Nonperturbative matching between equal-time and lightcone quantization
A bstract We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are n...
Saved in:
Published in | The journal of high energy physics Vol. 2020; no. 10; pp. 1 - 27 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2020
Springer Nature B.V Springer Nature SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of
λϕ
4
theory in
d
= 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC. |
---|---|
AbstractList | A
bstract
We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of
λϕ
4
theory in
d
= 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC. We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC. Abstract We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC. We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λΦ4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC. We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC. |
ArticleNumber | 92 |
Author | Walters, Matthew T. Katz, Emanuel Fitzpatrick, A. Liam |
Author_xml | – sequence: 1 givenname: A. Liam surname: Fitzpatrick fullname: Fitzpatrick, A. Liam organization: Department of Physics, Boston University – sequence: 2 givenname: Emanuel surname: Katz fullname: Katz, Emanuel organization: Department of Physics, Boston University – sequence: 3 givenname: Matthew T. orcidid: 0000-0001-8063-7228 surname: Walters fullname: Walters, Matthew T. email: matthew.walters@cern.ch organization: Theoretical Physics Department, CERN, Esplanade des Particules |
BackLink | https://www.osti.gov/servlets/purl/1833186$$D View this record in Osti.gov |
BookMark | eNp1kUtv1DAUhSNUJNrCmm0EG1iEXj8Sx0tUtbSoAhawtvy4mfEoY09tTxH8ejwNiKpSV7auznd8ju9JcxRiwKZ5TeADARBnn68uvhF4R4HCe5D0WXNMgMpu5EIePbi_aE5y3gCQnkg4bi6_xLDDVPbJ6OLvsN3qYtc-rFqD5SdiaPF2r-eu-C22Orh29qt1sfXpts5D8b8rFsPL5vmk54yv_p6nzY_Li-_nV93N10_X5x9vOstHKB23lE6SWS6MNQPTxAjnjBMUHI5cOkkpgBFMjLyX2g19L9FoGKQwAzDm2Glzvfi6qDdql_xWp18qaq_uBzGtlE7F2xkVSKDMOYqTc1xKanAEzXBAQAYT2ur1ZvGKuXiVrS9o17VZQFsUGRkj41BFbxfRLsXbPeaiNnGfQu2oKBeM05qNVlW_qGyKOSecVHW7_5iStJ8VAXXYkVp2pA47qvkO3Nkj7l-lpwlYiFyVYYXpf56nkD8cx6Pw |
CitedBy_id | crossref_primary_10_1103_PhysRevD_102_116010 crossref_primary_10_1103_PhysRevA_103_042410 crossref_primary_10_1103_PhysRevD_105_016020 crossref_primary_10_1007_JHEP01_2021_182 crossref_primary_10_1007_JHEP02_2022_146 crossref_primary_10_1016_j_physrep_2022_09_004 crossref_primary_10_1007_JHEP12_2020_011 crossref_primary_10_1007_JHEP05_2021_190 crossref_primary_10_1007_JHEP07_2021_163 crossref_primary_10_1007_JHEP02_2021_098 crossref_primary_10_1007_JHEP04_2022_109 crossref_primary_10_1103_PhysRevD_105_116006 |
Cites_doi | 10.1142/S0217751X91002161 10.1088/1126-6708/2004/05/007 10.1143/PTP.56.270 10.1103/PhysRevD.99.034508 10.1007/BF02826338 10.1103/PhysRevD.79.056008 10.1007/JHEP05(2014)143 10.1016/S0370-1573(97)00089-6 10.1103/PhysRevB.21.3976 10.1103/PhysRevD.91.085043 10.1007/JHEP08(2018)148 10.1103/PhysRevD.88.085030 10.1103/PhysRevD.90.056003 10.1007/JHEP03(2019)149 10.1103/PhysRevD.49.6720 10.1103/PhysRevD.96.065024 10.1103/PhysRevD.47.4628 10.1103/PhysRevD.93.065014 10.1103/PhysRevD.92.034509 10.1103/PhysRevD.37.1076 10.1103/PhysRev.180.1506 10.1103/PhysRev.150.1313 10.1103/PhysRevD.57.4942 10.1007/JHEP08(2018)120 10.1088/1742-5468/2014/12/P12010 10.1103/PhysRevD.91.025005 10.1103/PhysRevD.95.096016 10.1103/PhysRevD.91.085011 10.1007/JHEP03(2019)107 10.1103/PhysRevD.7.1780 10.1142/S0217751X9000218X 10.1007/JHEP10(2017)213 10.1016/j.aop.2013.06.012 10.1007/JHEP08(2017)056 10.1016/j.ppnp.2016.06.002 10.1007/JHEP05(2019)184 10.1007/JHEP07(2016)140 10.1007/JHEP10(2016)050 10.1103/PhysRevD.94.065006 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Boston Univ., MA (United States) |
CorporateAuthor_xml | – name: Boston Univ., MA (United States) |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI DOA |
DOI | 10.1007/JHEP10(2020)092 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 27 |
ExternalDocumentID | oai_doaj_org_article_09023dd2efdd4992be80a3e6e0e30fec 1833186 10_1007_JHEP10_2020_092 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS AAYZJ AHBXF OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c480t-4c22f93c47bcb63a1b7ddbd720de849d92200b7378459ad6559eba0697b6033d3 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:28:51 EDT 2025 Mon Jul 10 02:30:34 EDT 2023 Fri Jul 25 05:58:27 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Tue Jul 01 00:58:57 EDT 2025 Fri Feb 21 02:48:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Field Theories in Lower Dimensions Conformal Field Theory Nonperturbative Effects |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-4c22f93c47bcb63a1b7ddbd720de849d92200b7378459ad6559eba0697b6033d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0015845 USDOE Office of Science (SC), High Energy Physics (HEP) |
ORCID | 0000-0001-8063-7228 0000000180637228 |
OpenAccessLink | https://www.proquest.com/docview/2473426972?pq-origsite=%requestingapplication% |
PQID | 2473426972 |
PQPubID | 2034718 |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_09023dd2efdd4992be80a3e6e0e30fec osti_scitechconnect_1833186 proquest_journals_2473426972 crossref_citationtrail_10_1007_JHEP10_2020_092 crossref_primary_10_1007_JHEP10_2020_092 springer_journals_10_1007_JHEP10_2020_092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Nature SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Nature – name: SpringerOpen |
References | B. Elliott, S.S. Chabysheva and J.R. Hiller, Application of the light-front coupled-cluster method to ϕ4theory in two dimensions, Phys. Rev. D90 (2014) 056003 [arXiv:1407.7139] [INSPIRE]. BurkardtMLight front quantization of the sine-Gordon modelPhys. Rev. D19934746281993PhRvD..47.4628B10.1103/PhysRevD.47.4628[INSPIRE] S.S. Chabysheva and J.R. Hiller, Light-frontϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory with sector-dependent mass, Phys. Rev. D95 (2017) 096016 [arXiv:1612.09331] [INSPIRE]. HarindranathAVaryJPStability of the Vacuum in Scalar Field Models in 1 + 1 DimensionsPhys. Rev. D19883710761988PhRvD..37.1076H10.1103/PhysRevD.37.1076[INSPIRE] MaskawaTYamawakiKThe Problem of P+ = 0 Mode in the Null Plane Field Theory and Dirac’s Method of QuantizationProg. Theor. Phys.1976562701976PThPh..56..270M41385410.1143/PTP.56.270[INSPIRE] YurovVPZamolodchikovABTruncated fermionic space approach to the critical 2D Ising model with magnetic fieldInt. J. Mod. Phys. A1991645571991IJMPA...6.4557Y10.1142/S0217751X91002161[INSPIRE] Le GuillouJCZinn-JustinJCritical Exponents from Field TheoryPhys. Rev. B19802139761980PhRvB..21.3976L56844110.1103/PhysRevB.21.3976[INSPIRE] J. Collins, The non-triviality of the vacuum in light-front quantization: An elementary treatment, arXiv:1801.03960 [INSPIRE]. WilsonKGWalhoutTSHarindranathAZhangW-MPerryRJGlazekSDNonperturbative QCD: A Weak coupling treatment on the light frontPhys. Rev. D19944967201994PhRvD..49.6720W127861710.1103/PhysRevD.49.6720[hep-th/9401153] [INSPIRE] M. Serone, G. Spada and G. Villadoro, λϕ4Theory I: The Symmetric Phase Beyond NNNNNNNNLO, JHEP08 (2018) 148 [arXiv:1805.05882] [INSPIRE]. ChangS-JMaS-KFeynman rules and quantum electrodynamics at infinite momentumPhys. Rev.196918015061969PhRv..180.1506C10.1103/PhysRev.180.1506[INSPIRE] M. Hogervorst, RG flows on Sdand Hamiltonian truncation, arXiv:1811.00528 [INSPIRE]. M. Burkardt, S.S. Chabysheva and J.R. Hiller, Two-dimensional light-front ϕ4theory in a symmetric polynomial basis, Phys. Rev. D94 (2016) 065006 [arXiv:1607.00026] [INSPIRE]. AnandNGenestVXKatzEKhandkerZUWaltersMTRG flow from ϕ4theory to the 2D Ising modelJHEP2017080562017JHEP...08..056A369742610.1007/JHEP08(2017)056[arXiv:1704.04500] [INSPIRE] A. Coser, M. Beria, G.P. Brandino, R.M. Konik and G. Mussardo, Truncated Conformal Space Approach for 2D Landau-Ginzburg Theories, J. Stat. Mech.1412 (2014) P12010 [arXiv:1409.1494] [INSPIRE]. HillerJRNonperturbative light-front Hamiltonian methodsProg. Part. Nucl. Phys.201690752016PrPNP..90...75H10.1016/j.ppnp.2016.06.002[arXiv:1606.08348] [INSPIRE] M. Burkardt, Much ado about nothing: Vacuum and renormalization on the light front, in proceedings of the 10th Summer School and Symposium on Nuclear Physics: QCD, Light cone Physics and Hadron Phenomenology (NuSS 97), Seoul, Republic of Korea, 23–28 June 1997, pp. 170–199 [hep-ph/9709421] [INSPIRE]. A. Milsted, J. Haegeman and T.J. Osborne, Matrix product states and variational methods applied to critical quantum field theory, Phys. Rev. D88 (2013) 085030 [arXiv:1302.5582] [INSPIRE]. S. Weinberg, Dynamics at infinite momentum, Phys. Rev.150 (1966) 1313 [INSPIRE]. M. Hogervorst, S. Rychkov and B.C. van Rees, Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory?, Phys. Rev. D91 (2015) 025005 [arXiv:1409.1581] [INSPIRE]. L.V. Delacrétaz, A.L. Fitzpatrick, E. Katz and L.G. Vitale, Conformal Truncation of Chern-Simons Theory at Large Nf, JHEP03 (2019) 107 [arXiv:1811.10612] [INSPIRE]. S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the φ4theory in two dimensions, Phys. Rev. D91 (2015) 085011 [arXiv:1412.3460] [INSPIRE]. FitzpatrickALKaplanJKatzEVitaleLGWaltersMTLightcone effective Hamiltonians and RG flowsJHEP2018081202018JHEP...08..120F386120210.1007/JHEP08(2018)120[arXiv:1803.10793] [INSPIRE] KatzEKhandkerZUWaltersMTA Conformal Truncation Framework for Infinite-Volume DynamicsJHEP2016071402016JHEP...07..140K355023510.1007/JHEP07(2016)140[arXiv:1604.01766] [INSPIRE] S.R. Beane, Broken Chiral Symmetry on a Null Plane, Annals Phys.337 (2013) 111 [arXiv:1302.1600] [INSPIRE]. J. Elias-Miro, S. Rychkov and L.G. Vitale, NLO Renormalization in the Hamiltonian Truncation, Phys. Rev. D96 (2017) 065024 [arXiv:1706.09929] [INSPIRE]. KatzEMarques TavaresGXuYSolving 2D QCD with an adjoint fermion analyticallyJHEP2014051432014JHEP...05..143K10.1007/JHEP05(2014)143[arXiv:1308.4980] [INSPIRE] J. Elias-Miro, S. Rychkov and L.G. Vitale, High-Precision Calculations in Strongly Coupled Quantum Field Theory with Next-to-Leading-Order Renormalized Hamiltonian Truncation, JHEP10 (2017) 213 [arXiv:1706.06121] [INSPIRE]. T. Sugihara, Density matrix renormalization group in a two-dimensional λϕ4Hamiltonian lattice model, JHEP05 (2004) 007 [hep-lat/0403008] [INSPIRE]. YurovVPZamolodchikovABTruncated conformal space approach to scaling Lee-Yang modelInt. J. Mod. Phys. A1990532211990IJMPA...5.3221Y10.1142/S0217751X9000218X[INSPIRE] S.S. Chabysheva and J.R. Hiller, Transitioning from equal-time to light-front quantization inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, arXiv:1811.01685 [INSPIRE]. D. Schaich and W. Loinaz, An Improved lattice measurement of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D79 (2009) 056008 [arXiv:0902.0045] [INSPIRE]. T. Heinzl, Light cone zero modes revisited, in proceedings of the Light-Cone Workshop: Hadrons and Beyond (LC 03), Durham, U.K., 5–9 August 2003, hep-th/0310165 [INSPIRE]. M. Herrmann and W.N. Polyzou, Light-front vacuum, Phys. Rev. D91 (2015) 085043 [arXiv:1502.01230] [INSPIRE]. L. Martinovic and A. Dorokhov, Vacuum loops in light-front field theory, arXiv:1812.02336 [INSPIRE]. S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept.301 (1998) 299 [hep-ph/9705477] [INSPIRE]. E. Katz, G. Marques Tavares and Y. Xu, A solution of 2D QCD at Finite N using a conformal basis, arXiv:1405.6727 [INSPIRE]. Z. Bajnok and M. Lajer, Truncated Hilbert space approach to the 2d ϕ4theory, JHEP10 (2016) 050 [arXiv:1512.06901] [INSPIRE]. P. Bosetti, B. De Palma and M. Guagnelli, Monte Carlo determination of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D92 (2015) 034509 [arXiv:1506.08587] [INSPIRE]. RomatschkePSimple non-perturbative resummation schemes beyond mean-field: case study for scalar ϕ4theory in 1 + 1 dimensionsJHEP2019031492019JHEP...03..149R394085610.1007/JHEP03(2019)149[arXiv:1901.05483] [INSPIRE] K. Yamawaki, Zero mode problem on the light front, in proceedings of the 10th Summer School and Symposium on Nuclear Physics: QCD, Light cone Physics and Hadron Phenomenology (NuSS 97), Seoul, Republic of Korea, 23–28 June 1997, pp. 116–199 [hep-th/9802037] [INSPIRE]. YanT-MQuantum field theories in the infinite momentum frame. 4. Scattering matrix of vector and Dirac fields and perturbation theoryPhys. Rev. D1973717801973PhRvD...7.1780Y10.1103/PhysRevD.7.1780[INSPIRE] TsujimaruSYamawakiKZero mode and symmetry breaking on the light frontPhys. Rev. D19985749421998PhRvD..57.4942T10.1103/PhysRevD.57.4942[hep-th/9704171] [INSPIRE] S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the ϕ4theory in two dimensions. II. The ℤ2-broken phase and the Chang duality, Phys. Rev. D93 (2016) 065014 [arXiv:1512.00493] [INSPIRE]. Elias-MiroJMontullMRiembauMThe renormalized Hamiltonian truncation method in the large ET expansionJHEP2016041442016JHEP...04..144E[arXiv:1512.05746] [INSPIRE] KadohDKuramashiYNakamuraYSakaiRTakedaSYoshimuraYTensor network analysis of critical coupling in two dimensional ϕ4theoryJHEP2019051842019JHEP...05..184K397340910.1007/JHEP05(2019)184[arXiv:1811.12376] [INSPIRE] LeutwylerHKlauderJRStreitLQuantum field theory on lightlike slabsNuovo Cim. A1970665361970NCimA..66..536L26034710.1007/BF02826338[INSPIRE] S. Bronzin, B. De Palma and M. Guagnelli, New Monte Carlo determination of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D99 (2019) 034508 [arXiv:1807.03381] [INSPIRE]. T-M Yan (13994_CR7) 1973; 7 N Anand (13994_CR35) 2017; 08 D Kadoh (13994_CR40) 2019; 05 13994_CR26 13994_CR48 13994_CR29 13994_CR28 13994_CR1 KG Wilson (13994_CR3) 1994; 49 13994_CR12 P Romatschke (13994_CR43) 2019; 03 13994_CR11 13994_CR33 13994_CR14 13994_CR36 13994_CR13 J Elias-Miro (13994_CR27) 2016; 04 13994_CR30 T Maskawa (13994_CR8) 1976; 56 13994_CR10 13994_CR31 S Tsujimaru (13994_CR9) 1998; 57 H Leutwyler (13994_CR2) 1970; 66 13994_CR4 S-J Chang (13994_CR6) 1969; 180 JC Le Guillou (13994_CR20) 1980; 21 13994_CR19 JR Hiller (13994_CR5) 2016; 90 13994_CR38 13994_CR15 13994_CR37 13994_CR18 13994_CR39 13994_CR23 E Katz (13994_CR32) 2014; 05 E Katz (13994_CR34) 2016; 07 13994_CR45 13994_CR44 13994_CR25 13994_CR47 AL Fitzpatrick (13994_CR16) 2018; 08 13994_CR24 13994_CR46 13994_CR41 A Harindranath (13994_CR42) 1988; 37 M Burkardt (13994_CR17) 1993; 47 VP Yurov (13994_CR21) 1990; 5 VP Yurov (13994_CR22) 1991; 6 |
References_xml | – reference: YanT-MQuantum field theories in the infinite momentum frame. 4. Scattering matrix of vector and Dirac fields and perturbation theoryPhys. Rev. D1973717801973PhRvD...7.1780Y10.1103/PhysRevD.7.1780[INSPIRE] – reference: M. Burkardt, S.S. Chabysheva and J.R. Hiller, Two-dimensional light-front ϕ4theory in a symmetric polynomial basis, Phys. Rev. D94 (2016) 065006 [arXiv:1607.00026] [INSPIRE]. – reference: S.S. Chabysheva and J.R. Hiller, Light-frontϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory with sector-dependent mass, Phys. Rev. D95 (2017) 096016 [arXiv:1612.09331] [INSPIRE]. – reference: LeutwylerHKlauderJRStreitLQuantum field theory on lightlike slabsNuovo Cim. A1970665361970NCimA..66..536L26034710.1007/BF02826338[INSPIRE] – reference: K. Yamawaki, Zero mode problem on the light front, in proceedings of the 10th Summer School and Symposium on Nuclear Physics: QCD, Light cone Physics and Hadron Phenomenology (NuSS 97), Seoul, Republic of Korea, 23–28 June 1997, pp. 116–199 [hep-th/9802037] [INSPIRE]. – reference: D. Schaich and W. Loinaz, An Improved lattice measurement of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D79 (2009) 056008 [arXiv:0902.0045] [INSPIRE]. – reference: TsujimaruSYamawakiKZero mode and symmetry breaking on the light frontPhys. Rev. D19985749421998PhRvD..57.4942T10.1103/PhysRevD.57.4942[hep-th/9704171] [INSPIRE] – reference: L.V. Delacrétaz, A.L. Fitzpatrick, E. Katz and L.G. Vitale, Conformal Truncation of Chern-Simons Theory at Large Nf, JHEP03 (2019) 107 [arXiv:1811.10612] [INSPIRE]. – reference: S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept.301 (1998) 299 [hep-ph/9705477] [INSPIRE]. – reference: KatzEKhandkerZUWaltersMTA Conformal Truncation Framework for Infinite-Volume DynamicsJHEP2016071402016JHEP...07..140K355023510.1007/JHEP07(2016)140[arXiv:1604.01766] [INSPIRE] – reference: HarindranathAVaryJPStability of the Vacuum in Scalar Field Models in 1 + 1 DimensionsPhys. Rev. D19883710761988PhRvD..37.1076H10.1103/PhysRevD.37.1076[INSPIRE] – reference: S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the ϕ4theory in two dimensions. II. The ℤ2-broken phase and the Chang duality, Phys. Rev. D93 (2016) 065014 [arXiv:1512.00493] [INSPIRE]. – reference: Elias-MiroJMontullMRiembauMThe renormalized Hamiltonian truncation method in the large ET expansionJHEP2016041442016JHEP...04..144E[arXiv:1512.05746] [INSPIRE] – reference: MaskawaTYamawakiKThe Problem of P+ = 0 Mode in the Null Plane Field Theory and Dirac’s Method of QuantizationProg. Theor. Phys.1976562701976PThPh..56..270M41385410.1143/PTP.56.270[INSPIRE] – reference: M. Serone, G. Spada and G. Villadoro, λϕ4Theory I: The Symmetric Phase Beyond NNNNNNNNLO, JHEP08 (2018) 148 [arXiv:1805.05882] [INSPIRE]. – reference: A. Milsted, J. Haegeman and T.J. Osborne, Matrix product states and variational methods applied to critical quantum field theory, Phys. Rev. D88 (2013) 085030 [arXiv:1302.5582] [INSPIRE]. – reference: S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the φ4theory in two dimensions, Phys. Rev. D91 (2015) 085011 [arXiv:1412.3460] [INSPIRE]. – reference: M. Hogervorst, S. Rychkov and B.C. van Rees, Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory?, Phys. Rev. D91 (2015) 025005 [arXiv:1409.1581] [INSPIRE]. – reference: M. Burkardt, Much ado about nothing: Vacuum and renormalization on the light front, in proceedings of the 10th Summer School and Symposium on Nuclear Physics: QCD, Light cone Physics and Hadron Phenomenology (NuSS 97), Seoul, Republic of Korea, 23–28 June 1997, pp. 170–199 [hep-ph/9709421] [INSPIRE]. – reference: YurovVPZamolodchikovABTruncated fermionic space approach to the critical 2D Ising model with magnetic fieldInt. J. Mod. Phys. A1991645571991IJMPA...6.4557Y10.1142/S0217751X91002161[INSPIRE] – reference: AnandNGenestVXKatzEKhandkerZUWaltersMTRG flow from ϕ4theory to the 2D Ising modelJHEP2017080562017JHEP...08..056A369742610.1007/JHEP08(2017)056[arXiv:1704.04500] [INSPIRE] – reference: P. Bosetti, B. De Palma and M. Guagnelli, Monte Carlo determination of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D92 (2015) 034509 [arXiv:1506.08587] [INSPIRE]. – reference: B. Elliott, S.S. Chabysheva and J.R. Hiller, Application of the light-front coupled-cluster method to ϕ4theory in two dimensions, Phys. Rev. D90 (2014) 056003 [arXiv:1407.7139] [INSPIRE]. – reference: M. Hogervorst, RG flows on Sdand Hamiltonian truncation, arXiv:1811.00528 [INSPIRE]. – reference: T. Sugihara, Density matrix renormalization group in a two-dimensional λϕ4Hamiltonian lattice model, JHEP05 (2004) 007 [hep-lat/0403008] [INSPIRE]. – reference: J. Collins, The non-triviality of the vacuum in light-front quantization: An elementary treatment, arXiv:1801.03960 [INSPIRE]. – reference: Z. Bajnok and M. Lajer, Truncated Hilbert space approach to the 2d ϕ4theory, JHEP10 (2016) 050 [arXiv:1512.06901] [INSPIRE]. – reference: YurovVPZamolodchikovABTruncated conformal space approach to scaling Lee-Yang modelInt. J. Mod. Phys. A1990532211990IJMPA...5.3221Y10.1142/S0217751X9000218X[INSPIRE] – reference: RomatschkePSimple non-perturbative resummation schemes beyond mean-field: case study for scalar ϕ4theory in 1 + 1 dimensionsJHEP2019031492019JHEP...03..149R394085610.1007/JHEP03(2019)149[arXiv:1901.05483] [INSPIRE] – reference: BurkardtMLight front quantization of the sine-Gordon modelPhys. Rev. D19934746281993PhRvD..47.4628B10.1103/PhysRevD.47.4628[INSPIRE] – reference: E. Katz, G. Marques Tavares and Y. Xu, A solution of 2D QCD at Finite N using a conformal basis, arXiv:1405.6727 [INSPIRE]. – reference: FitzpatrickALKaplanJKatzEVitaleLGWaltersMTLightcone effective Hamiltonians and RG flowsJHEP2018081202018JHEP...08..120F386120210.1007/JHEP08(2018)120[arXiv:1803.10793] [INSPIRE] – reference: J. Elias-Miro, S. Rychkov and L.G. Vitale, NLO Renormalization in the Hamiltonian Truncation, Phys. Rev. D96 (2017) 065024 [arXiv:1706.09929] [INSPIRE]. – reference: S. Bronzin, B. De Palma and M. Guagnelli, New Monte Carlo determination of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D99 (2019) 034508 [arXiv:1807.03381] [INSPIRE]. – reference: WilsonKGWalhoutTSHarindranathAZhangW-MPerryRJGlazekSDNonperturbative QCD: A Weak coupling treatment on the light frontPhys. Rev. D19944967201994PhRvD..49.6720W127861710.1103/PhysRevD.49.6720[hep-th/9401153] [INSPIRE] – reference: S. Weinberg, Dynamics at infinite momentum, Phys. Rev.150 (1966) 1313 [INSPIRE]. – reference: L. Martinovic and A. Dorokhov, Vacuum loops in light-front field theory, arXiv:1812.02336 [INSPIRE]. – reference: ChangS-JMaS-KFeynman rules and quantum electrodynamics at infinite momentumPhys. Rev.196918015061969PhRv..180.1506C10.1103/PhysRev.180.1506[INSPIRE] – reference: M. Herrmann and W.N. Polyzou, Light-front vacuum, Phys. Rev. D91 (2015) 085043 [arXiv:1502.01230] [INSPIRE]. – reference: Le GuillouJCZinn-JustinJCritical Exponents from Field TheoryPhys. Rev. B19802139761980PhRvB..21.3976L56844110.1103/PhysRevB.21.3976[INSPIRE] – reference: T. Heinzl, Light cone zero modes revisited, in proceedings of the Light-Cone Workshop: Hadrons and Beyond (LC 03), Durham, U.K., 5–9 August 2003, hep-th/0310165 [INSPIRE]. – reference: A. Coser, M. Beria, G.P. Brandino, R.M. Konik and G. Mussardo, Truncated Conformal Space Approach for 2D Landau-Ginzburg Theories, J. Stat. Mech.1412 (2014) P12010 [arXiv:1409.1494] [INSPIRE]. – reference: HillerJRNonperturbative light-front Hamiltonian methodsProg. Part. Nucl. Phys.201690752016PrPNP..90...75H10.1016/j.ppnp.2016.06.002[arXiv:1606.08348] [INSPIRE] – reference: KatzEMarques TavaresGXuYSolving 2D QCD with an adjoint fermion analyticallyJHEP2014051432014JHEP...05..143K10.1007/JHEP05(2014)143[arXiv:1308.4980] [INSPIRE] – reference: S.R. Beane, Broken Chiral Symmetry on a Null Plane, Annals Phys.337 (2013) 111 [arXiv:1302.1600] [INSPIRE]. – reference: J. Elias-Miro, S. Rychkov and L.G. Vitale, High-Precision Calculations in Strongly Coupled Quantum Field Theory with Next-to-Leading-Order Renormalized Hamiltonian Truncation, JHEP10 (2017) 213 [arXiv:1706.06121] [INSPIRE]. – reference: S.S. Chabysheva and J.R. Hiller, Transitioning from equal-time to light-front quantization inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, arXiv:1811.01685 [INSPIRE]. – reference: KadohDKuramashiYNakamuraYSakaiRTakedaSYoshimuraYTensor network analysis of critical coupling in two dimensional ϕ4theoryJHEP2019051842019JHEP...05..184K397340910.1007/JHEP05(2019)184[arXiv:1811.12376] [INSPIRE] – volume: 6 start-page: 4557 year: 1991 ident: 13994_CR22 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X91002161 – ident: 13994_CR48 doi: 10.1088/1126-6708/2004/05/007 – volume: 56 start-page: 270 year: 1976 ident: 13994_CR8 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.56.270 – ident: 13994_CR37 – ident: 13994_CR38 doi: 10.1103/PhysRevD.99.034508 – volume: 66 start-page: 536 year: 1970 ident: 13994_CR2 publication-title: Nuovo Cim. A doi: 10.1007/BF02826338 – ident: 13994_CR14 – ident: 13994_CR47 doi: 10.1103/PhysRevD.79.056008 – ident: 13994_CR18 – volume: 05 start-page: 143 year: 2014 ident: 13994_CR32 publication-title: JHEP doi: 10.1007/JHEP05(2014)143 – ident: 13994_CR4 doi: 10.1016/S0370-1573(97)00089-6 – volume: 21 start-page: 3976 year: 1980 ident: 13994_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.21.3976 – ident: 13994_CR13 doi: 10.1103/PhysRevD.91.085043 – ident: 13994_CR19 doi: 10.1007/JHEP08(2018)148 – ident: 13994_CR39 doi: 10.1103/PhysRevD.88.085030 – ident: 13994_CR44 doi: 10.1103/PhysRevD.90.056003 – volume: 03 start-page: 149 year: 2019 ident: 13994_CR43 publication-title: JHEP doi: 10.1007/JHEP03(2019)149 – volume: 49 start-page: 6720 year: 1994 ident: 13994_CR3 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.49.6720 – ident: 13994_CR30 doi: 10.1103/PhysRevD.96.065024 – ident: 13994_CR31 – volume: 47 start-page: 4628 year: 1993 ident: 13994_CR17 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.4628 – ident: 13994_CR26 doi: 10.1103/PhysRevD.93.065014 – ident: 13994_CR33 – ident: 13994_CR46 doi: 10.1103/PhysRevD.92.034509 – volume: 37 start-page: 1076 year: 1988 ident: 13994_CR42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.37.1076 – volume: 180 start-page: 1506 year: 1969 ident: 13994_CR6 publication-title: Phys. Rev. doi: 10.1103/PhysRev.180.1506 – ident: 13994_CR10 – ident: 13994_CR1 doi: 10.1103/PhysRev.150.1313 – volume: 57 start-page: 4942 year: 1998 ident: 13994_CR9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.57.4942 – volume: 08 start-page: 120 year: 2018 ident: 13994_CR16 publication-title: JHEP doi: 10.1007/JHEP08(2018)120 – ident: 13994_CR23 doi: 10.1088/1742-5468/2014/12/P12010 – ident: 13994_CR15 – ident: 13994_CR24 doi: 10.1103/PhysRevD.91.025005 – ident: 13994_CR45 doi: 10.1103/PhysRevD.95.096016 – ident: 13994_CR25 doi: 10.1103/PhysRevD.91.085011 – ident: 13994_CR36 doi: 10.1007/JHEP03(2019)107 – volume: 7 start-page: 1780 year: 1973 ident: 13994_CR7 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.7.1780 – volume: 5 start-page: 3221 year: 1990 ident: 13994_CR21 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X9000218X – ident: 13994_CR29 doi: 10.1007/JHEP10(2017)213 – volume: 04 start-page: 144 year: 2016 ident: 13994_CR27 publication-title: JHEP – ident: 13994_CR12 doi: 10.1016/j.aop.2013.06.012 – volume: 08 start-page: 056 year: 2017 ident: 13994_CR35 publication-title: JHEP doi: 10.1007/JHEP08(2017)056 – volume: 90 start-page: 75 year: 2016 ident: 13994_CR5 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2016.06.002 – volume: 05 start-page: 184 year: 2019 ident: 13994_CR40 publication-title: JHEP doi: 10.1007/JHEP05(2019)184 – volume: 07 start-page: 140 year: 2016 ident: 13994_CR34 publication-title: JHEP doi: 10.1007/JHEP07(2016)140 – ident: 13994_CR28 doi: 10.1007/JHEP10(2016)050 – ident: 13994_CR11 – ident: 13994_CR41 doi: 10.1103/PhysRevD.94.065006 |
SSID | ssj0015190 |
Score | 2.4298377 |
Snippet | A
bstract
We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of
λϕ
4
theory in
d
= 2.... We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2. We discuss... We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ4 theory in d = 2. We discuss... We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λΦ4 theory in d = 2. We discuss... Abstract We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2.... |
SourceID | doaj osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Approximation Classical and Quantum Gravitation Conformal Field Theory Elementary Particles Field Theories in Lower Dimensions High energy physics Matching Measurement Nonperturbative Effects Numerical methods Parameters Perturbation theory Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9ZVycGDHuqOSdq0RxWXxYN4UPAWmmR6kipa_7-TNF0fsHjxVEjTdphJM9-QmW8YOyHAhlAhUpBDsaqyOhQr-zbHtpWtc85qF9k-78r5o7p9Kp6-tfoKOWEDPfCguGnIG5TeC2y9J3QuLFbQSCwRUEKLLuy-5PPGYCqdHxAugZHIB_T0dn5zfwGnFOjDGdTihw-KVP10eaFf6gfM_HUyGh3ObJNtJKTILwcJt9gKdttsLWZsuvcdNrt76V7xjTyGjdzdnKBnzIvkKfWKYyiYzEPzeN50nj-HMJyiX-Q03vWp_nKXPc5uHq7neWqKkDtVQZ8rJ0RbS6e0dbaUzYXV3luvBXisVO1rQeveaqkrVdSNLyliQNtAWWtbgpRe7rHVjr61zzg0ovZQ-LrwsQl6pRxKbWUDmlAfQsbORzUZlxjDQ-OKZzNyHQ96NUGvhvSasdPFA68DWcbyqVdB74tpgeU6DpDtTbK9-cv2GZsEqxkCC4Hx1oXUINcb2qVopyozdjga06Qf890IpWWo3tUkwdlo4K_bS6Q9-A9pJ2w9vG_IBDxkq_3bBx4RountcVy8n5SF8bQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQERIL4ilCC8rA0A4BN3bsZISqVdWhYqBSNyu2L1OVViX8f85OUtSiDkyJHFux7vz4Tnf3HSHPCNiApgBo5KCtyrV0ycq2iKAoWGGM0dJ4ts-5mC74bJksG5Iklwtz4L9_nU3HH0PaRxOdDmiGZ-1pMmTS1WgYidHOXYAwhLa8PX8H7V05npkfH2vcQXuo8sAR6u-XySW5aIBh-FZr8oqcQHlNznyApvm6IZP5utzAFi8I7am6Q0SaPgwybCKtQnD5kZGrFR_mpQ1XzupGYxdCbC-rJt3yliwm48_RNGpqIESGp7SKuInjImOGS220YPlQS2u1lTG1kPLMZjEucy2ZTHmS5VaggQA6pyKTWlDGLLsjnRL_dU9CmseZpYnNEutrnqfcAJOa5VQiyAMakJdWTMo0BOGuTsVKtdTGtVyVk6tCuQakvxuwqbkxjnd9d3LfdXOk1r4Bda2aPaJciCizNobCWjTEYg0pzRkIoMBoASYgXac1hdjAEdwaFwlkKoWHEh5MIiC9Vpmq2YdfKuaSuWRdiTMYtAr-_Xxktg__6Nsl5-61ju_rkU61_YZHxCmVfvJr9Af429-C priority: 102 providerName: Springer Nature |
Title | Nonperturbative matching between equal-time and lightcone quantization |
URI | https://link.springer.com/article/10.1007/JHEP10(2020)092 https://www.proquest.com/docview/2473426972 https://www.osti.gov/servlets/purl/1833186 https://doaj.org/article/09023dd2efdd4992be80a3e6e0e30fec |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbWFAN2GfbEvHaBDzu0B6-qpFj2aWiDZEEPQTEsQG-CJdG7FE6aeP9_pCKn6IDuYsOy_AAlUR8l8iPAVwJsKCpEMnLIVtXOcLByaAtsW9V6753xke1zWS5W-uZucpcW3HbJrXLQiVFRh7XnNfILqY3isEsjv28eCs4axburKYXGERyTCq6qERxfz5a3Pw_7CIRPxEDoI8zFzWJ2eynOyOAX56KWT-aiSNlPpzUNrSdw858d0jjxzN_A64QY86t9E7-FF9i9g5fRc9Pv3sN8ue42uKWZw0UO75wgaPSPzJMLVo4cOFlwEvm86UJ-z-Y4WcGYU3nXpzjMD7Caz35NF0VKjlB4XYm-0F7KtlZeG-ddqZpLZ0JwwUgRsNJ1qCX1f2eUqfSkbkJJlgO6RpAAXSmUCuojjDr61ifIRSPrICahnoSYDL3SHpVxqhGG0B-KDL4NYrI-MYdzAot7O3Ae7-VqWa6W5JrB2eGBzZ404_mq1yz3QzVmu44F6-1vmwaPZd9RFYLENgSy0KTDSjQKSxSoRIs-gxNuNUuggZlvPbsI-d6StiKNVWZwOjSmTQN0Zx-7UwbnQwM_3n7mbz___1Un8Ipr7n39TmHUb__gF8IsvRvDUTX_MU7dk66mUvOxnI7jKgAdV_LqL8TG7eE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgSXiqcaWiAHkNpDqGt74-SAEI8u2wcrDq3Um4ntCZcqu-ymQvwpfiMzTrJVkcqtp0iOH9HMePxNPA-A1wTYUBSIZOSQraqd4WDlUGdY16r23jvjY7bPaT4500fno_M1-DPEwrBb5aATo6IOM8__yPekNorDLo18P_-ZcdUovl0dSmh0YnGMv3-RybZ8d_iZ-PtGyvHB6adJ1lcVyLwuRJtpL2VdKq-N8y5X1b4zIbhgpAhY6DKUkgTHGWUKPSqrkBPkRlcJWtnlQqmgaN47cFcrOsk5Mn38ZXVrQWhIDOmDhNk7mhx82xc7khDZrijltZMvFgigx4w28jVw-899bDzmxg9ho8en6YdOoB7BGjaP4V70E_XLJzCezpo5LuiccjFjeEqAN3pjpr3DV4ocpplxyfq0akJ6wcY_2dyYUnvT9lGfT-HsVoj2DNYbWmsTUlHJMohRKEchll4vtEdlnKqEIayJIoG3A5ms7_OUc7mMCztkWO7oapmuluiawM5qwLxL0XFz149M91U3zq0dG2aLH7bfqpY9VVUIEusQyB6UDgtRKcxRoBI1-gS2mGuWIArn2fXskORbS7qR9GOewPbATNurg6W9Et4EdgcGX72-4Wuf_3-qV3B_cvr1xJ4cTo-34AGP6rwMt2G9XVziC0JLrXsZRTSF77e9J_4CGkEkbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-RtkAOILWHsK6djZMDQpTuatui1QpRqTcT2xMuVXbZTYX4a_w6ZhJnqyKVW0-RHDuxZsbjb-x5ALwlwIYiRyQjh2zV1GoOVvZVglWlKuec1a7N9jnLpufp6cXoYgv-9LEw7FbZ68RWUfuF4zPyoUy14rBLLYdVcIuYH08-Ln8mXEGKb1r7chqdiJzh719kvq0_nBwTr99JORl_-zxNQoWBxKW5aJLUSVkVyqXaOpup8tBq763XUnjM08IXkoTIaqXzdFSUPiP4jbYUNAubCaW8ou_eg23NVtEAto_Gs_nXzR0GYSPRJxMSeng6Hc8Pxb4kfHYgCnljH2zLBdBjQcv6BtT953a23fQmj-FRQKvxp068nsAW1k_hfus16tbPYDJb1Etc0a5l2_zhMcHf1jczDu5fMXLQZsIF7OOy9vElHwWQBY4xtddNiAF9Dud3QrYXMKjpXy8hFqUsvBj5YuTbQux56lBpq0qhCXmiiOB9TybjQtZyLp5xafp8yx1dDdPVEF0j2N8MWHYJO27vesR033TjTNttw2L1w4SFa9hvVXkvsfKerENpMRelwgwFKlGhi2CXuWYIsHDWXcfuSa4xpClJW2YR7PXMNEE5rM21KEdw0DP4-vUts935_6fewANaD-bLyexsFx7yoM7lcA8GzeoKXxF0auzrIKMxfL_rZfEXsy4qAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonperturbative+matching+between+equal-time+and+lightcone+quantization&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fitzpatrick%2C+A.+Liam&rft.au=Katz%2C+Emanuel&rft.au=Walters%2C+Matthew+T.&rft.date=2020-10-01&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2020&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282020%29092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP10_2020_092 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |