Storylines of weather-induced crop failure events under climate change
Unfavourable weather is a common cause for crop failures all over the world. Whilst extreme weather conditions may cause extreme impacts, crop failure commonly is induced by the occurrence of multiple and combined anomalous meteorological drivers. For these cases, the explanation of conditions leadi...
Saved in:
Published in | Earth system dynamics Vol. 12; no. 4; pp. 1503 - 1527 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Gottingen
Copernicus GmbH
06.12.2021
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unfavourable weather is a common cause for crop failures all over the world. Whilst extreme weather conditions may cause extreme impacts, crop failure commonly is induced by the occurrence of multiple and combined anomalous meteorological drivers. For these cases, the explanation of conditions leading to crop failure is complex, as the links connecting weather and crop yield can be multiple and non-linear. Furthermore, climate change is likely to perturb the meteorological conditions, possibly altering the occurrences of crop failures or leading to unprecedented drivers of extreme impacts. The goal of this study is to identify important meteorological drivers that cause crop failures and to explore changes in crop failures due to global warming. For that, we focus on a historical failure event, the extreme low soybean production during the 2012 season in the midwestern US. We first train a random forest model to identify the most relevant meteorological drivers of historical crop failures and to predict crop failure probabilities. Second, we explore the influence of global warming on crop failures and on the structure of compound drivers. We use large ensembles from the EC-Earth global climate model, corresponding to present-day, pre-industrial +2 and 3 ∘C warming, respectively, to isolate the global warming component. Finally, we explore the meteorological conditions inductive for the 2012 crop failure and construct analogues of these failure conditions in future climate settings. We find that crop failures in the midwestern US are linked to low precipitation levels, and high temperature and diurnal temperature range (DTR) levels during July and August. Results suggest soybean failures are likely to increase with climate change. With more frequent warm years due to global warming, the joint hot–dry conditions leading to crop failures become mostly dependent on precipitation levels, reducing the importance of the relative compound contribution. While event analogues of the 2012 season are rare and not expected to increase, impact analogues show a significant increase in occurrence frequency under global warming, but for different combinations of the meteorological drivers than experienced in 2012. This has implications for assessment of the drivers of extreme impact events. |
---|---|
AbstractList | Unfavourable weather is a common cause for crop failures all over the world. Whilst extreme weather conditions may cause extreme impacts, crop failure commonly is induced by the occurrence of multiple and combined anomalous meteorological drivers. For these cases, the explanation of conditions leading to crop failure is complex, as the links connecting weather and crop yield can be multiple and non-linear. Furthermore, climate change is likely to perturb the meteorological conditions, possibly altering the occurrences of crop failures or leading to unprecedented drivers of extreme impacts. The goal of this study is to identify important meteorological drivers that cause crop failures and to explore changes in crop failures due to global warming. For that, we focus on a historical failure event, the extreme low soybean production during the 2012 season in the midwestern US. We first train a random forest model to identify the most relevant meteorological drivers of historical crop failures and to predict crop failure probabilities. Second, we explore the influence of global warming on crop failures and on the structure of compound drivers. We use large ensembles from the EC-Earth global climate model, corresponding to present-day, pre-industrial +2 and 3 ∘ C warming, respectively, to isolate the global warming component. Finally, we explore the meteorological conditions inductive for the 2012 crop failure and construct analogues of these failure conditions in future climate settings. We find that crop failures in the midwestern US are linked to low precipitation levels, and high temperature and diurnal temperature range (DTR) levels during July and August. Results suggest soybean failures are likely to increase with climate change. With more frequent warm years due to global warming, the joint hot–dry conditions leading to crop failures become mostly dependent on precipitation levels, reducing the importance of the relative compound contribution. While event analogues of the 2012 season are rare and not expected to increase, impact analogues show a significant increase in occurrence frequency under global warming, but for different combinations of the meteorological drivers than experienced in 2012. This has implications for assessment of the drivers of extreme impact events. Unfavourable weather is a common cause for crop failures all over the world. Whilst extreme weather conditions may cause extreme impacts, crop failure commonly is induced by the occurrence of multiple and combined anomalous meteorological drivers. For these cases, the explanation of conditions leading to crop failure is complex, as the links connecting weather and crop yield can be multiple and non-linear. Furthermore, climate change is likely to perturb the meteorological conditions, possibly altering the occurrences of crop failures or leading to unprecedented drivers of extreme impacts. The goal of this study is to identify important meteorological drivers that cause crop failures and to explore changes in crop failures due to global warming. For that, we focus on a historical failure event, the extreme low soybean production during the 2012 season in the midwestern US. We first train a random forest model to identify the most relevant meteorological drivers of historical crop failures and to predict crop failure probabilities. Second, we explore the influence of global warming on crop failures and on the structure of compound drivers. We use large ensembles from the EC-Earth global climate model, corresponding to present-day, pre-industrial +2 and 3 ∘C warming, respectively, to isolate the global warming component. Finally, we explore the meteorological conditions inductive for the 2012 crop failure and construct analogues of these failure conditions in future climate settings. We find that crop failures in the midwestern US are linked to low precipitation levels, and high temperature and diurnal temperature range (DTR) levels during July and August. Results suggest soybean failures are likely to increase with climate change. With more frequent warm years due to global warming, the joint hot–dry conditions leading to crop failures become mostly dependent on precipitation levels, reducing the importance of the relative compound contribution. While event analogues of the 2012 season are rare and not expected to increase, impact analogues show a significant increase in occurrence frequency under global warming, but for different combinations of the meteorological drivers than experienced in 2012. This has implications for assessment of the drivers of extreme impact events. Unfavourable weather is a common cause for crop failures all over the world. Whilst extreme weather conditions may cause extreme impacts, crop failure commonly is induced by the occurrence of multiple and combined anomalous meteorological drivers. For these cases, the explanation of conditions leading to crop failure is complex, as the links connecting weather and crop yield can be multiple and non-linear. Furthermore, climate change is likely to perturb the meteorological conditions, possibly altering the occurrences of crop failures or leading to unprecedented drivers of extreme impacts. The goal of this study is to identify important meteorological drivers that cause crop failures and to explore changes in crop failures due to global warming. For that, we focus on a historical failure event, the extreme low soybean production during the 2012 season in the midwestern US. We first train a random forest model to identify the most relevant meteorological drivers of historical crop failures and to predict crop failure probabilities. Second, we explore the influence of global warming on crop failures and on the structure of compound drivers. We use large ensembles from the EC-Earth global climate model, corresponding to present-day, pre-industrial +2 and 3 .sup." C warming, respectively, to isolate the global warming component. Finally, we explore the meteorological conditions inductive for the 2012 crop failure and construct analogues of these failure conditions in future climate settings. We find that crop failures in the midwestern US are linked to low precipitation levels, and high temperature and diurnal temperature range (DTR) levels during July and August. Results suggest soybean failures are likely to increase with climate change. With more frequent warm years due to global warming, the joint hot-dry conditions leading to crop failures become mostly dependent on precipitation levels, reducing the importance of the relative compound contribution. While event analogues of the 2012 season are rare and not expected to increase, impact analogues show a significant increase in occurrence frequency under global warming, but for different combinations of the meteorological drivers than experienced in 2012. This has implications for assessment of the drivers of extreme impact events. |
Audience | Academic |
Author | Folberth, Christian Goulart, Henrique M. D van der Wiel, Karin van den Hurk, Bart Balkovic, Juraj |
Author_xml | – sequence: 1 fullname: Goulart, Henrique M. D – sequence: 2 fullname: van der Wiel, Karin – sequence: 3 fullname: Folberth, Christian – sequence: 4 fullname: Balkovic, Juraj – sequence: 5 fullname: van den Hurk, Bart |
BookMark | eNptkdFrFDEQh4NUsNa--7jgkw9bM5tkk30sxepBQbD6HOaS2WuOvc2ZZLX97815oh6YPGQYvvkx4XvJzuY4E2OvgV8pGOQ7yr6FrgXFRdvxDp6x8w4G3srB6LN_6hfsMuctr0f1HUh1zm7vS0xPU5gpN3FsfhCWB0ptmP3iyDcuxX0zYpiWRA19p7nkZpk9pcZNYYeFGveA84ZesecjTpkuf78X7Ovt-y83H9u7Tx9WN9d3rZOGl1aItTZ-AK8HpfmoexjB-DUfJGi5FghmAE29UxywM4Y8904RlwZd3_VyEBdsdcz1Ebd2n-oO6clGDPZXI6aNxVSCm8gaJAMKRW-Ul6QMguwFae4UIjccatabY9Y-xW8L5WK3cUlzXd92Pe-NkFLJv9QGa2iYx1gSul3Izl7XaDUIAbpSV_-h6vW0C67KGkPtnwy8PRmoTKHHssElZ7u6_3zK8iNbbeScaPzzceD24N9W_xY6e_BvD_7FTwoHoHM |
CitedBy_id | crossref_primary_10_1016_j_isci_2023_106030 crossref_primary_10_5194_esd_14_255_2023 crossref_primary_10_1016_j_earscirev_2022_104241 crossref_primary_10_1002_gch2_202200183 crossref_primary_10_3390_challe13020066 crossref_primary_10_1007_s13157_024_01800_z crossref_primary_10_5194_esd_15_717_2024 crossref_primary_10_1038_s43017_023_00410_3 crossref_primary_10_1016_j_isci_2022_105219 crossref_primary_10_5194_gmd_16_4581_2023 crossref_primary_10_1029_2022EF003106 crossref_primary_10_1038_s41612_023_00361_y crossref_primary_10_1016_j_heliyon_2023_e20544 crossref_primary_10_1016_j_scitotenv_2022_153885 crossref_primary_10_1088_1748_9326_ad4fa3 crossref_primary_10_3390_su16103962 crossref_primary_10_1016_j_crm_2023_100500 crossref_primary_10_1029_2023EF003906 crossref_primary_10_1016_j_agrformet_2023_109620 crossref_primary_10_1016_j_atmosres_2023_106675 crossref_primary_10_3390_su15097386 crossref_primary_10_3389_fclim_2024_1357391 crossref_primary_10_3389_frwa_2023_1108108 crossref_primary_10_5194_nhess_24_29_2024 crossref_primary_10_1007_s11625_023_01400_6 crossref_primary_10_1111_pce_14469 crossref_primary_10_1111_agec_12753 crossref_primary_10_1002_wcc_869 crossref_primary_10_5194_nhess_23_65_2023 crossref_primary_10_1016_j_jhydrol_2023_130074 crossref_primary_10_2139_ssrn_4164233 crossref_primary_10_3390_su16093523 |
Cites_doi | 10.1088/1748-9326/aa6cb9 10.1016/j.agrformet.2017.12.256 10.1175/JCLI-D-14-00754.1 10.1073/pnas.1701762114 10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2 10.1007/s00382-018-4329-6 10.1186/s12864-019-6413-7 10.1214/aos/1013203451 10.1038/s41467-017-02071-5 10.1016/j.agrformet.2007.05.002 10.1029/2020EF001783 10.1038/s43016-020-00195-4 10.1046/j.1442-9993.2001.01070.x 10.1007/s41748-021-00199-5 10.1016/j.wace.2015.08.001 10.1117/1.JRS.11.015020 10.5194/hess-25-3595-2021 10.1088/1748-9326/aa723b 10.1007/s10584-018-2317-9 10.1007/s42106-020-00098-1 10.1016/j.wace.2014.05.002 10.1371/journal.pone.0217148 10.1002/2015WR017225 10.1175/BAMS-87-10-1381 10.1007/s13351-014-4082-7 10.1186/s40066-017-0089-5 10.1038/s41597-020-0453-3 10.1088/1748-9326/9/3/034011 10.7717/peerj.5518 10.5194/bg-14-3309-2017 10.1016/j.gloplacha.2014.08.010 10.1017/CBO9781139177245 10.1073/pnas.1409606112 10.1111/gcb.15047 10.1038/nclimate2657 10.5194/esd-12-151-2021 10.1016/j.fcr.2014.11.010 10.1002/2014GL062018 10.1002/2016EF000525 10.1002/2017EF000687 10.1007/s11120-008-9331-0 10.1023/A:1005339800665 10.1016/j.compag.2018.08.016 10.1007/s10584-017-1997-x 10.1029/2008GB003435 10.1088/1748-9326/2/1/014002 10.1111/gcb.12935 10.1126/sciadv.1700263 10.2134/agronj2010.0303 10.1038/s41558-020-0830-0 10.1016/j.eja.2013.05.005 10.1007/s00382-011-1228-5 10.1088/1748-9326/11/3/034003 10.5194/bg-2016-527 10.1007/s00704-016-1779-9 10.1038/s41477-018-0263-1 10.1088/1748-9326/ab7668 10.1007/s10584-015-1350-1 10.1088/1748-9326/11/9/094021 10.1103/PhysRevE.69.066138 10.1007/s10584-021-03071-7 10.2135/cropsci2006.05.0292 10.1038/s41558-018-0156-3 10.1088/1748-9326/ab154b 10.1016/j.wace.2020.100270 10.1016/j.agrformet.2019.05.018 10.1088/1748-9326/9/7/074003 10.1073/pnas.1813720116 10.1038/s41467-018-04087-x 10.1023/A:1010933404324 10.5194/egusphere-egu21-12965 10.1088/1748-9326/aae159 10.1038/ncomms6989 10.1088/1748-9326/10/3/035001 10.1038/ncomms4712 10.1007/s12571-010-0108-x 10.1098/rspa.2019.0013 10.1073/pnas.0906865106 10.1029/2019GL081967 10.1038/ncomms13931 10.1002/wcc.252 10.1007/s00477-015-1124-3 10.1088/1748-9326/aa7f33 10.1038/nclimate2995 10.1038/s41597-019-0023-8 10.1073/pnas.1222463110 10.1029/2020EF001815 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Copernicus GmbH 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2021 Copernicus GmbH – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7TG 7UA ABUWG AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.5194/esd-12-1503-2021 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2190-4987 |
EndPage | 1527 |
ExternalDocumentID | oai_doaj_org_article_8ae815a3685d4e58a1463e70c5aa0801 A685593317 10_5194_esd_12_1503_2021 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | 5VS 8FE 8FH AAFWJ AAYXX ABDBF ADBBV AENEX AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BBORY BCNDV BENPR BHPHI BKSAR CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ I-F IAO IEA ISR ITC KQ8 LK5 M7R M~E OK1 PCBAR PIMPY PROAC RIG RKB TUS 7TG 7UA ABUWG AZQEC C1K DWQXO F1W H96 KL. L.G PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c480t-33b78d91d79570f761f18db094174b3a18917e6c501a288ed0dc5e048ac626493 |
IEDL.DBID | DOA |
ISSN | 2190-4987 2190-4979 |
IngestDate | Tue Oct 22 15:14:34 EDT 2024 Thu Oct 10 18:51:00 EDT 2024 Thu Feb 22 23:28:54 EST 2024 Fri Feb 02 04:05:30 EST 2024 Thu Aug 01 20:28:02 EDT 2024 Fri Aug 23 03:17:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-33b78d91d79570f761f18db094174b3a18917e6c501a288ed0dc5e048ac626493 |
ORCID | 0000-0002-6738-5238 0000-0001-9365-5759 0000-0003-3726-7086 0000-0002-9670-4250 |
OpenAccessLink | https://doaj.org/article/8ae815a3685d4e58a1463e70c5aa0801 |
PQID | 2606834454 |
PQPubID | 2037685 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8ae815a3685d4e58a1463e70c5aa0801 proquest_journals_2606834454 gale_infotracmisc_A685593317 gale_infotracacademiconefile_A685593317 gale_incontextgauss_ISR_A685593317 crossref_primary_10_5194_esd_12_1503_2021 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-06 |
PublicationDateYYYYMMDD | 2021-12-06 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Gottingen |
PublicationPlace_xml | – name: Gottingen |
PublicationTitle | Earth system dynamics |
PublicationYear | 2021 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref93 ref92 ref51 ref50 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref41 doi: 10.1088/1748-9326/aa6cb9 – ident: ref52 doi: 10.1016/j.agrformet.2017.12.256 – ident: ref10 doi: 10.1175/JCLI-D-14-00754.1 – ident: ref86 doi: 10.1073/pnas.1701762114 – ident: ref40 doi: 10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2 – ident: ref43 – ident: ref69 doi: 10.1007/s00382-018-4329-6 – ident: ref12 doi: 10.1186/s12864-019-6413-7 – ident: ref23 doi: 10.1214/aos/1013203451 – ident: ref34 doi: 10.1038/s41467-017-02071-5 – ident: ref46 doi: 10.1016/j.agrformet.2007.05.002 – ident: ref68 doi: 10.1029/2020EF001783 – ident: ref70 doi: 10.1038/s43016-020-00195-4 – ident: ref3 doi: 10.1046/j.1442-9993.2001.01070.x – ident: ref2 doi: 10.1007/s41748-021-00199-5 – ident: ref31 doi: 10.1016/j.wace.2015.08.001 – ident: ref20 doi: 10.1117/1.JRS.11.015020 – ident: ref61 doi: 10.5194/hess-25-3595-2021 – ident: ref83 doi: 10.1088/1748-9326/aa723b – ident: ref66 doi: 10.1007/s10584-018-2317-9 – ident: ref25 doi: 10.1007/s42106-020-00098-1 – ident: ref54 doi: 10.1016/j.wace.2014.05.002 – ident: ref57 doi: 10.1371/journal.pone.0217148 – ident: ref60 doi: 10.1002/2015WR017225 – ident: ref17 doi: 10.1175/BAMS-87-10-1381 – ident: ref11 doi: 10.1007/s13351-014-4082-7 – ident: ref55 doi: 10.1186/s40066-017-0089-5 – ident: ref28 doi: 10.1038/s41597-020-0453-3 – ident: ref26 – ident: ref14 doi: 10.1088/1748-9326/9/3/034011 – ident: ref35 doi: 10.7717/peerj.5518 – ident: ref92 doi: 10.5194/bg-14-3309-2017 – ident: ref5 doi: 10.1016/j.gloplacha.2014.08.010 – ident: ref39 doi: 10.1017/CBO9781139177245 – ident: ref50 doi: 10.1073/pnas.1409606112 – ident: ref81 doi: 10.1111/gcb.15047 – ident: ref71 doi: 10.1038/nclimate2657 – ident: ref79 doi: 10.5194/esd-12-151-2021 – ident: ref6 doi: 10.1016/j.fcr.2014.11.010 – ident: ref21 doi: 10.1002/2014GL062018 – ident: ref24 doi: 10.1002/2016EF000525 – ident: ref88 doi: 10.1002/2017EF000687 – ident: ref1 doi: 10.1007/s11120-008-9331-0 – ident: ref16 doi: 10.1023/A:1005339800665 – ident: ref84 doi: 10.1016/j.compag.2018.08.016 – ident: ref30 doi: 10.1007/s10584-017-1997-x – ident: ref53 doi: 10.1029/2008GB003435 – ident: ref47 doi: 10.1088/1748-9326/2/1/014002 – ident: ref67 doi: 10.1111/gcb.12935 – ident: ref91 doi: 10.1126/sciadv.1700263 – ident: ref32 doi: 10.2134/agronj2010.0303 – ident: ref45 doi: 10.1038/s41558-020-0830-0 – ident: ref85 doi: 10.1016/j.eja.2013.05.005 – ident: ref33 doi: 10.1007/s00382-011-1228-5 – ident: ref37 doi: 10.1088/1748-9326/11/3/034003 – ident: ref22 doi: 10.5194/bg-2016-527 – ident: ref36 doi: 10.1007/s00704-016-1779-9 – ident: ref82 doi: 10.1038/s41477-018-0263-1 – ident: ref74 doi: 10.1088/1748-9326/ab7668 – ident: ref77 doi: 10.1007/s10584-015-1350-1 – ident: ref89 doi: 10.1088/1748-9326/11/9/094021 – ident: ref4 – ident: ref42 doi: 10.1103/PhysRevE.69.066138 – ident: ref76 doi: 10.1007/s10584-021-03071-7 – ident: ref7 doi: 10.2135/cropsci2006.05.0292 – ident: ref93 doi: 10.1038/s41558-018-0156-3 – ident: ref78 doi: 10.1088/1748-9326/ab154b – ident: ref90 doi: 10.1016/j.wace.2020.100270 – ident: ref19 doi: 10.1016/j.agrformet.2019.05.018 – ident: ref48 doi: 10.1088/1748-9326/9/7/074003 – ident: ref75 doi: 10.1073/pnas.1813720116 – ident: ref8 doi: 10.1038/s41467-018-04087-x – ident: ref80 – ident: ref9 doi: 10.1023/A:1010933404324 – ident: ref27 doi: 10.5194/egusphere-egu21-12965 – ident: ref13 doi: 10.1088/1748-9326/aae159 – ident: ref56 doi: 10.1038/ncomms6989 – ident: ref72 doi: 10.1088/1748-9326/10/3/035001 – ident: ref49 – ident: ref38 doi: 10.1038/ncomms4712 – ident: ref29 doi: 10.1007/s12571-010-0108-x – ident: ref65 doi: 10.1098/rspa.2019.0013 – ident: ref63 doi: 10.1073/pnas.0906865106 – ident: ref73 doi: 10.1029/2019GL081967 – ident: ref18 – ident: ref62 doi: 10.1038/ncomms13931 – ident: ref44 doi: 10.1002/wcc.252 – ident: ref64 doi: 10.1007/s00477-015-1124-3 – ident: ref58 doi: 10.1088/1748-9326/aa7f33 – ident: ref15 doi: 10.1038/nclimate2995 – ident: ref51 doi: 10.1038/s41597-019-0023-8 – ident: ref59 doi: 10.1073/pnas.1222463110 – ident: ref87 doi: 10.1029/2020EF001815 |
SSID | ssj0000562145 |
Score | 2.4406042 |
Snippet | Unfavourable weather is a common cause for crop failures all over the world. Whilst extreme weather conditions may cause extreme impacts, crop failure commonly... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1503 |
SubjectTerms | Agricultural production Analysis Climate change Climate models Connecting Crop losses Crop production Crop yield Crops Daily temperatures Datasets Extreme weather Failure Failure analysis Failures Future climates Global climate Global climate models Global warming High temperature Meteorological conditions Precipitation Soybeans Temperature Trends Weather Weather conditions |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA_2pNCX0tqKV20JUpA-LG6-drNPRYtXK1REK_gW8ilCubW3J9L_vjPZnOUe2tdNNpDJzOT3SyYzhHxsfOskA-VtU_SVZE5UmoemAjKBAJl3Ppdk-X7enF7Lsxt1Uw7chhJWufKJ2VGH3uMZ-SHg7gZrQij5-f5XhVWj8Ha1lNB4RjY5MAU-IZvHJ-cXl0-nLLi9s1ypmOObadm13XhXCcBFHsYhYGQCYCIB2sLZ2t6UU_j_y1Hn3Wf2irwssJEejev8mmzE-RZ5_jWX5f39hsyu8K4cEeNA-0QfR1xXAd-GlQsUy3TRZO8wBJ3mlE0DxcdjC-p_3gFkjXR8__uWXM9Ofnw5rUqFhMpLXS8rIVyrQ8dC26m2Tm3DEtPBAWUDouGEZRrYWGy8qpnlWsdQB68iGK31QGRkJ7bJZN7P4w6hVqgYfUjcBQtjSwcbuXa1Yw0wlJjSlHxaycbcj4kwDBAIlKMBORrGDcrRoByn5BiF99QPU1jnD_3i1hSLMNpGzZTFBPhBRqUt-GwR29orawHGwiD7KHqDSSrmGAVzax-GwXy7ujRH8I_qBECfKTkonVK_XFhvy6MCmBPmtVrrubfWE6zIrzevVtgUKx7MX5179__mXfIC553DXJo9MlkuHuJ7ACtL96Fo5B8QY-P- priority: 102 providerName: ProQuest |
Title | Storylines of weather-induced crop failure events under climate change |
URI | https://www.proquest.com/docview/2606834454 https://doaj.org/article/8ae815a3685d4e58a1463e70c5aa0801 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dSxwxFA2iCH0pWivddpVQhNKHwcnkYzKPq7i1BRfRCr6FfBZBdmVnF_Hfe-9kVtwH8aWvM5lhcm4yOYfcnEvIkfK1EwwGb52iLwRzvNBVUAWICSTIVeO7kiwXE3V-I_7cyttXpb4wJyzbA2fgjrWNmkmLPulBRKktTG0e69JLa4HtZOFTNq_EVHb1VmjBjZXl8Ky0aOom71ECYRHHsQ2YkQBciMMoqdjamtRZ97_1g-5WnfEO-djTRTrKn7lLNuL0E9n-1ZXjfdoj42vcI0em2NJZoo-ZzxWgsyFigWJ5LprsHaae086qqaV4aGxO_f0dUNVI87nfz-RmfPb39LzoKyMUXuhyUXDuah0aFupG1mWqFUtMBwdSDQSG45ZpUGFReVkyW2kdQxm8jDBZrQcBIxq-Tzans2n8QqjlMkYfUuWChXcLBwu4dqVjCpRJTGlAfq6wMQ_ZAMOAcEAcDeBoWGUQR4M4DsgJgvfSDq2ruwsQUNMH1LwX0AH5jtAbNKeYYvbLP7tsW_P7-sqM4BnZcKA8A_Kjb5Rmi7n1tj9MAH1CP6u1lsO1ljB7_PrtVYRNP3tbAxpPYf0RKb7-jx59Ix8QnS4JRg3J5mK-jAdAZRbukGydnE0urw670fsMoa3sCA |
link.rule.ids | 315,783,787,867,2109,21402,27938,27939,33758,43819,74638 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQmkuIX3RbdJUlELpwcSyJFs-lSRku2mTpeQBuQk9Q6Csk_WG0n_fGVmbsof0ao0NHs3jG2kehHyqXWMFA-FtYnCFYJYXqvJ1AcEEAuSqdWkky-m0nlyK71fyKh-49TmtcmkTk6H2ncMz8j3A3TXOhJDi6-1dgVOj8HY1j9B4StaxVRVI9frB0fTn2cMpC7p3liYVV1gzLdqmHe4qAbiIvdB7zEwATMRBWiq24ptSC__HDHXyPuMtsplhI90f9vkFeRJmL8mzb2ks759XZHyOd-WIGHvaRfp7wHUFxNuwc57imC4azQ2moNPUsqmnWDw2p-7XDUDWQIf639fkcnx0cTgp8oSEwglVLgrObaN8y3zTyqaMTc0iU95CyAaBhuWGKYjGQu1kyUylVPCldzKA0hoHgYxo-RuyNutm4S2hhssQnI-V9Qa-LSw4cmVLy2qIUEKMI_JlyRt9OzTC0BBAIB818FGzSiMfNfJxRA6QeQ902MI6Pejm1zprhFYmKCYNNsD3IkhlwGbz0JROGgMwFj7yEVmvsUnFDLNgrs193-vj8zO9D-_IlgP0GZHPmSh2i7lxJhcVwD9hX6sVyp0VStAit7q83GGdtbjX_2Tu3f-XP5Dnk4vTE31yPP2xTTaQBynlpd4ha4v5fXgPwGVhd7N0_gUK2eb4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ja9wwFBbthJZeSrqRSZNWlELpwYxlSZZ8KtmmSZchJA3kJrSGQBkn4wml_77v2ZqUObRXSxb4rd-z3kLI-9orJxgIr0rRF4I5Xugq1AUEEwiQq8b3I1m-z-rjC_HlUl7m_Kcup1WubGJvqEPr8R_5BHB3jTMhpJiknBZxejj9dHNb4AQpvGnN4zQekg0lQKpGZGP_aHZ6dv_HBV0966cWV1g_LRrVDPeWAGLEJHYBsxQAH3GQnIqt-am-nf-_jHbviaab5GmGkHRv4Pkz8iDOn5NHn_sRvb9fkOk53psjeuxom-ivAeMVEHsDFwPFkV002WtMR6d9-6aOYiHZgvqf1wBfIx1qgV-Si-nRj4PjIk9LKLzQ5bLg3CkdGhZUI1WZVM0S08FB-AZBh-OWaYjMYu1lyWyldQxl8DKCAlsPQY1o-CsymrfzuEWo5TJGH1LlgoWzhQOnrl3pWA3RSkxpTD6uaGNuhqYYBoIJpKMBOhpWGaSjQTqOyT4S734ftrPuH7SLK5O1w2gbNZMWm-EHEaW2YL95VKWX1gKkhUPeIekNNqyYI-uv7F3XmZPzM7MH78iGAwwakw95U2qXC-ttLjCAb8IeV2s7d9Z2gkb59eUVh03W6M78lb_t_y-_JY9BMM23k9nX1-QJkqDPfql3yGi5uIu7gGGW7k0Wzj8LV-ss |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Storylines+of+weather-induced+crop+failure+events+under+climate+change&rft.jtitle=Earth+system+dynamics&rft.au=Goulart%2C+Henrique+M.+D&rft.au=van+der+Wiel%2C+Karin&rft.au=Folberth%2C+Christian&rft.au=Balkovic%2C+Juraj&rft.date=2021-12-06&rft.pub=Copernicus+GmbH&rft.issn=2190-4979&rft.eissn=2190-4987&rft.volume=12&rft.issue=4&rft.spage=1503&rft_id=info:doi/10.5194%2Fesd-12-1503-2021&rft.externalDocID=A685593317 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4987&client=summon |