Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region

The period range between 6 and 480 min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acquired with the OH* ai...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 13; no. 9; pp. 5117 - 5128
Main Authors Sedlak, René, Zuhr, Alexandra, Schmidt, Carsten, Wüst, Sabine, Bittner, Michael, Didebulidze, Goderdzi G, Price, Colin
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 29.09.2020
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The period range between 6 and 480 min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acquired with the OH* airglow spectrometers called GRIPS (GRound-based Infrared P-branch Spectrometer) within the framework of the NDMC (Network for the Detection of Mesospheric Change; https://ndmc.dlr.de, last access: 22 September 2020). We analyse data measured at the NDMC sites Abastumani in Georgia (ABA; 41.75.sup." N, 42.82.sup." E), ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) in Norway (ALR; 69.28.sup." N, 16.01.sup." E), Neumayer Station III in the Antarctic (NEU; 70.67.sup." S, 8.27.sup." W), Observatoire de Haute-Provence in France (OHP; 43.93.sup." N, 5.71.sup." E), Oberpfaffenhofen in Germany (OPN; 48.09.sup." N, 11.28.sup." E), Sonnblick in Austria (SBO; 47.05.sup." N, 12.95.sup." E), Tel Aviv in Israel (TAV; 32.11.sup." N, 34.80.sup." E), and the Environmental Research Station Schneefernerhaus on top of Zugspitze mountain in Germany (UFS; 47.42.sup." N, 10.98.sup." E). All eight instruments are identical in construction and deliver consistent and comparable data sets.
AbstractList The period range between 6 and 480 min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acquired with the OH* airglow spectrometers called GRIPS (GRound-based Infrared P-branch Spectrometer) within the framework of the NDMC (Network for the Detection of Mesospheric Change; https://ndmc.dlr.de , last access: 22 September 2020). We analyse data measured at the NDMC sites Abastumani in Georgia (ABA; 41.75 ∘  N, 42.82 ∘  E), ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) in Norway (ALR; 69.28 ∘  N, 16.01 ∘  E), Neumayer Station III in the Antarctic (NEU; 70.67 ∘  S, 8.27 ∘  W), Observatoire de Haute-Provence in France (OHP; 43.93 ∘  N, 5.71 ∘  E), Oberpfaffenhofen in Germany (OPN; 48.09 ∘  N, 11.28 ∘  E), Sonnblick in Austria (SBO; 47.05 ∘  N, 12.95 ∘  E), Tel Aviv in Israel (TAV; 32.11 ∘  N, 34.80 ∘  E), and the Environmental Research Station Schneefernerhaus on top of Zugspitze mountain in Germany (UFS; 47.42 ∘  N, 10.98 ∘  E). All eight instruments are identical in construction and deliver consistent and comparable data sets. For periods shorter than 60 min, gravity wave activity is found to be relatively low and hardly shows any seasonal variability on the timescale of months. We find a semi-annual cycle with maxima during winter and summer for gravity waves with periods longer than 60 min, which gradually develops into an annual cycle with a winter maximum for longer periods. The transition from a semi-annual pattern to a primarily annual pattern starts around a gravity wave period of 200 min. Although there are indications of enhanced gravity wave sources above mountainous terrain, the overall pattern of gravity wave activity does not differ significantly for the abovementioned observation sites. Thus, large-scale mechanisms such as stratospheric wind filtering seem to dominate the evolution of mesospheric gravity wave activity.
The period range between 6 and 480 min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acquired with the OH* airglow spectrometers called GRIPS (GRound-based Infrared P-branch Spectrometer) within the framework of the NDMC (Network for the Detection of Mesospheric Change; https://ndmc.dlr.de, last access: 22 September 2020). We analyse data measured at the NDMC sites Abastumani in Georgia (ABA; 41.75.sup." N, 42.82.sup." E), ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) in Norway (ALR; 69.28.sup." N, 16.01.sup." E), Neumayer Station III in the Antarctic (NEU; 70.67.sup." S, 8.27.sup." W), Observatoire de Haute-Provence in France (OHP; 43.93.sup." N, 5.71.sup." E), Oberpfaffenhofen in Germany (OPN; 48.09.sup." N, 11.28.sup." E), Sonnblick in Austria (SBO; 47.05.sup." N, 12.95.sup." E), Tel Aviv in Israel (TAV; 32.11.sup." N, 34.80.sup." E), and the Environmental Research Station Schneefernerhaus on top of Zugspitze mountain in Germany (UFS; 47.42.sup." N, 10.98.sup." E). All eight instruments are identical in construction and deliver consistent and comparable data sets.
The period range between 6 and 480 min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acquired with the OH* airglow spectrometers called GRIPS (GRound-based Infrared P-branch Spectrometer) within the framework of the NDMC (Network for the Detection of Mesospheric Change; For periods shorter than 60 min, gravity wave activity is found to be relatively low and hardly shows any seasonal variability on the timescale of months. We find a semi-annual cycle with maxima during winter and summer for gravity waves with periods longer than 60 min, which gradually develops into an annual cycle with a winter maximum for longer periods. The transition from a semi-annual pattern to a primarily annual pattern starts around a gravity wave period of 200 min. Although there are indications of enhanced gravity wave sources above mountainous terrain, the overall pattern of gravity wave activity does not differ significantly for the abovementioned observation sites. Thus, large-scale mechanisms such as stratospheric wind filtering seem to dominate the evolution of mesospheric gravity wave activity.
The period range between 6 and 480 min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acquired with the OH* airglow spectrometers called GRIPS (GRound-based Infrared P-branch Spectrometer) within the framework of the NDMC (Network for the Detection of Mesospheric Change; https://ndmc.dlr.de, last access: 22 September 2020). We analyse data measured at the NDMC sites Abastumani in Georgia (ABA; 41.75∘ N, 42.82∘ E), ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) in Norway (ALR; 69.28∘ N, 16.01∘ E), Neumayer Station III in the Antarctic (NEU; 70.67∘ S, 8.27∘ W), Observatoire de Haute-Provence in France (OHP; 43.93∘ N, 5.71∘ E), Oberpfaffenhofen in Germany (OPN; 48.09∘ N, 11.28∘ E), Sonnblick in Austria (SBO; 47.05∘ N, 12.95∘ E), Tel Aviv in Israel (TAV; 32.11∘ N, 34.80∘ E), and the Environmental Research Station Schneefernerhaus on top of Zugspitze mountain in Germany (UFS; 47.42∘ N, 10.98∘ E). All eight instruments are identical in construction and deliver consistent and comparable data sets. For periods shorter than 60 min, gravity wave activity is found to be relatively low and hardly shows any seasonal variability on the timescale of months. We find a semi-annual cycle with maxima during winter and summer for gravity waves with periods longer than 60 min, which gradually develops into an annual cycle with a winter maximum for longer periods. The transition from a semi-annual pattern to a primarily annual pattern starts around a gravity wave period of 200 min. Although there are indications of enhanced gravity wave sources above mountainous terrain, the overall pattern of gravity wave activity does not differ significantly for the abovementioned observation sites. Thus, large-scale mechanisms such as stratospheric wind filtering seem to dominate the evolution of mesospheric gravity wave activity.
The period range between 6 and 480 min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method using wavelet analysis to calculate gravity wave activity with a high period resolution and apply it to temperature data acquired with the OH* airglow spectrometers called GRIPS (GRound-based Infrared P-branch Spectrometer) within the framework of the NDMC (Network for the Detection of Mesospheric Change; https://ndmc.dlr.de, last access: 22 September 2020). We analyse data measured at the NDMC sites Abastumani in Georgia (ABA; 41.75∘ N, 42.82∘ E), ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) in Norway (ALR; 69.28∘ N, 16.01∘ E), Neumayer Station III in the Antarctic (NEU; 70.67∘ S, 8.27∘ W), Observatoire de Haute-Provence in France (OHP; 43.93∘ N, 5.71∘ E), Oberpfaffenhofen in Germany (OPN; 48.09∘ N, 11.28∘ E), Sonnblick in Austria (SBO; 47.05∘ N, 12.95∘ E), Tel Aviv in Israel (TAV; 32.11∘ N, 34.80∘ E), and the Environmental Research Station Schneefernerhaus on top of Zugspitze mountain in Germany (UFS; 47.42∘ N, 10.98∘ E). All eight instruments are identical in construction and deliver consistent and comparable data sets.For periods shorter than 60 min, gravity wave activity is found to be relatively low and hardly shows any seasonal variability on the timescale of months. We find a semi-annual cycle with maxima during winter and summer for gravity waves with periods longer than 60 min, which gradually develops into an annual cycle with a winter maximum for longer periods. The transition from a semi-annual pattern to a primarily annual pattern starts around a gravity wave period of 200 min. Although there are indications of enhanced gravity wave sources above mountainous terrain, the overall pattern of gravity wave activity does not differ significantly for the abovementioned observation sites. Thus, large-scale mechanisms such as stratospheric wind filtering seem to dominate the evolution of mesospheric gravity wave activity.
Audience Academic
Author Price, Colin
Zuhr, Alexandra
Wüst, Sabine
Schmidt, Carsten
Bittner, Michael
Sedlak, René
Didebulidze, Goderdzi G
Author_xml – sequence: 1
  fullname: Sedlak, René
– sequence: 2
  fullname: Zuhr, Alexandra
– sequence: 3
  fullname: Schmidt, Carsten
– sequence: 4
  fullname: Wüst, Sabine
– sequence: 5
  fullname: Bittner, Michael
– sequence: 6
  fullname: Didebulidze, Goderdzi G
– sequence: 7
  fullname: Price, Colin
BookMark eNptkk1v1DAQhiNUJNrCnaMlLvSQ1k4cxz5WFdCVFiFBe7Zm7UnqVRIH27tlD_z3ersVsBLywfY7z7zjjzkrTiY_YVG8Z_SyYYpfwZhKVpcNY21Z0Yq-Kk6ZFG0pGy5P_lm_Kc5iXFMqOGur0-L3YkoBSpimDQxkC8FBcn6KxHckzmhycBh2JGD0wxYt6QNsXdqRR9giAZPc885NJD0g2cwzBjJmNs4PGPBq8I9ZyKEwvkjk4_3X5d1FNuxzmbfF6w6GiO9e5vPi_vOnu5vbcvnty-LmelkaLmkqeUc7o7Chqmm7hlkjaqtWFTJBuTKworSWaDpmW5BUWUpbKS1koalwpbCtz4vFwdd6WOs5uBHCTntw-lnwodcQkjMDasYVtSjsyhjDbSdBsRYb4LkmClOp7PXh4DUH_3ODMem134QpH19XnAsla8Hqv1QP2dRNnc8vaUYXjb4WtZCyUk2Tqcv_UHlYHJ3JH9y5rB8lXBwlZCbhr9TDJka9-PH9mKUH1gQfY8Duz8UZ1fue0blnNKv1vmf0vmfqJ3h_t0I
CitedBy_id crossref_primary_10_1029_2022JD038275
crossref_primary_10_1029_2022JA030301
crossref_primary_10_3390_atmos14061008
crossref_primary_10_1029_2021JD034683
crossref_primary_10_1016_j_polar_2022_100920
crossref_primary_10_5194_acp_23_1599_2023
crossref_primary_10_1029_2022EA002256
crossref_primary_10_5194_amt_14_6821_2021
Cites_doi 10.1029/JC086iC10p09707
10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2
10.1016/S0273-1177(97)00161-0
10.1029/RG013i001p00183
10.5194/acp-20-5269-2020
10.1016/j.jastp.2018.03.002
10.5194/angeo-27-3213-2009
10.5194/amt-12-457-2019
10.1016/j.jastp.2006.10.007
10.1029/2001RG000106
10.1016/j.jastp.2004.01.015
10.1186/BF03353248
10.1016/0021-9169(94)00133-9
10.1016/j.jastp.2006.10.009
10.1016/j.asr.2019.09.043
10.1029/2008JD010662
10.1016/j.jastp.2016.01.014
10.1016/0032-0633(87)90063-8
10.1016/B978-0-12-174590-5.50029-0
10.1016/j.jastp.2005.05.006
10.1016/j.jastp.2009.03.009
10.1139/p60-150
10.1029/91JD02018
10.1029/93GL00808
10.5194/amt-9-1461-2016
10.1016/j.jastp.2015.11.008
10.1051/aas:1998105
10.1016/j.jastp.2004.01.021
10.1016/S1364-6826(02)00047-0
10.1029/JA074i016p04087
10.5194/acp-16-5021-2016
10.1175/1520-0469(2003)060<0194:MFTGOS>2.0.CO;2
10.1364/AO.53.005934
10.1029/2002GL015574
10.1016/j.jastp.2004.01.027
10.5194/acp-8-6775-2008
10.1029/2002GL016452
10.5194/amt-9-5955-2016
10.1029/91JD01662
10.1016/S1364-6826(00)00067-5
10.1029/1999JD901169
10.1016/j.jastp.2010.07.002
10.1002/jgrd.50318
10.1029/93JD02369
10.1002/2015JA022127
10.1175/1520-0469(1999)056<3010:NBITPO>2.0.CO;2
10.1029/JD090iD02p03850
10.1016/0021-9169(94)90004-3
10.5194/nhess-10-1431-2010
10.1002/2016JD026368
10.1016/S0273-1177(01)00313-1
10.1016/j.jastp.2016.08.014
10.1029/1999JD900307
10.1029/97JD02985
10.1016/j.jastp.2017.01.003
10.1016/j.jastp.2005.01.018
10.1016/j.jastp.2015.03.001
10.1016/0021-9169(94)90097-3
10.5194/amt-10-4895-2017
10.1088/0031-8949/37/4/021
10.1016/S1474-7065(02)00036-0
10.1086/145296
10.1016/j.jastp.2015.12.003
10.1002/2017JD027460
10.1029/2008JD011472
10.1029/93GL01593
10.1016/j.jastp.2013.05.001
10.5194/amt-11-2937-2018
10.1029/2004GL020410
10.1029/2017JD027974
10.5194/acp-19-6401-2019
ContentType Journal Article
Copyright COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.5194/amt-13-5117-2020
DatabaseName CrossRef
Science in Context
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList



CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1867-8548
EndPage 5128
ExternalDocumentID oai_doaj_org_article_1490de6dbccc4df8a917e5a4c63e6c29
A636882955
10_5194_amt_13_5117_2020
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 23N
3V.
5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFO
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
ISR
ITC
K6-
KQ8
LK5
M7R
M~E
OK1
P2P
P62
PCBAR
PIMPY
PQQKQ
PROAC
Q2X
RIG
RKB
RNS
TR2
TUS
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c480t-4f0fc9e50957f51dc63d9b2e16049cab0038ecf1d7a809d00788dacf152eb9e73
IEDL.DBID 8FG
ISSN 1867-8548
1867-1381
IngestDate Fri Oct 04 13:13:47 EDT 2024
Fri Sep 13 10:17:05 EDT 2024
Thu Feb 22 23:24:12 EST 2024
Fri Feb 02 04:13:57 EST 2024
Thu Aug 01 19:32:12 EDT 2024
Fri Aug 23 01:14:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-4f0fc9e50957f51dc63d9b2e16049cab0038ecf1d7a809d00788dacf152eb9e73
ORCID 0000-0002-0359-4946
0000-0003-2024-2501
0000-0002-1387-7632
0000-0002-9580-724X
0000-0002-3861-365X
OpenAccessLink https://www.proquest.com/docview/2446983613/abstract/?pq-origsite=%requestingapplication%
PQID 2446983613
PQPubID 105742
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1490de6dbccc4df8a917e5a4c63e6c29
proquest_journals_2446983613
gale_infotracmisc_A636882955
gale_infotracacademiconefile_A636882955
gale_incontextgauss_ISR_A636882955
crossref_primary_10_5194_amt_13_5117_2020
PublicationCentury 2000
PublicationDate 2020-09-29
PublicationDateYYYYMMDD 2020-09-29
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-29
  day: 29
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric measurement techniques
PublicationYear 2020
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref34
  doi: 10.1029/JC086iC10p09707
– ident: ref28
  doi: 10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2
– ident: ref61
  doi: 10.1016/S0273-1177(97)00161-0
– ident: ref63
  doi: 10.1029/RG013i001p00183
– ident: ref44
  doi: 10.5194/acp-20-5269-2020
– ident: ref54
  doi: 10.1016/j.jastp.2018.03.002
– ident: ref59
  doi: 10.5194/angeo-27-3213-2009
– ident: ref22
  doi: 10.5194/amt-12-457-2019
– ident: ref29
  doi: 10.1016/j.jastp.2006.10.007
– ident: ref17
  doi: 10.1029/2001RG000106
– ident: ref20
  doi: 10.1016/j.jastp.2004.01.015
– ident: ref41
  doi: 10.1186/BF03353248
– ident: ref40
  doi: 10.1016/0021-9169(94)00133-9
– ident: ref23
  doi: 10.1016/j.jastp.2006.10.009
– ident: ref3
  doi: 10.1016/j.asr.2019.09.043
– ident: ref46
  doi: 10.1029/2008JD010662
– ident: ref31
  doi: 10.1016/j.jastp.2016.01.014
– ident: ref25
  doi: 10.1016/0032-0633(87)90063-8
– ident: ref10
  doi: 10.1016/B978-0-12-174590-5.50029-0
– ident: ref12
  doi: 10.1016/j.jastp.2005.05.006
– ident: ref4
  doi: 10.1016/j.jastp.2009.03.009
– ident: ref24
  doi: 10.1139/p60-150
– ident: ref35
  doi: 10.1029/91JD02018
– ident: ref57
  doi: 10.1029/93GL00808
– ident: ref21
  doi: 10.5194/amt-9-1461-2016
– ident: ref68
  doi: 10.1016/j.jastp.2015.11.008
– ident: ref33
  doi: 10.1051/aas:1998105
– ident: ref11
  doi: 10.1016/j.jastp.2004.01.021
– ident: ref19
  doi: 10.1016/S1364-6826(02)00047-0
– ident: ref50
– ident: ref26
  doi: 10.1029/JA074i016p04087
– ident: ref43
  doi: 10.5194/acp-16-5021-2016
– ident: ref66
  doi: 10.1175/1520-0469(2003)060<0194:MFTGOS>2.0.CO;2
– ident: ref47
  doi: 10.1364/AO.53.005934
– ident: ref65
  doi: 10.1029/2002GL015574
– ident: ref16
  doi: 10.1016/j.jastp.2004.01.027
– ident: ref48
  doi: 10.5194/acp-8-6775-2008
– ident: ref14
  doi: 10.1029/2002GL016452
– ident: ref55
  doi: 10.5194/amt-9-5955-2016
– ident: ref56
  doi: 10.1029/91JD01662
– ident: ref37
  doi: 10.1016/S1364-6826(00)00067-5
– ident: ref39
  doi: 10.1029/1999JD901169
– ident: ref27
  doi: 10.1016/j.jastp.2010.07.002
– ident: ref8
  doi: 10.1002/jgrd.50318
– ident: ref36
  doi: 10.1029/93JD02369
– ident: ref9
  doi: 10.1002/2015JA022127
– ident: ref15
  doi: 10.1175/1520-0469(1999)056<3010:NBITPO>2.0.CO;2
– ident: ref18
  doi: 10.1029/JD090iD02p03850
– ident: ref51
– ident: ref5
  doi: 10.1016/0021-9169(94)90004-3
– ident: ref7
  doi: 10.5194/nhess-10-1431-2010
– ident: ref75
  doi: 10.1002/2016JD026368
– ident: ref49
  doi: 10.1016/S0273-1177(01)00313-1
– ident: ref58
  doi: 10.1016/j.jastp.2016.08.014
– ident: ref6
  doi: 10.1029/1999JD900307
– ident: ref60
  doi: 10.1029/97JD02985
– ident: ref70
  doi: 10.1016/j.jastp.2017.01.003
– ident: ref32
  doi: 10.1016/j.jastp.2005.01.018
– ident: ref30
  doi: 10.1016/j.jastp.2015.03.001
– ident: ref62
  doi: 10.1016/0021-9169(94)90097-3
– ident: ref71
  doi: 10.5194/amt-10-4895-2017
– ident: ref1
  doi: 10.1088/0031-8949/37/4/021
– ident: ref42
– ident: ref13
  doi: 10.1016/S1474-7065(02)00036-0
– ident: ref38
  doi: 10.1086/145296
– ident: ref69
  doi: 10.1016/j.jastp.2015.12.003
– ident: ref2
  doi: 10.1002/2017JD027460
– ident: ref52
– ident: ref74
  doi: 10.1029/2008JD011472
– ident: ref45
  doi: 10.1029/93GL01593
– ident: ref53
  doi: 10.1016/j.jastp.2013.05.001
– ident: ref72
  doi: 10.5194/amt-11-2937-2018
– ident: ref67
  doi: 10.1029/2004GL020410
– ident: ref64
  doi: 10.1029/2017JD027974
– ident: ref73
  doi: 10.5194/acp-19-6401-2019
SSID ssj0064172
Score 2.3385847
Snippet The period range between 6 and 480 min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method...
The period range between 6 and 480 min is known to represent the major part of the gravity wave spectrum driving mesospheric dynamics. We present a method...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 5117
SubjectTerms Airglow
Algorithms
Analysis
Annual variations
Atmospheric research
Data acquisition
Environmental research
Gravity waves
Infrared spectrometers
Instruments
Lidar
Lower mantle
Lower thermosphere
Measurement techniques
Mesosphere
Mesospheric dynamics
Mesospheric gravity waves
Middle atmosphere
Mountains
Observatories
Optical radar
Polar environments
Remote sensing
Seasonal variability
Seasonal variation
Seasonal variations
Spectrometers
Stratospheric winds
Temperature
Temperature data
Thermosphere
Time series
Wave period
Wave spectra
Wavelet analysis
Winter
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQTxFokYUQ0EO0iWM79rFUVC1iOUBX6s1y_ECVsskq-0Ac-O_MOFnUPSAuHG3PIfaM7W8mnm8IedNoMISGV7kTQuU8VnWuI3N5LaP3qva8iRjQn3-Rlwv-6Ubc3Cn1hW_CRnrgceFmgOALH6RvnHPcR2XBvwjCcierIB0bU_dKsXemxjNY8jKVbUK2NmTZK8cflIBW-Mwusf56DkCjBhPBOt93LqTE2_-30zldORcPyYMJK9Kz8RsfkXuhe0yyOcDcfkjRcPqWnre3gDlT6wn5dYWh2nzkGaU7cIPHeBztI00plYNt258UPOy-3QVPsfYQoHD6w-4CxQyH1LrtKKBCul2twkCXILtG6oEwa7GgGg4Ny6mLvl_MP1-fUqzu0HdPyeLi4_X5ZT7VV8gdV8UGNFNEpwNABlFHUXpYUq8bFkoJboOzuOFVcLH0tVWF9ogmlLfQIVhodKirZ-So67vwnFDEVdHrEsYcZ0VUZfSs8JIp11gWdEZO94tsViONhgH3AxViQCGmrAwqxKBCMvIBtfBHDgmwUweYhZnMwvzLLDLyGnVokOKiwzc03-12vTZX376aM1lJ8Cu0EBl5NwnFHjTg7JSSAHNCVqwDyeMDSdiD7nB4bypmOgPWBoCT1KoCvPTif8zoJbmPq4NvVZg-JkebYRtOABBtmlfJ9n8DkiIKMA
  priority: 102
  providerName: Directory of Open Access Journals
Title Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region
URI https://www.proquest.com/docview/2446983613/abstract/
https://doaj.org/article/1490de6dbccc4df8a917e5a4c63e6c29
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe-GCeIqFdmUhBPQQ5e3YJ9RWXbaIrVDpSr1Zjh9VpWyyZB8VB_47M04C7AGOsUeKnJmMvxl7viHkbSnAEMosDXSe8yBzaREIl-igYM4YXpisdJjQn12y6Tz7fJPf7JHpUAuD1yoHn-gdtWk05shD2IaY4CnsPqEqMQug1-HH5fcA-0fhOWvfTOMBOYiREw9rxiefBp_Msti3cUL2NmTdi7sDS0AvWagW2I89AOBRgMlg3--_NijP4_8vb-23oMlj8qjHjvSkU_YTsmfrp2Q0A9jbtD47Tt_Rs-oOMKh_ekZ-XmDqNuh4R-kWwuIuP0cbR32JZauq6geFiLupttZQ7EUEqJzeq62lWPHgn-5qCiiRbpZL29IFyK6QisCGFTZYw6l20Q_RD_PZl-tjit0emvo5mU_Or8-mQd9vIdAZj9agqchpYQFC5IXLY6NZakSZ2JhBGKEVOgButYtNoXgkDKILbhQM5IkthS3SF2S_bmr7klDEWc6IGOZ0lkSOx84kkWEJ16VKrBiR4-Ejy2VHqyEhHEGFSFCIjFOJCpGokBE5RS38lkNCbD_QtLey_78gghGRscyUWuvMOK4gDLW5ymANlukEXvgGdSiR8qLGOzW3arNayYtvV_KEpQziDJHnI_K-F3INWpjqSxRgTciStSN5uCMJ_6TenR5MRfY-YSX_WPCr_0-_Jg9x3XgrJRGHZH_dbuwRQJ91OfZWPSYHp-eXX6_GPoHwC-59BsA
link.rule.ids 315,786,790,870,2115,12792,21416,27957,27958,33408,33779,43635,43840,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgOcAF8RRdFrAQAvYQNQ_HiU9oWVFaaPcArbQ3y_FjtVKalKQt4sB_Z8Z1gR7gGHukKJnxzDdj-xtCXlUCDKFiWaTzvIyYy4pIuFRHBXfGlIVhlcOC_uyCjxfs02V-GQpufThWufeJ3lGbVmONfAhhiIsyg-jzbvUtwq5RuLsaWmjcJLdYBqETb4qPPu49MWeJb96EnG3ItZfstikBs7ChWmIX9gjgRgGGgt2-_wpLnr3_Xz7aB57RPXI3IEZ6tlPxfXLDNg_IYAZgt-18TZy-puf1NSBP__SQ_JxgwTbasY3SLSTDu6ocbR31Fys7Vdc_KOTZbb21hmIHIsDi9LvaWor3HPzTdUMBG9LNamU7ugTZHgkI7LDGtmo41S3DEH27mE3npxR7PLTNI7IYfZifj6PQZSHSrIzXoJ_YaWEBOOSFyxOjeWZEldqEQ_KgFS770mqXmEKVsTCIKUqjYCBPbSVskT0mR03b2CeEIrpyRiQwp1kauzJxJo0NT0tdqdSKATnd_2S52pFpSEhCUCESFCKTTKJCJCpkQN6jFn7LIQ22H2i7KxlWFeQtIjaWm0przYwrFSSfNlcMvsFyncILX6IOJRJdNHiS5kpt-l5Ovn6RZzzjkF2IPB-QN0HItaABrcLFBPgm5MY6kDw5kISVqA-n96Yigyfo5R-7Pf7_9AtyezyfTeV0cvH5KbmD_wDPpaTihBytu419BuBnXT33Fv4LjXsDXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXVF5iSwELIaCHaPNwnPiE2tJVF7qrqnSl3izHj6pSNtkmu4s48N-ZSbzAHuAYe6Qo-Sbjbyb2N4S8KwQ4QsGSQKdpHjCXZIFwsQ4y7ozJM8MKhwX9yZSfzdiX6_Ta739q_bbKTUzsArWpNdbIh7AMcZEnsPoMnd8WcfF59GlxF2AHKfzT6ttp3Ce7GeMpePju8en04nITlzmLulZOqOCGyntR_9MSGAwbqjn2ZA-AfGTgNtj7-69FqtPy_1fE7pah0R555PkjPeoBf0zu2eoJGUyA-tZNVyGn7-lJeQs8tLt6Sn6OsXwb9NqjdA2pcV-jo7Wj3THLRpXlDwpZd12uraHYjwiYOf2u1pbiqYfu6raiwBTparGwDZ2DbYtyBHZYYpM1nGrmfoh-nE3Orw4pdnyoq2dkNjq9OjkLfM-FQLM8XAJaodPCAo1IM5dGRvPEiCK2EYdUQisMArnVLjKZykNhkGHkRsFAGttC2Cx5TnaqurIvCEWu5YyIYE6zOHR55EwcGh7nulCxFQNyuHnJctFLa0hISRAQCYDIKJEIiERABuQYUfhth6LY3UDd3Ej_jUEWI0JjuSm01sy4XEEqalPF4Bks1zHc8C1iKFH2okIHulGrtpXjb5fyiCcccg2RpgPywRu5GhDQyh9TgGdCpawty4MtS_gu9fb0xlWkjwut_OPF-_-ffkMegHvL8_H060vyEF8BblKJxQHZWTYr-wqY0LJ47V38FykfCQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intra-annual+variations+of+spectrally+resolved+gravity+wave+activity+in+the+upper+mesosphere%2Flower+thermosphere+%28UMLT%29+region&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Sedlak%2C+Ren%C3%A9&rft.au=Zuhr%2C+Alexandra&rft.au=Schmidt%2C+Carsten&rft.au=W%C3%BCst%2C+Sabine&rft.date=2020-09-29&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=13&rft.issue=9&rft.spage=5117&rft.epage=5128&rft_id=info:doi/10.5194%2Famt-13-5117-2020&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon