On using a zero lower bound on the physical density in material distribution topology optimization

The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit our attention to the standard test problem of minimizing the compliance of a linearly elastic structure subject to a constant forcing. First...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in applied mechanics and engineering Vol. 359; p. 112669
Main Authors Nguyen, Quoc Khanh, Serra-Capizzano, Stefano, Wadbro, Eddie
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit our attention to the standard test problem of minimizing the compliance of a linearly elastic structure subject to a constant forcing. First order tensor product Finite Elements discretize the problem. An elementwise constant material indicator function defines the discretized, elementwise constant, physical density by using filtering and penalization. To alleviate the ill-conditioning of the stiffness matrix, due to the variation of the elementwise constant physical density, we precondition the system. We provide a specific spectral analysis for large matrix sizes for the one-dimensional problem with Dirichlet–Neumann conditions in detail, even if most of the mathematical tools apply also in a d-dimensional setting, d≥2. It is easy to find an elementwise constant material indicator function so that the resulting preconditioned system matrix is singular when allowing the vanishing physical densities. However, for a large class of material indicator functions, the corresponding preconditioned system matrix has a condition number of the same order as the system matrix for the case when the physical density is one in all elements. Finally, we critically report and illustrate results from numerical experiments: as a conclusion, it is indeed possible to solve large-scale topology optimization problems, allowing a vanishing physical density, without encountering ill-conditioned system matrices during the optimization. •We perform material distribution topology optimization allowing vanishing densities.•A preconditioner effectively alleviates the ill-conditioning due to varying densities.•We provide a spectral analysis for large matrices for a one-dimensional problem.•The employed mathematical tools can also tackle problems of higher dimensionality.•We present numerically optimized large-scale designs for the two-dimensional problem.
AbstractList The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit our attention to the standard test problem of minimizing the compliance of a linearly elastic structure subject to a constant forcing. First order tensor product Finite Elements discretize the problem. An elementwise constant material indicator function defines the discretized, elementwise constant, physical density by using filtering and penalization. To alleviate the ill-conditioning of the stiffness matrix, due to the variation of the elementwise constant physical density, we precondition the system. We provide a specific spectral analysis for large matrix sizes for the one-dimensional problem with Dirichlet-Neumann conditions in detail, even if most of the mathematical tools apply also in a d-dimensional setting, d >= 2. It is easy to find an elementwise constant material indicator function so that the resulting preconditioned system matrix is singular when allowing the vanishing physical densities. However, for a large class of material indicator functions, the corresponding preconditioned system matrix has a condition number of the same order as the system matrix for the case when the physical density is one in all elements. Finally, we critically report and illustrate results from numerical experiments: as a conclusion, it is indeed possible to solve large-scale topology optimization problems, allowing a vanishing physical density, without encountering ill-conditioned system matrices during the optimization.
The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit our attention to the standard test problem of minimizing the compliance of a linearly elastic structure subject to a constant forcing. First order tensor product Finite Elements discretize the problem. An elementwise constant material indicator function defines the discretized, elementwise constant, physical density by using filtering and penalization. To alleviate the ill-conditioning of the stiffness matrix, due to the variation of the elementwise constant physical density, we precondition the system. We provide a specific spectral analysis for large matrix sizes for the one-dimensional problem with Dirichlet–Neumann conditions in detail, even if most of the mathematical tools apply also in a d-dimensional setting, d≥2. It is easy to find an elementwise constant material indicator function so that the resulting preconditioned system matrix is singular when allowing the vanishing physical densities. However, for a large class of material indicator functions, the corresponding preconditioned system matrix has a condition number of the same order as the system matrix for the case when the physical density is one in all elements. Finally, we critically report and illustrate results from numerical experiments: as a conclusion, it is indeed possible to solve large-scale topology optimization problems, allowing a vanishing physical density, without encountering ill-conditioned system matrices during the optimization.
The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit our attention to the standard test problem of minimizing the compliance of a linearly elastic structure subject to a constant forcing. First order tensor product Finite Elements discretize the problem. An elementwise constant material indicator function defines the discretized, elementwise constant, physical density by using filtering and penalization. To alleviate the ill-conditioning of the stiffness matrix, due to the variation of the elementwise constant physical density, we precondition the system. We provide a specific spectral analysis for large matrix sizes for the one-dimensional problem with Dirichlet–Neumann conditions in detail, even if most of the mathematical tools apply also in a d-dimensional setting, d≥2. It is easy to find an elementwise constant material indicator function so that the resulting preconditioned system matrix is singular when allowing the vanishing physical densities. However, for a large class of material indicator functions, the corresponding preconditioned system matrix has a condition number of the same order as the system matrix for the case when the physical density is one in all elements. Finally, we critically report and illustrate results from numerical experiments: as a conclusion, it is indeed possible to solve large-scale topology optimization problems, allowing a vanishing physical density, without encountering ill-conditioned system matrices during the optimization. •We perform material distribution topology optimization allowing vanishing densities.•A preconditioner effectively alleviates the ill-conditioning due to varying densities.•We provide a spectral analysis for large matrices for a one-dimensional problem.•The employed mathematical tools can also tackle problems of higher dimensionality.•We present numerically optimized large-scale designs for the two-dimensional problem.
ArticleNumber 112669
Author Nguyen, Quoc Khanh
Wadbro, Eddie
Serra-Capizzano, Stefano
Author_xml – sequence: 1
  givenname: Quoc Khanh
  orcidid: 0000-0001-9019-2795
  surname: Nguyen
  fullname: Nguyen, Quoc Khanh
  organization: Department of Computing Science, Umeå University, SE-901 87  Umeå, Sweden
– sequence: 2
  givenname: Stefano
  surname: Serra-Capizzano
  fullname: Serra-Capizzano, Stefano
  organization: Department of Humanities and Innovation, University of Insubria, INDAM Unit, Via Bossi Oriani 5 and Via Valleggio 11, 22100 Como, Italy
– sequence: 3
  givenname: Eddie
  orcidid: 0000-0001-8704-9584
  surname: Wadbro
  fullname: Wadbro, Eddie
  email: eddiew@cs.umu.se
  organization: Department of Computing Science, Umeå University, SE-901 87  Umeå, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-86364$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167344$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454381$$DView record from Swedish Publication Index
BookMark eNqNkU1v1DAQhi1UJLalP4CbJa5ksRPHscWpKh9FqtQL9Go5Xmc7S2IHf7Ta_nqcBi4cqvpiaeZ5R6N5TtGJ884i9I6SLSWUfzxszaS3NaFyS2nNuXyFNlR0sqppI07QhhDWVp2o2zfoNMYDKU_QeoP6G4dzBLfHGj_a4PHoH2zAvc9uh73D6c7i-e4YwegR76yLkI4YHJ50sgGWGsQUoM8JFtrPfvT7I_Zzggke9VJ9i14Peoz2_O9_hn5-_fLj8qq6vvn2_fLiujJMkFQWbU1NuBZsGKRses6N5F1LjDRSlwY1A5Oi70WrDdG11YZLwggTVBpW8OYMfVjnxgc7517NASYdjsprUJ_h9kL5sFc5K9ayRtCCVy_Ap6wo7xrGXjb-l85K8IYv-PsVn4P_nW1M6uBzcOUAqm7ahhc5rCtUt1Im-BiDHZSB9HS1FDSMihK16FUHVfSqRa9a9ZYk_S_5b6HnMp_WjC0a7sEGFQ1YZ-wOgjVJ7Tw8k_4DfwzAWQ
CitedBy_id crossref_primary_10_32604_cmes_2023_025153
crossref_primary_10_3390_mca27050078
crossref_primary_10_1007_s10409_022_09021_8
crossref_primary_10_1002_nla_2433
Cites_doi 10.1137/110835384
10.1007/s11831-015-9151-2
10.1137/070699822
10.1007/s00791-012-0180-1
10.1016/S0024-3795(02)00504-9
10.1002/nla.1941
10.1002/nme.783
10.1016/j.cma.2006.06.007
10.1007/s00158-018-1944-0
10.1016/0045-7825(88)90086-2
10.1007/s00158-015-1372-3
10.1016/S0024-3795(99)00022-1
10.1007/s001580050089
10.1007/s00158-013-0938-1
10.1007/s00211-004-0574-1
10.1016/j.jcp.2003.09.032
10.1007/s002110050400
10.1016/j.laa.2006.04.012
10.1038/nature23911
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Feb 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 1, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
DG3
D93
DF2
DOI 10.1016/j.cma.2019.112669
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Karlstads universitet
SWEPUB Umeå universitet
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts



DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1879-2138
ExternalDocumentID oai_DiVA_org_uu_454381
oai_DiVA_org_umu_167344
oai_DiVA_org_kau_86364
10_1016_j_cma_2019_112669
S0045782519305547
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
VH1
VOH
WUQ
ZY4
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
DG3
D93
DF2
ID FETCH-LOGICAL-c480t-215c206a84ff993b66c96750c9c9a2061cf498bb85ac0a2eac690404819c43b63
IEDL.DBID .~1
ISSN 0045-7825
1879-2138
IngestDate Thu Aug 21 06:41:48 EDT 2025
Thu Aug 21 06:36:20 EDT 2025
Thu Aug 21 06:54:13 EDT 2025
Fri Jul 25 06:53:27 EDT 2025
Tue Jul 01 04:06:09 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Fri Feb 23 02:48:41 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Topology optimization
Conditioning
Preconditioning
Large-scale problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-215c206a84ff993b66c96750c9c9a2061cf498bb85ac0a2eac690404819c43b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9019-2795
0000-0001-8704-9584
OpenAccessLink http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147917
PQID 2353618747
PQPubID 2045269
ParticipantIDs swepub_primary_oai_DiVA_org_uu_454381
swepub_primary_oai_DiVA_org_umu_167344
swepub_primary_oai_DiVA_org_kau_86364
proquest_journals_2353618747
crossref_citationtrail_10_1016_j_cma_2019_112669
crossref_primary_10_1016_j_cma_2019_112669
elsevier_sciencedirect_doi_10_1016_j_cma_2019_112669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Schmidt, Schulz (b4) 2011; 14
Svanberg, Svärd (b23) 2013; 48
Allaire, Jouve, Toader (b24) 2004; 194
Bendsøe, Sigmund (b2) 2003
Serra-Capizzano, Tablino-Possio (b15) 1999; 293
Wadbro, Berggren (b5) 2009; 51
Zhu, Zhang, Xia (b6) 2016; 23
Aage, Andreassen, Lazarov, Sigmund (b3) 2017; 550
Buhl, Pedersen, Sigmund (b8) 2000; 19
Ekström, Serra-Capizzano (b14) 2019
Bendsøe, Kikuchi (b1) 1988; 71
Zygmund (b18) 1959
Hägg, Wadbro (b22) 2018; 58
Serra-Capizzano (b12) 2006; 419
Bruns, Tortorelli (b9) 2003; 57
Russo, Serra-Capizzano, Tablino-Possio (b21) 2015; 22
Serra-Capizzano (b11) 2003; 366
Bruns (b10) 2006; 196
Garoni, Serra-Capizzano (b13) 2017
Bhatia (b16) 1997
Bertaccini, Golub, Serra-Capizzano, Tablino-Possio (b20) 2005; 99
Böttcher, Grudsky (b17) 2005
Zhang, Yuan, Zhang, Guo (b25) 2016; 53
Berggren, Kasolis (b7) 2012; 50
Serra (b19) 1999; 81
Serra-Capizzano (10.1016/j.cma.2019.112669_b11) 2003; 366
Allaire (10.1016/j.cma.2019.112669_b24) 2004; 194
Svanberg (10.1016/j.cma.2019.112669_b23) 2013; 48
Bendsøe (10.1016/j.cma.2019.112669_b1) 1988; 71
Berggren (10.1016/j.cma.2019.112669_b7) 2012; 50
Serra-Capizzano (10.1016/j.cma.2019.112669_b12) 2006; 419
Zygmund (10.1016/j.cma.2019.112669_b18) 1959
Bruns (10.1016/j.cma.2019.112669_b10) 2006; 196
Bhatia (10.1016/j.cma.2019.112669_b16) 1997
Bertaccini (10.1016/j.cma.2019.112669_b20) 2005; 99
Bruns (10.1016/j.cma.2019.112669_b9) 2003; 57
Serra-Capizzano (10.1016/j.cma.2019.112669_b15) 1999; 293
Buhl (10.1016/j.cma.2019.112669_b8) 2000; 19
Bendsøe (10.1016/j.cma.2019.112669_b2) 2003
Hägg (10.1016/j.cma.2019.112669_b22) 2018; 58
Garoni (10.1016/j.cma.2019.112669_b13) 2017
Russo (10.1016/j.cma.2019.112669_b21) 2015; 22
Wadbro (10.1016/j.cma.2019.112669_b5) 2009; 51
Zhu (10.1016/j.cma.2019.112669_b6) 2016; 23
Böttcher (10.1016/j.cma.2019.112669_b17) 2005
Ekström (10.1016/j.cma.2019.112669_b14) 2019
Serra (10.1016/j.cma.2019.112669_b19) 1999; 81
Aage (10.1016/j.cma.2019.112669_b3) 2017; 550
Zhang (10.1016/j.cma.2019.112669_b25) 2016; 53
Schmidt (10.1016/j.cma.2019.112669_b4) 2011; 14
References_xml – start-page: 57
  year: 2019
  end-page: 76
  ident: b14
  article-title: Eigenvalue isogeometric approximations based on B-splines: Tools and results
  publication-title: Advanced Methods for Geometric Modeling and Numerical Simulation
– volume: 419
  start-page: 180
  year: 2006
  end-page: 233
  ident: b12
  article-title: The GLT class as a generalized Fourier analysis and applications
  publication-title: Linear Algebra Appl.
– volume: 51
  start-page: 707
  year: 2009
  end-page: 721
  ident: b5
  article-title: Megapixel topology optimization on a graphics processing unit
  publication-title: SIAM Rev.
– volume: 22
  start-page: 123
  year: 2015
  end-page: 144
  ident: b21
  article-title: Quasi-optimal preconditioners for finite element approximations of diffusion dominated convection-diffusion equations on (nearly) equilateral triangle meshes
  publication-title: Numer. Linear Algebra Appl.
– volume: 23
  start-page: 595
  year: 2016
  end-page: 622
  ident: b6
  article-title: Topology optimization in Aircraft and Aerospace structures design
  publication-title: Arch. Comput. Methods Eng.
– volume: 194
  start-page: 363
  year: 2004
  end-page: 393
  ident: b24
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J. Comput. Phys.
– year: 1997
  ident: b16
  article-title: Matrix Analysis
– volume: 71
  start-page: 197
  year: 1988
  end-page: 224
  ident: b1
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 293
  start-page: 85
  year: 1999
  end-page: 131
  ident: b15
  article-title: Spectral and structural analysis of high precision finite difference matrices for elliptic operators
  publication-title: Linear Algebra Appl.
– volume: 366
  start-page: 371
  year: 2003
  end-page: 402
  ident: b11
  article-title: Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations
  publication-title: Linear Algebra Appl.
– volume: 58
  start-page: 1015
  year: 2018
  end-page: 1032
  ident: b22
  article-title: On minimum length scale control in topology optimization
  publication-title: Struct. Multidiscip. Optim.
– year: 2003
  ident: b2
  article-title: Topology Optimization. Theory, Methods, and Applications
– year: 2005
  ident: b17
  article-title: Spectral Properties of Banded Toeplitz Matrices
– volume: 50
  start-page: 1827
  year: 2012
  end-page: 1848
  ident: b7
  article-title: Weak material approximation of holes with traction-free boundaries
  publication-title: SIAM J. Numer. Anal.
– volume: 48
  start-page: 859
  year: 2013
  end-page: 875
  ident: b23
  article-title: Density filters for topology optimization based on the pythagorean means
  publication-title: Struct. Multidiscip. Optim.
– volume: 19
  start-page: 93
  year: 2000
  end-page: 104
  ident: b8
  article-title: Stiffness design of geometrically nonlinear structures using topology optimization
  publication-title: Struct. Multidiscip. Optim.
– year: 2017
  ident: b13
  article-title: The Theory of Generalized Locally Toeplitz Sequences: Theory and Applications - Vol. I
– volume: 196
  start-page: 566
  year: 2006
  end-page: 578
  ident: b10
  article-title: Zero density lower bounds in topology optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 81
  start-page: 461
  year: 1999
  end-page: 495
  ident: b19
  article-title: The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems
  publication-title: Numer. Math.
– volume: 14
  start-page: 249
  year: 2011
  end-page: 256
  ident: b4
  article-title: A 2589 line topology optimization code written for the graphics card
  publication-title: Comput. Vis. Sci.
– volume: 57
  start-page: 1413
  year: 2003
  end-page: 1430
  ident: b9
  article-title: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 1959
  ident: b18
  article-title: Trigonometric Series
– volume: 53
  start-page: 1243
  year: 2016
  end-page: 1260
  ident: b25
  article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model
  publication-title: Struct. Multidiscip. Optim.
– volume: 99
  start-page: 441
  year: 2005
  end-page: 484
  ident: b20
  article-title: Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation
  publication-title: Numer. Math.
– volume: 550
  start-page: 84
  year: 2017
  end-page: 86
  ident: b3
  article-title: Giga-voxel computational morphogenesis for structural design
  publication-title: Nature
– start-page: 57
  year: 2019
  ident: 10.1016/j.cma.2019.112669_b14
  article-title: Eigenvalue isogeometric approximations based on B-splines: Tools and results
– year: 1997
  ident: 10.1016/j.cma.2019.112669_b16
– volume: 50
  start-page: 1827
  issue: 4
  year: 2012
  ident: 10.1016/j.cma.2019.112669_b7
  article-title: Weak material approximation of holes with traction-free boundaries
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110835384
– year: 1959
  ident: 10.1016/j.cma.2019.112669_b18
– volume: 23
  start-page: 595
  issue: 4
  year: 2016
  ident: 10.1016/j.cma.2019.112669_b6
  article-title: Topology optimization in Aircraft and Aerospace structures design
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-015-9151-2
– year: 2003
  ident: 10.1016/j.cma.2019.112669_b2
– volume: 51
  start-page: 707
  year: 2009
  ident: 10.1016/j.cma.2019.112669_b5
  article-title: Megapixel topology optimization on a graphics processing unit
  publication-title: SIAM Rev.
  doi: 10.1137/070699822
– volume: 14
  start-page: 249
  issue: 6
  year: 2011
  ident: 10.1016/j.cma.2019.112669_b4
  article-title: A 2589 line topology optimization code written for the graphics card
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s00791-012-0180-1
– volume: 366
  start-page: 371
  year: 2003
  ident: 10.1016/j.cma.2019.112669_b11
  article-title: Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(02)00504-9
– volume: 22
  start-page: 123
  issue: 1
  year: 2015
  ident: 10.1016/j.cma.2019.112669_b21
  article-title: Quasi-optimal preconditioners for finite element approximations of diffusion dominated convection-diffusion equations on (nearly) equilateral triangle meshes
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.1941
– volume: 57
  start-page: 1413
  issue: 10
  year: 2003
  ident: 10.1016/j.cma.2019.112669_b9
  article-title: An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.783
– year: 2017
  ident: 10.1016/j.cma.2019.112669_b13
– volume: 196
  start-page: 566
  issue: 1
  year: 2006
  ident: 10.1016/j.cma.2019.112669_b10
  article-title: Zero density lower bounds in topology optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2006.06.007
– volume: 58
  start-page: 1015
  issue: 3
  year: 2018
  ident: 10.1016/j.cma.2019.112669_b22
  article-title: On minimum length scale control in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-1944-0
– volume: 71
  start-page: 197
  year: 1988
  ident: 10.1016/j.cma.2019.112669_b1
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(88)90086-2
– volume: 53
  start-page: 1243
  issue: 6
  year: 2016
  ident: 10.1016/j.cma.2019.112669_b25
  article-title: A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1372-3
– volume: 293
  start-page: 85
  issue: 1
  year: 1999
  ident: 10.1016/j.cma.2019.112669_b15
  article-title: Spectral and structural analysis of high precision finite difference matrices for elliptic operators
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(99)00022-1
– volume: 19
  start-page: 93
  issue: 2
  year: 2000
  ident: 10.1016/j.cma.2019.112669_b8
  article-title: Stiffness design of geometrically nonlinear structures using topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s001580050089
– volume: 48
  start-page: 859
  issue: 5
  year: 2013
  ident: 10.1016/j.cma.2019.112669_b23
  article-title: Density filters for topology optimization based on the pythagorean means
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0938-1
– volume: 99
  start-page: 441
  issue: 3
  year: 2005
  ident: 10.1016/j.cma.2019.112669_b20
  article-title: Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation
  publication-title: Numer. Math.
  doi: 10.1007/s00211-004-0574-1
– year: 2005
  ident: 10.1016/j.cma.2019.112669_b17
– volume: 194
  start-page: 363
  issue: 1
  year: 2004
  ident: 10.1016/j.cma.2019.112669_b24
  article-title: Structural optimization using sensitivity analysis and a level-set method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.032
– volume: 81
  start-page: 461
  issue: 3
  year: 1999
  ident: 10.1016/j.cma.2019.112669_b19
  article-title: The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems
  publication-title: Numer. Math.
  doi: 10.1007/s002110050400
– volume: 419
  start-page: 180
  issue: 1
  year: 2006
  ident: 10.1016/j.cma.2019.112669_b12
  article-title: The GLT class as a generalized Fourier analysis and applications
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2006.04.012
– volume: 550
  start-page: 84
  year: 2017
  ident: 10.1016/j.cma.2019.112669_b3
  article-title: Giga-voxel computational morphogenesis for structural design
  publication-title: Nature
  doi: 10.1038/nature23911
SSID ssj0000812
Score 2.329391
Snippet The current paper studies the possibility of allowing a zero lower bound on the physical density in material distribution based topology optimization. We limit...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112669
SubjectTerms Conditioning
Current distribution
Density
Dirichlet problem
Ill-conditioned problems (mathematics)
Large-scale problems
Lower bounds
Matematik
Mathematical analysis
Mathematics
Matrix methods
Modulus of elasticity
Optimization
Preconditioning
Spectrum analysis
Stiffness matrix
Tensors
Topology optimization
Title On using a zero lower bound on the physical density in material distribution topology optimization
URI https://dx.doi.org/10.1016/j.cma.2019.112669
https://www.proquest.com/docview/2353618747
https://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-86364
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167344
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454381
Volume 359
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9xADLYQXNpDebRVtyzIh7aHSil5TCbJcbWAtq1EL6XiNkomE7QUktWSHODAb8eeTGArVVuptyjxRMl4xv6c2J8BPhAo0DIxgZfpnAKUzIR0VJQeuaYq1hwUacv2eSZn5-LbRXyxAdOhFobTKp3t7226tdbuzJGbzaPFfM41voK52BmC-OQUuaJciIRX-ZeH5zQPcnk9Y7iIPZYe_mzaHC9tqYeCzBbScM7z333TKvZc5RO1Puh0B1458IiT_vl2YcPUe7DtgCS6bXq7By9XWAZfQ_GjRk5vv8Qc782ywWvujIYFN1TCpkaCgLhw6sKSE9rbO5zXSFjWLk8smVzX9cXCtu-qcIcNGZsbV8X5Bs5PT35OZ55rreBpkfqtR45eh77MU1FVhFAKKXVGoYOvM53ldCHQlcjSokjjXPt5SNaZomjB3DKZFiQevYXNuqnNO8DECGMS26y6ImtA-zuwSCYsg6T0Iz0Cf5hUpR3vOLe_uFZDgtmVIj0o1oPq9TCCz09DFj3pxjphMWhK_bFyFDmFdcPGg1aV27a3KoziSHKXwmQEH3tNPz0A83Afz39NVLO8VL_zTqUykmIEn9bJdTedCmQSCfGPG3adEjHTrb3_v9fZhxchfwmw-eRj2GyXnTkguNQWh3Y_HMLW5Ov32dkjyk8UdQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLbK9gA98CigbmnBB-CAFDWPySQ5rkqrLS3LpUW9jZLJpFraJqttcii_HnsyKYuEFolblMxEyXhsf07szwDvCRRomZjAy3ROAUpmQjoqSo9cUxVrDoq0ZfucyemF-HIZX27A4VALw2mVzvb3Nt1aa3fmwK3mwWI-5xpfwVzsDEF8corJI9hkdqp4BJuTk9Pp7LdBToOeNFzEHk8Yfm7aNC9t2YeCzNbScNrz393TKvxcpRS1buj4OTx1-BEn_SO-gA1Tb8MzhyXRaerdNmytEA2-hOJbjZzhfoU5_jTLBm-4ORoW3FMJmxoJBeLCSQxLzmlv73FeI8FZu0OxZH5d1xoL276xwj02ZG9uXSHnK7g4Pjo_nHquu4KnReq3Hvl6HfoyT0VVEUgppNQZRQ--znSW04VAVyJLiyKNc-3nIRloCqQF08tkWtDw6DWM6qY2O4CJEcYktl91RQaBVDywYCYsg6T0Iz0Gf1hUpR31OHfAuFFDjtkPRXJQLAfVy2EMnx6mLHrejXWDxSAp9cfmUeQX1k3bG6SqnObeqTCKI8mNCpMxfOgl_fAATMX9ef59oprllbrOO5XKSIoxfFw3rrvtVCCTSIh_3LDrFO1fQlC7__c67-Dx9PzrmTo7mZ2-gSchfxiw6eV7MGqXndkn9NQWb512_AI0phcm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+using+a+zero+lower+bound+on+the+physical+density+in+material+distribution+topology+optimization&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Nguyen%2C+Quoc+Khanh&rft.au=Serra-Capizzano%2C+Stefano&rft.au=Wadbro%2C+Eddie&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=359&rft_id=info:doi/10.1016%2Fj.cma.2019.112669&rft.externalDocID=S0045782519305547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon