Nonperturbative matching between equal-time and lightcone quantization

A bstract We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are n...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 10; pp. 1 - 27
Main Authors Fitzpatrick, A. Liam, Katz, Emanuel, Walters, Matthew T.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Springer Nature
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC.
AbstractList A bstract We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC.
We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC.
Abstract We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC.
We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λΦ4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC.
We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ4 theory in d = 2. We discuss the perturbative matching between bare parameters and the failure of its naive nonperturbative extension. We argue that they are nevertheless the same theory nonperturbatively, and that furthermore the nonperturbative map between bare parameters can be extracted from ET perturbation theory via Borel resummation of the mass gap. We test this map by using it to compare physical quantities computed using numerical Hamiltonian truncation methods in ET and LC.
ArticleNumber 92
Author Walters, Matthew T.
Katz, Emanuel
Fitzpatrick, A. Liam
Author_xml – sequence: 1
  givenname: A. Liam
  surname: Fitzpatrick
  fullname: Fitzpatrick, A. Liam
  organization: Department of Physics, Boston University
– sequence: 2
  givenname: Emanuel
  surname: Katz
  fullname: Katz, Emanuel
  organization: Department of Physics, Boston University
– sequence: 3
  givenname: Matthew T.
  orcidid: 0000-0001-8063-7228
  surname: Walters
  fullname: Walters, Matthew T.
  email: matthew.walters@cern.ch
  organization: Theoretical Physics Department, CERN, Esplanade des Particules
BackLink https://www.osti.gov/servlets/purl/1833186$$D View this record in Osti.gov
BookMark eNp1kUtv1DAUhSNUJNrCmm0EG1iEXj8Sx0tUtbSoAhawtvy4mfEoY09tTxH8ejwNiKpSV7auznd8ju9JcxRiwKZ5TeADARBnn68uvhF4R4HCe5D0WXNMgMpu5EIePbi_aE5y3gCQnkg4bi6_xLDDVPbJ6OLvsN3qYtc-rFqD5SdiaPF2r-eu-C22Orh29qt1sfXpts5D8b8rFsPL5vmk54yv_p6nzY_Li-_nV93N10_X5x9vOstHKB23lE6SWS6MNQPTxAjnjBMUHI5cOkkpgBFMjLyX2g19L9FoGKQwAzDm2Glzvfi6qDdql_xWp18qaq_uBzGtlE7F2xkVSKDMOYqTc1xKanAEzXBAQAYT2ur1ZvGKuXiVrS9o17VZQFsUGRkj41BFbxfRLsXbPeaiNnGfQu2oKBeM05qNVlW_qGyKOSecVHW7_5iStJ8VAXXYkVp2pA47qvkO3Nkj7l-lpwlYiFyVYYXpf56nkD8cx6Pw
CitedBy_id crossref_primary_10_1103_PhysRevD_102_116010
crossref_primary_10_1103_PhysRevA_103_042410
crossref_primary_10_1103_PhysRevD_105_016020
crossref_primary_10_1007_JHEP01_2021_182
crossref_primary_10_1007_JHEP02_2022_146
crossref_primary_10_1016_j_physrep_2022_09_004
crossref_primary_10_1007_JHEP12_2020_011
crossref_primary_10_1007_JHEP05_2021_190
crossref_primary_10_1007_JHEP07_2021_163
crossref_primary_10_1007_JHEP02_2021_098
crossref_primary_10_1007_JHEP04_2022_109
crossref_primary_10_1103_PhysRevD_105_116006
Cites_doi 10.1142/S0217751X91002161
10.1088/1126-6708/2004/05/007
10.1143/PTP.56.270
10.1103/PhysRevD.99.034508
10.1007/BF02826338
10.1103/PhysRevD.79.056008
10.1007/JHEP05(2014)143
10.1016/S0370-1573(97)00089-6
10.1103/PhysRevB.21.3976
10.1103/PhysRevD.91.085043
10.1007/JHEP08(2018)148
10.1103/PhysRevD.88.085030
10.1103/PhysRevD.90.056003
10.1007/JHEP03(2019)149
10.1103/PhysRevD.49.6720
10.1103/PhysRevD.96.065024
10.1103/PhysRevD.47.4628
10.1103/PhysRevD.93.065014
10.1103/PhysRevD.92.034509
10.1103/PhysRevD.37.1076
10.1103/PhysRev.180.1506
10.1103/PhysRev.150.1313
10.1103/PhysRevD.57.4942
10.1007/JHEP08(2018)120
10.1088/1742-5468/2014/12/P12010
10.1103/PhysRevD.91.025005
10.1103/PhysRevD.95.096016
10.1103/PhysRevD.91.085011
10.1007/JHEP03(2019)107
10.1103/PhysRevD.7.1780
10.1142/S0217751X9000218X
10.1007/JHEP10(2017)213
10.1016/j.aop.2013.06.012
10.1007/JHEP08(2017)056
10.1016/j.ppnp.2016.06.002
10.1007/JHEP05(2019)184
10.1007/JHEP07(2016)140
10.1007/JHEP10(2016)050
10.1103/PhysRevD.94.065006
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Boston Univ., MA (United States)
CorporateAuthor_xml – name: Boston Univ., MA (United States)
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP10(2020)092
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 27
ExternalDocumentID oai_doaj_org_article_09023dd2efdd4992be80a3e6e0e30fec
1833186
10_1007_JHEP10_2020_092
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
AAYZJ
AHBXF
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c480t-4c22f93c47bcb63a1b7ddbd720de849d92200b7378459ad6559eba0697b6033d3
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:28:51 EDT 2025
Mon Jul 10 02:30:34 EDT 2023
Fri Jul 25 05:58:27 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Tue Jul 01 00:58:57 EDT 2025
Fri Feb 21 02:48:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Field Theories in Lower Dimensions
Conformal Field Theory
Nonperturbative Effects
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-4c22f93c47bcb63a1b7ddbd720de849d92200b7378459ad6559eba0697b6033d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0015845
USDOE Office of Science (SC), High Energy Physics (HEP)
ORCID 0000-0001-8063-7228
0000000180637228
OpenAccessLink https://www.proquest.com/docview/2473426972?pq-origsite=%requestingapplication%
PQID 2473426972
PQPubID 2034718
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_09023dd2efdd4992be80a3e6e0e30fec
osti_scitechconnect_1833186
proquest_journals_2473426972
crossref_citationtrail_10_1007_JHEP10_2020_092
crossref_primary_10_1007_JHEP10_2020_092
springer_journals_10_1007_JHEP10_2020_092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Nature
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Nature
– name: SpringerOpen
References B. Elliott, S.S. Chabysheva and J.R. Hiller, Application of the light-front coupled-cluster method to ϕ4theory in two dimensions, Phys. Rev. D90 (2014) 056003 [arXiv:1407.7139] [INSPIRE].
BurkardtMLight front quantization of the sine-Gordon modelPhys. Rev. D19934746281993PhRvD..47.4628B10.1103/PhysRevD.47.4628[INSPIRE]
S.S. Chabysheva and J.R. Hiller, Light-frontϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory with sector-dependent mass, Phys. Rev. D95 (2017) 096016 [arXiv:1612.09331] [INSPIRE].
HarindranathAVaryJPStability of the Vacuum in Scalar Field Models in 1 + 1 DimensionsPhys. Rev. D19883710761988PhRvD..37.1076H10.1103/PhysRevD.37.1076[INSPIRE]
MaskawaTYamawakiKThe Problem of P+ = 0 Mode in the Null Plane Field Theory and Dirac’s Method of QuantizationProg. Theor. Phys.1976562701976PThPh..56..270M41385410.1143/PTP.56.270[INSPIRE]
YurovVPZamolodchikovABTruncated fermionic space approach to the critical 2D Ising model with magnetic fieldInt. J. Mod. Phys. A1991645571991IJMPA...6.4557Y10.1142/S0217751X91002161[INSPIRE]
Le GuillouJCZinn-JustinJCritical Exponents from Field TheoryPhys. Rev. B19802139761980PhRvB..21.3976L56844110.1103/PhysRevB.21.3976[INSPIRE]
J. Collins, The non-triviality of the vacuum in light-front quantization: An elementary treatment, arXiv:1801.03960 [INSPIRE].
WilsonKGWalhoutTSHarindranathAZhangW-MPerryRJGlazekSDNonperturbative QCD: A Weak coupling treatment on the light frontPhys. Rev. D19944967201994PhRvD..49.6720W127861710.1103/PhysRevD.49.6720[hep-th/9401153] [INSPIRE]
M. Serone, G. Spada and G. Villadoro, λϕ4Theory I: The Symmetric Phase Beyond NNNNNNNNLO, JHEP08 (2018) 148 [arXiv:1805.05882] [INSPIRE].
ChangS-JMaS-KFeynman rules and quantum electrodynamics at infinite momentumPhys. Rev.196918015061969PhRv..180.1506C10.1103/PhysRev.180.1506[INSPIRE]
M. Hogervorst, RG flows on Sdand Hamiltonian truncation, arXiv:1811.00528 [INSPIRE].
M. Burkardt, S.S. Chabysheva and J.R. Hiller, Two-dimensional light-front ϕ4theory in a symmetric polynomial basis, Phys. Rev. D94 (2016) 065006 [arXiv:1607.00026] [INSPIRE].
AnandNGenestVXKatzEKhandkerZUWaltersMTRG flow from ϕ4theory to the 2D Ising modelJHEP2017080562017JHEP...08..056A369742610.1007/JHEP08(2017)056[arXiv:1704.04500] [INSPIRE]
A. Coser, M. Beria, G.P. Brandino, R.M. Konik and G. Mussardo, Truncated Conformal Space Approach for 2D Landau-Ginzburg Theories, J. Stat. Mech.1412 (2014) P12010 [arXiv:1409.1494] [INSPIRE].
HillerJRNonperturbative light-front Hamiltonian methodsProg. Part. Nucl. Phys.201690752016PrPNP..90...75H10.1016/j.ppnp.2016.06.002[arXiv:1606.08348] [INSPIRE]
M. Burkardt, Much ado about nothing: Vacuum and renormalization on the light front, in proceedings of the 10th Summer School and Symposium on Nuclear Physics: QCD, Light cone Physics and Hadron Phenomenology (NuSS 97), Seoul, Republic of Korea, 23–28 June 1997, pp. 170–199 [hep-ph/9709421] [INSPIRE].
A. Milsted, J. Haegeman and T.J. Osborne, Matrix product states and variational methods applied to critical quantum field theory, Phys. Rev. D88 (2013) 085030 [arXiv:1302.5582] [INSPIRE].
S. Weinberg, Dynamics at infinite momentum, Phys. Rev.150 (1966) 1313 [INSPIRE].
M. Hogervorst, S. Rychkov and B.C. van Rees, Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory?, Phys. Rev. D91 (2015) 025005 [arXiv:1409.1581] [INSPIRE].
L.V. Delacrétaz, A.L. Fitzpatrick, E. Katz and L.G. Vitale, Conformal Truncation of Chern-Simons Theory at Large Nf, JHEP03 (2019) 107 [arXiv:1811.10612] [INSPIRE].
S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the φ4theory in two dimensions, Phys. Rev. D91 (2015) 085011 [arXiv:1412.3460] [INSPIRE].
FitzpatrickALKaplanJKatzEVitaleLGWaltersMTLightcone effective Hamiltonians and RG flowsJHEP2018081202018JHEP...08..120F386120210.1007/JHEP08(2018)120[arXiv:1803.10793] [INSPIRE]
KatzEKhandkerZUWaltersMTA Conformal Truncation Framework for Infinite-Volume DynamicsJHEP2016071402016JHEP...07..140K355023510.1007/JHEP07(2016)140[arXiv:1604.01766] [INSPIRE]
S.R. Beane, Broken Chiral Symmetry on a Null Plane, Annals Phys.337 (2013) 111 [arXiv:1302.1600] [INSPIRE].
J. Elias-Miro, S. Rychkov and L.G. Vitale, NLO Renormalization in the Hamiltonian Truncation, Phys. Rev. D96 (2017) 065024 [arXiv:1706.09929] [INSPIRE].
KatzEMarques TavaresGXuYSolving 2D QCD with an adjoint fermion analyticallyJHEP2014051432014JHEP...05..143K10.1007/JHEP05(2014)143[arXiv:1308.4980] [INSPIRE]
J. Elias-Miro, S. Rychkov and L.G. Vitale, High-Precision Calculations in Strongly Coupled Quantum Field Theory with Next-to-Leading-Order Renormalized Hamiltonian Truncation, JHEP10 (2017) 213 [arXiv:1706.06121] [INSPIRE].
T. Sugihara, Density matrix renormalization group in a two-dimensional λϕ4Hamiltonian lattice model, JHEP05 (2004) 007 [hep-lat/0403008] [INSPIRE].
YurovVPZamolodchikovABTruncated conformal space approach to scaling Lee-Yang modelInt. J. Mod. Phys. A1990532211990IJMPA...5.3221Y10.1142/S0217751X9000218X[INSPIRE]
S.S. Chabysheva and J.R. Hiller, Transitioning from equal-time to light-front quantization inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, arXiv:1811.01685 [INSPIRE].
D. Schaich and W. Loinaz, An Improved lattice measurement of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D79 (2009) 056008 [arXiv:0902.0045] [INSPIRE].
T. Heinzl, Light cone zero modes revisited, in proceedings of the Light-Cone Workshop: Hadrons and Beyond (LC 03), Durham, U.K., 5–9 August 2003, hep-th/0310165 [INSPIRE].
M. Herrmann and W.N. Polyzou, Light-front vacuum, Phys. Rev. D91 (2015) 085043 [arXiv:1502.01230] [INSPIRE].
L. Martinovic and A. Dorokhov, Vacuum loops in light-front field theory, arXiv:1812.02336 [INSPIRE].
S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept.301 (1998) 299 [hep-ph/9705477] [INSPIRE].
E. Katz, G. Marques Tavares and Y. Xu, A solution of 2D QCD at Finite N using a conformal basis, arXiv:1405.6727 [INSPIRE].
Z. Bajnok and M. Lajer, Truncated Hilbert space approach to the 2d ϕ4theory, JHEP10 (2016) 050 [arXiv:1512.06901] [INSPIRE].
P. Bosetti, B. De Palma and M. Guagnelli, Monte Carlo determination of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D92 (2015) 034509 [arXiv:1506.08587] [INSPIRE].
RomatschkePSimple non-perturbative resummation schemes beyond mean-field: case study for scalar ϕ4theory in 1 + 1 dimensionsJHEP2019031492019JHEP...03..149R394085610.1007/JHEP03(2019)149[arXiv:1901.05483] [INSPIRE]
K. Yamawaki, Zero mode problem on the light front, in proceedings of the 10th Summer School and Symposium on Nuclear Physics: QCD, Light cone Physics and Hadron Phenomenology (NuSS 97), Seoul, Republic of Korea, 23–28 June 1997, pp. 116–199 [hep-th/9802037] [INSPIRE].
YanT-MQuantum field theories in the infinite momentum frame. 4. Scattering matrix of vector and Dirac fields and perturbation theoryPhys. Rev. D1973717801973PhRvD...7.1780Y10.1103/PhysRevD.7.1780[INSPIRE]
TsujimaruSYamawakiKZero mode and symmetry breaking on the light frontPhys. Rev. D19985749421998PhRvD..57.4942T10.1103/PhysRevD.57.4942[hep-th/9704171] [INSPIRE]
S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the ϕ4theory in two dimensions. II. The ℤ2-broken phase and the Chang duality, Phys. Rev. D93 (2016) 065014 [arXiv:1512.00493] [INSPIRE].
Elias-MiroJMontullMRiembauMThe renormalized Hamiltonian truncation method in the large ET expansionJHEP2016041442016JHEP...04..144E[arXiv:1512.05746] [INSPIRE]
KadohDKuramashiYNakamuraYSakaiRTakedaSYoshimuraYTensor network analysis of critical coupling in two dimensional ϕ4theoryJHEP2019051842019JHEP...05..184K397340910.1007/JHEP05(2019)184[arXiv:1811.12376] [INSPIRE]
LeutwylerHKlauderJRStreitLQuantum field theory on lightlike slabsNuovo Cim. A1970665361970NCimA..66..536L26034710.1007/BF02826338[INSPIRE]
S. Bronzin, B. De Palma and M. Guagnelli, New Monte Carlo determination of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D99 (2019) 034508 [arXiv:1807.03381] [INSPIRE].
T-M Yan (13994_CR7) 1973; 7
N Anand (13994_CR35) 2017; 08
D Kadoh (13994_CR40) 2019; 05
13994_CR26
13994_CR48
13994_CR29
13994_CR28
13994_CR1
KG Wilson (13994_CR3) 1994; 49
13994_CR12
P Romatschke (13994_CR43) 2019; 03
13994_CR11
13994_CR33
13994_CR14
13994_CR36
13994_CR13
J Elias-Miro (13994_CR27) 2016; 04
13994_CR30
T Maskawa (13994_CR8) 1976; 56
13994_CR10
13994_CR31
S Tsujimaru (13994_CR9) 1998; 57
H Leutwyler (13994_CR2) 1970; 66
13994_CR4
S-J Chang (13994_CR6) 1969; 180
JC Le Guillou (13994_CR20) 1980; 21
13994_CR19
JR Hiller (13994_CR5) 2016; 90
13994_CR38
13994_CR15
13994_CR37
13994_CR18
13994_CR39
13994_CR23
E Katz (13994_CR32) 2014; 05
E Katz (13994_CR34) 2016; 07
13994_CR45
13994_CR44
13994_CR25
13994_CR47
AL Fitzpatrick (13994_CR16) 2018; 08
13994_CR24
13994_CR46
13994_CR41
A Harindranath (13994_CR42) 1988; 37
M Burkardt (13994_CR17) 1993; 47
VP Yurov (13994_CR21) 1990; 5
VP Yurov (13994_CR22) 1991; 6
References_xml – reference: YanT-MQuantum field theories in the infinite momentum frame. 4. Scattering matrix of vector and Dirac fields and perturbation theoryPhys. Rev. D1973717801973PhRvD...7.1780Y10.1103/PhysRevD.7.1780[INSPIRE]
– reference: M. Burkardt, S.S. Chabysheva and J.R. Hiller, Two-dimensional light-front ϕ4theory in a symmetric polynomial basis, Phys. Rev. D94 (2016) 065006 [arXiv:1607.00026] [INSPIRE].
– reference: S.S. Chabysheva and J.R. Hiller, Light-frontϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory with sector-dependent mass, Phys. Rev. D95 (2017) 096016 [arXiv:1612.09331] [INSPIRE].
– reference: LeutwylerHKlauderJRStreitLQuantum field theory on lightlike slabsNuovo Cim. A1970665361970NCimA..66..536L26034710.1007/BF02826338[INSPIRE]
– reference: K. Yamawaki, Zero mode problem on the light front, in proceedings of the 10th Summer School and Symposium on Nuclear Physics: QCD, Light cone Physics and Hadron Phenomenology (NuSS 97), Seoul, Republic of Korea, 23–28 June 1997, pp. 116–199 [hep-th/9802037] [INSPIRE].
– reference: D. Schaich and W. Loinaz, An Improved lattice measurement of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D79 (2009) 056008 [arXiv:0902.0045] [INSPIRE].
– reference: TsujimaruSYamawakiKZero mode and symmetry breaking on the light frontPhys. Rev. D19985749421998PhRvD..57.4942T10.1103/PhysRevD.57.4942[hep-th/9704171] [INSPIRE]
– reference: L.V. Delacrétaz, A.L. Fitzpatrick, E. Katz and L.G. Vitale, Conformal Truncation of Chern-Simons Theory at Large Nf, JHEP03 (2019) 107 [arXiv:1811.10612] [INSPIRE].
– reference: S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept.301 (1998) 299 [hep-ph/9705477] [INSPIRE].
– reference: KatzEKhandkerZUWaltersMTA Conformal Truncation Framework for Infinite-Volume DynamicsJHEP2016071402016JHEP...07..140K355023510.1007/JHEP07(2016)140[arXiv:1604.01766] [INSPIRE]
– reference: HarindranathAVaryJPStability of the Vacuum in Scalar Field Models in 1 + 1 DimensionsPhys. Rev. D19883710761988PhRvD..37.1076H10.1103/PhysRevD.37.1076[INSPIRE]
– reference: S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the ϕ4theory in two dimensions. II. The ℤ2-broken phase and the Chang duality, Phys. Rev. D93 (2016) 065014 [arXiv:1512.00493] [INSPIRE].
– reference: Elias-MiroJMontullMRiembauMThe renormalized Hamiltonian truncation method in the large ET expansionJHEP2016041442016JHEP...04..144E[arXiv:1512.05746] [INSPIRE]
– reference: MaskawaTYamawakiKThe Problem of P+ = 0 Mode in the Null Plane Field Theory and Dirac’s Method of QuantizationProg. Theor. Phys.1976562701976PThPh..56..270M41385410.1143/PTP.56.270[INSPIRE]
– reference: M. Serone, G. Spada and G. Villadoro, λϕ4Theory I: The Symmetric Phase Beyond NNNNNNNNLO, JHEP08 (2018) 148 [arXiv:1805.05882] [INSPIRE].
– reference: A. Milsted, J. Haegeman and T.J. Osborne, Matrix product states and variational methods applied to critical quantum field theory, Phys. Rev. D88 (2013) 085030 [arXiv:1302.5582] [INSPIRE].
– reference: S. Rychkov and L.G. Vitale, Hamiltonian truncation study of the φ4theory in two dimensions, Phys. Rev. D91 (2015) 085011 [arXiv:1412.3460] [INSPIRE].
– reference: M. Hogervorst, S. Rychkov and B.C. van Rees, Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory?, Phys. Rev. D91 (2015) 025005 [arXiv:1409.1581] [INSPIRE].
– reference: M. Burkardt, Much ado about nothing: Vacuum and renormalization on the light front, in proceedings of the 10th Summer School and Symposium on Nuclear Physics: QCD, Light cone Physics and Hadron Phenomenology (NuSS 97), Seoul, Republic of Korea, 23–28 June 1997, pp. 170–199 [hep-ph/9709421] [INSPIRE].
– reference: YurovVPZamolodchikovABTruncated fermionic space approach to the critical 2D Ising model with magnetic fieldInt. J. Mod. Phys. A1991645571991IJMPA...6.4557Y10.1142/S0217751X91002161[INSPIRE]
– reference: AnandNGenestVXKatzEKhandkerZUWaltersMTRG flow from ϕ4theory to the 2D Ising modelJHEP2017080562017JHEP...08..056A369742610.1007/JHEP08(2017)056[arXiv:1704.04500] [INSPIRE]
– reference: P. Bosetti, B. De Palma and M. Guagnelli, Monte Carlo determination of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D92 (2015) 034509 [arXiv:1506.08587] [INSPIRE].
– reference: B. Elliott, S.S. Chabysheva and J.R. Hiller, Application of the light-front coupled-cluster method to ϕ4theory in two dimensions, Phys. Rev. D90 (2014) 056003 [arXiv:1407.7139] [INSPIRE].
– reference: M. Hogervorst, RG flows on Sdand Hamiltonian truncation, arXiv:1811.00528 [INSPIRE].
– reference: T. Sugihara, Density matrix renormalization group in a two-dimensional λϕ4Hamiltonian lattice model, JHEP05 (2004) 007 [hep-lat/0403008] [INSPIRE].
– reference: J. Collins, The non-triviality of the vacuum in light-front quantization: An elementary treatment, arXiv:1801.03960 [INSPIRE].
– reference: Z. Bajnok and M. Lajer, Truncated Hilbert space approach to the 2d ϕ4theory, JHEP10 (2016) 050 [arXiv:1512.06901] [INSPIRE].
– reference: YurovVPZamolodchikovABTruncated conformal space approach to scaling Lee-Yang modelInt. J. Mod. Phys. A1990532211990IJMPA...5.3221Y10.1142/S0217751X9000218X[INSPIRE]
– reference: RomatschkePSimple non-perturbative resummation schemes beyond mean-field: case study for scalar ϕ4theory in 1 + 1 dimensionsJHEP2019031492019JHEP...03..149R394085610.1007/JHEP03(2019)149[arXiv:1901.05483] [INSPIRE]
– reference: BurkardtMLight front quantization of the sine-Gordon modelPhys. Rev. D19934746281993PhRvD..47.4628B10.1103/PhysRevD.47.4628[INSPIRE]
– reference: E. Katz, G. Marques Tavares and Y. Xu, A solution of 2D QCD at Finite N using a conformal basis, arXiv:1405.6727 [INSPIRE].
– reference: FitzpatrickALKaplanJKatzEVitaleLGWaltersMTLightcone effective Hamiltonians and RG flowsJHEP2018081202018JHEP...08..120F386120210.1007/JHEP08(2018)120[arXiv:1803.10793] [INSPIRE]
– reference: J. Elias-Miro, S. Rychkov and L.G. Vitale, NLO Renormalization in the Hamiltonian Truncation, Phys. Rev. D96 (2017) 065024 [arXiv:1706.09929] [INSPIRE].
– reference: S. Bronzin, B. De Palma and M. Guagnelli, New Monte Carlo determination of the critical coupling inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, Phys. Rev. D99 (2019) 034508 [arXiv:1807.03381] [INSPIRE].
– reference: WilsonKGWalhoutTSHarindranathAZhangW-MPerryRJGlazekSDNonperturbative QCD: A Weak coupling treatment on the light frontPhys. Rev. D19944967201994PhRvD..49.6720W127861710.1103/PhysRevD.49.6720[hep-th/9401153] [INSPIRE]
– reference: S. Weinberg, Dynamics at infinite momentum, Phys. Rev.150 (1966) 1313 [INSPIRE].
– reference: L. Martinovic and A. Dorokhov, Vacuum loops in light-front field theory, arXiv:1812.02336 [INSPIRE].
– reference: ChangS-JMaS-KFeynman rules and quantum electrodynamics at infinite momentumPhys. Rev.196918015061969PhRv..180.1506C10.1103/PhysRev.180.1506[INSPIRE]
– reference: M. Herrmann and W.N. Polyzou, Light-front vacuum, Phys. Rev. D91 (2015) 085043 [arXiv:1502.01230] [INSPIRE].
– reference: Le GuillouJCZinn-JustinJCritical Exponents from Field TheoryPhys. Rev. B19802139761980PhRvB..21.3976L56844110.1103/PhysRevB.21.3976[INSPIRE]
– reference: T. Heinzl, Light cone zero modes revisited, in proceedings of the Light-Cone Workshop: Hadrons and Beyond (LC 03), Durham, U.K., 5–9 August 2003, hep-th/0310165 [INSPIRE].
– reference: A. Coser, M. Beria, G.P. Brandino, R.M. Konik and G. Mussardo, Truncated Conformal Space Approach for 2D Landau-Ginzburg Theories, J. Stat. Mech.1412 (2014) P12010 [arXiv:1409.1494] [INSPIRE].
– reference: HillerJRNonperturbative light-front Hamiltonian methodsProg. Part. Nucl. Phys.201690752016PrPNP..90...75H10.1016/j.ppnp.2016.06.002[arXiv:1606.08348] [INSPIRE]
– reference: KatzEMarques TavaresGXuYSolving 2D QCD with an adjoint fermion analyticallyJHEP2014051432014JHEP...05..143K10.1007/JHEP05(2014)143[arXiv:1308.4980] [INSPIRE]
– reference: S.R. Beane, Broken Chiral Symmetry on a Null Plane, Annals Phys.337 (2013) 111 [arXiv:1302.1600] [INSPIRE].
– reference: J. Elias-Miro, S. Rychkov and L.G. Vitale, High-Precision Calculations in Strongly Coupled Quantum Field Theory with Next-to-Leading-Order Renormalized Hamiltonian Truncation, JHEP10 (2017) 213 [arXiv:1706.06121] [INSPIRE].
– reference: S.S. Chabysheva and J.R. Hiller, Transitioning from equal-time to light-front quantization inϕ24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\phi}_2^4 $$\end{document}theory, arXiv:1811.01685 [INSPIRE].
– reference: KadohDKuramashiYNakamuraYSakaiRTakedaSYoshimuraYTensor network analysis of critical coupling in two dimensional ϕ4theoryJHEP2019051842019JHEP...05..184K397340910.1007/JHEP05(2019)184[arXiv:1811.12376] [INSPIRE]
– volume: 6
  start-page: 4557
  year: 1991
  ident: 13994_CR22
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X91002161
– ident: 13994_CR48
  doi: 10.1088/1126-6708/2004/05/007
– volume: 56
  start-page: 270
  year: 1976
  ident: 13994_CR8
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.56.270
– ident: 13994_CR37
– ident: 13994_CR38
  doi: 10.1103/PhysRevD.99.034508
– volume: 66
  start-page: 536
  year: 1970
  ident: 13994_CR2
  publication-title: Nuovo Cim. A
  doi: 10.1007/BF02826338
– ident: 13994_CR14
– ident: 13994_CR47
  doi: 10.1103/PhysRevD.79.056008
– ident: 13994_CR18
– volume: 05
  start-page: 143
  year: 2014
  ident: 13994_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP05(2014)143
– ident: 13994_CR4
  doi: 10.1016/S0370-1573(97)00089-6
– volume: 21
  start-page: 3976
  year: 1980
  ident: 13994_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.21.3976
– ident: 13994_CR13
  doi: 10.1103/PhysRevD.91.085043
– ident: 13994_CR19
  doi: 10.1007/JHEP08(2018)148
– ident: 13994_CR39
  doi: 10.1103/PhysRevD.88.085030
– ident: 13994_CR44
  doi: 10.1103/PhysRevD.90.056003
– volume: 03
  start-page: 149
  year: 2019
  ident: 13994_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP03(2019)149
– volume: 49
  start-page: 6720
  year: 1994
  ident: 13994_CR3
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.49.6720
– ident: 13994_CR30
  doi: 10.1103/PhysRevD.96.065024
– ident: 13994_CR31
– volume: 47
  start-page: 4628
  year: 1993
  ident: 13994_CR17
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.4628
– ident: 13994_CR26
  doi: 10.1103/PhysRevD.93.065014
– ident: 13994_CR33
– ident: 13994_CR46
  doi: 10.1103/PhysRevD.92.034509
– volume: 37
  start-page: 1076
  year: 1988
  ident: 13994_CR42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.37.1076
– volume: 180
  start-page: 1506
  year: 1969
  ident: 13994_CR6
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.180.1506
– ident: 13994_CR10
– ident: 13994_CR1
  doi: 10.1103/PhysRev.150.1313
– volume: 57
  start-page: 4942
  year: 1998
  ident: 13994_CR9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.57.4942
– volume: 08
  start-page: 120
  year: 2018
  ident: 13994_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)120
– ident: 13994_CR23
  doi: 10.1088/1742-5468/2014/12/P12010
– ident: 13994_CR15
– ident: 13994_CR24
  doi: 10.1103/PhysRevD.91.025005
– ident: 13994_CR45
  doi: 10.1103/PhysRevD.95.096016
– ident: 13994_CR25
  doi: 10.1103/PhysRevD.91.085011
– ident: 13994_CR36
  doi: 10.1007/JHEP03(2019)107
– volume: 7
  start-page: 1780
  year: 1973
  ident: 13994_CR7
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.7.1780
– volume: 5
  start-page: 3221
  year: 1990
  ident: 13994_CR21
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X9000218X
– ident: 13994_CR29
  doi: 10.1007/JHEP10(2017)213
– volume: 04
  start-page: 144
  year: 2016
  ident: 13994_CR27
  publication-title: JHEP
– ident: 13994_CR12
  doi: 10.1016/j.aop.2013.06.012
– volume: 08
  start-page: 056
  year: 2017
  ident: 13994_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP08(2017)056
– volume: 90
  start-page: 75
  year: 2016
  ident: 13994_CR5
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2016.06.002
– volume: 05
  start-page: 184
  year: 2019
  ident: 13994_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)184
– volume: 07
  start-page: 140
  year: 2016
  ident: 13994_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)140
– ident: 13994_CR28
  doi: 10.1007/JHEP10(2016)050
– ident: 13994_CR11
– ident: 13994_CR41
  doi: 10.1103/PhysRevD.94.065006
SSID ssj0015190
Score 2.4298377
Snippet A bstract We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2....
We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2. We discuss...
We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ4 theory in d = 2. We discuss...
We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λΦ4 theory in d = 2. We discuss...
Abstract We investigate the nonperturbative relation between lightcone (LC) and standard equal-time (ET) quantization in the context of λϕ 4 theory in d = 2....
SourceID doaj
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Approximation
Classical and Quantum Gravitation
Conformal Field Theory
Elementary Particles
Field Theories in Lower Dimensions
High energy physics
Matching
Measurement
Nonperturbative Effects
Numerical methods
Parameters
Perturbation theory
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9ZVycGDHuqOSdq0RxWXxYN4UPAWmmR6kipa_7-TNF0fsHjxVEjTdphJM9-QmW8YOyHAhlAhUpBDsaqyOhQr-zbHtpWtc85qF9k-78r5o7p9Kp6-tfoKOWEDPfCguGnIG5TeC2y9J3QuLFbQSCwRUEKLLuy-5PPGYCqdHxAugZHIB_T0dn5zfwGnFOjDGdTihw-KVP10eaFf6gfM_HUyGh3ObJNtJKTILwcJt9gKdttsLWZsuvcdNrt76V7xjTyGjdzdnKBnzIvkKfWKYyiYzEPzeN50nj-HMJyiX-Q03vWp_nKXPc5uHq7neWqKkDtVQZ8rJ0RbS6e0dbaUzYXV3luvBXisVO1rQeveaqkrVdSNLyliQNtAWWtbgpRe7rHVjr61zzg0ovZQ-LrwsQl6pRxKbWUDmlAfQsbORzUZlxjDQ-OKZzNyHQ96NUGvhvSasdPFA68DWcbyqVdB74tpgeU6DpDtTbK9-cv2GZsEqxkCC4Hx1oXUINcb2qVopyozdjga06Qf890IpWWo3tUkwdlo4K_bS6Q9-A9pJ2w9vG_IBDxkq_3bBx4RountcVy8n5SF8bQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQERIL4ilCC8rA0A4BN3bsZISqVdWhYqBSNyu2L1OVViX8f85OUtSiDkyJHFux7vz4Tnf3HSHPCNiApgBo5KCtyrV0ycq2iKAoWGGM0dJ4ts-5mC74bJksG5Iklwtz4L9_nU3HH0PaRxOdDmiGZ-1pMmTS1WgYidHOXYAwhLa8PX8H7V05npkfH2vcQXuo8sAR6u-XySW5aIBh-FZr8oqcQHlNznyApvm6IZP5utzAFi8I7am6Q0SaPgwybCKtQnD5kZGrFR_mpQ1XzupGYxdCbC-rJt3yliwm48_RNGpqIESGp7SKuInjImOGS220YPlQS2u1lTG1kPLMZjEucy2ZTHmS5VaggQA6pyKTWlDGLLsjnRL_dU9CmseZpYnNEutrnqfcAJOa5VQiyAMakJdWTMo0BOGuTsVKtdTGtVyVk6tCuQakvxuwqbkxjnd9d3LfdXOk1r4Bda2aPaJciCizNobCWjTEYg0pzRkIoMBoASYgXac1hdjAEdwaFwlkKoWHEh5MIiC9Vpmq2YdfKuaSuWRdiTMYtAr-_Xxktg__6Nsl5-61ju_rkU61_YZHxCmVfvJr9Af429-C
  priority: 102
  providerName: Springer Nature
Title Nonperturbative matching between equal-time and lightcone quantization
URI https://link.springer.com/article/10.1007/JHEP10(2020)092
https://www.proquest.com/docview/2473426972
https://www.osti.gov/servlets/purl/1833186
https://doaj.org/article/09023dd2efdd4992be80a3e6e0e30fec
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbWFAN2GfbEvHaBDzu0B6-qpFj2aWiDZEEPQTEsQG-CJdG7FE6aeP9_pCKn6IDuYsOy_AAlUR8l8iPAVwJsKCpEMnLIVtXOcLByaAtsW9V6753xke1zWS5W-uZucpcW3HbJrXLQiVFRh7XnNfILqY3isEsjv28eCs4axburKYXGERyTCq6qERxfz5a3Pw_7CIRPxEDoI8zFzWJ2eynOyOAX56KWT-aiSNlPpzUNrSdw858d0jjxzN_A64QY86t9E7-FF9i9g5fRc9Pv3sN8ue42uKWZw0UO75wgaPSPzJMLVo4cOFlwEvm86UJ-z-Y4WcGYU3nXpzjMD7Caz35NF0VKjlB4XYm-0F7KtlZeG-ddqZpLZ0JwwUgRsNJ1qCX1f2eUqfSkbkJJlgO6RpAAXSmUCuojjDr61ifIRSPrICahnoSYDL3SHpVxqhGG0B-KDL4NYrI-MYdzAot7O3Ae7-VqWa6W5JrB2eGBzZ404_mq1yz3QzVmu44F6-1vmwaPZd9RFYLENgSy0KTDSjQKSxSoRIs-gxNuNUuggZlvPbsI-d6StiKNVWZwOjSmTQN0Zx-7UwbnQwM_3n7mbz___1Un8Ipr7n39TmHUb__gF8IsvRvDUTX_MU7dk66mUvOxnI7jKgAdV_LqL8TG7eE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgSXiqcaWiAHkNpDqGt74-SAEI8u2wcrDq3Um4ntCZcqu-ymQvwpfiMzTrJVkcqtp0iOH9HMePxNPA-A1wTYUBSIZOSQraqd4WDlUGdY16r23jvjY7bPaT4500fno_M1-DPEwrBb5aATo6IOM8__yPekNorDLo18P_-ZcdUovl0dSmh0YnGMv3-RybZ8d_iZ-PtGyvHB6adJ1lcVyLwuRJtpL2VdKq-N8y5X1b4zIbhgpAhY6DKUkgTHGWUKPSqrkBPkRlcJWtnlQqmgaN47cFcrOsk5Mn38ZXVrQWhIDOmDhNk7mhx82xc7khDZrijltZMvFgigx4w28jVw-899bDzmxg9ho8en6YdOoB7BGjaP4V70E_XLJzCezpo5LuiccjFjeEqAN3pjpr3DV4ocpplxyfq0akJ6wcY_2dyYUnvT9lGfT-HsVoj2DNYbWmsTUlHJMohRKEchll4vtEdlnKqEIayJIoG3A5ms7_OUc7mMCztkWO7oapmuluiawM5qwLxL0XFz149M91U3zq0dG2aLH7bfqpY9VVUIEusQyB6UDgtRKcxRoBI1-gS2mGuWIArn2fXskORbS7qR9GOewPbATNurg6W9Et4EdgcGX72-4Wuf_3-qV3B_cvr1xJ4cTo-34AGP6rwMt2G9XVziC0JLrXsZRTSF77e9J_4CGkEkbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-RtkAOILWHsK6djZMDQpTuatui1QpRqTcT2xMuVXbZTYX4a_w6ZhJnqyKVW0-RHDuxZsbjb-x5ALwlwIYiRyQjh2zV1GoOVvZVglWlKuec1a7N9jnLpufp6cXoYgv-9LEw7FbZ68RWUfuF4zPyoUy14rBLLYdVcIuYH08-Ln8mXEGKb1r7chqdiJzh719kvq0_nBwTr99JORl_-zxNQoWBxKW5aJLUSVkVyqXaOpup8tBq763XUnjM08IXkoTIaqXzdFSUPiP4jbYUNAubCaW8ou_eg23NVtEAto_Gs_nXzR0GYSPRJxMSeng6Hc8Pxb4kfHYgCnljH2zLBdBjQcv6BtT953a23fQmj-FRQKvxp068nsAW1k_hfus16tbPYDJb1Etc0a5l2_zhMcHf1jczDu5fMXLQZsIF7OOy9vElHwWQBY4xtddNiAF9Dud3QrYXMKjpXy8hFqUsvBj5YuTbQux56lBpq0qhCXmiiOB9TybjQtZyLp5xafp8yx1dDdPVEF0j2N8MWHYJO27vesR033TjTNttw2L1w4SFa9hvVXkvsfKerENpMRelwgwFKlGhi2CXuWYIsHDWXcfuSa4xpClJW2YR7PXMNEE5rM21KEdw0DP4-vUts935_6fewANaD-bLyexsFx7yoM7lcA8GzeoKXxF0auzrIKMxfL_rZfEXsy4qAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonperturbative+matching+between+equal-time+and+lightcone+quantization&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fitzpatrick%2C+A.+Liam&rft.au=Katz%2C+Emanuel&rft.au=Walters%2C+Matthew+T.&rft.date=2020-10-01&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2020&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282020%29092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP10_2020_092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon