On using a zero lower bound on the physical density in material distribution topology optimization
The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit our attention to the standard test problem of minimizing the compliance of a linearly elastic structure subject to a constant forcing. First...
Saved in:
Published in | Computer methods in applied mechanics and engineering Vol. 359; p. 112669 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit our attention to the standard test problem of minimizing the compliance of a linearly elastic structure subject to a constant forcing. First order tensor product Finite Elements discretize the problem. An elementwise constant material indicator function defines the discretized, elementwise constant, physical density by using filtering and penalization. To alleviate the ill-conditioning of the stiffness matrix, due to the variation of the elementwise constant physical density, we precondition the system. We provide a specific spectral analysis for large matrix sizes for the one-dimensional problem with Dirichlet–Neumann conditions in detail, even if most of the mathematical tools apply also in a d-dimensional setting, d≥2. It is easy to find an elementwise constant material indicator function so that the resulting preconditioned system matrix is singular when allowing the vanishing physical densities. However, for a large class of material indicator functions, the corresponding preconditioned system matrix has a condition number of the same order as the system matrix for the case when the physical density is one in all elements. Finally, we critically report and illustrate results from numerical experiments: as a conclusion, it is indeed possible to solve large-scale topology optimization problems, allowing a vanishing physical density, without encountering ill-conditioned system matrices during the optimization.
•We perform material distribution topology optimization allowing vanishing densities.•A preconditioner effectively alleviates the ill-conditioning due to varying densities.•We provide a spectral analysis for large matrices for a one-dimensional problem.•The employed mathematical tools can also tackle problems of higher dimensionality.•We present numerically optimized large-scale designs for the two-dimensional problem. |
---|---|
AbstractList | The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit our attention to the standard test problem of minimizing the compliance of a linearly elastic structure subject to a constant forcing. First order tensor product Finite Elements discretize the problem. An elementwise constant material indicator function defines the discretized, elementwise constant, physical density by using filtering and penalization. To alleviate the ill-conditioning of the stiffness matrix, due to the variation of the elementwise constant physical density, we precondition the system. We provide a specific spectral analysis for large matrix sizes for the one-dimensional problem with Dirichlet-Neumann conditions in detail, even if most of the mathematical tools apply also in a d-dimensional setting, d >= 2. It is easy to find an elementwise constant material indicator function so that the resulting preconditioned system matrix is singular when allowing the vanishing physical densities. However, for a large class of material indicator functions, the corresponding preconditioned system matrix has a condition number of the same order as the system matrix for the case when the physical density is one in all elements. Finally, we critically report and illustrate results from numerical experiments: as a conclusion, it is indeed possible to solve large-scale topology optimization problems, allowing a vanishing physical density, without encountering ill-conditioned system matrices during the optimization. The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit our attention to the standard test problem of minimizing the compliance of a linearly elastic structure subject to a constant forcing. First order tensor product Finite Elements discretize the problem. An elementwise constant material indicator function defines the discretized, elementwise constant, physical density by using filtering and penalization. To alleviate the ill-conditioning of the stiffness matrix, due to the variation of the elementwise constant physical density, we precondition the system. We provide a specific spectral analysis for large matrix sizes for the one-dimensional problem with Dirichlet–Neumann conditions in detail, even if most of the mathematical tools apply also in a d-dimensional setting, d≥2. It is easy to find an elementwise constant material indicator function so that the resulting preconditioned system matrix is singular when allowing the vanishing physical densities. However, for a large class of material indicator functions, the corresponding preconditioned system matrix has a condition number of the same order as the system matrix for the case when the physical density is one in all elements. Finally, we critically report and illustrate results from numerical experiments: as a conclusion, it is indeed possible to solve large-scale topology optimization problems, allowing a vanishing physical density, without encountering ill-conditioned system matrices during the optimization. The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit our attention to the standard test problem of minimizing the compliance of a linearly elastic structure subject to a constant forcing. First order tensor product Finite Elements discretize the problem. An elementwise constant material indicator function defines the discretized, elementwise constant, physical density by using filtering and penalization. To alleviate the ill-conditioning of the stiffness matrix, due to the variation of the elementwise constant physical density, we precondition the system. We provide a specific spectral analysis for large matrix sizes for the one-dimensional problem with Dirichlet–Neumann conditions in detail, even if most of the mathematical tools apply also in a d-dimensional setting, d≥2. It is easy to find an elementwise constant material indicator function so that the resulting preconditioned system matrix is singular when allowing the vanishing physical densities. However, for a large class of material indicator functions, the corresponding preconditioned system matrix has a condition number of the same order as the system matrix for the case when the physical density is one in all elements. Finally, we critically report and illustrate results from numerical experiments: as a conclusion, it is indeed possible to solve large-scale topology optimization problems, allowing a vanishing physical density, without encountering ill-conditioned system matrices during the optimization. •We perform material distribution topology optimization allowing vanishing densities.•A preconditioner effectively alleviates the ill-conditioning due to varying densities.•We provide a spectral analysis for large matrices for a one-dimensional problem.•The employed mathematical tools can also tackle problems of higher dimensionality.•We present numerically optimized large-scale designs for the two-dimensional problem. |
ArticleNumber | 112669 |
Author | Nguyen, Quoc Khanh Wadbro, Eddie Serra-Capizzano, Stefano |
Author_xml | – sequence: 1 givenname: Quoc Khanh orcidid: 0000-0001-9019-2795 surname: Nguyen fullname: Nguyen, Quoc Khanh organization: Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden – sequence: 2 givenname: Stefano surname: Serra-Capizzano fullname: Serra-Capizzano, Stefano organization: Department of Humanities and Innovation, University of Insubria, INDAM Unit, Via Bossi Oriani 5 and Via Valleggio 11, 22100 Como, Italy – sequence: 3 givenname: Eddie orcidid: 0000-0001-8704-9584 surname: Wadbro fullname: Wadbro, Eddie email: eddiew@cs.umu.se organization: Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-86364$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167344$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454381$$DView record from Swedish Publication Index |
BookMark | eNqNkU1v1DAQhi1UJLalP4CbJa5ksRPHscWpKh9FqtQL9Go5Xmc7S2IHf7Ta_nqcBi4cqvpiaeZ5R6N5TtGJ884i9I6SLSWUfzxszaS3NaFyS2nNuXyFNlR0sqppI07QhhDWVp2o2zfoNMYDKU_QeoP6G4dzBLfHGj_a4PHoH2zAvc9uh73D6c7i-e4YwegR76yLkI4YHJ50sgGWGsQUoM8JFtrPfvT7I_Zzggke9VJ9i14Peoz2_O9_hn5-_fLj8qq6vvn2_fLiujJMkFQWbU1NuBZsGKRses6N5F1LjDRSlwY1A5Oi70WrDdG11YZLwggTVBpW8OYMfVjnxgc7517NASYdjsprUJ_h9kL5sFc5K9ayRtCCVy_Ap6wo7xrGXjb-l85K8IYv-PsVn4P_nW1M6uBzcOUAqm7ahhc5rCtUt1Im-BiDHZSB9HS1FDSMihK16FUHVfSqRa9a9ZYk_S_5b6HnMp_WjC0a7sEGFQ1YZ-wOgjVJ7Tw8k_4DfwzAWQ |
CitedBy_id | crossref_primary_10_32604_cmes_2023_025153 crossref_primary_10_3390_mca27050078 crossref_primary_10_1007_s10409_022_09021_8 crossref_primary_10_1002_nla_2433 |
Cites_doi | 10.1137/110835384 10.1007/s11831-015-9151-2 10.1137/070699822 10.1007/s00791-012-0180-1 10.1016/S0024-3795(02)00504-9 10.1002/nla.1941 10.1002/nme.783 10.1016/j.cma.2006.06.007 10.1007/s00158-018-1944-0 10.1016/0045-7825(88)90086-2 10.1007/s00158-015-1372-3 10.1016/S0024-3795(99)00022-1 10.1007/s001580050089 10.1007/s00158-013-0938-1 10.1007/s00211-004-0574-1 10.1016/j.jcp.2003.09.032 10.1007/s002110050400 10.1016/j.laa.2006.04.012 10.1038/nature23911 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Feb 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Feb 1, 2020 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTPV AOWAS DG3 D93 DF2 |
DOI | 10.1016/j.cma.2019.112669 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Karlstads universitet SWEPUB Umeå universitet SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1879-2138 |
ExternalDocumentID | oai_DiVA_org_uu_454381 oai_DiVA_org_umu_167344 oai_DiVA_org_kau_86364 10_1016_j_cma_2019_112669 S0045782519305547 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH VH1 VOH WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D ADTPV AOWAS DG3 D93 DF2 |
ID | FETCH-LOGICAL-c480t-215c206a84ff993b66c96750c9c9a2061cf498bb85ac0a2eac690404819c43b63 |
IEDL.DBID | .~1 |
ISSN | 0045-7825 1879-2138 |
IngestDate | Thu Aug 21 06:41:48 EDT 2025 Thu Aug 21 06:36:20 EDT 2025 Thu Aug 21 06:54:13 EDT 2025 Fri Jul 25 06:53:27 EDT 2025 Tue Jul 01 04:06:09 EDT 2025 Thu Apr 24 22:56:28 EDT 2025 Fri Feb 23 02:48:41 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Topology optimization Conditioning Preconditioning Large-scale problems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c480t-215c206a84ff993b66c96750c9c9a2061cf498bb85ac0a2eac690404819c43b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9019-2795 0000-0001-8704-9584 |
OpenAccessLink | http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147917 |
PQID | 2353618747 |
PQPubID | 2045269 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_454381 swepub_primary_oai_DiVA_org_umu_167344 swepub_primary_oai_DiVA_org_kau_86364 proquest_journals_2353618747 crossref_citationtrail_10_1016_j_cma_2019_112669 crossref_primary_10_1016_j_cma_2019_112669 elsevier_sciencedirect_doi_10_1016_j_cma_2019_112669 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computer methods in applied mechanics and engineering |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Schmidt, Schulz (b4) 2011; 14 Svanberg, Svärd (b23) 2013; 48 Allaire, Jouve, Toader (b24) 2004; 194 Bendsøe, Sigmund (b2) 2003 Serra-Capizzano, Tablino-Possio (b15) 1999; 293 Wadbro, Berggren (b5) 2009; 51 Zhu, Zhang, Xia (b6) 2016; 23 Aage, Andreassen, Lazarov, Sigmund (b3) 2017; 550 Buhl, Pedersen, Sigmund (b8) 2000; 19 Ekström, Serra-Capizzano (b14) 2019 Bendsøe, Kikuchi (b1) 1988; 71 Zygmund (b18) 1959 Hägg, Wadbro (b22) 2018; 58 Serra-Capizzano (b12) 2006; 419 Bruns, Tortorelli (b9) 2003; 57 Russo, Serra-Capizzano, Tablino-Possio (b21) 2015; 22 Serra-Capizzano (b11) 2003; 366 Bruns (b10) 2006; 196 Garoni, Serra-Capizzano (b13) 2017 Bhatia (b16) 1997 Bertaccini, Golub, Serra-Capizzano, Tablino-Possio (b20) 2005; 99 Böttcher, Grudsky (b17) 2005 Zhang, Yuan, Zhang, Guo (b25) 2016; 53 Berggren, Kasolis (b7) 2012; 50 Serra (b19) 1999; 81 Serra-Capizzano (10.1016/j.cma.2019.112669_b11) 2003; 366 Allaire (10.1016/j.cma.2019.112669_b24) 2004; 194 Svanberg (10.1016/j.cma.2019.112669_b23) 2013; 48 Bendsøe (10.1016/j.cma.2019.112669_b1) 1988; 71 Berggren (10.1016/j.cma.2019.112669_b7) 2012; 50 Serra-Capizzano (10.1016/j.cma.2019.112669_b12) 2006; 419 Zygmund (10.1016/j.cma.2019.112669_b18) 1959 Bruns (10.1016/j.cma.2019.112669_b10) 2006; 196 Bhatia (10.1016/j.cma.2019.112669_b16) 1997 Bertaccini (10.1016/j.cma.2019.112669_b20) 2005; 99 Bruns (10.1016/j.cma.2019.112669_b9) 2003; 57 Serra-Capizzano (10.1016/j.cma.2019.112669_b15) 1999; 293 Buhl (10.1016/j.cma.2019.112669_b8) 2000; 19 Bendsøe (10.1016/j.cma.2019.112669_b2) 2003 Hägg (10.1016/j.cma.2019.112669_b22) 2018; 58 Garoni (10.1016/j.cma.2019.112669_b13) 2017 Russo (10.1016/j.cma.2019.112669_b21) 2015; 22 Wadbro (10.1016/j.cma.2019.112669_b5) 2009; 51 Zhu (10.1016/j.cma.2019.112669_b6) 2016; 23 Böttcher (10.1016/j.cma.2019.112669_b17) 2005 Ekström (10.1016/j.cma.2019.112669_b14) 2019 Serra (10.1016/j.cma.2019.112669_b19) 1999; 81 Aage (10.1016/j.cma.2019.112669_b3) 2017; 550 Zhang (10.1016/j.cma.2019.112669_b25) 2016; 53 Schmidt (10.1016/j.cma.2019.112669_b4) 2011; 14 |
References_xml | – start-page: 57 year: 2019 end-page: 76 ident: b14 article-title: Eigenvalue isogeometric approximations based on B-splines: Tools and results publication-title: Advanced Methods for Geometric Modeling and Numerical Simulation – volume: 419 start-page: 180 year: 2006 end-page: 233 ident: b12 article-title: The GLT class as a generalized Fourier analysis and applications publication-title: Linear Algebra Appl. – volume: 51 start-page: 707 year: 2009 end-page: 721 ident: b5 article-title: Megapixel topology optimization on a graphics processing unit publication-title: SIAM Rev. – volume: 22 start-page: 123 year: 2015 end-page: 144 ident: b21 article-title: Quasi-optimal preconditioners for finite element approximations of diffusion dominated convection-diffusion equations on (nearly) equilateral triangle meshes publication-title: Numer. Linear Algebra Appl. – volume: 23 start-page: 595 year: 2016 end-page: 622 ident: b6 article-title: Topology optimization in Aircraft and Aerospace structures design publication-title: Arch. Comput. Methods Eng. – volume: 194 start-page: 363 year: 2004 end-page: 393 ident: b24 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J. Comput. Phys. – year: 1997 ident: b16 article-title: Matrix Analysis – volume: 71 start-page: 197 year: 1988 end-page: 224 ident: b1 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 293 start-page: 85 year: 1999 end-page: 131 ident: b15 article-title: Spectral and structural analysis of high precision finite difference matrices for elliptic operators publication-title: Linear Algebra Appl. – volume: 366 start-page: 371 year: 2003 end-page: 402 ident: b11 article-title: Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations publication-title: Linear Algebra Appl. – volume: 58 start-page: 1015 year: 2018 end-page: 1032 ident: b22 article-title: On minimum length scale control in topology optimization publication-title: Struct. Multidiscip. Optim. – year: 2003 ident: b2 article-title: Topology Optimization. Theory, Methods, and Applications – year: 2005 ident: b17 article-title: Spectral Properties of Banded Toeplitz Matrices – volume: 50 start-page: 1827 year: 2012 end-page: 1848 ident: b7 article-title: Weak material approximation of holes with traction-free boundaries publication-title: SIAM J. Numer. Anal. – volume: 48 start-page: 859 year: 2013 end-page: 875 ident: b23 article-title: Density filters for topology optimization based on the pythagorean means publication-title: Struct. Multidiscip. Optim. – volume: 19 start-page: 93 year: 2000 end-page: 104 ident: b8 article-title: Stiffness design of geometrically nonlinear structures using topology optimization publication-title: Struct. Multidiscip. Optim. – year: 2017 ident: b13 article-title: The Theory of Generalized Locally Toeplitz Sequences: Theory and Applications - Vol. I – volume: 196 start-page: 566 year: 2006 end-page: 578 ident: b10 article-title: Zero density lower bounds in topology optimization publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 81 start-page: 461 year: 1999 end-page: 495 ident: b19 article-title: The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems publication-title: Numer. Math. – volume: 14 start-page: 249 year: 2011 end-page: 256 ident: b4 article-title: A 2589 line topology optimization code written for the graphics card publication-title: Comput. Vis. Sci. – volume: 57 start-page: 1413 year: 2003 end-page: 1430 ident: b9 article-title: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms publication-title: Internat. J. Numer. Methods Engrg. – year: 1959 ident: b18 article-title: Trigonometric Series – volume: 53 start-page: 1243 year: 2016 end-page: 1260 ident: b25 article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model publication-title: Struct. Multidiscip. Optim. – volume: 99 start-page: 441 year: 2005 end-page: 484 ident: b20 article-title: Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation publication-title: Numer. Math. – volume: 550 start-page: 84 year: 2017 end-page: 86 ident: b3 article-title: Giga-voxel computational morphogenesis for structural design publication-title: Nature – start-page: 57 year: 2019 ident: 10.1016/j.cma.2019.112669_b14 article-title: Eigenvalue isogeometric approximations based on B-splines: Tools and results – year: 1997 ident: 10.1016/j.cma.2019.112669_b16 – volume: 50 start-page: 1827 issue: 4 year: 2012 ident: 10.1016/j.cma.2019.112669_b7 article-title: Weak material approximation of holes with traction-free boundaries publication-title: SIAM J. Numer. Anal. doi: 10.1137/110835384 – year: 1959 ident: 10.1016/j.cma.2019.112669_b18 – volume: 23 start-page: 595 issue: 4 year: 2016 ident: 10.1016/j.cma.2019.112669_b6 article-title: Topology optimization in Aircraft and Aerospace structures design publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-015-9151-2 – year: 2003 ident: 10.1016/j.cma.2019.112669_b2 – volume: 51 start-page: 707 year: 2009 ident: 10.1016/j.cma.2019.112669_b5 article-title: Megapixel topology optimization on a graphics processing unit publication-title: SIAM Rev. doi: 10.1137/070699822 – volume: 14 start-page: 249 issue: 6 year: 2011 ident: 10.1016/j.cma.2019.112669_b4 article-title: A 2589 line topology optimization code written for the graphics card publication-title: Comput. Vis. Sci. doi: 10.1007/s00791-012-0180-1 – volume: 366 start-page: 371 year: 2003 ident: 10.1016/j.cma.2019.112669_b11 article-title: Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(02)00504-9 – volume: 22 start-page: 123 issue: 1 year: 2015 ident: 10.1016/j.cma.2019.112669_b21 article-title: Quasi-optimal preconditioners for finite element approximations of diffusion dominated convection-diffusion equations on (nearly) equilateral triangle meshes publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.1941 – volume: 57 start-page: 1413 issue: 10 year: 2003 ident: 10.1016/j.cma.2019.112669_b9 article-title: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.783 – year: 2017 ident: 10.1016/j.cma.2019.112669_b13 – volume: 196 start-page: 566 issue: 1 year: 2006 ident: 10.1016/j.cma.2019.112669_b10 article-title: Zero density lower bounds in topology optimization publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2006.06.007 – volume: 58 start-page: 1015 issue: 3 year: 2018 ident: 10.1016/j.cma.2019.112669_b22 article-title: On minimum length scale control in topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-1944-0 – volume: 71 start-page: 197 year: 1988 ident: 10.1016/j.cma.2019.112669_b1 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(88)90086-2 – volume: 53 start-page: 1243 issue: 6 year: 2016 ident: 10.1016/j.cma.2019.112669_b25 article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1372-3 – volume: 293 start-page: 85 issue: 1 year: 1999 ident: 10.1016/j.cma.2019.112669_b15 article-title: Spectral and structural analysis of high precision finite difference matrices for elliptic operators publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(99)00022-1 – volume: 19 start-page: 93 issue: 2 year: 2000 ident: 10.1016/j.cma.2019.112669_b8 article-title: Stiffness design of geometrically nonlinear structures using topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s001580050089 – volume: 48 start-page: 859 issue: 5 year: 2013 ident: 10.1016/j.cma.2019.112669_b23 article-title: Density filters for topology optimization based on the pythagorean means publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0938-1 – volume: 99 start-page: 441 issue: 3 year: 2005 ident: 10.1016/j.cma.2019.112669_b20 article-title: Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation publication-title: Numer. Math. doi: 10.1007/s00211-004-0574-1 – year: 2005 ident: 10.1016/j.cma.2019.112669_b17 – volume: 194 start-page: 363 issue: 1 year: 2004 ident: 10.1016/j.cma.2019.112669_b24 article-title: Structural optimization using sensitivity analysis and a level-set method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.09.032 – volume: 81 start-page: 461 issue: 3 year: 1999 ident: 10.1016/j.cma.2019.112669_b19 article-title: The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems publication-title: Numer. Math. doi: 10.1007/s002110050400 – volume: 419 start-page: 180 issue: 1 year: 2006 ident: 10.1016/j.cma.2019.112669_b12 article-title: The GLT class as a generalized Fourier analysis and applications publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2006.04.012 – volume: 550 start-page: 84 year: 2017 ident: 10.1016/j.cma.2019.112669_b3 article-title: Giga-voxel computational morphogenesis for structural design publication-title: Nature doi: 10.1038/nature23911 |
SSID | ssj0000812 |
Score | 2.329391 |
Snippet | The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit... |
SourceID | swepub proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112669 |
SubjectTerms | Conditioning Current distribution Density Dirichlet problem Ill-conditioned problems (mathematics) Large-scale problems Lower bounds Matematik Mathematical analysis Mathematics Matrix methods Modulus of elasticity Optimization Preconditioning Spectrum analysis Stiffness matrix Tensors Topology optimization |
Title | On using a zero lower bound on the physical density in material distribution topology optimization |
URI | https://dx.doi.org/10.1016/j.cma.2019.112669 https://www.proquest.com/docview/2353618747 https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-86364 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167344 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454381 |
Volume | 359 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLYQXNpDebRVtyzIh7aHSil5TCbJcbWAtq1EL6XiNkomE7QUktWSHODAb8eeTGArVVuptyjxRMl4xv6c2J8BPhAo0DIxgZfpnAKUzIR0VJQeuaYq1hwUacv2eSZn5-LbRXyxAdOhFobTKp3t7226tdbuzJGbzaPFfM41voK52BmC-OQUuaJciIRX-ZeH5zQPcnk9Y7iIPZYe_mzaHC9tqYeCzBbScM7z333TKvZc5RO1Puh0B1458IiT_vl2YcPUe7DtgCS6bXq7By9XWAZfQ_GjRk5vv8Qc782ywWvujIYFN1TCpkaCgLhw6sKSE9rbO5zXSFjWLk8smVzX9cXCtu-qcIcNGZsbV8X5Bs5PT35OZ55rreBpkfqtR45eh77MU1FVhFAKKXVGoYOvM53ldCHQlcjSokjjXPt5SNaZomjB3DKZFiQevYXNuqnNO8DECGMS26y6ImtA-zuwSCYsg6T0Iz0Cf5hUpR3vOLe_uFZDgtmVIj0o1oPq9TCCz09DFj3pxjphMWhK_bFyFDmFdcPGg1aV27a3KoziSHKXwmQEH3tNPz0A83Afz39NVLO8VL_zTqUykmIEn9bJdTedCmQSCfGPG3adEjHTrb3_v9fZhxchfwmw-eRj2GyXnTkguNQWh3Y_HMLW5Ov32dkjyk8UdQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLbK9gA98CigbmnBB-CAFDWPySQ5rkqrLS3LpUW9jZLJpFraJqttcii_HnsyKYuEFolblMxEyXhsf07szwDvCRRomZjAy3ROAUpmQjoqSo9cUxVrDoq0ZfucyemF-HIZX27A4VALw2mVzvb3Nt1aa3fmwK3mwWI-5xpfwVzsDEF8corJI9hkdqp4BJuTk9Pp7LdBToOeNFzEHk8Yfm7aNC9t2YeCzNbScNrz393TKvxcpRS1buj4OTx1-BEn_SO-gA1Tb8MzhyXRaerdNmytEA2-hOJbjZzhfoU5_jTLBm-4ORoW3FMJmxoJBeLCSQxLzmlv73FeI8FZu0OxZH5d1xoL276xwj02ZG9uXSHnK7g4Pjo_nHquu4KnReq3Hvl6HfoyT0VVEUgppNQZRQ--znSW04VAVyJLiyKNc-3nIRloCqQF08tkWtDw6DWM6qY2O4CJEcYktl91RQaBVDywYCYsg6T0Iz0Gf1hUpR31OHfAuFFDjtkPRXJQLAfVy2EMnx6mLHrejXWDxSAp9cfmUeQX1k3bG6SqnObeqTCKI8mNCpMxfOgl_fAATMX9ef59oprllbrOO5XKSIoxfFw3rrvtVCCTSIh_3LDrFO1fQlC7__c67-Dx9PzrmTo7mZ2-gSchfxiw6eV7MGqXndkn9NQWb512_AI0phcm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+using+a+zero+lower+bound+on+the+physical+density+in+material+distribution+topology+optimization&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Nguyen%2C+Quoc+Khanh&rft.au=Serra-Capizzano%2C+Stefano&rft.au=Wadbro%2C+Eddie&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=359&rft_id=info:doi/10.1016%2Fj.cma.2019.112669&rft.externalDocID=S0045782519305547 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |