 110 start-page: 11583 year: 2013 ident: key 20170425180421_awu132-B17 article-title: Cognitive relevance of the community structure of the human brain functional coactivation network publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1220826110 – volume: 52 start-page: 1059 year: 2010 ident: key 20170425180421_awu132-B61 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 77 start-page: 219 year: 2013 ident: key 20170425180421_awu132-B34 article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration publication-title: Neuron doi: 10.1016/j.neuron.2013.01.002 – volume: 3 start-page: 319 year: 2002 ident: key 20170425180421_awu132-B24 article-title: Opinion: mapping context and content: the BrainMap model publication-title: Nat Rev Neurosci doi: 10.1038/nrn789 – volume: 109 start-page: 5868 year: 2012 ident: key 20170425180421_awu132-B74 article-title: Simple models of human brain functional networks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1111738109 – volume: 44 start-page: 625 year: 2000 ident: key 20170425180421_awu132-B8 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn Reson Med doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – volume: 8 start-page: e1002582 year: 2012 ident: key 20170425180421_awu132-B18 article-title: Activity dependent degeneration explains hub vulnerability in Alzheimer's disease publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002582 – volume: 25 start-page: 3185 year: 2007 ident: key 20170425180421_awu132-B39 article-title: Simulation of robustness against lesions of cortical networks publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2007.05574.x – volume: 13 start-page: 336 year: 2012 ident: key 20170425180421_awu132-B11 article-title: The economy of brain network organization publication-title: Nat Rev Neurosci doi: 10.1038/nrn3214 – volume: 23 start-page: 803 year: 2010 ident: key 20170425180421_awu132-B36 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed doi: 10.1002/nbm.1543 – volume: 109 start-page: 206080 year: 2012 ident: key 20170425180421_awu132-B1 article-title: Hubs of brain functional networks are radically reorganized in comatose patients publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1208933109 – volume: 310 start-page: 661 year: 1984 ident: key 20170425180421_awu132-B57 article-title: Some speculations about prions, amyloid, and Alzheimer's disease publication-title: N Engl J Med doi: 10.1056/NEJM198403083101021 – volume: 4 start-page: 200 year: 2010 ident: key 20170425180421_awu132-B50 article-title: Modular and hierarchically modular organization of brain networks publication-title: Front Neurosci doi: 10.3389/fnins.2010.00200 – volume: 17 start-page: 683 year: 2013 ident: key 20170425180421_awu132-B73 article-title: Network hubs in the human brain publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2013.09.012 – volume: 333 start-page: 596 year: 2011 ident: key 20170425180421_awu132-B53 article-title: Independently evolved virulence effectors converge onto hubs in a plant immune system network publication-title: Science doi: 10.1126/science.1203659 – volume: 110 start-page: 13642 year: 2013 ident: key 20170425180421_awu132-B66 article-title: Energetic cost of brain functional connectivity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1303346110 – volume: 70 start-page: 200 year: 2011 ident: key 20170425180421_awu132-B19 article-title: Experimental and theoretical approaches to conscious processing publication-title: Neuron doi: 10.1016/j.neuron.2011.03.018 – volume: 31 start-page: 15775 year: 2011 ident: key 20170425180421_awu132-B71 article-title: Rich-club organization of the human connectome publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3539-11.2011 – reference: 26205839 - Brain. 2015 Aug;138(Pt 8):e374. doi: 10.1093/brain/awv122. – reference: 25057132 - Brain. 2014 Aug;137(Pt 8):2117-8. doi: 10.1093/brain/awu148. |
SSID | ssj0014326 |
Score | 2.6398535 |
SecondaryResourceType | review_article |
Snippet | Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports... See Sporns (doi: 10.1093/brain/awu148 ) for a scientific commentary on this article. Brain networks contain a minority of highly connected hub nodes with high... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2382 |
SubjectTerms | Adult Biological and medical sciences Brain - anatomy & histology Brain - pathology Brain - physiopathology Computer Simulation Connectome - methods Diffusion Tensor Imaging - methods Dorsal Column Female Human viral diseases Humans Infectious diseases Male Medical sciences Nerve Net - anatomy & histology Nerve Net - pathology Nerve Net - physiopathology Neurology Viral diseases Viral diseases of the lymphoid tissue and the blood. Aids |
Title | The hubs of the human connectome are generally implicated in the anatomy of brain disorders |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25057133 https://www.proquest.com/docview/1548630858 https://pubmed.ncbi.nlm.nih.gov/PMC4107735 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB2Mwxr6XfRQNtqfg1LZkSX4s3UbX0b2shcIejCzLbaBzSuNQtr9nf-juJEexuwy6vTjG1gXk-0l3kn53R8hbG2e1qFQSZbnJI66NjcBPNlGSWrRW2kqGwcmHX8T-MT84yU5Go1891tKyLafm58a4kv_RKjwDvWKU7D9oNvwpPIB70C9cQcNwvbGOz2Dkrw76fcE9g9wV086_2wnSuk59YunzHxgR6UPeqhW7UTew5vbxJCXWisDzGpeMczE47HWvNtX-8BsKSqrehsIe2t1VSWvEmV5MdqdBsdZRT2eBTBnMwlfTcUcOkJnbYxAhH6D1rANXBsQuzLy_WZHwQJVbT8AiUrnPNTu1fs7lIo7A8xCDSdmngunQp_pTLPPVijpznTJfpPMPU-DTZLmPh_buapl0G6mDnNvXbGFgKPqzeVY4-cJL3yK3U1iMYJ2M958-h7MqzlxRv9C1LrwCpHec9I6XHjg-9y70AsZg7YunbFrdXCfp9ryeowfkfrdcobseew_JyDaPyJ3DjpDxmHwDCFKEIJ3XtHX3AEG6hiAFCNIAQbqGIJ01TqCDIMq7ftAAwSfk-OOHo739qKvXERmu4jbKEs3rDCwE_kpVZXEppNSKMZHVNuE2zWMt4jS3lc6UqXLGLbfQtqqMNJlhT8lWM2_sc0JrW6VxCe1lqXhpK6W5SUQpNKvB_-f1mExWH7MwXTJ7rKlyXmxS3Ji8C60vfBKXv7TbHuglNE6VAGvM5Ji8WSmqgGkYz9Z0Y-fLRYErf8Fg_aLG5JlX3FoaNwESxsZEDlQaGmCK9-GbZnbmUr3zJJaSZS9u2IGX5O561L0iW-3l0r4Gp7kttx1mfwOgjcjM |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hubs+of+the+human+connectome+are+generally+implicated+in+the+anatomy+of+brain+disorders&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Crossley%2C+Nicolas+A.&rft.au=Mechelli%2C+Andrea&rft.au=Scott%2C+Jessica&rft.au=Carletti%2C+Francesco&rft.date=2014-08-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=137&rft.issue=8&rft.spage=2382&rft.epage=2395&rft_id=info:doi/10.1093%2Fbrain%2Fawu132&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_awu132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |