The hubs of the human connectome are generally implicated in the anatomy of brain disorders

Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-dist...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 137; no. 8; pp. 2382 - 2395
Main Authors Crossley, Nicolas A., Mechelli, Andrea, Scott, Jessica, Carletti, Francesco, Fox, Peter T., McGuire, Philip, Bullmore, Edward T.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders.
AbstractList Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders.Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders.
Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders.
See Sporns (doi: 10.1093/brain/awu148 ) for a scientific commentary on this article. Brain networks contain a minority of highly connected hub nodes with high topological value and biological cost. Using network analysis of DTI data from healthy volunteers, and meta-analyses of published MRI studies in 26 brain disorders, Crossley et al . show that lesions across disorders tend to be concentrated at hubs. Brain networks or ‘connectomes’ include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers ( n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome ( P < 10 −4 , permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs ( P < 0.05, permutation test), including schizophrenia and Alzheimer’s disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer’s disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders.
Author Carletti, Francesco
Scott, Jessica
Fox, Peter T.
Bullmore, Edward T.
McGuire, Philip
Crossley, Nicolas A.
Mechelli, Andrea
Author_xml – sequence: 1
  givenname: Nicolas A.
  surname: Crossley
  fullname: Crossley, Nicolas A.
– sequence: 2
  givenname: Andrea
  surname: Mechelli
  fullname: Mechelli, Andrea
– sequence: 3
  givenname: Jessica
  surname: Scott
  fullname: Scott, Jessica
– sequence: 4
  givenname: Francesco
  surname: Carletti
  fullname: Carletti, Francesco
– sequence: 5
  givenname: Peter T.
  surname: Fox
  fullname: Fox, Peter T.
– sequence: 6
  givenname: Philip
  surname: McGuire
  fullname: McGuire, Philip
– sequence: 7
  givenname: Edward T.
  surname: Bullmore
  fullname: Bullmore, Edward T.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28608837$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/25057133$$D View this record in MEDLINE/PubMed
BookMark eNptkcuLFDEQxoOsuLOrN8-Si-DBdvPu9EWQxRcseFlPHkJNUr0T6U7GpFuZ_96eh-sDT1VQv--r1wU5SzkhIU85e8VZJ6_WBWK6gh8zl-IBWXFlWCO4NmdkxRgzje00OycXtX5ljCspzCNyLjTTLZdyRb7cbpBu5nWluafTIR8hUZ9TQj_lESkUpHeYsMAw7Ggct0P0MGGgMR0EkGDhdnv9YRQaYs0lYKmPycMehopPTvGSfH739vb6Q3Pz6f3H6zc3jVeWTY3moHothdjH1gbN1qZtwUppdI9coegYGCY6DKCtD51UqHBhQ_Ct115ektdH3-28HjF4TNMyrNuWOELZuQzR_V1JcePu8nenOGtbqReDFyeDkr_NWCc3xupxGCBhnqvjWlkjmdV2QZ_92eu-ya-LLsDzEwDVw9AXSD7W35w1zFrZLtzLI-dLrrVgf49w5vaPdYdruuNjF1z8g_s4wRTzfqM4_F_0E9KTqnQ
CitedBy_id crossref_primary_10_1089_brain_2019_0705
crossref_primary_10_1002_brb3_1031
crossref_primary_10_1089_brain_2017_0494
crossref_primary_10_1038_s41598_020_61522_0
crossref_primary_10_1038_s41598_024_55753_8
crossref_primary_10_3389_fpsyt_2021_735623
crossref_primary_10_2217_fnl_2016_0022
crossref_primary_10_1016_j_nicl_2022_102941
crossref_primary_10_1007_s00259_022_05740_w
crossref_primary_10_1016_j_neuroimage_2021_117980
crossref_primary_10_1016_j_neuroimage_2019_06_037
crossref_primary_10_1002_hbm_24578
crossref_primary_10_1016_j_neuroimage_2020_117220
crossref_primary_10_1007_s11682_019_00090_y
crossref_primary_10_3389_fnins_2017_00125
crossref_primary_10_1186_s13195_023_01327_1
crossref_primary_10_1002_hbm_23486
crossref_primary_10_3390_brainsci7050050
crossref_primary_10_17116_neiro20248803181
crossref_primary_10_1038_s41598_017_17886_x
crossref_primary_10_1016_j_eurpsy_2019_02_004
crossref_primary_10_1016_j_neuroimage_2017_02_007
crossref_primary_10_1073_pnas_1513302113
crossref_primary_10_1002_hbm_23479
crossref_primary_10_1007_s00429_015_0999_6
crossref_primary_10_1038_s41598_020_79845_3
crossref_primary_10_1002_hbm_25452
crossref_primary_10_1002_hbm_26543
crossref_primary_10_1016_j_bpsc_2018_03_003
crossref_primary_10_1016_j_tics_2022_09_006
crossref_primary_10_1016_j_nicl_2017_12_029
crossref_primary_10_1093_brain_awv075
crossref_primary_10_1016_j_neuroimage_2017_02_031
crossref_primary_10_1016_j_neuroimage_2019_06_055
crossref_primary_10_3389_fnsys_2021_648928
crossref_primary_10_1007_s00429_016_1264_3
crossref_primary_10_1016_j_neuroimage_2023_120265
crossref_primary_10_1016_j_nicl_2017_12_017
crossref_primary_10_1016_j_mri_2014_08_037
crossref_primary_10_1371_journal_pone_0230099
crossref_primary_10_3389_fncom_2022_891384
crossref_primary_10_1007_s00062_019_00802_3
crossref_primary_10_3389_fneur_2021_746493
crossref_primary_10_3389_fnins_2020_00541
crossref_primary_10_1017_S0033291716002609
crossref_primary_10_1073_pnas_2203682119
crossref_primary_10_1038_s41598_017_07846_w
crossref_primary_10_1002_hbm_23017
crossref_primary_10_1038_srep43176
crossref_primary_10_1002_hbm_23018
crossref_primary_10_1002_osp4_362
crossref_primary_10_3389_fnins_2023_1217079
crossref_primary_10_1016_j_nicl_2016_09_020
crossref_primary_10_1007_s40263_018_0599_0
crossref_primary_10_1002_hbm_23452
crossref_primary_10_3389_fnagi_2022_999288
crossref_primary_10_1002_jnr_24773
crossref_primary_10_1038_s41531_022_00332_9
crossref_primary_10_1002_mp_17568
crossref_primary_10_1016_j_brainresbull_2024_110925
crossref_primary_10_1016_j_neuroimage_2020_116578
crossref_primary_10_3390_jcm9040990
crossref_primary_10_1523_JNEUROSCI_0754_16_2016
crossref_primary_10_1016_j_neubiorev_2016_08_036
crossref_primary_10_1038_s41598_020_60611_4
crossref_primary_10_1097_ANA_0000000000000550
crossref_primary_10_1016_j_neubiorev_2016_08_035
crossref_primary_10_1016_j_neuroimage_2017_02_058
crossref_primary_10_3389_fnbeh_2022_846919
crossref_primary_10_1097_j_pain_0000000000002480
crossref_primary_10_2139_ssrn_3339908
crossref_primary_10_1016_j_arr_2016_10_001
crossref_primary_10_1007_s00429_015_1096_6
crossref_primary_10_1016_j_neuroimage_2017_11_016
crossref_primary_10_1111_epi_13757
crossref_primary_10_1016_j_bpsc_2018_03_017
crossref_primary_10_1017_S0033291724000643
crossref_primary_10_1002_brb3_2553
crossref_primary_10_1002_cne_24009
crossref_primary_10_7554_eLife_41836
crossref_primary_10_1016_j_bpsc_2018_03_015
crossref_primary_10_1186_s12885_024_11865_y
crossref_primary_10_1038_s41380_022_01916_w
crossref_primary_10_1093_schbul_sby166
crossref_primary_10_1080_14737175_2023_2174016
crossref_primary_10_1016_j_schres_2021_04_001
crossref_primary_10_1111_cns_12449
crossref_primary_10_1016_j_jad_2020_11_122
crossref_primary_10_1038_s41598_024_80731_5
crossref_primary_10_1038_srep27964
crossref_primary_10_1016_j_jaac_2016_01_004
crossref_primary_10_1002_hipo_23215
crossref_primary_10_1016_j_ynstr_2021_100345
crossref_primary_10_3389_fnhum_2016_00158
crossref_primary_10_1098_rstb_2015_0362
crossref_primary_10_3389_fncir_2017_00038
crossref_primary_10_1080_00207454_2017_1387116
crossref_primary_10_1038_s41380_019_0554_6
crossref_primary_10_1073_pnas_1510619112
crossref_primary_10_1002_hbm_25403
crossref_primary_10_1038_s41598_020_65948_4
crossref_primary_10_1016_j_nicl_2017_11_025
crossref_primary_10_1016_j_tics_2015_11_005
crossref_primary_10_1016_j_neuron_2017_04_008
crossref_primary_10_1016_j_neuropsychologia_2019_03_019
crossref_primary_10_1002_hbm_24312
crossref_primary_10_1038_nrneurol_2016_84
crossref_primary_10_3233_JAD_220175
crossref_primary_10_1038_s41583_019_0177_6
crossref_primary_10_1038_s41562_017_0069
crossref_primary_10_1002_wps_21110
crossref_primary_10_1016_j_ynirp_2023_100178
crossref_primary_10_1002_hbm_24305
crossref_primary_10_1016_j_neuron_2019_08_037
crossref_primary_10_1038_s41582_021_00529_1
crossref_primary_10_1038_s41598_021_02908_6
crossref_primary_10_1126_sciadv_aau8535
crossref_primary_10_1016_j_neuroimage_2017_01_057
crossref_primary_10_1162_netn_a_00324
crossref_primary_10_1016_j_psychres_2022_114742
crossref_primary_10_5409_wjcp_v5_i3_330
crossref_primary_10_1016_j_neurobiolaging_2016_09_001
crossref_primary_10_1136_gpsych_2021_100523
crossref_primary_10_1093_cercor_bhab123
crossref_primary_10_3389_fnhum_2022_948706
crossref_primary_10_1063_5_0046047
crossref_primary_10_1089_neu_2017_5124
crossref_primary_10_1371_journal_pone_0154407
crossref_primary_10_3389_fnhum_2019_00017
crossref_primary_10_1016_j_jpsychires_2015_09_018
crossref_primary_10_1093_braincomms_fcad147
crossref_primary_10_1093_braincomms_fcae478
crossref_primary_10_1093_brain_awz009
crossref_primary_10_1007_s11682_015_9501_6
crossref_primary_10_1111_cns_12407
crossref_primary_10_1007_s00429_020_02133_3
crossref_primary_10_1016_j_biopsycho_2015_09_005
crossref_primary_10_1016_j_neuroimage_2018_09_036
crossref_primary_10_1073_pnas_2013232118
crossref_primary_10_1109_JPROC_2018_2825200
crossref_primary_10_3389_fnhum_2017_00169
crossref_primary_10_3934_mbe_2021303
crossref_primary_10_1016_j_isci_2023_106384
crossref_primary_10_1111_cns_12417
crossref_primary_10_1016_j_plrev_2022_03_001
crossref_primary_10_1089_brain_2016_0459
crossref_primary_10_1038_s41380_020_0770_0
crossref_primary_10_1093_brain_awy180
crossref_primary_10_3389_fnagi_2016_00215
crossref_primary_10_1093_braincomms_fcae459
crossref_primary_10_3389_fnins_2018_00860
crossref_primary_10_1038_s41583_023_00752_3
crossref_primary_10_1089_brain_2016_0455
crossref_primary_10_1017_S0033291718001010
crossref_primary_10_1016_j_neuroimage_2023_120270
crossref_primary_10_1162_netn_a_00362
crossref_primary_10_1176_appi_neuropsych_18080188
crossref_primary_10_1093_brain_awx279
crossref_primary_10_1007_s11682_019_00099_3
crossref_primary_10_1016_j_clinph_2016_02_017
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1080_15622975_2016_1274050
crossref_primary_10_3389_fncom_2019_00022
crossref_primary_10_1016_j_neunet_2017_07_009
crossref_primary_10_12688_wellcomeopenres_14572_1
crossref_primary_10_1093_cercor_bhz024
crossref_primary_10_3389_fnins_2016_00515
crossref_primary_10_1002_hbm_22992
crossref_primary_10_1002_brb3_2707
crossref_primary_10_1016_j_neuron_2017_03_037
crossref_primary_10_1371_journal_pbio_2005346
crossref_primary_10_1016_j_nicl_2019_101809
crossref_primary_10_1016_j_neurobiolaging_2018_11_005
crossref_primary_10_1016_j_neuroimage_2020_117252
crossref_primary_10_1371_journal_pone_0201772
crossref_primary_10_3389_fpsyt_2018_00537
crossref_primary_10_1007_s11682_022_00655_4
crossref_primary_10_1007_s11065_021_09481_9
crossref_primary_10_3389_fnagi_2015_00256
crossref_primary_10_1007_s00429_021_02319_3
crossref_primary_10_1038_s42003_024_07223_0
crossref_primary_10_1162_netn_a_00103
crossref_primary_10_18632_aging_102939
crossref_primary_10_1016_j_neuroimage_2021_118612
crossref_primary_10_1016_j_neuroimage_2020_117241
crossref_primary_10_3390_app14083463
crossref_primary_10_1093_schbul_sbw110
crossref_primary_10_3389_fnagi_2018_00365
crossref_primary_10_1080_17434440_2021_1909470
crossref_primary_10_1016_j_neuroimage_2020_117481
crossref_primary_10_1148_radiol_2016160274
crossref_primary_10_1162_netn_a_00339
crossref_primary_10_1371_journal_pone_0184325
crossref_primary_10_1007_s00259_023_06443_6
crossref_primary_10_1016_j_bpsc_2016_01_002
crossref_primary_10_1093_brain_aww194
crossref_primary_10_3389_fnbeh_2022_907707
crossref_primary_10_1017_S0033291717000058
crossref_primary_10_1212_WNL_0000000000003982
crossref_primary_10_1007_s11060_016_2328_1
crossref_primary_10_1212_WNL_0000000000002413
crossref_primary_10_1093_braincomms_fcac079
crossref_primary_10_1093_cercor_bhab356
crossref_primary_10_1186_s13024_023_00634_3
crossref_primary_10_1111_jcpp_12400
crossref_primary_10_1089_brain_2015_0360
crossref_primary_10_3389_fnagi_2021_680200
crossref_primary_10_1016_j_neuron_2016_07_031
crossref_primary_10_1089_brain_2015_0367
crossref_primary_10_1002_hbm_22830
crossref_primary_10_1176_appi_ajp_2019_18040380
crossref_primary_10_1186_s10194_021_01315_6
crossref_primary_10_1523_ENEURO_0111_17_2017
crossref_primary_10_3390_app14104197
crossref_primary_10_1016_j_biopsych_2014_08_009
crossref_primary_10_1016_j_nicl_2023_103523
crossref_primary_10_1162_netn_a_00395
crossref_primary_10_1016_j_neuron_2017_02_048
crossref_primary_10_1093_braincomms_fcac214
crossref_primary_10_1002_ana_26168
crossref_primary_10_1016_j_neuroimage_2019_116362
crossref_primary_10_3389_fnana_2016_00025
crossref_primary_10_1016_j_tics_2017_03_003
crossref_primary_10_1016_j_neunet_2021_04_027
crossref_primary_10_1038_srep30770
crossref_primary_10_1016_j_nicl_2022_103018
crossref_primary_10_1016_j_neurobiolaging_2020_09_007
crossref_primary_10_1016_j_cortex_2019_09_011
crossref_primary_10_1016_j_bpsc_2022_09_005
crossref_primary_10_1073_pnas_2218007120
crossref_primary_10_1162_netn_a_00140
crossref_primary_10_1002_hbm_23941
crossref_primary_10_1093_brain_awaa277
crossref_primary_10_1371_journal_pone_0146282
crossref_primary_10_1016_j_evopsy_2016_02_001
crossref_primary_10_1093_cercor_bhy313
crossref_primary_10_1016_j_neures_2018_07_005
crossref_primary_10_1038_s41598_023_32713_2
crossref_primary_10_1016_j_nicl_2019_102048
crossref_primary_10_1016_j_ynstr_2017_02_003
crossref_primary_10_1093_schbul_sbaa078
crossref_primary_10_1016_j_nicl_2022_103249
crossref_primary_10_1111_ejn_15664
crossref_primary_10_1162_netn_a_00133
crossref_primary_10_1038_s41598_024_84508_8
crossref_primary_10_1038_s41562_019_0659_6
crossref_primary_10_1016_j_nicl_2015_11_017
crossref_primary_10_1038_s41467_021_24306_2
crossref_primary_10_1016_j_mex_2020_100994
crossref_primary_10_1016_j_bandl_2017_08_006
crossref_primary_10_1016_j_neuroimage_2022_119721
crossref_primary_10_1016_j_dcn_2017_02_004
crossref_primary_10_1089_brain_2018_0584
crossref_primary_10_1111_ejn_15432
crossref_primary_10_3389_fnins_2020_588684
crossref_primary_10_1016_j_nicl_2017_06_025
crossref_primary_10_1093_schizbullopen_sgab033
crossref_primary_10_1007_s11682_021_00479_8
crossref_primary_10_1016_j_neuroimage_2016_04_066
crossref_primary_10_3389_fnhum_2021_647513
crossref_primary_10_1093_cercor_bhv063
crossref_primary_10_3389_fneur_2015_00228
crossref_primary_10_3389_fnagi_2024_1467054
crossref_primary_10_1002_hbm_26159
crossref_primary_10_1038_s41582_020_00428_x
crossref_primary_10_1038_s41386_021_01156_6
crossref_primary_10_1111_jcpp_12838
crossref_primary_10_1016_j_pnpbp_2015_11_010
crossref_primary_10_1017_S0033291723000417
crossref_primary_10_1093_cercor_bhy330
crossref_primary_10_3389_fnagi_2015_00090
crossref_primary_10_1093_braincomms_fcz006
crossref_primary_10_1109_TMI_2015_2431294
crossref_primary_10_1093_cercor_bhx273
crossref_primary_10_1016_j_bbr_2016_06_043
crossref_primary_10_7554_eLife_70450
crossref_primary_10_1002_hbm_25093
crossref_primary_10_1016_S2215_0366_16_00045_6
crossref_primary_10_1002_hbm_22817
crossref_primary_10_1016_j_neuron_2017_11_039
crossref_primary_10_1016_j_evopsy_2016_01_007
crossref_primary_10_1016_j_tins_2020_05_001
crossref_primary_10_1016_j_neuroimage_2016_04_047
crossref_primary_10_1111_acps_12619
crossref_primary_10_3389_fneur_2018_01178
crossref_primary_10_3389_fnins_2019_00080
crossref_primary_10_1038_srep23153
crossref_primary_10_1002_hbm_26177
crossref_primary_10_1038_nrdp_2015_67
crossref_primary_10_1093_cercor_bhad012
crossref_primary_10_3389_fnins_2019_00096
crossref_primary_10_1126_sciadv_abb7187
crossref_primary_10_1002_jmri_28896
crossref_primary_10_1016_j_neuropharm_2020_108246
crossref_primary_10_1016_j_bpsc_2020_05_013
crossref_primary_10_1007_s00415_020_10245_3
crossref_primary_10_1073_pnas_1818523116
crossref_primary_10_1093_braincomms_fcad328
crossref_primary_10_1016_j_nicl_2022_103295
crossref_primary_10_1016_j_clinph_2016_04_013
crossref_primary_10_1038_s41598_019_54950_0
crossref_primary_10_1109_TIM_2023_3271740
crossref_primary_10_1002_hbm_25037
crossref_primary_10_1073_pnas_2018784118
crossref_primary_10_3389_fneur_2022_814940
crossref_primary_10_1002_hbm_25036
crossref_primary_10_1371_journal_pcbi_1005104
crossref_primary_10_1016_j_heliyon_2024_e28957
crossref_primary_10_1148_radiol_2018172808
crossref_primary_10_1097_WCO_0000000000000220
crossref_primary_10_1016_j_brainres_2015_02_002
crossref_primary_10_1186_s12888_024_06411_w
crossref_primary_10_1523_JNEUROSCI_3188_14_2015
crossref_primary_10_3758_s13415_018_0645_x
crossref_primary_10_1109_TNSRE_2021_3105991
crossref_primary_10_1038_s41598_019_42322_7
crossref_primary_10_1016_j_nicl_2020_102419
crossref_primary_10_1523_ENEURO_0275_18_2018
crossref_primary_10_1016_j_dcn_2016_05_002
crossref_primary_10_1177_1352458515625806
crossref_primary_10_1007_s12021_022_09610_6
crossref_primary_10_1007_s12474_017_0164_5
crossref_primary_10_1016_j_jpsychires_2017_01_018
crossref_primary_10_1007_s11682_018_9989_7
crossref_primary_10_1093_sleep_zsac030
crossref_primary_10_1161_STROKEAHA_119_025637
crossref_primary_10_1007_s00330_014_3541_y
crossref_primary_10_1016_j_neuroimage_2016_03_049
crossref_primary_10_1177_0271678X211036606
crossref_primary_10_1007_s11060_018_2987_1
crossref_primary_10_1109_TNSRE_2022_3150834
crossref_primary_10_1016_j_biopsych_2019_05_015
crossref_primary_10_1523_JNEUROSCI_1089_17_2018
crossref_primary_10_1073_pnas_1720186115
crossref_primary_10_1093_brain_awu148
crossref_primary_10_1002_hbm_25287
crossref_primary_10_3390_biomedicines9010082
crossref_primary_10_1200_PO_20_00115
crossref_primary_10_1371_journal_pone_0115503
crossref_primary_10_1111_jon_12827
crossref_primary_10_1038_s41598_021_04462_7
crossref_primary_10_1176_appi_ajp_2019_19050560
crossref_primary_10_1016_j_nicl_2017_01_007
crossref_primary_10_1016_j_nicl_2021_102930
crossref_primary_10_1016_j_neuropharm_2018_04_031
crossref_primary_10_1016_j_nicl_2023_103392
crossref_primary_10_3389_fneur_2023_1135305
crossref_primary_10_1016_j_neurobiolaging_2015_04_015
crossref_primary_10_1097_j_pain_0000000000001480
crossref_primary_10_1038_s42003_024_06829_8
crossref_primary_10_1038_s41386_019_0322_y
crossref_primary_10_1002_mrm_25790
crossref_primary_10_1142_S0129183118400077
crossref_primary_10_1038_s41467_017_01189_w
crossref_primary_10_1017_S2045796015000074
crossref_primary_10_1038_s41380_024_02442_7
crossref_primary_10_1371_journal_pcbi_1005550
crossref_primary_10_1111_epi_17171
crossref_primary_10_1177_1756286419880664
crossref_primary_10_1097_WCO_0000000000000261
crossref_primary_10_3390_e20070491
crossref_primary_10_1016_j_neurobiolaging_2017_08_005
crossref_primary_10_1007_s00332_019_09545_4
crossref_primary_10_1007_s00429_021_02301_z
crossref_primary_10_1017_S0033291724000801
crossref_primary_10_1089_photob_2019_4630
crossref_primary_10_1002_aur_1759
crossref_primary_10_1093_cercor_bhad075
crossref_primary_10_1016_j_neunet_2023_04_039
crossref_primary_10_1371_journal_pcbi_1005776
crossref_primary_10_3389_fnins_2022_856808
crossref_primary_10_1007_s12038_018_9813_y
crossref_primary_10_1038_s41598_024_63716_2
crossref_primary_10_1016_j_tics_2024_11_010
crossref_primary_10_1007_s12264_014_1518_0
crossref_primary_10_1002_brb3_441
crossref_primary_10_1002_hbm_26587
crossref_primary_10_1002_dneu_22795
crossref_primary_10_1016_j_jad_2020_04_054
crossref_primary_10_1049_iet_syb_2015_0007
crossref_primary_10_1016_j_cortex_2017_02_011
crossref_primary_10_1097_j_pain_0000000000001696
crossref_primary_10_1111_ejn_16384
crossref_primary_10_1016_j_bbr_2022_113752
crossref_primary_10_3389_fneur_2018_00482
crossref_primary_10_1212_WNL_0000000000008525
crossref_primary_10_1016_j_neuroimage_2016_03_075
crossref_primary_10_1186_s12916_022_02363_8
crossref_primary_10_1002_hbm_23069
crossref_primary_10_17116_jnevro2016116111163_168
crossref_primary_10_1038_s41386_021_01152_w
crossref_primary_10_1146_annurev_clinpsy_081219_115627
crossref_primary_10_1111_psyp_14671
crossref_primary_10_1089_brain_2023_0001
crossref_primary_10_3390_brainsci12101355
crossref_primary_10_1002_brb3_448
crossref_primary_10_1016_j_dadm_2016_12_004
crossref_primary_10_3389_fnhum_2014_01047
crossref_primary_10_31887_DCNS_2018_20_2_agriffa
crossref_primary_10_1016_j_neuroimage_2017_09_009
crossref_primary_10_1007_s10548_025_01104_3
crossref_primary_10_1016_j_nicl_2025_103763
crossref_primary_10_1007_s12264_024_01214_1
crossref_primary_10_1371_journal_pcbi_1005989
crossref_primary_10_1038_s41598_021_95603_5
crossref_primary_10_3389_fnins_2024_1373264
crossref_primary_10_1007_s00429_022_02490_1
crossref_primary_10_1016_j_plrev_2018_12_004
crossref_primary_10_1038_s41467_021_21943_5
crossref_primary_10_1136_jnnp_2019_322402
crossref_primary_10_1038_s42003_021_01832_9
crossref_primary_10_1002_hbm_25308
crossref_primary_10_1016_j_neuroimage_2024_120866
crossref_primary_10_1007_s12021_022_09614_2
crossref_primary_10_1016_j_neurobiolaging_2021_07_005
crossref_primary_10_1073_pnas_1820754116
crossref_primary_10_1177_1352458517699875
crossref_primary_10_1007_s00702_016_1548_z
crossref_primary_10_1093_brain_awx347
crossref_primary_10_3390_ijms21010143
crossref_primary_10_1016_j_jalz_2016_12_007
crossref_primary_10_3389_fnhum_2016_00476
crossref_primary_10_1371_journal_pone_0178798
crossref_primary_10_3390_ijms26031062
crossref_primary_10_1016_j_yebeh_2023_109407
crossref_primary_10_1016_j_schres_2023_02_007
crossref_primary_10_1016_S2215_0366_15_00308_9
crossref_primary_10_1016_j_dadm_2018_08_011
crossref_primary_10_1002_hbm_26650
crossref_primary_10_1016_j_ejpn_2023_05_009
crossref_primary_10_1002_hbm_26410
crossref_primary_10_1016_j_euroneuro_2017_11_018
crossref_primary_10_1038_nrn3950
crossref_primary_10_3389_fnins_2017_00238
crossref_primary_10_1007_s13246_023_01273_0
crossref_primary_10_1371_journal_pcbi_1005707
crossref_primary_10_1162_netn_a_00406
crossref_primary_10_1016_j_artmed_2023_102678
crossref_primary_10_1371_journal_pone_0155894
crossref_primary_10_1016_j_nicl_2018_06_029
crossref_primary_10_1016_j_bpsc_2016_08_003
crossref_primary_10_1002_hbm_23323
crossref_primary_10_1212_WNL_0000000000002167
crossref_primary_10_1523_ENEURO_0092_18_2018
crossref_primary_10_3389_fbioe_2020_00309
crossref_primary_10_1016_j_schres_2023_03_016
crossref_primary_10_1038_s41596_024_01023_w
crossref_primary_10_1103_PhysRevE_111_034309
crossref_primary_10_1007_s00429_015_1162_0
crossref_primary_10_1007_s00415_016_8221_1
crossref_primary_10_1089_neu_2021_0450
crossref_primary_10_1038_s41398_020_0798_6
crossref_primary_10_3389_fpain_2023_1156108
crossref_primary_10_1016_j_drugalcdep_2024_112416
crossref_primary_10_1109_TNNLS_2023_3240403
crossref_primary_10_1093_brain_awv394
crossref_primary_10_1016_j_nicl_2015_06_007
crossref_primary_10_1089_brain_2020_0801
crossref_primary_10_1002_hbm_25769
crossref_primary_10_1038_s41398_021_01237_6
crossref_primary_10_1038_s41467_022_34367_6
crossref_primary_10_1016_j_mri_2019_01_019
crossref_primary_10_1016_j_neuroimage_2015_06_008
crossref_primary_10_1177_1073858419867083
crossref_primary_10_1016_j_bspc_2020_101864
crossref_primary_10_1371_journal_pbio_3000495
crossref_primary_10_1016_j_nicl_2021_102582
crossref_primary_10_1016_j_nicl_2021_102583
crossref_primary_10_3389_fnhum_2018_00128
crossref_primary_10_1016_j_bpsc_2017_11_004
crossref_primary_10_1038_s41598_019_56806_z
crossref_primary_10_1371_journal_pone_0179823
crossref_primary_10_1177_1352458519837704
crossref_primary_10_1093_brain_awv145
crossref_primary_10_1016_j_neuroscience_2018_03_049
crossref_primary_10_3233_JAD_160735
crossref_primary_10_1038_s41467_022_32420_y
crossref_primary_10_1093_cercor_bhz113
crossref_primary_10_1038_s41583_023_00731_8
crossref_primary_10_1002_hbm_23772
crossref_primary_10_1007_s00429_021_02318_4
crossref_primary_10_1007_s00406_022_01541_2
crossref_primary_10_1016_j_cccb_2023_100184
crossref_primary_10_1371_journal_pbio_1002177
crossref_primary_10_1002_hbm_24617
crossref_primary_10_1016_j_neuroimage_2020_117181
crossref_primary_10_3233_JAD_190174
crossref_primary_10_3389_fncir_2019_00047
crossref_primary_10_1016_j_nicl_2018_07_012
crossref_primary_10_1016_j_pnpbp_2020_110040
crossref_primary_10_3390_ijms20246193
crossref_primary_10_1016_j_neuroscience_2021_10_012
crossref_primary_10_1016_j_bpsc_2019_12_015
crossref_primary_10_1016_j_clinph_2017_05_010
crossref_primary_10_1523_JNEUROSCI_0579_23_2023
crossref_primary_10_1038_s41593_018_0188_z
crossref_primary_10_1371_journal_pcbi_1003956
crossref_primary_10_1038_s41598_017_10778_0
crossref_primary_10_1093_brain_awx181
crossref_primary_10_1017_S1355617716000060
crossref_primary_10_1039_D4LC00546E
crossref_primary_10_1038_s41380_018_0267_2
crossref_primary_10_4236_wjns_2021_114021
crossref_primary_10_1016_j_neuroimage_2015_04_033
crossref_primary_10_1038_srep29383
crossref_primary_10_1093_cercor_bhaa167
crossref_primary_10_1093_cercor_bhac346
crossref_primary_10_1016_j_neubiorev_2015_03_007
crossref_primary_10_1016_j_biopsych_2018_11_011
crossref_primary_10_3389_fncom_2016_00012
crossref_primary_10_1038_tp_2015_59
crossref_primary_10_3389_fpsyt_2022_845492
crossref_primary_10_1016_j_tics_2016_03_001
crossref_primary_10_1177_1352458519845109
crossref_primary_10_1016_j_neuropsychologia_2025_109080
crossref_primary_10_1016_j_neuroimage_2015_05_096
crossref_primary_10_1038_s41467_019_12764_8
crossref_primary_10_1038_srep42117
crossref_primary_10_3389_fneur_2022_825177
crossref_primary_10_1016_j_neuroimage_2019_01_032
crossref_primary_10_1007_s00234_020_02369_0
crossref_primary_10_3389_fnhum_2019_00146
crossref_primary_10_7554_eLife_34354
crossref_primary_10_1089_brain_2019_0686
crossref_primary_10_1093_braincomms_fcz013
crossref_primary_10_1177_10870547221085505
crossref_primary_10_1093_cercor_bhac115
crossref_primary_10_1016_j_schres_2015_03_012
crossref_primary_10_1016_j_chaos_2022_112018
crossref_primary_10_1038_s41380_021_01319_3
crossref_primary_10_1007_s11065_021_09512_5
crossref_primary_10_1038_s42003_021_02712_y
crossref_primary_10_3389_fncom_2018_00091
crossref_primary_10_1002_hbm_26801
crossref_primary_10_1016_j_csbj_2020_06_039
crossref_primary_10_1093_cercor_bhz156
crossref_primary_10_1038_mp_2016_216
crossref_primary_10_1109_TPAMI_2021_3081744
crossref_primary_10_1162_netn_a_00246
crossref_primary_10_3389_fnins_2021_757838
crossref_primary_10_1177_1059712319847993
crossref_primary_10_1007_s11682_023_00809_y
crossref_primary_10_1162_netn_a_00245
crossref_primary_10_1002_hbm_22633
crossref_primary_10_1016_j_dcn_2018_12_005
crossref_primary_10_1093_brain_awy008
crossref_primary_10_3389_fnins_2022_856366
crossref_primary_10_1016_j_bpsc_2022_02_008
crossref_primary_10_1016_j_dcn_2021_100957
crossref_primary_10_3233_JAD_170147
crossref_primary_10_1038_s41380_023_02199_5
crossref_primary_10_3389_fncir_2019_00083
crossref_primary_10_1162_netn_a_00232
crossref_primary_10_1016_j_scib_2022_11_012
crossref_primary_10_1093_neuros_nyaa400
crossref_primary_10_1016_j_pnpbp_2015_12_003
crossref_primary_10_1093_brain_aww297
crossref_primary_10_1093_schbul_sbv178
crossref_primary_10_1002_hbm_23952
crossref_primary_10_1093_braincomms_fcad069
crossref_primary_10_1093_brain_awx145
crossref_primary_10_1186_s40035_020_00200_7
crossref_primary_10_1038_s44220_023_00111_2
crossref_primary_10_1016_j_neuroimage_2015_04_009
crossref_primary_10_1177_21582440251328082
crossref_primary_10_1162_NETN_a_00025
crossref_primary_10_1093_cercor_bhz171
crossref_primary_10_1111_epi_13225
crossref_primary_10_1162_netn_a_00221
crossref_primary_10_1148_radiol_2017162696
crossref_primary_10_1162_netn_a_00223
crossref_primary_10_3389_fnmol_2024_1507033
crossref_primary_10_1007_s40846_017_0259_8
crossref_primary_10_1093_schbul_sbv146
crossref_primary_10_1038_nrn3901
crossref_primary_10_1073_pnas_1502052112
crossref_primary_10_1093_braincomms_fcad277
crossref_primary_10_1016_j_schres_2020_01_023
crossref_primary_10_1093_braincomms_fcad040
crossref_primary_10_1038_s41380_019_0464_7
crossref_primary_10_1002_hbm_22650
crossref_primary_10_3389_fnins_2018_00935
crossref_primary_10_1016_j_physrep_2019_12_004
crossref_primary_10_1016_j_neuroimage_2019_02_028
crossref_primary_10_1016_j_neuroimage_2021_118743
crossref_primary_10_1016_j_jad_2023_04_028
crossref_primary_10_1093_brain_awy252
crossref_primary_10_1038_s41598_023_43547_3
crossref_primary_10_1111_desc_12662
crossref_primary_10_1002_hbm_23976
crossref_primary_10_1016_j_bbih_2024_100877
crossref_primary_10_3390_app14188336
crossref_primary_10_1093_brain_awac360
crossref_primary_10_1016_j_clinph_2015_04_063
crossref_primary_10_3389_fpsyt_2021_763770
crossref_primary_10_1038_s41598_024_64845_4
crossref_primary_10_1038_s41598_018_37920_w
crossref_primary_10_3389_fnins_2016_00381
crossref_primary_10_1162_netn_a_00040
crossref_primary_10_3389_fnana_2018_00111
crossref_primary_10_1038_s41467_023_43567_7
crossref_primary_10_1093_braincomms_fcab237
crossref_primary_10_1016_j_neuroimage_2019_02_018
crossref_primary_10_1038_s41398_017_0036_z
crossref_primary_10_1016_j_nicl_2016_05_010
crossref_primary_10_31083_JIN25816
crossref_primary_10_3389_fncom_2016_00084
crossref_primary_10_3389_fneur_2017_00739
crossref_primary_10_1016_j_jad_2022_11_029
crossref_primary_10_1002_hbm_22954
crossref_primary_10_1016_j_nicl_2018_02_035
crossref_primary_10_1186_s12883_015_0400_7
crossref_primary_10_1016_j_nicl_2022_103105
crossref_primary_10_1093_brain_awz091
crossref_primary_10_1016_j_nicl_2018_01_002
crossref_primary_10_1016_j_bpsc_2022_01_007
crossref_primary_10_1093_schbul_sbw100
crossref_primary_10_1016_j_nbd_2022_105918
crossref_primary_10_1016_j_nicl_2018_08_008
crossref_primary_10_1093_braincomms_fcab241
crossref_primary_10_1177_0271678X17708692
crossref_primary_10_1016_j_neuroimage_2021_118040
crossref_primary_10_1038_s41467_022_34811_7
crossref_primary_10_1192_bjp_bp_114_154393
crossref_primary_10_1093_cercor_bhv171
crossref_primary_10_1371_journal_pone_0137484
crossref_primary_10_1016_j_nicl_2022_103139
crossref_primary_10_1017_S0033291715001361
crossref_primary_10_1038_s41598_021_97450_w
crossref_primary_10_1038_s42003_022_04028_x
crossref_primary_10_1162_netn_a_00260
crossref_primary_10_1109_TMI_2020_3042873
crossref_primary_10_1016_j_neuroimage_2021_118018
crossref_primary_10_1016_j_nicl_2018_08_015
crossref_primary_10_31083_j_jin2305102
crossref_primary_10_1038_s41598_021_00873_8
crossref_primary_10_1038_s41398_021_01232_x
crossref_primary_10_1016_j_neurobiolaging_2016_08_013
crossref_primary_10_1016_j_neuroimage_2022_119414
crossref_primary_10_1057_s41599_021_01013_3
crossref_primary_10_1016_j_nicl_2018_01_028
crossref_primary_10_1016_j_neuropharm_2018_10_025
crossref_primary_10_1097_j_pain_0000000000001762
crossref_primary_10_1142_S0129065719500072
crossref_primary_10_1016_j_nicl_2018_08_027
crossref_primary_10_1002_mds_26309
crossref_primary_10_1111_andr_12684
crossref_primary_10_1002_hbm_23813
crossref_primary_10_3389_fpsyg_2017_01765
crossref_primary_10_3233_JAD_150249
crossref_primary_10_1161_STROKEAHA_115_009598
crossref_primary_10_3233_RNN_150511
crossref_primary_10_1016_j_neuroimage_2016_11_026
crossref_primary_10_3389_fnins_2016_00585
crossref_primary_10_1038_s41380_023_01949_9
crossref_primary_10_1162_netn_a_00087
crossref_primary_10_1016_j_dadm_2017_03_007
crossref_primary_10_3389_fnins_2019_01044
crossref_primary_10_1038_s41380_023_02157_1
crossref_primary_10_1097_WNR_0000000000001773
crossref_primary_10_3389_fnins_2016_00353
crossref_primary_10_1038_s41398_022_02115_5
crossref_primary_10_3389_fnagi_2020_592469
crossref_primary_10_1016_j_tics_2017_09_006
crossref_primary_10_1093_braincomms_fcae316
crossref_primary_10_7554_eLife_08440
crossref_primary_10_1016_j_nicl_2018_03_034
crossref_primary_10_1590_2237_6089_2015_0088
crossref_primary_10_1016_j_neuroimage_2015_01_007
crossref_primary_10_33667_2078_5631_2021_22_42_47
crossref_primary_10_1093_brain_awac388
crossref_primary_10_3389_fnins_2019_01056
crossref_primary_10_1109_TNNLS_2021_3107330
crossref_primary_10_1186_s13024_023_00690_9
crossref_primary_10_1093_brain_awz080
crossref_primary_10_1016_j_neuroimage_2021_118219
crossref_primary_10_1145_3023363
crossref_primary_10_1162_jocn_a_00810
crossref_primary_10_1016_j_neuroimage_2018_10_078
crossref_primary_10_1038_s41380_023_02279_6
crossref_primary_10_1002_jmri_27453
crossref_primary_10_1016_j_medp_2024_100038
crossref_primary_10_3389_fnhum_2019_00343
crossref_primary_10_1007_s00415_018_8846_3
crossref_primary_10_1093_brain_awac378
crossref_primary_10_1002_hbm_26056
crossref_primary_10_1016_j_msard_2022_103496
crossref_primary_10_1016_j_neuroimage_2015_03_057
crossref_primary_10_1007_s12264_021_00812_7
crossref_primary_10_1111_psyp_14159
crossref_primary_10_1016_j_drugalcdep_2022_109436
crossref_primary_10_1017_S0033291715002895
crossref_primary_10_1172_jci_insight_92641
crossref_primary_10_1016_j_jpsychires_2015_08_003
crossref_primary_10_1093_braincomms_fcab269
crossref_primary_10_1162_netn_a_00054
crossref_primary_10_3389_fnagi_2022_834145
crossref_primary_10_1162_netn_a_00291
crossref_primary_10_1038_s41380_019_0603_1
crossref_primary_10_1111_jcpp_12365
crossref_primary_10_1016_j_neubiorev_2023_105144
crossref_primary_10_1016_j_nicl_2018_03_005
crossref_primary_10_1177_25424823241307617
crossref_primary_10_3389_fneur_2017_00580
crossref_primary_10_1038_srep34156
crossref_primary_10_1016_j_neuroimage_2020_116654
crossref_primary_10_1007_s00406_021_01344_x
crossref_primary_10_1093_cercor_bhv305
crossref_primary_10_1016_j_neurobiolaging_2020_03_009
crossref_primary_10_1016_j_neuroimage_2019_07_008
crossref_primary_10_3389_fninf_2022_886365
crossref_primary_10_1016_j_neubiorev_2017_03_018
crossref_primary_10_1016_j_neuropharm_2022_108989
crossref_primary_10_1016_j_schres_2016_01_025
crossref_primary_10_1016_j_nicl_2020_102530
crossref_primary_10_1093_cercor_bhv300
crossref_primary_10_1093_schbul_sbad047
crossref_primary_10_1016_j_npbr_2016_01_008
crossref_primary_10_1371_journal_pcbi_1006550
crossref_primary_10_1016_j_schres_2019_11_058
crossref_primary_10_1016_j_neuroimage_2022_119263
crossref_primary_10_1016_j_copsyc_2021_10_010
crossref_primary_10_3390_brainsci13101493
crossref_primary_10_1016_j_jad_2024_02_089
crossref_primary_10_1093_brain_awac180
crossref_primary_10_1016_j_neuroscience_2024_12_016
crossref_primary_10_1093_cercor_bhu246
crossref_primary_10_1007_s10548_022_00892_2
crossref_primary_10_1016_j_csda_2019_06_007
crossref_primary_10_1038_s41598_018_20123_8
crossref_primary_10_1093_scan_nsw154
crossref_primary_10_1098_rstb_2014_0165
crossref_primary_10_1098_rstb_2016_0011
crossref_primary_10_1016_j_neubiorev_2017_04_028
crossref_primary_10_1016_j_bpsc_2018_01_007
crossref_primary_10_1002_hbm_24078
crossref_primary_10_1515_revneuro_2017_0028
crossref_primary_10_1016_j_clineuro_2022_107481
crossref_primary_10_3389_fnins_2024_1305284
crossref_primary_10_1002_hbm_25161
crossref_primary_10_1142_S0129065716500039
crossref_primary_10_1098_rstb_2016_0006
crossref_primary_10_1016_j_jad_2016_11_015
crossref_primary_10_1016_j_nicl_2015_09_008
crossref_primary_10_1016_j_yebeh_2020_106948
crossref_primary_10_1038_s42003_024_05873_8
crossref_primary_10_1016_j_neubiorev_2021_01_010
crossref_primary_10_1016_j_nbd_2018_08_003
crossref_primary_10_1016_j_dcn_2018_02_001
crossref_primary_10_1016_j_neuroimage_2023_119962
crossref_primary_10_1016_j_bpsc_2018_01_013
crossref_primary_10_1016_j_neuroimage_2020_116611
crossref_primary_10_1016_j_schres_2020_11_026
crossref_primary_10_1093_cercor_bhu259
crossref_primary_10_1148_radiol_232454
crossref_primary_10_1089_brain_2020_0745
crossref_primary_10_1002_hbm_25105
crossref_primary_10_1038_s41598_022_07730_2
crossref_primary_10_1093_cercor_bhae039
crossref_primary_10_2174_1871527322666230221115328
crossref_primary_10_1016_j_pscychresns_2017_03_003
crossref_primary_10_1212_WNL_0000000000010731
crossref_primary_10_2147_JPR_S515047
crossref_primary_10_1002_hbm_24014
crossref_primary_10_1016_j_bpsc_2022_12_013
crossref_primary_10_1016_j_cmet_2017_07_015
crossref_primary_10_1017_S1355617715000995
crossref_primary_10_1016_j_wneu_2020_12_146
crossref_primary_10_1002_bdr2_1530
crossref_primary_10_1007_s40473_015_0056_z
crossref_primary_10_1002_bdr2_1529
crossref_primary_10_1111_adb_13096
crossref_primary_10_1016_j_pscychresns_2022_111528
crossref_primary_10_1038_s41537_021_00157_0
crossref_primary_10_1038_s44220_024_00323_0
crossref_primary_10_1016_j_jneumeth_2015_06_016
crossref_primary_10_1002_hbm_24041
crossref_primary_10_1016_j_schres_2020_12_045
crossref_primary_10_1089_brain_2021_0049
crossref_primary_10_1016_j_jad_2021_05_018
crossref_primary_10_1002_hbm_24281
crossref_primary_10_1016_j_nic_2019_09_004
crossref_primary_10_1073_pnas_1922248117
crossref_primary_10_3389_fnins_2020_00051
crossref_primary_10_1111_ner_12339
crossref_primary_10_1038_s41467_020_15701_2
crossref_primary_10_1007_s11682_016_9533_6
crossref_primary_10_1002_hbm_26450
crossref_primary_10_1038_s41598_021_95932_5
crossref_primary_10_1016_j_neuroimage_2022_119211
crossref_primary_10_1016_j_nicl_2021_102619
crossref_primary_10_1093_brain_awad060
crossref_primary_10_1016_j_nicl_2021_102613
crossref_primary_10_1038_ncomms9414
crossref_primary_10_1016_j_neurobiolaging_2022_07_007
crossref_primary_10_1016_j_neuroscience_2020_08_037
crossref_primary_10_1016_j_biopsych_2019_10_026
crossref_primary_10_1161_STROKEAHA_119_025738
crossref_primary_10_1016_j_nicl_2016_01_022
crossref_primary_10_1016_j_media_2021_102162
crossref_primary_10_1016_j_yebeh_2015_06_005
crossref_primary_10_1002_brb3_329
Cites_doi 10.1016/j.tins.2004.08.004
10.1016/j.tics.2013.09.015
10.1038/nn.3168
10.1093/cercor/bhs410
10.1371/journal.pcbi.1000408
10.1073/pnas.0601602103
10.1093/brain/aws056
10.1016/j.neuroimage.2012.06.081
10.1371/journal.pbio.0060159
10.1103/PhysRevLett.94.018102
10.1038/nrn2575
10.1523/JNEUROSCI.1443-09.2009
10.1073/pnas.1214900110
10.1371/journal.pone.0051250
10.1523/JNEUROSCI.4854-12.2013
10.1073/pnas.1010459107
10.1371/journal.pcbi.0010042
10.1038/35075138
10.1073/pnas.0506806103
10.1016/j.neuron.2009.03.024
10.1038/30918
10.1016/j.neuron.2012.03.004
10.1016/S1474-4422(13)70026-7
10.1093/cercor/bhq058
10.1038/nature03288
10.1016/j.neuroimage.2007.10.060
10.1523/JNEUROSCI.3874-05.2006
10.1111/epi.12581
10.1002/mrm.21890
10.1093/cercor/bhr388
10.1016/j.neuron.2011.06.031
10.1523/JNEUROSCI.0440-11.2011
10.1006/nimg.2001.0978
10.1385/NI:3:1:065
10.1137/070710111
10.1016/j.neuroimage.2008.06.012
10.1038/35019019
10.1523/JNEUROSCI.5062-08.2009
10.1002/hbm.22499
10.1093/cercor/bhn102
10.3389/neuro.11.037.2009
10.1523/JNEUROSCI.3784-12.2013
10.1016/j.neuron.2011.12.040
10.1073/pnas.82.13.4531
10.1002/hbm.20345
10.1002/hbm.20718
10.1016/j.neuroimage.2011.12.090
10.1371/journal.pcbi.0020095
10.1073/pnas.1203593109
10.1371/journal.pone.0046497
10.1073/pnas.0702332104
10.1162/jocn_a_00222
10.1038/nmeth.2482
10.1002/hbm.20141
10.1016/j.neuron.2013.07.035
10.31887/DCNS.2013.15.3/mrubinov
10.1212/WNL.0b013e31829a33f8
10.1371/journal.pone.0001049
10.1016/j.neuroimage.2009.12.027
10.1002/mrm.20426
10.1038/nrn3407
10.1073/pnas.1220826110
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuron.2013.01.002
10.1038/nrn789
10.1073/pnas.1111738109
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1371/journal.pcbi.1002582
10.1111/j.1460-9568.2007.05574.x
10.1038/nrn3214
10.1002/nbm.1543
10.1073/pnas.1208933109
10.1056/NEJM198403083101021
10.3389/fnins.2010.00200
10.1016/j.tics.2013.09.012
10.1126/science.1203659
10.1073/pnas.1303346110
10.1016/j.neuron.2011.03.018
10.1523/JNEUROSCI.3539-11.2011
ContentType Journal Article
Copyright 2015 INIST-CNRS
The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
– notice: The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. 2014
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/brain/awu132
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 2395
ExternalDocumentID PMC4107735
25057133
28608837
10_1093_brain_awu132
Genre Meta-Analysis
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH074457
– fundername: Medical Research Council
  grantid: G1000183
– fundername: Wellcome Trust
  grantid: 095844
– fundername: Medical Research Council
  grantid: G0001354
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWTL
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
NVLIB
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
TCURE
TEORI
TJX
TLC
TR2
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
.55
.GJ
1CY
354
3O-
41~
AAGKA
AAPGJ
AAQQT
AAWDT
AAYJJ
ABDPE
ABIME
ABNGD
ABPIB
ABQTQ
ABSMQ
ABZEO
ACBNA
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
ADMTO
AEHUL
AEKPW
AFFNX
AFFQV
AFSHK
AFYAG
AGKRT
AGMDO
AI.
AJDVS
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ASPBG
ATDFG
ATTQO
AVNTJ
AVWKF
AZFZN
BZKNY
C1A
CAG
CXTWN
DFGAJ
EIHJH
ELUNK
FEDTE
HVGLF
IQODW
M49
MBLQV
MBTAY
MVM
N4W
NTWIH
O0~
OBFPC
OHT
O~Y
PB-
QBD
RIG
RNI
RZF
TCN
TMA
VH1
X7M
XJT
XOL
YQJ
ZCG
ZGI
ZKB
ZXP
AGQPQ
AHGBF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c480t-51a4f53221a4f78d50b677a83365fe14e290a6029eda58cd934e4ea4fddc7c5c3
ISSN 0006-8950
1460-2156
IngestDate Thu Aug 21 18:42:36 EDT 2025
Fri Jul 11 02:15:08 EDT 2025
Mon Jul 21 06:05:56 EDT 2025
Wed Apr 02 07:25:06 EDT 2025
Tue Jul 01 00:46:07 EDT 2025
Thu Apr 24 23:02:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Human
VBM
Nervous system diseases
Tractography
topology
Central nervous system
graph analysis
Anatomy
rich club
Encephalon
tractography
Language English
License CC BY 4.0
The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c480t-51a4f53221a4f78d50b677a83365fe14e290a6029eda58cd934e4ea4fddc7c5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
See doi:10.1093/brain/awu148 for the scientific commentary on this article.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4107735
PMID 25057133
PQID 1548630858
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107735
proquest_miscellaneous_1548630858
pubmed_primary_25057133
pascalfrancis_primary_28608837
crossref_primary_10_1093_brain_awu132
crossref_citationtrail_10_1093_brain_awu132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Guimera ( key 20170425180421_awu132-B29) 2005; 433
Laird ( key 20170425180421_awu132-B41) 2005; 3
Jeong ( key 20170425180421_awu132-B35) 2001; 411
Kaiser ( key 20170425180421_awu132-B39) 2007; 25
Watts ( key 20170425180421_awu132-B75) 1998; 393
Calderwood ( key 20170425180421_awu132-B12) 2007; 104
Sporns ( key 20170425180421_awu132-B65) 2005; 1
Xiong ( key 20170425180421_awu132-B77) 2013; 14
Worbe ( key 20170425180421_awu132-B76) 2012; 135
Alstott ( key 20170425180421_awu132-B6) 2009; 5
Fox ( key 20170425180421_awu132-B24) 2002; 3
Newman ( key 20170425180421_awu132-B54) 2006; 103
Liu ( key 20170425180421_awu132-B45) 2012; 7
Liu ( key 20170425180421_awu132-B47) 2014; 24
van den Heuvel ( key 20170425180421_awu132-B71) 2011; 31
Iturria-Medina ( key 20170425180421_awu132-B32) 2010; 21
Jagust ( key 20170425180421_awu132-B34) 2013; 77
van den Heuvel ( key 20170425180421_awu132-B73) 2013; 17
Jones ( key 20170425180421_awu132-B37) 2013; 73
Menon ( key 20170425180421_awu132-B49) 2013; 17
Rubinov ( key 20170425180421_awu132-B61) 2010; 52
Saxena ( key 20170425180421_awu132-B62) 2011; 71
Seeley ( key 20170425180421_awu132-B63) 2009; 62
Sporns ( key 20170425180421_awu132-B64) 2007; 2
Eguiluz ( key 20170425180421_awu132-B20) 2005; 94
Kitzbichler ( key 20170425180421_awu132-B40) 2011; 31
Baggio ( key 20170425180421_awu132-B7) 2014
Rubinov ( key 20170425180421_awu132-B60) 2013; 15
Jones ( key 20170425180421_awu132-B36) 2010; 23
van den Heuvel ( key 20170425180421_awu132-B72) 2012; 109
Dehaene ( key 20170425180421_awu132-B19) 2011; 70
Fox ( key 20170425180421_awu132-B23) 2005; 25
Giessing ( key 20170425180421_awu132-B25) 2013; 33
Basser ( key 20170425180421_awu132-B8) 2000; 44
Towlson ( key 20170425180421_awu132-B67) 2013; 33
Zamora-Lopez ( key 20170425180421_awu132-B79) 2010; 4
Agosta ( key 20170425180421_awu132-B3) 2013; 81
Kaiser ( key 20170425180421_awu132-B38) 2006; 2
Gong ( key 20170425180421_awu132-B27) 2009; 19
Melov ( key 20170425180421_awu132-B48) 2004; 27
Vaishnavi ( key 20170425180421_awu132-B69) 2010; 107
Albert ( key 20170425180421_awu132-B4) 2000; 406
Iturria-Medina ( key 20170425180421_awu132-B33) 2008; 40
Bullmore ( key 20170425180421_awu132-B10) 2009; 10
Liu ( key 20170425180421_awu132-B46) 2014
Harriger ( key 20170425180421_awu132-B31) 2012; 7
de Haan ( key 20170425180421_awu132-B18) 2012; 8
Zhou ( key 20170425180421_awu132-B80) 2012; 73
Achard ( key 20170425180421_awu132-B1) 2012; 109
Liang ( key 20170425180421_awu132-B44) 2013; 110
van den Heuvel ( key 20170425180421_awu132-B70) 2009; 29
Mukhtar ( key 20170425180421_awu132-B53) 2011; 333
Gratton ( key 20170425180421_awu132-B28) 2012; 24
Meunier ( key 20170425180421_awu132-B50) 2010; 4
Vertes ( key 20170425180421_awu132-B74) 2012; 109
Achard ( key 20170425180421_awu132-B2) 2006; 26
Chen ( key 20170425180421_awu132-B14) 2006; 103
Goldstein ( key 20170425180421_awu132-B26) 2013; 12
Buckner ( key 20170425180421_awu132-B9) 2009; 29
Tomasi ( key 20170425180421_awu132-B66) 2013; 110
Zalesky ( key 20170425180421_awu132-B78) 2010; 50
Lancaster ( key 20170425180421_awu132-B42) 2007; 28
Tzourio-Mazoyer ( key 20170425180421_awu132-B68) 2002; 15
Eickhoff ( key 20170425180421_awu132-B21) 2009; 30
Bullmore ( key 20170425180421_awu132-B11) 2012; 13
Ransohoff ( key 20170425180421_awu132-B59) 2012; 15
Fornito ( key 20170425180421_awu132-B22) 2012; 62
Prusiner ( key 20170425180421_awu132-B57) 1984; 310
Hagmann ( key 20170425180421_awu132-B30) 2008; 6
Crossley ( key 20170425180421_awu132-B17) 2013; 110
Raj ( key 20170425180421_awu132-B58) 2012; 73
Meunier ( key 20170425180421_awu132-B51) 2009; 3
Pearson ( key 20170425180421_awu132-B55) 1985; 82
Chang ( key 20170425180421_awu132-B13) 2005; 53
Leemans ( key 20170425180421_awu132-B43) 2009; 61
Alexander-Bloch ( key 20170425180421_awu132-B5) 2013; 23
Craddock ( key 20170425180421_awu132-B16) 2013; 10
Power ( key 20170425180421_awu132-B56) 2013; 79
Clauset ( key 20170425180421_awu132-B15) 2009; 51
Morris ( key 20170425180421_awu132-B52) 2008; 42
25057132 - Brain. 2014 Aug;137(Pt 8):2117-8. doi: 10.1093/brain/awu148.
26205839 - Brain. 2015 Aug;138(Pt 8):e374. doi: 10.1093/brain/awv122.
References_xml – volume: 27
  start-page: 601
  year: 2004
  ident: key 20170425180421_awu132-B48
  article-title: Modeling mitochondrial function in aging neurons
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2004.08.004
– volume: 17
  start-page: 627
  year: 2013
  ident: key 20170425180421_awu132-B49
  article-title: Developmental pathways to functional brain networks: emerging principles
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2013.09.015
– volume: 15
  start-page: 1074
  year: 2012
  ident: key 20170425180421_awu132-B59
  article-title: Animal models of multiple sclerosis: the good, the bad and the bottom line
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3168
– volume: 24
  start-page: 1422
  year: 2014
  ident: key 20170425180421_awu132-B47
  article-title: Impaired long distance functional connectivity and weighted network architecture in Alzheimer's disease
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhs410
– volume: 5
  start-page: e1000408
  year: 2009
  ident: key 20170425180421_awu132-B6
  article-title: Modeling the impact of lesions in the human brain
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000408
– volume: 103
  start-page: 8577
  year: 2006
  ident: key 20170425180421_awu132-B54
  article-title: Modularity and community structure in networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0601602103
– volume: 135
  start-page: 1937
  issue: Pt 6
  year: 2012
  ident: key 20170425180421_awu132-B76
  article-title: Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome
  publication-title: Brain
  doi: 10.1093/brain/aws056
– volume: 73
  start-page: 239
  year: 2013
  ident: key 20170425180421_awu132-B37
  article-title: White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.081
– volume: 6
  start-page: e159
  year: 2008
  ident: key 20170425180421_awu132-B30
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060159
– volume: 94
  start-page: 018102
  year: 2005
  ident: key 20170425180421_awu132-B20
  article-title: Scale-free brain functional networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.94.018102
– volume: 10
  start-page: 186
  year: 2009
  ident: key 20170425180421_awu132-B10
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2575
– volume: 29
  start-page: 7619
  year: 2009
  ident: key 20170425180421_awu132-B70
  article-title: Efficiency of functional brain networks and intellectual performance
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1443-09.2009
– volume: 110
  start-page: 1929
  year: 2013
  ident: key 20170425180421_awu132-B44
  article-title: Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1214900110
– volume: 7
  start-page: e51250
  year: 2012
  ident: key 20170425180421_awu132-B45
  article-title: Hierarchical alteration of brain structural and functional networks in female migraine sufferers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0051250
– volume: 4
  start-page: 1
  year: 2010
  ident: key 20170425180421_awu132-B79
  article-title: Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks
  publication-title: Front Neuroinform
– volume: 33
  start-page: 5903
  year: 2013
  ident: key 20170425180421_awu132-B25
  article-title: Human brain functional network changes associated with enhanced and impaired attentional task performance
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4854-12.2013
– volume: 107
  start-page: 17757
  year: 2010
  ident: key 20170425180421_awu132-B69
  article-title: Regional aerobic glycolysis in the human brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1010459107
– volume: 1
  start-page: e42
  year: 2005
  ident: key 20170425180421_awu132-B65
  article-title: The human connectome: a structural description of the human brain
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0010042
– volume: 411
  start-page: 41
  year: 2001
  ident: key 20170425180421_awu132-B35
  article-title: Lethality and centrality in protein networks
  publication-title: Nature
  doi: 10.1038/35075138
– volume: 103
  start-page: 4723
  year: 2006
  ident: key 20170425180421_awu132-B14
  article-title: Wiring optimization can relate neuronal structure and function
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506806103
– volume: 62
  start-page: 42
  year: 2009
  ident: key 20170425180421_awu132-B63
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.024
– volume: 393
  start-page: 440
  year: 1998
  ident: key 20170425180421_awu132-B75
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 73
  start-page: 1216
  year: 2012
  ident: key 20170425180421_awu132-B80
  article-title: Predicting regional neurodegeneration from the healthy brain functional connectome
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.004
– volume: 12
  start-page: 368
  year: 2013
  ident: key 20170425180421_awu132-B26
  article-title: Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(13)70026-7
– volume: 21
  start-page: 56
  year: 2010
  ident: key 20170425180421_awu132-B32
  article-title: Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhq058
– volume: 433
  start-page: 895
  year: 2005
  ident: key 20170425180421_awu132-B29
  article-title: Functional cartography of complex metabolic networks
  publication-title: Nature
  doi: 10.1038/nature03288
– volume: 40
  start-page: 1064
  year: 2008
  ident: key 20170425180421_awu132-B33
  article-title: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.060
– volume: 26
  start-page: 63
  year: 2006
  ident: key 20170425180421_awu132-B2
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3874-05.2006
– year: 2014
  ident: key 20170425180421_awu132-B46
  article-title: Disrupted anatomic white matter network in left mesial temporal lobe epilepsy
  publication-title: Epilepsia
  doi: 10.1111/epi.12581
– volume: 61
  start-page: 1336
  year: 2009
  ident: key 20170425180421_awu132-B43
  article-title: The B-matrix must be rotated when correcting for subject motion in DTI data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21890
– volume: 23
  start-page: 127
  year: 2013
  ident: key 20170425180421_awu132-B5
  article-title: The anatomical distance of functional connections predicts brain network topology in health and schizophrenia
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhr388
– volume: 71
  start-page: 35
  year: 2011
  ident: key 20170425180421_awu132-B62
  article-title: Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.06.031
– volume: 31
  start-page: 8259
  year: 2011
  ident: key 20170425180421_awu132-B40
  article-title: Cognitive effort drives workspace configuration of human brain functional networks
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0440-11.2011
– volume: 15
  start-page: 273
  year: 2002
  ident: key 20170425180421_awu132-B68
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 3
  start-page: 65
  year: 2005
  ident: key 20170425180421_awu132-B41
  article-title: BrainMap: the social evolution of a human brain mapping database
  publication-title: Neuroinformatics
  doi: 10.1385/NI:3:1:065
– volume: 51
  start-page: 661
  year: 2009
  ident: key 20170425180421_awu132-B15
  article-title: Power-law distributions in empirical data
  publication-title: SIAM Rev
  doi: 10.1137/070710111
– volume: 42
  start-page: 1329
  year: 2008
  ident: key 20170425180421_awu132-B52
  article-title: Probabilistic fibre tracking: differentiation of connections from chance events
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.06.012
– volume: 406
  start-page: 378
  year: 2000
  ident: key 20170425180421_awu132-B4
  article-title: Error and attack tolerance of complex networks
  publication-title: Nature
  doi: 10.1038/35019019
– volume: 29
  start-page: 1860
  year: 2009
  ident: key 20170425180421_awu132-B9
  article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5062-08.2009
– year: 2014
  ident: key 20170425180421_awu132-B7
  article-title: Functional brain networks and cognitive deficits in Parkinson's disease
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22499
– volume: 19
  start-page: 524
  year: 2009
  ident: key 20170425180421_awu132-B27
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn102
– volume: 3
  start-page: 37
  year: 2009
  ident: key 20170425180421_awu132-B51
  article-title: Hierarchical modularity in human brain functional networks
  publication-title: Front Neuroinform
  doi: 10.3389/neuro.11.037.2009
– volume: 33
  start-page: 6380
  year: 2013
  ident: key 20170425180421_awu132-B67
  article-title: The rich club of the C. elegans neuronal connectome
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3784-12.2013
– volume: 73
  start-page: 1204
  year: 2012
  ident: key 20170425180421_awu132-B58
  article-title: A network diffusion model of disease progression in dementia
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.040
– volume: 82
  start-page: 4531
  year: 1985
  ident: key 20170425180421_awu132-B55
  article-title: Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.82.13.4531
– volume: 28
  start-page: 1194
  year: 2007
  ident: key 20170425180421_awu132-B42
  article-title: Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20345
– volume: 30
  start-page: 2907
  year: 2009
  ident: key 20170425180421_awu132-B21
  article-title: Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20718
– volume: 62
  start-page: 2296
  year: 2012
  ident: key 20170425180421_awu132-B22
  article-title: Schizophrenia, neuroimaging and connectomics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.090
– volume: 2
  start-page: e95
  year: 2006
  ident: key 20170425180421_awu132-B38
  article-title: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020095
– volume: 109
  start-page: 11372
  year: 2012
  ident: key 20170425180421_awu132-B72
  article-title: High-cost, high-capacity backbone for global brain communication
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1203593109
– volume: 7
  start-page: e46497
  year: 2012
  ident: key 20170425180421_awu132-B31
  article-title: Rich club organization of macaque cerebral cortex and its role in network communication
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046497
– volume: 104
  start-page: 7606
  year: 2007
  ident: key 20170425180421_awu132-B12
  article-title: Epstein-Barr virus and virus human protein interaction maps
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0702332104
– volume: 24
  start-page: 1275
  year: 2012
  ident: key 20170425180421_awu132-B28
  article-title: Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn_a_00222
– volume: 10
  start-page: 524
  year: 2013
  ident: key 20170425180421_awu132-B16
  article-title: Imaging human connectomes at the macroscale
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2482
– volume: 25
  start-page: 185
  year: 2005
  ident: key 20170425180421_awu132-B23
  article-title: BrainMap taxonomy of experimental design: description and evaluation
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20141
– volume: 79
  start-page: 798
  year: 2013
  ident: key 20170425180421_awu132-B56
  article-title: Evidence for hubs in human functional brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.035
– volume: 15
  start-page: 339
  year: 2013
  ident: key 20170425180421_awu132-B60
  article-title: Schizophrenia and abnormal brain network hubs
  publication-title: Dialogues Clin Neurosci
  doi: 10.31887/DCNS.2013.15.3/mrubinov
– volume: 81
  start-page: 134
  year: 2013
  ident: key 20170425180421_awu132-B3
  article-title: Brain network connectivity assessed using graph theory in frontotemporal dementia
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31829a33f8
– volume: 2
  start-page: e1049
  year: 2007
  ident: key 20170425180421_awu132-B64
  article-title: Identification and classification of hubs in brain networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001049
– volume: 50
  start-page: 970
  year: 2010
  ident: key 20170425180421_awu132-B78
  article-title: Whole-brain anatomical networks: does the choice of nodes matter?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.027
– volume: 53
  start-page: 1088
  year: 2005
  ident: key 20170425180421_awu132-B13
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20426
– volume: 14
  start-page: 128
  year: 2013
  ident: key 20170425180421_awu132-B77
  article-title: Animal models of traumatic brain injury
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3407
– volume: 110
  start-page: 11583
  year: 2013
  ident: key 20170425180421_awu132-B17
  article-title: Cognitive relevance of the community structure of the human brain functional coactivation network
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1220826110
– volume: 52
  start-page: 1059
  year: 2010
  ident: key 20170425180421_awu132-B61
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 77
  start-page: 219
  year: 2013
  ident: key 20170425180421_awu132-B34
  article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.01.002
– volume: 3
  start-page: 319
  year: 2002
  ident: key 20170425180421_awu132-B24
  article-title: Opinion: mapping context and content: the BrainMap model
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn789
– volume: 109
  start-page: 5868
  year: 2012
  ident: key 20170425180421_awu132-B74
  article-title: Simple models of human brain functional networks
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1111738109
– volume: 44
  start-page: 625
  year: 2000
  ident: key 20170425180421_awu132-B8
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn Reson Med
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– volume: 8
  start-page: e1002582
  year: 2012
  ident: key 20170425180421_awu132-B18
  article-title: Activity dependent degeneration explains hub vulnerability in Alzheimer's disease
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002582
– volume: 25
  start-page: 3185
  year: 2007
  ident: key 20170425180421_awu132-B39
  article-title: Simulation of robustness against lesions of cortical networks
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2007.05574.x
– volume: 13
  start-page: 336
  year: 2012
  ident: key 20170425180421_awu132-B11
  article-title: The economy of brain network organization
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3214
– volume: 23
  start-page: 803
  year: 2010
  ident: key 20170425180421_awu132-B36
  article-title: Twenty-five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1543
– volume: 109
  start-page: 206080
  year: 2012
  ident: key 20170425180421_awu132-B1
  article-title: Hubs of brain functional networks are radically reorganized in comatose patients
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1208933109
– volume: 310
  start-page: 661
  year: 1984
  ident: key 20170425180421_awu132-B57
  article-title: Some speculations about prions, amyloid, and Alzheimer's disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJM198403083101021
– volume: 4
  start-page: 200
  year: 2010
  ident: key 20170425180421_awu132-B50
  article-title: Modular and hierarchically modular organization of brain networks
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2010.00200
– volume: 17
  start-page: 683
  year: 2013
  ident: key 20170425180421_awu132-B73
  article-title: Network hubs in the human brain
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2013.09.012
– volume: 333
  start-page: 596
  year: 2011
  ident: key 20170425180421_awu132-B53
  article-title: Independently evolved virulence effectors converge onto hubs in a plant immune system network
  publication-title: Science
  doi: 10.1126/science.1203659
– volume: 110
  start-page: 13642
  year: 2013
  ident: key 20170425180421_awu132-B66
  article-title: Energetic cost of brain functional connectivity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1303346110
– volume: 70
  start-page: 200
  year: 2011
  ident: key 20170425180421_awu132-B19
  article-title: Experimental and theoretical approaches to conscious processing
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.03.018
– volume: 31
  start-page: 15775
  year: 2011
  ident: key 20170425180421_awu132-B71
  article-title: Rich-club organization of the human connectome
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3539-11.2011
– reference: 26205839 - Brain. 2015 Aug;138(Pt 8):e374. doi: 10.1093/brain/awv122.
– reference: 25057132 - Brain. 2014 Aug;137(Pt 8):2117-8. doi: 10.1093/brain/awu148.
SSID ssj0014326
Score 2.6398535
SecondaryResourceType review_article
Snippet Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports...
See Sporns (doi: 10.1093/brain/awu148 ) for a scientific commentary on this article. Brain networks contain a minority of highly connected hub nodes with high...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2382
SubjectTerms Adult
Biological and medical sciences
Brain - anatomy & histology
Brain - pathology
Brain - physiopathology
Computer Simulation
Connectome - methods
Diffusion Tensor Imaging - methods
Dorsal Column
Female
Human viral diseases
Humans
Infectious diseases
Male
Medical sciences
Nerve Net - anatomy & histology
Nerve Net - pathology
Nerve Net - physiopathology
Neurology
Viral diseases
Viral diseases of the lymphoid tissue and the blood. Aids
Title The hubs of the human connectome are generally implicated in the anatomy of brain disorders
URI https://www.ncbi.nlm.nih.gov/pubmed/25057133
https://www.proquest.com/docview/1548630858
https://pubmed.ncbi.nlm.nih.gov/PMC4107735
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB2Mwxr6XfRQNtqfg1LZkSX4s3UbX0b2shcIejCzLbaBzSuNQtr9nf-juJEexuwy6vTjG1gXk-0l3kn53R8hbG2e1qFQSZbnJI66NjcBPNlGSWrRW2kqGwcmHX8T-MT84yU5Go1891tKyLafm58a4kv_RKjwDvWKU7D9oNvwpPIB70C9cQcNwvbGOz2Dkrw76fcE9g9wV086_2wnSuk59YunzHxgR6UPeqhW7UTew5vbxJCXWisDzGpeMczE47HWvNtX-8BsKSqrehsIe2t1VSWvEmV5MdqdBsdZRT2eBTBnMwlfTcUcOkJnbYxAhH6D1rANXBsQuzLy_WZHwQJVbT8AiUrnPNTu1fs7lIo7A8xCDSdmngunQp_pTLPPVijpznTJfpPMPU-DTZLmPh_buapl0G6mDnNvXbGFgKPqzeVY4-cJL3yK3U1iMYJ2M958-h7MqzlxRv9C1LrwCpHec9I6XHjg-9y70AsZg7YunbFrdXCfp9ryeowfkfrdcobseew_JyDaPyJ3DjpDxmHwDCFKEIJ3XtHX3AEG6hiAFCNIAQbqGIJ01TqCDIMq7ftAAwSfk-OOHo739qKvXERmu4jbKEs3rDCwE_kpVZXEppNSKMZHVNuE2zWMt4jS3lc6UqXLGLbfQtqqMNJlhT8lWM2_sc0JrW6VxCe1lqXhpK6W5SUQpNKvB_-f1mExWH7MwXTJ7rKlyXmxS3Ji8C60vfBKXv7TbHuglNE6VAGvM5Ji8WSmqgGkYz9Z0Y-fLRYErf8Fg_aLG5JlX3FoaNwESxsZEDlQaGmCK9-GbZnbmUr3zJJaSZS9u2IGX5O561L0iW-3l0r4Gp7kttx1mfwOgjcjM
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+hubs+of+the+human+connectome+are+generally+implicated+in+the+anatomy+of+brain+disorders&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Crossley%2C+Nicolas+A.&rft.au=Mechelli%2C+Andrea&rft.au=Scott%2C+Jessica&rft.au=Carletti%2C+Francesco&rft.date=2014-08-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=137&rft.issue=8&rft.spage=2382&rft.epage=2395&rft_id=info:doi/10.1093%2Fbrain%2Fawu132&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_awu132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon