Effect of nanoconfinement on the formation, structural transition and magnetic behavior of mesoporous copper ferrite

[Display omitted] •Fabrication of superparamagnetic cubic single phase, ordered mesoporous CuFe2O4.•Reduction of formation temperature of copper ferrite through nanoconfinement.•Suppression of Jahn–Teller effect through nanoconfinement.•Stabilization of cubic high temperature phase of copper ferrite...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 598; pp. 191 - 197
Main Authors Najmoddin, Najmeh, Beitollahi, Ali, Muhammed, Mamoun, Ansari, Narges, Devlin, Eamonn, Mohseni, Seyed Majid, Rezaie, Hamidreza, Niarchos, Dimitris, Åkerman, Johan, Toprak, Muhammet S.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.06.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Fabrication of superparamagnetic cubic single phase, ordered mesoporous CuFe2O4.•Reduction of formation temperature of copper ferrite through nanoconfinement.•Suppression of Jahn–Teller effect through nanoconfinement.•Stabilization of cubic high temperature phase of copper ferrite at RT.•Investigation of blocking temperature by different methods. Superparamagnetic, cubic single phase, ordered mesoporous copper ferrite is synthesized through confinement in nanocages of mesoporous silica. The heat generated during the reaction is conserved in the silica template pore channels, which allows the formation of copper ferrite at a relatively low processing temperature. The Jahn–Teller distortion is suppressed due to the effect of nanoconfinement and thus the high temperature phase of cubic copper ferrite is stabilized at room temperature. The particle size obtained from TEM, the crystallite size calculated from XRD and the magnetic domain size estimated from magnetization measurements are all in good agreement, manifesting the significant role of the confinement in the growth and fabrication of crystalline, single magnetic domain, nanoparticles with superparamagnetic behavior at room temperature.
AbstractList Superparamagnetic, cubic single phase, ordered mesoporous copper ferrite is synthesized through confinement in nanocages of mesoporous silica. The heat generated during the reaction is conserved in the silica template pore channels, which allows the formation of copper ferrite at a relatively low processing temperature. The Jahn-Teller distortion is suppressed due to the effect of nanoconfinement and thus the high temperature phase of cubic copper ferrite is stabilized at room temperature. The particle size obtained from TEM, the crystallite size calculated from XRD and the magnetic domain size estimated from magnetization measurements are all in good agreement, manifesting the significant role of the confinement in the growth and fabrication of crystalline, single magnetic domain, nanoparticles with super-paramagnetic behavior at room temperature.
Superparamagnetic, cubic single phase, ordered mesoporous copper ferrite is synthesized through confinement in nanocages of mesoporous silica. The heat generated during the reaction is conserved in the silica template pore channels, which allows the formation of copper ferrite at a relatively low processing temperature. The Jahn-Teller distortion is suppressed due to the effect of nanoconfinement and thus the high temperature phase of cubic copper ferrite is stabilized at room temperature. The particle size obtained from TEM, the crystallite size calculated from XRD and the magnetic domain size estimated from magnetization measurements are all in good agreement, manifesting the significant role of the confinement in the growth and fabrication of crystalline, single magnetic domain, nanoparticles with superparamagnetic behavior at room temperature.
[Display omitted] •Fabrication of superparamagnetic cubic single phase, ordered mesoporous CuFe2O4.•Reduction of formation temperature of copper ferrite through nanoconfinement.•Suppression of Jahn–Teller effect through nanoconfinement.•Stabilization of cubic high temperature phase of copper ferrite at RT.•Investigation of blocking temperature by different methods. Superparamagnetic, cubic single phase, ordered mesoporous copper ferrite is synthesized through confinement in nanocages of mesoporous silica. The heat generated during the reaction is conserved in the silica template pore channels, which allows the formation of copper ferrite at a relatively low processing temperature. The Jahn–Teller distortion is suppressed due to the effect of nanoconfinement and thus the high temperature phase of cubic copper ferrite is stabilized at room temperature. The particle size obtained from TEM, the crystallite size calculated from XRD and the magnetic domain size estimated from magnetization measurements are all in good agreement, manifesting the significant role of the confinement in the growth and fabrication of crystalline, single magnetic domain, nanoparticles with superparamagnetic behavior at room temperature.
Author Rezaie, Hamidreza
Åkerman, Johan
Toprak, Muhammet S.
Najmoddin, Najmeh
Ansari, Narges
Niarchos, Dimitris
Mohseni, Seyed Majid
Muhammed, Mamoun
Beitollahi, Ali
Devlin, Eamonn
Author_xml – sequence: 1
  givenname: Najmeh
  surname: Najmoddin
  fullname: Najmoddin, Najmeh
  email: najmoddin@iust.ac.ir
  organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, 16440 Kista-Stockholm, Sweden
– sequence: 2
  givenname: Ali
  surname: Beitollahi
  fullname: Beitollahi, Ali
  organization: Center of Excellence for Ceramic Materials in Energy and Environment Applications, School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
– sequence: 3
  givenname: Mamoun
  surname: Muhammed
  fullname: Muhammed, Mamoun
  organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, 16440 Kista-Stockholm, Sweden
– sequence: 4
  givenname: Narges
  surname: Ansari
  fullname: Ansari, Narges
  organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, 16440 Kista-Stockholm, Sweden
– sequence: 5
  givenname: Eamonn
  surname: Devlin
  fullname: Devlin, Eamonn
  organization: Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece
– sequence: 6
  givenname: Seyed Majid
  surname: Mohseni
  fullname: Mohseni, Seyed Majid
  organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, 16440 Kista-Stockholm, Sweden
– sequence: 7
  givenname: Hamidreza
  surname: Rezaie
  fullname: Rezaie, Hamidreza
  organization: Center of Excellence for Ceramic Materials in Energy and Environment Applications, School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
– sequence: 8
  givenname: Dimitris
  surname: Niarchos
  fullname: Niarchos, Dimitris
  organization: Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece
– sequence: 9
  givenname: Johan
  surname: Åkerman
  fullname: Åkerman, Johan
  organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, 16440 Kista-Stockholm, Sweden
– sequence: 10
  givenname: Muhammet S.
  surname: Toprak
  fullname: Toprak, Muhammet S.
  email: toprak@kth.se
  organization: Department of Materials and Nano Physics, KTH – Royal Institute of Technology, 16440 Kista-Stockholm, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28391987$$DView record in Pascal Francis
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-144524$$DView record from Swedish Publication Index
BookMark eNqFksGP1CAUxolZE2dH_wQTLiYebAVKC40Hs1l3V5NNvKhXQuljh7GFCnSN_72MM3rwMieSx-97vPd9XKILHzwg9JKSmhLavd3Xez1NJsw1I5TXhNWEsidoQ6VoKt51_QXakJ61lWykfIYuU9oTQmjf0A3KN9aCyThY7LUPJnjrPMzgS8njvANsQ5x1dsG_wSnH1eQ16gnnqH1yhzLWfsSzfvCQncED7PSjC_HQcIYUlhDDmrAJywIRW4jRZXiOnlo9JXhxOrfo6-3Nl-uP1f3nu0_XV_eV4ZLkig90bJqGNMJK6KVhdhi54bQbjRGjHbpyL4ARAaQb2EgEN1KOrBd0EC0TtNmi6tg3_YRlHdQS3azjLxW0Ux_ctysV4oP6nneKct4yXvjXR36J4ccKKavZJQPTpD2ULRTthOgl6Tg7j7ZtmYP2bVPQVydUJ6MnW5wzLv0bhsmmp32JaoveHTkTQ0oRrDIu_3G-mO0mRYk6xK326hS3OsStCFMl7qJu_1P_feCc7v1RByWIRwdRJePAGxhdLB9DjcGd6fAbEafLzg
CitedBy_id crossref_primary_10_1007_s10948_018_4733_5
crossref_primary_10_1016_j_matchemphys_2022_126212
crossref_primary_10_1080_24701556_2023_2267522
crossref_primary_10_1039_C7TA03071A
crossref_primary_10_3762_bjnano_10_214
crossref_primary_10_1016_j_biortech_2017_10_095
crossref_primary_10_1016_j_ceramint_2015_12_061
crossref_primary_10_1007_s41779_018_0180_9
crossref_primary_10_1016_j_jallcom_2020_156577
crossref_primary_10_1016_j_jmmm_2018_12_090
crossref_primary_10_1007_s10948_020_05667_z
crossref_primary_10_1016_j_apsusc_2020_147498
crossref_primary_10_1016_j_jallcom_2015_12_079
crossref_primary_10_1039_C5RA03019F
crossref_primary_10_1016_j_jmmm_2022_169789
crossref_primary_10_1016_j_jmmm_2019_03_128
Cites_doi 10.1021/ja0584774
10.1021/ja075528j
10.1021/cr068445e
10.1021/cm034070r
10.1103/PhysRevLett.110.108303
10.1103/PhysRevB.49.11358
10.1016/j.apt.2011.04.005
10.1039/c2cc31006f
10.1021/nl060528n
10.1021/cm034769x
10.1002/adma.201104714
10.1002/adma.201200650
10.1002/adfm.200801458
10.1021/ja063662i
10.1021/cm060014p
10.1016/j.tca.2011.09.018
10.1002/adma.201104763
10.1021/jp8048394
10.1103/PhysRevB.72.212413
10.1021/nl005533k
10.1021/cm0610635
10.4028/www.scientific.net/JMNM.20-21.673
10.1002/anie.200603210
10.1039/c2ee22059h
10.1103/PhysRevLett.80.181
10.1039/c0cc01196g
10.1016/j.micromeso.2010.01.017
10.1021/cm701937q
10.1002/adma.200400777
10.1166/jnn.2008.15348
10.1039/c2cc18022g
10.1021/nl902423a
10.1016/S1466-6049(01)00165-9
10.1002/adma.201002828
10.1103/PhysRevB.65.064422
10.1021/jp409058t
10.1098/rspa.1937.0142
10.1021/jp903818q
10.1039/B919090B
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8BQ
8FD
H8G
JG9
ADTPV
AOWAS
D8V
DOI 10.1016/j.jallcom.2014.02.012
DatabaseName CrossRef
Pascal-Francis
METADEX
Technology Research Database
Copper Technical Reference Library
Materials Research Database
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
Materials Research Database
Copper Technical Reference Library
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-4669
EndPage 197
ExternalDocumentID oai_DiVA_org_kth_144524
28391987
10_1016_j_jallcom_2014_02_012
S0925838814003284
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SMS
SSH
T9H
WUQ
IQODW
8BQ
8FD
AFXIZ
H8G
JG9
ADTPV
AOWAS
D8V
EFKBS
ID FETCH-LOGICAL-c480t-4b1d333037f8e98c2fbd4c416dcc7dfb6b1d7e207e06b2d074c88d2971b752713
IEDL.DBID .~1
ISSN 0925-8388
1873-4669
IngestDate Thu Aug 21 06:11:46 EDT 2025
Fri Jul 11 06:15:39 EDT 2025
Fri Jul 11 10:15:51 EDT 2025
Wed Apr 02 08:10:23 EDT 2025
Tue Jul 01 02:08:24 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Fri Feb 23 02:23:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ferrites
Nanoconfinement
Nanostructured materials
Porous materials
Magnetically ordered materials
Crystal structure
Cubic lattices
Confinement
Particle size
Magnetization
Nanocage
Superparamagnetism
XRD
High temperature
Magnetic nanomaterial
Jahn-Teller effect
Mesoporosity
Copper Iron Oxides Mixed
Magnetic particles
Transmission electron microscopy
Magnetic domains
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-4b1d333037f8e98c2fbd4c416dcc7dfb6b1d7e207e06b2d074c88d2971b752713
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1559711953
PQPubID 23500
PageCount 7
ParticipantIDs swepub_primary_oai_DiVA_org_kth_144524
proquest_miscellaneous_1677980642
proquest_miscellaneous_1559711953
pascalfrancis_primary_28391987
crossref_citationtrail_10_1016_j_jallcom_2014_02_012
crossref_primary_10_1016_j_jallcom_2014_02_012
elsevier_sciencedirect_doi_10_1016_j_jallcom_2014_02_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-15
PublicationDateYYYYMMDD 2014-06-15
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of alloys and compounds
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tang, Li, Chen (b0105) 2012; 24
Doi, Takai, Sakamoto, Terasaki, Yamauchi, Kuroda (b0160) 2010; 46
Kimura, Mashino, Hiroki, Shigeoka, Sakai, Zhu, Ichiyanagi (b0070) 2012; 532
Wang, Yang, Zibrowius, Spliethoff, Lindén, Schüth (b0110) 2003; 15
Shi, Guo, Corr, Shi, Hu, Heier, Chen, Seshadri, Stucky (b0025) 2009; 9
Lai, Li, Geng, Tu, Li, Qiu (b0040) 2007; 46
Selvan, Krisham, Augustin, Bertagnolli, Kim, Gedanken (b0065) 2008; 20
Jiao, Jumas, Womes, Chadwick, Harrison, Bruce (b0045) 2006; 128
Goya, Morales (b0205) 2004; 20–21
Krutyeva, Wischnewski, Monkenbusch, Willner, Maiz, Mijangos, Arbe, Colmenero, Radulescu, Holderer, Ohl, Richter (b0005) 2013; 110
Rashad, Mohamed, Ibrahim, Ismail, Abdel-Aal (b0075) 2012; 23
Morais, Azevedo, Rabelo, Lima (b0120) 2003; 15
Ryu, Lee, Park (b0130) 2004; 5
Dickinson, Zhou, Hodgkins, Shi, Zhao, He (b0140) 2006; 18
Shaheen, Ali (b0125) 2001; 3
Zhang, Wang, Wang, Jiang, Li, Hu, Ji, Wu, Chen (b0095) 2012; 24
Salabaş, Rumplecker, Kleitz, Radu, Schüth (b0030) 2006; 6
Sun, Ji, Zheng, Chang, Lib, Zhang (b0135) 2010; 20
Rumplecker, Kleitz, Salabas, Schüth (b0145) 2007; 19
Waitz, Wagner, Sauerwald, Kohl, Tiemann (b0155) 2009; 19
Laurent, Forge, Port, Roch, Robic, Elst, Muller (b0185) 2008; 108
Haffer, Walther, Köferstein, Ebbinghaus, Tiemann (b0175) 2013; 117
Evans, Marr (b0015) 2012; 48
Cullity, Graham (b0170) 2009
Wang, Yang, Schmidt, Spliethoff, Bill, Schüth (b0035) 2005; 17
Tüysüz, Salabaş, Weidenthaler, Schüth (b0090) 2008; 130
Platschek, Keilbach, Bein (b0010) 2011; 23
Huang, Lin, Wang, Wang, Zhang, He, Wang, Chen, Li, Shen, Cui, Chen (b0100) 2012; 24
Estrella, Barrio, Zhou, Wang, Wang, Wen, Hanson, Frenkel, Rodriguez (b0060) 2009; 113
Nunes, Socolovsky, Denardin, Cebollada, Brandl, Knobel (b0210) 2005; 72
McHenry, Majetich, Artman, DeGraef, Staley (b0215) 1994; 49
Martínez, Obradors, Balcells, Rouanet, Monty (b0180) 1998; 80
Mitra, Vázquez- Vázquez, López-Quintela, Paul, Bhaumik (b0200) 2010; 131
Li, Li, Bai, Wang, Sun, Yang, Li (b0020) 2012; 5
Wang, Ren, Wang, Zhang, Liu, Guo, Lu (b0165) 2008; 112
Reitz, Suchomski, Haetge, Leichtweiss, Jagličić, Djerdjc, Brezesinski (b0150) 2012; 48
Knobel, Nunes, Socolovsky, Biasi, Vargas, Denardin (b0190) 2008; 8
Darul (b0080) 2009; 30
Rabelo, Lima, Reis, Nunes, Novak, Garg, Oliveira, Morais (b0115) 2001; 1
Jiao, Harrison, Jumas, Chadwick, Kockelmann, Bruce (b0050) 2006; 128
Jahn, Teller (b0055) 1937; 161
Denardin, Brandl, Knobel, Panissod, Pakhomov, Liu, Zhang (b0195) 2002; 65
Goya (10.1016/j.jallcom.2014.02.012_b0205) 2004; 20–21
Darul (10.1016/j.jallcom.2014.02.012_b0080) 2009; 30
Rumplecker (10.1016/j.jallcom.2014.02.012_b0145) 2007; 19
Krutyeva (10.1016/j.jallcom.2014.02.012_b0005) 2013; 110
Jiao (10.1016/j.jallcom.2014.02.012_b0045) 2006; 128
Rashad (10.1016/j.jallcom.2014.02.012_b0075) 2012; 23
Li (10.1016/j.jallcom.2014.02.012_b0020) 2012; 5
Estrella (10.1016/j.jallcom.2014.02.012_b0060) 2009; 113
Laurent (10.1016/j.jallcom.2014.02.012_b0185) 2008; 108
Sun (10.1016/j.jallcom.2014.02.012_b0135) 2010; 20
Rabelo (10.1016/j.jallcom.2014.02.012_b0115) 2001; 1
Waitz (10.1016/j.jallcom.2014.02.012_b0155) 2009; 19
Doi (10.1016/j.jallcom.2014.02.012_b0160) 2010; 46
Huang (10.1016/j.jallcom.2014.02.012_b0100) 2012; 24
Salabaş (10.1016/j.jallcom.2014.02.012_b0030) 2006; 6
Kimura (10.1016/j.jallcom.2014.02.012_b0070) 2012; 532
Morais (10.1016/j.jallcom.2014.02.012_b0120) 2003; 15
Jiao (10.1016/j.jallcom.2014.02.012_b0050) 2006; 128
McHenry (10.1016/j.jallcom.2014.02.012_b0215) 1994; 49
Knobel (10.1016/j.jallcom.2014.02.012_b0190) 2008; 8
Wang (10.1016/j.jallcom.2014.02.012_b0035) 2005; 17
Tang (10.1016/j.jallcom.2014.02.012_b0105) 2012; 24
Nunes (10.1016/j.jallcom.2014.02.012_b0210) 2005; 72
Ryu (10.1016/j.jallcom.2014.02.012_b0130) 2004; 5
Denardin (10.1016/j.jallcom.2014.02.012_b0195) 2002; 65
Lai (10.1016/j.jallcom.2014.02.012_b0040) 2007; 46
Shaheen (10.1016/j.jallcom.2014.02.012_b0125) 2001; 3
Platschek (10.1016/j.jallcom.2014.02.012_b0010) 2011; 23
Wang (10.1016/j.jallcom.2014.02.012_b0110) 2003; 15
Haffer (10.1016/j.jallcom.2014.02.012_b0175) 2013; 117
Zhang (10.1016/j.jallcom.2014.02.012_b0095) 2012; 24
Dickinson (10.1016/j.jallcom.2014.02.012_b0140) 2006; 18
Cullity (10.1016/j.jallcom.2014.02.012_b0170) 2009
Reitz (10.1016/j.jallcom.2014.02.012_b0150) 2012; 48
Mitra (10.1016/j.jallcom.2014.02.012_b0200) 2010; 131
Shi (10.1016/j.jallcom.2014.02.012_b0025) 2009; 9
Selvan (10.1016/j.jallcom.2014.02.012_b0065) 2008; 20
Jahn (10.1016/j.jallcom.2014.02.012_b0055) 1937; 161
Evans (10.1016/j.jallcom.2014.02.012_b0015) 2012; 48
Tüysüz (10.1016/j.jallcom.2014.02.012_b0090) 2008; 130
Martínez (10.1016/j.jallcom.2014.02.012_b0180) 1998; 80
Wang (10.1016/j.jallcom.2014.02.012_b0165) 2008; 112
References_xml – volume: 30
  start-page: 335
  year: 2009
  end-page: 340
  ident: b0080
  publication-title: Kristallograhie
– volume: 532
  start-page: 119
  year: 2012
  end-page: 122
  ident: b0070
  publication-title: Thermochim. Acta
– volume: 15
  start-page: 5029
  year: 2003
  end-page: 5035
  ident: b0110
  publication-title: Chem. Mater.
– volume: 108
  start-page: 2064
  year: 2008
  end-page: 2110
  ident: b0185
  publication-title: Chem. Rev.
– volume: 161
  start-page: 220
  year: 1937
  end-page: 235
  ident: b0055
  publication-title: Proc. R. Soc. London
– volume: 24
  start-page: 1504
  year: 2012
  end-page: 1534
  ident: b0105
  publication-title: Adv. Mater.
– volume: 5
  start-page: 8229
  year: 2012
  end-page: 8233
  ident: b0020
  publication-title: Energy Environ. Sci.
– volume: 20–21
  start-page: 673
  year: 2004
  end-page: 678
  ident: b0205
  publication-title: J. Metastable Nanocrystal Mater.
– volume: 20
  start-page: 429
  year: 2008
  end-page: 439
  ident: b0065
  publication-title: Chem. Mater
– volume: 128
  start-page: 12905
  year: 2006
  end-page: 12909
  ident: b0045
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 15293
  year: 2008
  end-page: 15298
  ident: b0165
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 738
  year: 2007
  end-page: 741
  ident: b0040
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  start-page: 3088
  year: 2006
  end-page: 3095
  ident: b0140
  publication-title: Chem. Mater.
– year: 2009
  ident: b0170
  article-title: Introduction to Magnetic Materials
– volume: 48
  start-page: 3742
  year: 2012
  end-page: 3744
  ident: b0015
  publication-title: Chem. Commun.
– volume: 17
  start-page: 53
  year: 2005
  end-page: 56
  ident: b0035
  publication-title: Adv. Mater.
– volume: 46
  start-page: 6365
  year: 2010
  end-page: 6367
  ident: b0160
  publication-title: Chem. Commun.
– volume: 23
  start-page: 2395
  year: 2011
  end-page: 2412
  ident: b0010
  publication-title: Adv. Mater.
– volume: 1
  start-page: 105
  year: 2001
  end-page: 108
  ident: b0115
  publication-title: Nano Lett.
– volume: 19
  start-page: 485
  year: 2007
  end-page: 496
  ident: b0145
  publication-title: Chem. Mater.
– volume: 15
  start-page: 2485
  year: 2003
  end-page: 2487
  ident: b0120
  publication-title: Chem. Mater.
– volume: 65
  start-page: 064422
  year: 2002
  ident: b0195
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 945
  year: 2010
  end-page: 952
  ident: b0135
  publication-title: J. Mater. Chem.
– volume: 130
  start-page: 280
  year: 2008
  end-page: 287
  ident: b0090
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1073
  year: 2001
  end-page: 1081
  ident: b0125
  publication-title: Int. J. Inorg. Mater.
– volume: 9
  start-page: 4215
  year: 2009
  end-page: 4220
  ident: b0025
  publication-title: Nano Lett.
– volume: 24
  start-page: 1418
  year: 2012
  end-page: 1423
  ident: b0095
  publication-title: Adv. Mater.
– volume: 49
  start-page: 11358
  year: 1994
  end-page: 11363
  ident: b0215
  publication-title: Phys. Rev. B
– volume: 72
  start-page: 212413
  year: 2005
  ident: b0210
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 2836
  year: 2008
  end-page: 2857
  ident: b0190
  publication-title: Nanosci. Nanotechnol.
– volume: 80
  start-page: 181
  year: 1998
  end-page: 183
  ident: b0180
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 14411
  year: 2009
  end-page: 14417
  ident: b0060
  publication-title: J. Phys. Chem. C
– volume: 131
  start-page: 373
  year: 2010
  end-page: 377
  ident: b0200
  publication-title: Microporous Mesoporous Mater.
– volume: 48
  start-page: 4471
  year: 2012
  end-page: 4473
  ident: b0150
  publication-title: Chem. Commun.
– volume: 5
  start-page: 180
  year: 2004
  end-page: 185
  ident: b0130
  publication-title: Carbon Letters
– volume: 19
  start-page: 653
  year: 2009
  end-page: 661
  ident: b0155
  publication-title: Adv. Funct. Mater.
– volume: 128
  start-page: 5468
  year: 2006
  end-page: 5474
  ident: b0050
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 2977
  year: 2006
  end-page: 2981
  ident: b0030
  publication-title: Nano Lett.
– volume: 110
  start-page: 108303
  year: 2013
  ident: b0005
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 315
  year: 2012
  end-page: 323
  ident: b0075
  publication-title: Adv. Powder Technol.
– volume: 117
  start-page: 24471
  year: 2013
  end-page: 24478
  ident: b0175
  publication-title: J. Phys. Chem. C
– volume: 24
  start-page: 5104
  year: 2012
  end-page: 5110
  ident: b0100
  publication-title: Adv. Mater.
– volume: 128
  start-page: 5468
  year: 2006
  ident: 10.1016/j.jallcom.2014.02.012_b0050
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0584774
– volume: 130
  start-page: 280
  year: 2008
  ident: 10.1016/j.jallcom.2014.02.012_b0090
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja075528j
– volume: 108
  start-page: 2064
  issue: 6
  year: 2008
  ident: 10.1016/j.jallcom.2014.02.012_b0185
  publication-title: Chem. Rev.
  doi: 10.1021/cr068445e
– volume: 15
  start-page: 2485
  issue: 13
  year: 2003
  ident: 10.1016/j.jallcom.2014.02.012_b0120
  publication-title: Chem. Mater.
  doi: 10.1021/cm034070r
– volume: 110
  start-page: 108303
  issue: 11
  year: 2013
  ident: 10.1016/j.jallcom.2014.02.012_b0005
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.108303
– volume: 49
  start-page: 11358
  year: 1994
  ident: 10.1016/j.jallcom.2014.02.012_b0215
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.11358
– volume: 23
  start-page: 315
  year: 2012
  ident: 10.1016/j.jallcom.2014.02.012_b0075
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2011.04.005
– volume: 48
  start-page: 4471
  year: 2012
  ident: 10.1016/j.jallcom.2014.02.012_b0150
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31006f
– volume: 6
  start-page: 2977
  issue: 12
  year: 2006
  ident: 10.1016/j.jallcom.2014.02.012_b0030
  publication-title: Nano Lett.
  doi: 10.1021/nl060528n
– volume: 15
  start-page: 5029
  year: 2003
  ident: 10.1016/j.jallcom.2014.02.012_b0110
  publication-title: Chem. Mater.
  doi: 10.1021/cm034769x
– year: 2009
  ident: 10.1016/j.jallcom.2014.02.012_b0170
– volume: 24
  start-page: 1418
  issue: 11
  year: 2012
  ident: 10.1016/j.jallcom.2014.02.012_b0095
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104714
– volume: 24
  start-page: 5104
  issue: 37
  year: 2012
  ident: 10.1016/j.jallcom.2014.02.012_b0100
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200650
– volume: 19
  start-page: 653
  year: 2009
  ident: 10.1016/j.jallcom.2014.02.012_b0155
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801458
– volume: 128
  start-page: 12905
  year: 2006
  ident: 10.1016/j.jallcom.2014.02.012_b0045
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063662i
– volume: 18
  start-page: 3088
  year: 2006
  ident: 10.1016/j.jallcom.2014.02.012_b0140
  publication-title: Chem. Mater.
  doi: 10.1021/cm060014p
– volume: 532
  start-page: 119
  year: 2012
  ident: 10.1016/j.jallcom.2014.02.012_b0070
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2011.09.018
– volume: 24
  start-page: 1504
  year: 2012
  ident: 10.1016/j.jallcom.2014.02.012_b0105
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104763
– volume: 5
  start-page: 180
  issue: 4
  year: 2004
  ident: 10.1016/j.jallcom.2014.02.012_b0130
  publication-title: Carbon Letters
– volume: 112
  start-page: 15293
  year: 2008
  ident: 10.1016/j.jallcom.2014.02.012_b0165
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8048394
– volume: 72
  start-page: 212413
  year: 2005
  ident: 10.1016/j.jallcom.2014.02.012_b0210
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.212413
– volume: 1
  start-page: 105
  issue: 2
  year: 2001
  ident: 10.1016/j.jallcom.2014.02.012_b0115
  publication-title: Nano Lett.
  doi: 10.1021/nl005533k
– volume: 19
  start-page: 485
  year: 2007
  ident: 10.1016/j.jallcom.2014.02.012_b0145
  publication-title: Chem. Mater.
  doi: 10.1021/cm0610635
– volume: 20–21
  start-page: 673
  year: 2004
  ident: 10.1016/j.jallcom.2014.02.012_b0205
  publication-title: J. Metastable Nanocrystal Mater.
  doi: 10.4028/www.scientific.net/JMNM.20-21.673
– volume: 46
  start-page: 738
  year: 2007
  ident: 10.1016/j.jallcom.2014.02.012_b0040
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200603210
– volume: 5
  start-page: 8229
  year: 2012
  ident: 10.1016/j.jallcom.2014.02.012_b0020
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22059h
– volume: 80
  start-page: 181
  issue: 1
  year: 1998
  ident: 10.1016/j.jallcom.2014.02.012_b0180
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.181
– volume: 46
  start-page: 6365
  year: 2010
  ident: 10.1016/j.jallcom.2014.02.012_b0160
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01196g
– volume: 131
  start-page: 373
  year: 2010
  ident: 10.1016/j.jallcom.2014.02.012_b0200
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2010.01.017
– volume: 20
  start-page: 429
  year: 2008
  ident: 10.1016/j.jallcom.2014.02.012_b0065
  publication-title: Chem. Mater
  doi: 10.1021/cm701937q
– volume: 17
  start-page: 53
  issue: 1
  year: 2005
  ident: 10.1016/j.jallcom.2014.02.012_b0035
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400777
– volume: 8
  start-page: 2836
  year: 2008
  ident: 10.1016/j.jallcom.2014.02.012_b0190
  publication-title: Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2008.15348
– volume: 48
  start-page: 3742
  year: 2012
  ident: 10.1016/j.jallcom.2014.02.012_b0015
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc18022g
– volume: 9
  start-page: 4215
  issue: 12
  year: 2009
  ident: 10.1016/j.jallcom.2014.02.012_b0025
  publication-title: Nano Lett.
  doi: 10.1021/nl902423a
– volume: 30
  start-page: 335
  issue: Suppl.
  year: 2009
  ident: 10.1016/j.jallcom.2014.02.012_b0080
  publication-title: Kristallograhie
– volume: 3
  start-page: 1073
  year: 2001
  ident: 10.1016/j.jallcom.2014.02.012_b0125
  publication-title: Int. J. Inorg. Mater.
  doi: 10.1016/S1466-6049(01)00165-9
– volume: 23
  start-page: 2395
  year: 2011
  ident: 10.1016/j.jallcom.2014.02.012_b0010
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002828
– volume: 65
  start-page: 064422
  year: 2002
  ident: 10.1016/j.jallcom.2014.02.012_b0195
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.064422
– volume: 117
  start-page: 24471
  year: 2013
  ident: 10.1016/j.jallcom.2014.02.012_b0175
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp409058t
– volume: 161
  start-page: 220
  year: 1937
  ident: 10.1016/j.jallcom.2014.02.012_b0055
  publication-title: Proc. R. Soc. London
  doi: 10.1098/rspa.1937.0142
– volume: 113
  start-page: 14411
  issue: 32
  year: 2009
  ident: 10.1016/j.jallcom.2014.02.012_b0060
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp903818q
– volume: 20
  start-page: 945
  year: 2010
  ident: 10.1016/j.jallcom.2014.02.012_b0135
  publication-title: J. Mater. Chem.
  doi: 10.1039/B919090B
SSID ssj0001931
Score 2.2140944
Snippet [Display omitted] •Fabrication of superparamagnetic cubic single phase, ordered mesoporous CuFe2O4.•Reduction of formation temperature of copper ferrite...
Superparamagnetic, cubic single phase, ordered mesoporous copper ferrite is synthesized through confinement in nanocages of mesoporous silica. The heat...
SourceID swepub
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 191
SubjectTerms Channels
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Confinement
Copper
Crystal structure
Exact sciences and technology
FERRITE
Ferrites
Magnetic domains
Magnetic properties and materials
Magnetic properties of nanostructures
Magnetically ordered materials
Magnetization
MICROSTRUCTURES
Nanoconfinement
Nanostructure
Nanostructured materials
PARTICLE SIZE AND SHAPE
Physics
POROSITY
Porous materials
SILICON DIOXIDE
Title Effect of nanoconfinement on the formation, structural transition and magnetic behavior of mesoporous copper ferrite
URI https://dx.doi.org/10.1016/j.jallcom.2014.02.012
https://www.proquest.com/docview/1559711953
https://www.proquest.com/docview/1677980642
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-144524
Volume 598
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VRQgqhCCACI9okRAnnNjrtdc-RoEqgOgFinpbeV8lIbWtxr3y25nxI20OUImj7Vk_dsY73-7OfAPw1hcJOpmsCHzi4kBIp4PcSB-guE28DYVrE2m_nqTLU_H5LDk7gMWQC0Nhlf3Y343p7Wjdn5n1vTmrV6vZtzDntOdHlE1ECkecoEJIsvLp7-swDwQobdU8FA5I-jqLZ7aerovNhoJG0AuKlroz4n_zTw_qYou95rtyF_t49CbHaOuXjh_Bwx5Qsnn3zo_hwJUjuLcY6riN4OgG5eAI7rYhn2b7BJqOuJhVnpVFWeG82KMYLRayqmSIC9kusfE962hmiaKDNeTd2kAvVpSWXRTnJSVCsiHhn2544bYVAvvqastMVdfuknligGzcUzg9_vh9sQz6GgyBEVnYBEJHNo7Rz0mfuTwz3GsrDKI4a4y0Xqd4XToeShemmlsEJCbLLM9lpGXCcQb8DA7LqnTPgXFrEDv53FudolEg1uOZNjxCxGO4LuIxiKHnlekJyqlOxkYNkWhr1StMkcJUyBUqbAzTXbO6Y-i4rUE2qFXtmZpCL3Jb08meGeweiCAtp-WbMbwZ7EKhmmnzpSgd9rai7V9J_HrxP2RSKfOMpoRjeNcZ1e4JRAP-YfVjrqrLc_Wr-YlzNpFw8eL_P-Yl3KcjinuLkldwiIbkXiPCavSk_YUmcGf-6cvy5A8F0Cl5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVKgghCCAGh5lkRAn3Nibtdc-RoEqpW0utKi3lb2PkjS1rcb8f2b8ojlAJa7eXT92xjvf7M58A_DRpSEamTj1XGgnnpA28xItnYfdTeiML2ydSHu2iOYX4ttleLkDsy4XhsIq27W_WdPr1bq9Mm5nc1wul-PvfsLpzI8om4gUTjyAXWKnCgewOz0-mS_6BRkxSl04D_t7NOBPIs94dbhK12uKG0FDKGr2zoD_zUQ9KdMNTpxrKl5sQ9K7NKO1aTp6Bk9bTMmmzWs_hx2bD2Fv1pVyG8LjO6yDQ3hYR33qzQuoGu5iVjiWp3mBrrHDbrRfyIqcITRkfW7jZ9YwzRJLB6vIwNWxXizNDbtJr3LKhWRdzj_d8MZuCsT2xa8N00VZ2lvmiASysi_h4ujr-WzutWUYPC1iv_JEFpjJBE2ddLFNYs1dZoRGIGe0lsZlEbZLy31p_SjjBjGJjmPDExlkMuToBL-CQV7kdh8YNxrhk0ucySLUC4R7PM40DxD0aJ6lkxGIbuaVbjnKqVTGWnXBaCvVCkyRwJTPFQpsBIf9sLIh6bhvQNyJVW1pm0JDct_Qgy016B-IOC2hHZwRfOj0QqGY6fwlzS3OtqITYEkUe5N_9ImkTGLyCkfwqVGq_gnEBP5l-WOqitsrdV39RLdNhFy8_v-PeQ978_OzU3V6vDh5A4-ohcLggvAtDFCp7DsEXFV20P5QvwEXrywq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+nanoconfinement+on+the+formation%2C+structural+transition+and+magnetic+behavior+of+mesoporous+copper+ferrite&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Najmoddin%2C+Najmeh&rft.au=Beitollahi%2C+Ali&rft.au=Muhammed%2C+Mamoun&rft.au=Ansari%2C+Narges&rft.date=2014-06-15&rft.issn=0925-8388&rft.volume=598&rft.spage=191&rft.epage=197&rft_id=info:doi/10.1016%2Fj.jallcom.2014.02.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon