Modeling of the Coral Microbiome: the Influence of Temperature and Microbial Network

Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome i...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 11; no. 2
Main Authors Lima, Laís F O, Weissman, Maya, Reed, Micheal, Papudeshi, Bhavya, Alker, Amanda T, Morris, Megan M, Edwards, Robert A, de Putron, Samantha J, Vaidya, Naveen K, Dinsdale, Elizabeth A
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology (ASM) 03.03.2020
American Society for Microbiology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver. Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.
AbstractList Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa . The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions. ABSTRACT Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver. IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa . The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.
Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa . The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions. Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.
ABSTRACT Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver. IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa. The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.
Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver. Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa. The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.
Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver. Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.
Author Lima, Laís F O
Vaidya, Naveen K
Dinsdale, Elizabeth A
Papudeshi, Bhavya
de Putron, Samantha J
Alker, Amanda T
Weissman, Maya
Edwards, Robert A
Reed, Micheal
Morris, Megan M
Author_xml – sequence: 1
  givenname: Laís F O
  orcidid: 0000-0002-7616-3637
  surname: Lima
  fullname: Lima, Laís F O
  organization: College of Biological Sciences, University of California Davis, Davis, California, USA
– sequence: 2
  givenname: Maya
  orcidid: 0000-0002-6054-1752
  surname: Weissman
  fullname: Weissman, Maya
  organization: Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
– sequence: 3
  givenname: Micheal
  orcidid: 0000-0002-0390-5695
  surname: Reed
  fullname: Reed, Micheal
  organization: Department of Biology, San Diego State University, San Diego, California, USA
– sequence: 4
  givenname: Bhavya
  orcidid: 0000-0001-5359-3100
  surname: Papudeshi
  fullname: Papudeshi, Bhavya
  organization: National Center for Genome Analysis Support, Pervasive Institute of Technology, Indiana University, Bloomington, Indiana, USA
– sequence: 5
  givenname: Amanda T
  orcidid: 0000-0002-4428-0978
  surname: Alker
  fullname: Alker, Amanda T
  organization: Department of Biology, San Diego State University, San Diego, California, USA
– sequence: 6
  givenname: Megan M
  orcidid: 0000-0002-7024-8234
  surname: Morris
  fullname: Morris, Megan M
  organization: Department of Biology, San Diego State University, San Diego, California, USA
– sequence: 7
  givenname: Robert A
  orcidid: 0000-0001-8383-8949
  surname: Edwards
  fullname: Edwards, Robert A
  organization: Viral Information Institute, San Diego State University, San Diego, California, USA
– sequence: 8
  givenname: Samantha J
  orcidid: 0000-0003-1636-3757
  surname: de Putron
  fullname: de Putron, Samantha J
  organization: Bermuda Institute of Ocean Sciences, St. George's, Bermuda
– sequence: 9
  givenname: Naveen K
  orcidid: 0000-0003-3502-2464
  surname: Vaidya
  fullname: Vaidya, Naveen K
  organization: Viral Information Institute, San Diego State University, San Diego, California, USA
– sequence: 10
  givenname: Elizabeth A
  orcidid: 0000-0002-2177-203X
  surname: Dinsdale
  fullname: Dinsdale, Elizabeth A
  email: edinsdale@sdsu.edu
  organization: Viral Information Institute, San Diego State University, San Diego, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32127450$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1775027$$D View this record in Osti.gov
BookMark eNpVkc9vFCEUx4mpsbX26NVMvE_lwTCABxO78ccmrV7WMwHmzS51BjbMrMb_XmbXNpYL5MuXz3u870tyFlNEQl4DvQZg6t14E9I1Za2GGvQzcsFA0FoKgLPl3ELNgOlzcjVN97QszkFx-oKc86LLRtALsrlLHQ4hbqvUV_MOq1XKdqjugs_JhTTi-6O6jv1wwOhxsW1w3GO28yFjZWP3YC7PvuH8O-Wfr8jz3g4TXv3bL8mPz582q6_17fcv69XH29o3is51I5Bh77F1SCky6pRmXQsSVNtxwQRzvfNe-gY5lyARlbUIrqdCa9txzS_J-sTtkr03-xxGm_-YZIM5Cilvjc1z8AMa32jrUYFT3DWCl_pc-74Vqmt5pzwtrA8n1v7gRuw8xrkM4gn06U0MO7NNv4ykbSNbUQBvT4A0zcFMPszodz7FiH42IKWgTBZTfTKViU1Txv6xAFCzRGqWSM0xUgPLD9_839Wj-yFA_hezFp7V
CitedBy_id crossref_primary_10_1128_mSystems_00707_21
crossref_primary_10_1038_s43705_022_00126_3
crossref_primary_10_1186_s42523_021_00130_3
crossref_primary_10_3390_microorganisms10102081
crossref_primary_10_3389_fmars_2022_908734
crossref_primary_10_1007_s00343_024_3159_0
crossref_primary_10_3389_fmicb_2023_1027804
crossref_primary_10_1038_s42003_021_02163_5
crossref_primary_10_1080_03014223_2023_2255142
crossref_primary_10_3390_microorganisms12030557
crossref_primary_10_1093_femsec_fiae058
crossref_primary_10_1007_s00248_022_02094_6
crossref_primary_10_1186_s40793_024_00579_0
crossref_primary_10_1016_j_mib_2021_05_003
crossref_primary_10_1186_s40793_023_00540_7
crossref_primary_10_1016_j_marenvres_2023_105900
crossref_primary_10_1007_s00338_020_01951_5
crossref_primary_10_1038_s41598_023_39184_5
crossref_primary_10_1016_j_scitotenv_2021_148438
crossref_primary_10_3389_fmicb_2023_1031711
crossref_primary_10_1016_j_marenvres_2023_106015
crossref_primary_10_1111_jbi_14857
crossref_primary_10_1126_sciadv_adk9117
crossref_primary_10_3389_fmars_2022_952199
crossref_primary_10_1128_mbio_00434_23
crossref_primary_10_1093_gigascience_giae020
crossref_primary_10_3390_microorganisms12051005
crossref_primary_10_1128_aem_01939_23
crossref_primary_10_1007_s00338_021_02097_8
crossref_primary_10_1029_2022JC019307
crossref_primary_10_1007_s00248_022_01969_y
crossref_primary_10_1128_aem_02274_23
crossref_primary_10_1128_spectrum_02436_23
crossref_primary_10_3390_v14091969
Cites_doi 10.1186/s40168-019-0705-7
10.7717/peerj.3666
10.1016/j.envpol.2019.04.030
10.1016/j.mib.2016.11.002
10.1038/ncomms11833
10.1111/j.1365-2486.2011.02487.x
10.1038/ismej.2015.3
10.1038/srep00240
10.1101/gr.072033.107
10.5343/bms.2009.1027
10.1038/s41467-018-07275-x
10.1111/1758-2229.12537
10.1126/science.aan8048
10.1111/j.1462-2920.2009.02027.x
10.1038/npjsba.2016.7
10.1016/j.ecolmodel.2007.04.029
10.1007/978-94-007-5965-7_13
10.1093/bioinformatics/btr026
10.3389/fmars.2017.00262
10.1111/j.1365-3040.1996.tb00251.x
10.1038/nmeth.4458
10.1038/nmicrobiol.2016.42
10.1038/nature23292
10.1016/j.tim.2015.03.008
10.1186/s12864-018-5064-4
10.1128/AEM.61.2.610-616.1995
10.2307/3033543
10.3389/fmars.2017.00009
10.1038/ismej.2013.199
10.1080/0022250X.1972.9989806
10.1111/1758-2229.12412
10.1111/gcb.12450
10.1093/femsec/fiv142
10.1098/rspb.2012.2328
10.1006/jtbi.1993.1099
10.1038/nmicrobiol.2017.121
10.3354/meps296291
10.1007/s00338-012-0944-6
10.1007/978-3-662-06414-6_3
10.1111/j.1365-2672.1989.tb02519.x
10.1007/978-94-007-5965-7_11
10.1038/nmeth.1311
10.1093/icesjms/fsv187
10.3354/dao02164
10.1016/j.socnet.2004.11.008
10.1111/1758-2229.12274
10.1186/1471-2164-14-600
10.1038/nature12677
10.1186/1471-2105-13-113
10.1371/journal.pone.0001584
10.1371/journal.pone.0007319
10.3389/fmicb.2017.00341
10.1073/pnas.96.14.8007
10.1007/s00248-017-1013-z
10.1007/s00338-016-1527-8
10.1038/nature06810
10.1111/1758-2229.12686
10.3354/meps322001
10.1007/s003380100146
10.1111/j.1462-2920.2009.01935.x
10.3389/fmicb.2014.00219
10.1146/annurev-micro-102215-095440
10.1137/140966642
10.1038/ismej.2010.152
10.1371/journal.pone.0192772
10.1111/geb.12528
10.1038/nature18607
10.1016/j.socnet.2007.04.002
10.5670/oceanog.2007.91
10.1038/ismej.2016.9
10.1016/j.biortech.2016.02.132
10.1111/j.1462-2920.2008.01718.x
10.7717/peerj.108
10.1007/978-94-007-0114-4_16
10.7717/peerj.3315
10.1128/mSystems.00143-16
10.1093/femsre/fux018
10.1016/j.marenvres.2014.04.002
10.3389/fmicb.2014.00422
10.1186/s40168-017-0329-8
10.1007/s00227-017-3097-x
10.1111/1462-2920.13958
10.1029/2012JC008199
10.1038/ismej.2011.24
10.1093/femsre/fuy030
10.3389/fcimb.2018.00236
10.1007/s00338-018-1673-2
10.1038/nrmicro2540
10.1007/s00248-013-0362-5
10.1128/JB.149.1.1-5.1982
10.3389/fmars.2017.00222
10.1038/srep26087
10.3354/dao03289
10.1111/j.1574-6941.2008.00644.x
10.1038/ismej.2010.102
10.1111/1462-2920.13111
10.1038/ncomms14213
10.7717/peerj.425
10.1371/journal.pbio.1002226
10.1038/nclimate2625
10.1111/mec.12510
10.3354/meps243001
10.1126/sciadv.1701356
10.3389/fgene.2014.00168
10.1093/bioinformatics/btt593
10.1111/j.1462-2920.2007.01383.x
10.1016/j.tim.2016.11.008
10.1073/pnas.1311322111
10.1073/pnas.1403319111
10.3389/fgene.2013.00041
ContentType Journal Article
Copyright Copyright © 2020 Lima et al.
Copyright © 2020 Lima et al. 2020 Lima et al.
Copyright_xml – notice: Copyright © 2020 Lima et al.
– notice: Copyright © 2020 Lima et al. 2020 Lima et al.
CorporateAuthor Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
OIOZB
OTOTI
5PM
DOA
DOI 10.1128/mBio.02691-19
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DAOJ: Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList CrossRef



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Modeling of the Coral Microbiome
EISSN 2150-7511
Editor McFall-Ngai, Margaret J.
Medina, Monica
Editor_xml – sequence: 1
  givenname: Monica
  surname: Medina
  fullname: Medina, Monica
– sequence: 2
  givenname: Margaret J.
  surname: McFall-Ngai
  fullname: McFall-Ngai, Margaret J.
ExternalDocumentID oai_doaj_org_article_c49ace81b83b45348039cf658d63d8c0
1775027
10_1128_mBio_02691_19
32127450
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Bermuda
GeographicLocations_xml – name: Bermuda
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAUOK
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CGR
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
M~E
NPM
O5R
O5S
O9-
OK1
P2P
PGMZT
RHF
RHI
RNS
RPM
RSF
AAYXX
CITATION
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c480t-45e2efce6be00e20b892d617186d35252bfbcc7c4e33717ee8aae1bf0599ad393
IEDL.DBID RPM
ISSN 2161-2129
2150-7511
IngestDate Sun Sep 29 07:14:54 EDT 2024
Tue Sep 17 21:25:15 EDT 2024
Mon Jul 10 02:32:49 EDT 2023
Fri Aug 23 01:11:16 EDT 2024
Sat Sep 28 08:23:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords host-microbe
metagenomics
microbial communities
Language English
License Copyright © 2020 Lima et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-45e2efce6be00e20b892d617186d35252bfbcc7c4e33717ee8aae1bf0599ad393
Notes LLNL-JRNL-814122
AC52-07NA27344; DMS-1616299; DMS-1836647
National Science Foundation (NSF)
USDOE National Nuclear Security Administration (NNSA)
Present address: Maya Weissman, Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA; Megan M. Morris, Department of Biology, Stanford University, Stanford, California, USA.
ORCID 0000-0001-8383-8949
0000-0002-0390-5695
0000-0002-7024-8234
0000-0003-1636-3757
0000-0002-2177-203X
0000-0001-5359-3100
0000-0002-4428-0978
0000-0002-6054-1752
0000-0002-7616-3637
0000-0003-3502-2464
000000022177203X
0000000244280978
0000000260541752
0000000153593100
0000000183838949
0000000316363757
0000000335022464
0000000276163637
0000000203905695
0000000270248234
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064765/
PMID 32127450
ParticipantIDs doaj_primary_oai_doaj_org_article_c49ace81b83b45348039cf658d63d8c0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7064765
osti_scitechconnect_1775027
crossref_primary_10_1128_mBio_02691_19
pubmed_primary_32127450
PublicationCentury 2000
PublicationDate 20200303
PublicationDateYYYYMMDD 2020-03-03
PublicationDate_xml – month: 3
  year: 2020
  text: 20200303
  day: 3
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2020
Publisher American Society for Microbiology (ASM)
American Society for Microbiology
Publisher_xml – name: American Society for Microbiology (ASM)
– name: American Society for Microbiology
References e_1_3_2_28_2
Hagberg A (e_1_3_2_112_2) 2008
e_1_3_2_20_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
Smith SR (e_1_3_2_84_2) 2013
e_1_3_2_116_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
Dinsdale EA (e_1_3_2_43_2) 2002
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_115_2
e_1_3_2_70_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
Csardi G (e_1_3_2_113_2) 2006; 1695
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
McKinney W (e_1_3_2_111_2) 2011; 14
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_109_2
e_1_3_2_105_2
Revelle W (e_1_3_2_114_2) 2011; 3
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
References_xml – ident: e_1_3_2_83_2
  doi: 10.1186/s40168-019-0705-7
– ident: e_1_3_2_5_2
  doi: 10.7717/peerj.3666
– ident: e_1_3_2_31_2
  doi: 10.1016/j.envpol.2019.04.030
– ident: e_1_3_2_8_2
  doi: 10.1016/j.mib.2016.11.002
– ident: e_1_3_2_30_2
  doi: 10.1038/ncomms11833
– ident: e_1_3_2_97_2
  doi: 10.1111/j.1365-2486.2011.02487.x
– ident: e_1_3_2_49_2
  doi: 10.1038/ismej.2015.3
– ident: e_1_3_2_98_2
  doi: 10.1038/srep00240
– ident: e_1_3_2_105_2
  doi: 10.1101/gr.072033.107
– ident: e_1_3_2_76_2
  doi: 10.5343/bms.2009.1027
– ident: e_1_3_2_45_2
  doi: 10.1038/s41467-018-07275-x
– ident: e_1_3_2_101_2
  doi: 10.1111/1758-2229.12537
– ident: e_1_3_2_11_2
  doi: 10.1126/science.aan8048
– ident: e_1_3_2_52_2
  doi: 10.1111/j.1462-2920.2009.02027.x
– ident: e_1_3_2_62_2
  doi: 10.1038/npjsba.2016.7
– ident: e_1_3_2_66_2
  doi: 10.1016/j.ecolmodel.2007.04.029
– start-page: 173
  volume-title: Coral reefs of the United Kingdom overseas territories
  year: 2013
  ident: e_1_3_2_84_2
  doi: 10.1007/978-94-007-5965-7_13
  contributor:
    fullname: Smith SR
– ident: e_1_3_2_107_2
  doi: 10.1093/bioinformatics/btr026
– ident: e_1_3_2_34_2
  doi: 10.3389/fmars.2017.00262
– ident: e_1_3_2_38_2
  doi: 10.1111/j.1365-3040.1996.tb00251.x
– ident: e_1_3_2_110_2
  doi: 10.1038/nmeth.4458
– ident: e_1_3_2_14_2
  doi: 10.1038/nmicrobiol.2016.42
– ident: e_1_3_2_4_2
  doi: 10.1038/nature23292
– ident: e_1_3_2_21_2
  doi: 10.1016/j.tim.2015.03.008
– ident: e_1_3_2_102_2
  doi: 10.1186/s12864-018-5064-4
– ident: e_1_3_2_59_2
  doi: 10.1128/AEM.61.2.610-616.1995
– ident: e_1_3_2_75_2
  doi: 10.2307/3033543
– ident: e_1_3_2_51_2
  doi: 10.3389/fmars.2017.00009
– ident: e_1_3_2_69_2
  doi: 10.1038/ismej.2013.199
– ident: e_1_3_2_115_2
  doi: 10.1080/0022250X.1972.9989806
– ident: e_1_3_2_80_2
  doi: 10.1111/1758-2229.12412
– ident: e_1_3_2_26_2
  doi: 10.1111/gcb.12450
– ident: e_1_3_2_82_2
  doi: 10.1093/femsec/fiv142
– ident: e_1_3_2_50_2
  doi: 10.1098/rspb.2012.2328
– ident: e_1_3_2_58_2
  doi: 10.1006/jtbi.1993.1099
– ident: e_1_3_2_78_2
  doi: 10.1038/nmicrobiol.2017.121
– ident: e_1_3_2_99_2
  doi: 10.3354/meps296291
– ident: e_1_3_2_41_2
  doi: 10.1007/s00338-012-0944-6
– ident: e_1_3_2_42_2
  doi: 10.1007/978-3-662-06414-6_3
– ident: e_1_3_2_57_2
  doi: 10.1111/j.1365-2672.1989.tb02519.x
– ident: e_1_3_2_73_2
  doi: 10.1007/978-94-007-5965-7_11
– ident: e_1_3_2_106_2
  doi: 10.1038/nmeth.1311
– ident: e_1_3_2_70_2
  doi: 10.1093/icesjms/fsv187
– ident: e_1_3_2_40_2
  doi: 10.3354/dao02164
– ident: e_1_3_2_74_2
  doi: 10.1016/j.socnet.2004.11.008
– ident: e_1_3_2_32_2
  doi: 10.1111/1758-2229.12274
– ident: e_1_3_2_104_2
  doi: 10.1186/1471-2164-14-600
– ident: e_1_3_2_20_2
  doi: 10.1038/nature12677
– ident: e_1_3_2_68_2
  doi: 10.1186/1471-2105-13-113
– ident: e_1_3_2_15_2
  doi: 10.1371/journal.pone.0001584
– ident: e_1_3_2_27_2
  doi: 10.1371/journal.pone.0007319
– ident: e_1_3_2_24_2
  doi: 10.3389/fmicb.2017.00341
– ident: e_1_3_2_96_2
  doi: 10.1073/pnas.96.14.8007
– ident: e_1_3_2_55_2
  doi: 10.1007/s00248-017-1013-z
– ident: e_1_3_2_93_2
  doi: 10.1007/s00338-016-1527-8
– ident: e_1_3_2_63_2
  doi: 10.1038/nature06810
– ident: e_1_3_2_16_2
  doi: 10.1111/1758-2229.12686
– ident: e_1_3_2_22_2
  doi: 10.3354/meps322001
– ident: e_1_3_2_35_2
  doi: 10.1007/s003380100146
– ident: e_1_3_2_28_2
  doi: 10.1111/j.1462-2920.2009.01935.x
– ident: e_1_3_2_87_2
  doi: 10.3389/fmicb.2014.00219
– ident: e_1_3_2_44_2
  doi: 10.1146/annurev-micro-102215-095440
– ident: e_1_3_2_60_2
  doi: 10.1137/140966642
– ident: e_1_3_2_81_2
  doi: 10.1038/ismej.2010.152
– ident: e_1_3_2_103_2
  doi: 10.1371/journal.pone.0192772
– ident: e_1_3_2_65_2
  doi: 10.1111/geb.12528
– ident: e_1_3_2_10_2
  doi: 10.1038/nature18607
– ident: e_1_3_2_116_2
  doi: 10.1016/j.socnet.2007.04.002
– ident: e_1_3_2_39_2
  doi: 10.5670/oceanog.2007.91
– ident: e_1_3_2_100_2
  doi: 10.1038/ismej.2016.9
– start-page: 1239
  volume-title: Proceedings of the Ninth International Coral Reef Symposium
  year: 2002
  ident: e_1_3_2_43_2
  contributor:
    fullname: Dinsdale EA
– ident: e_1_3_2_54_2
  doi: 10.1016/j.biortech.2016.02.132
– ident: e_1_3_2_19_2
  doi: 10.1111/j.1462-2920.2008.01718.x
– ident: e_1_3_2_90_2
  doi: 10.7717/peerj.108
– ident: e_1_3_2_12_2
  doi: 10.1007/978-94-007-0114-4_16
– ident: e_1_3_2_53_2
  doi: 10.7717/peerj.3315
– ident: e_1_3_2_46_2
  doi: 10.1128/mSystems.00143-16
– ident: e_1_3_2_86_2
  doi: 10.1093/femsre/fux018
– ident: e_1_3_2_25_2
  doi: 10.1016/j.marenvres.2014.04.002
– volume: 14
  start-page: 9
  year: 2011
  ident: e_1_3_2_111_2
  article-title: pandas: a foundational Python library for data analysis and statistics
  publication-title: Python High Perform Sci Comput
  contributor:
    fullname: McKinney W
– ident: e_1_3_2_37_2
  doi: 10.3389/fmicb.2014.00422
– ident: e_1_3_2_47_2
  doi: 10.1186/s40168-017-0329-8
– ident: e_1_3_2_94_2
  doi: 10.1007/s00227-017-3097-x
– ident: e_1_3_2_95_2
  doi: 10.1111/1462-2920.13958
– ident: e_1_3_2_36_2
  doi: 10.1029/2012JC008199
– volume: 3
  start-page: 1
  year: 2011
  ident: e_1_3_2_114_2
  article-title: An overview of the psych package
  publication-title: Dep Psychol Northwest Univ
  contributor:
    fullname: Revelle W
– ident: e_1_3_2_67_2
  doi: 10.1038/ismej.2011.24
– ident: e_1_3_2_72_2
  doi: 10.1093/femsre/fuy030
– ident: e_1_3_2_89_2
  doi: 10.3389/fcimb.2018.00236
– ident: e_1_3_2_92_2
  doi: 10.1007/s00338-018-1673-2
– ident: e_1_3_2_6_2
  doi: 10.1038/nrmicro2540
– ident: e_1_3_2_91_2
  doi: 10.1007/s00248-013-0362-5
– ident: e_1_3_2_56_2
  doi: 10.1128/JB.149.1.1-5.1982
– ident: e_1_3_2_9_2
  doi: 10.3389/fmars.2017.00222
– ident: e_1_3_2_88_2
  doi: 10.1038/srep26087
– ident: e_1_3_2_79_2
  doi: 10.3354/dao03289
– ident: e_1_3_2_23_2
  doi: 10.1111/j.1574-6941.2008.00644.x
– ident: e_1_3_2_29_2
  doi: 10.1038/ismej.2010.102
– ident: e_1_3_2_85_2
  doi: 10.1111/1462-2920.13111
– ident: e_1_3_2_48_2
  doi: 10.1038/ncomms14213
– ident: e_1_3_2_109_2
  doi: 10.7717/peerj.425
– volume: 1695
  start-page: 1
  year: 2006
  ident: e_1_3_2_113_2
  article-title: The igraph software package for complex network research
  publication-title: InterJournal, Complex Syst
  contributor:
    fullname: Csardi G
– ident: e_1_3_2_2_2
  doi: 10.1371/journal.pbio.1002226
– ident: e_1_3_2_33_2
  doi: 10.1038/nclimate2625
– ident: e_1_3_2_7_2
  doi: 10.1111/mec.12510
– ident: e_1_3_2_17_2
  doi: 10.3354/meps243001
– ident: e_1_3_2_77_2
  doi: 10.1126/sciadv.1701356
– ident: e_1_3_2_3_2
  doi: 10.3389/fgene.2014.00168
– ident: e_1_3_2_108_2
  doi: 10.1093/bioinformatics/btt593
– ident: e_1_3_2_18_2
  doi: 10.1111/j.1462-2920.2007.01383.x
– ident: e_1_3_2_71_2
  doi: 10.1016/j.tim.2016.11.008
– ident: e_1_3_2_61_2
  doi: 10.1073/pnas.1311322111
– ident: e_1_3_2_13_2
  doi: 10.1073/pnas.1403319111
– ident: e_1_3_2_64_2
  doi: 10.3389/fgene.2013.00041
– volume-title: Exploring network structure, dynamics, and function using NetworkX
  year: 2008
  ident: e_1_3_2_112_2
  contributor:
    fullname: Hagberg A
SSID ssj0000331830
Score 2.468606
Snippet Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe...
Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key...
ABSTRACT Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and...
SourceID doaj
pubmedcentral
osti
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
SubjectTerms Animals
Anthozoa - microbiology
BASIC BIOLOGICAL SCIENCES
Bermuda
Ecological and Evolutionary Science
host-microbe
Metagenomics
microbial communities
Microbial Interactions
Microbiota
Models, Theoretical
Mucus - microbiology
Temperature
SummonAdditionalLinks – databaseName: DAOJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQEhIX1BZatlCUQ9VbIPFHbHMrCEQrwWmRuFn-GIs9kK2q7aH_vjP2LsqeuPQUyRkr1hsn80YZv2Hsq1B2gOxtK4VXrQxyaI1Juu0hI78QPKfyK-b-Ybh7lD-f1NOk1RfVhFV54ArcRZTWR0ByZUSQSkjTCRszxs00iGRizdZ7NUmmyjdY0F7tNqKa3Fy8XC2W55hw2L4lVZ1JECpa_XhZ4js1iUPbNZKToHP7jh2s2WLzva7yPduB8QPbq_0j_x6yOXUyo_PkzTI3yOSaazpv39wvqrrSC1yW0R-bRiRkNgckylVIufFj2hjjtIdaEX7EHm9v5td37bpNQhsRjVUrFXDIEYYAXQe8C8byhMSkN0MisVMecohRRwlCYPIGYLyHPmRSZvFJWPGR7Y7LEY5ZoyREbxPojEhbr30MKSfNI80LOc_Ytw1u7ldVw3Ali-DGEcCuAOx6O2NXhOqrEYlYlwF0rVu71r3l2hk7IZ845AIkaBup8ieuXK-R5XA9Y5-qh14fIkitXiqcp7d8t7WK7Tvj4rlIams6czuoz_9j2Sdsn1NSToVq4pTtrn7_gS_IXFbhrGzSfxV87T4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9wwDDajY7CX0f2-tht5GHtzl9hObA_KWMtKN7g-3UHfTGzL28GarNcbrP_9JCfXNWPsKZDYUZDs6FMifWLsjaxtA6m1XMm25sqrhhsTNa8gIb6QIsX8K2Z-3pwt1ZeL-uIPpdCowOt_hnbUT2q5_n746-rmA274o6EAxry7PF71hxhL2IoTAeh9oaSixT4fkX5-KUtavPTFBX1cyTXijC3j5t93mHioTOSPhx433B0nNU2gvOORTnfZoxFKFh8H2z9m96B7wh4MzSVvnrIFtTmjYvOiTwXCvOKEivGL-WqgXrqE9_ns522XEhq2AETRA8ty0XZxOxinnQ_p4s_Y8vTT4uSMjz0UeFCm3HBVg4AUoPFQliBKb6yIiFoq00RiQhU--RB0UCAlRnYApm2h8oloW9oorXzOdrq-g5esqBWE1kbQqZbKtroNPqaoRaB5PqUZe7vVm_sxUGW4HGII40jBLivYVXbGjkmrt4OI4Tqf6Ndf3bhhXEARARBUG-kVCjSltCEhXoqNjCaUM7ZPNnEIFIjtNlBaUNi4SiMEEnrGXgwWuhUiicpe1ThPT2w3eYrplW71LfNtayrIbeq9_0rcZw8FheKUniYP2M5m_RNeIV7Z-Nd5Jf4G_i3pbg
  priority: 102
  providerName: Scholars Portal
Title Modeling of the Coral Microbiome: the Influence of Temperature and Microbial Network
URI https://www.ncbi.nlm.nih.gov/pubmed/32127450
https://www.osti.gov/servlets/purl/1775027
https://pubmed.ncbi.nlm.nih.gov/PMC7064765
https://doaj.org/article/c49ace81b83b45348039cf658d63d8c0
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJoNBL6btu2uBD6c27tiRbUm_N0jQtbOhhA3sTeozaha4dwvbQf98ZeR12r73IIEtIzIytb9DMN4x9EK3pIDlTSeHaSnrZVVpHVTWQEF8InmK-ilnedNe38vu6XZ-wdsqFyUH7wW9m_e_trN_8yrGVd9swn-LE5j-WC0UZkl07P2WnSogDFz3_fgWZaT3xaXI9315uhhn6GqapGmIJFcRqLinT_uAoyoz9-Bjwyzo4jY4jJQ-Onqun7MkeM5afx709YyfQP2ePxiqSf1-wFdUzo6zyckgl4rlyQVn35XIzcixt4VPu_TaVI6FhK0C4PNIpl66P02CcdjPGhb9kt1dfVovral8soQpS17tKtsAhBeg81DXw2mvDI8KTRneRKE-5Tz4EFSQIgS4cgHYOGp-In8VFYcQrdtYPPbxhZSshOBNBpVZI45QLPqaoeKB5PqWCfZzkZu9GTgybfQmuLcnaZlnbxhTskqT6MIiorHPHcP_T7hVqAy4RANGzFl7igroWJiQERrETUYe6YOekE4uIgGhtA8X_hJ1tFGIdrgr2etTQwyKTdgumjnR3tIvjN2hnmVh7b1dv_3vmOXvMyR-nGDXxjp3t7v_AewQtO3-RnX1sv64bbJdSX2Sz_QfEFfCl
link.rule.ids 230,315,733,786,790,870,891,2115,24346,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRYhueFNCeWSB2CWT2E7ssKMjqil0RiymqDvLzzKCSaoqXcDX4-tMqhl2sIrkh5zk2PG5yrnHAO9o1dTOqyZjVFUZ06zOhLA8K50P_IISb-OvmPminp2zzxfVxR5UYy5MFO0bvcrbn-u8XX2P2sqrtZmMOrHJ1_mUY4ZkXU3uwN2wXgnfCtLjB5jiRC1GR00iJuvjVZeHaKMpsxJ9Qin6mjPMtd_ajKJnf7h0YW1t7Ue7WsmtzefkIXwbb3vQnPzIb3qdm99_OTr-83M9ggcbOpp-HKofw55rn8C94YDKX09hiUelYcJ62vk0UMV0ign96Xw12Det3YdYejqedILNli4w8cGpOVWtHRuHbotBcv4Mzk8-LaezbHMOQ2aYKPqMVY44b1ytXVE4UmjREBuYTylqi26qRHttDDfMURqiQ-eEUq7UHq1flKUNfQ77bde6F5BWzBnVWMd9RVmjuDLaesuJwX7a-wTej4DIq8FuQ8YwhQiJIMoIoiybBI4RrttG6JIdC7rrS7l5p9KEIYwLxFxQzcKAoqCN8YFz2ZpaYYoEjhBsGcgGOuYalBaZXpY80CjCEzgcoL8dZJw2CfCdSbFzF7s1Aero2b2B9uV_93wL92fL-Zk8O118OYIDgmE_SuHoK9jvr2_c68CNev0mroQ_UawP7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMSFdyGURw6IW162k9jc6MKqBXbVw1aquFixPYYVbLKq0gP8ejzOpspy7CmSM5adjB1_o3zzDSHvWCkrcI1MOGvKhGteJULYOinAeXzBqLPhV8xiWZ2c8y8X5cWk1Fcg7Ru9Ttvfm7Rd_wzcyu3GZCNPLDtbzGrMkKzKbGtddpvc8XuWykmgHj7CDBdrPqpqUpFtjtdd6iMOWSQFaoUy1DbnmG8_OZCCbr-_dH5_Tc6kfb7k5ACaPyTfx6kPvJNf6VWvU_P3P1XHGz3bI_JgB0vjj4PJY3IL2ifk7lCo8s9TssKSaZi4Hncu9pAxnmFif7xYDzJOG_gQWk_HiidotgKPyAfF5rhp7Wjsuy0H6vkzcj7_vJqdJLt6DInhIu8TXgIFZ6DSkOdAcy0ktR4BFaKyqKpKtdPG1IYDYz5KBBBNA4V2KAHTWCbZITlouxZekLjkYBppoXYl47KpG6OtszU12E87F5H3o1PUdpDdUCFcoUKhI1VwpCpkRI7RZddGqJYdGrrLH2r3XpXxQxjwAF0wzf2AImfSOI-9bMWsMHlEjtDhyoMOVM41SDEyvSpqD6doHZHng_uvBxmXTkTqvYWxN4v9O97dQbt7596XN-75ltw7-zRX306XX4_IfYrRPzLi2Cty0F9ewWsPkXr9JmyGf8q2Em8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+the+Coral+Microbiome%3A+the+Influence+of+Temperature+and+Microbial+Network&rft.jtitle=mBio&rft.au=Lima%2C+La%C3%ADs+O.&rft.au=Weissman%2C+Maya&rft.au=Reed%2C+Micheal&rft.au=Papudeshi%2C+Bhavya&rft.date=2020-03-03&rft.pub=American+Society+for+Microbiology+%28ASM%29&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.02691-19&rft.externalDocID=1775027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon