Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers

An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, withou...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 19
Main Authors Huang, Jiang, Wang, Hanyu, Yan, Kangrong, Zhang, Xiaohua, Chen, Hongzheng, Li, Chang‐Zhi, Yu, Junsheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick‐layer‐based devices. Overall, double‐BHJ OSC with optimal ≈50 nm near‐infrared PDPP3T:PC71BM layer atop of ≈200 nm PTB7‐Th:PC71BM BHJ results in high power conversion efficiencies over 12%. An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp‐transferring of low bandgap BHJ layer atop of mediate bandgap active layers. Such devices obtain a large gain in photocurrent due to the enhanced photo harvest with little fill‐factor drop. Overall, double‐BHJ OSC results in high power conversion efficiencies over 12%.
AbstractList An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick‐layer‐based devices. Overall, double‐BHJ OSC with optimal ≈50 nm near‐infrared PDPP3T:PC71BM layer atop of ≈200 nm PTB7‐Th:PC71BM BHJ results in high power conversion efficiencies over 12%. An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp‐transferring of low bandgap BHJ layer atop of mediate bandgap active layers. Such devices obtain a large gain in photocurrent due to the enhanced photo harvest with little fill‐factor drop. Overall, double‐BHJ OSC results in high power conversion efficiencies over 12%.
An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick-layer-based devices. Overall, double-BHJ OSC with optimal ≈50 nm near-infrared PDPP3T:PC BM layer atop of ≈200 nm PTB7-Th:PC BM BHJ results in high power conversion efficiencies over 12%.
An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick-layer-based devices. Overall, double-BHJ OSC with optimal ≈50 nm near-infrared PDPP3T:PC71 BM layer atop of ≈200 nm PTB7-Th:PC71 BM BHJ results in high power conversion efficiencies over 12%.An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick-layer-based devices. Overall, double-BHJ OSC with optimal ≈50 nm near-infrared PDPP3T:PC71 BM layer atop of ≈200 nm PTB7-Th:PC71 BM BHJ results in high power conversion efficiencies over 12%.
An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick‐layer‐based devices. Overall, double‐BHJ OSC with optimal ≈50 nm near‐infrared PDPP3T:PC 71 BM layer atop of ≈200 nm PTB7‐Th:PC 71 BM BHJ results in high power conversion efficiencies over 12%.
An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick-layer-based devices. Overall, double-BHJ OSC with optimal [asymp]50 nm near-infrared PDPP3T:PC71BM layer atop of [asymp]200 nm PTB7-Th:PC71BM BHJ results in high power conversion efficiencies over 12%.
Author Wang, Hanyu
Yan, Kangrong
Yu, Junsheng
Huang, Jiang
Chen, Hongzheng
Li, Chang‐Zhi
Zhang, Xiaohua
Author_xml – sequence: 1
  givenname: Jiang
  surname: Huang
  fullname: Huang, Jiang
  organization: University of Electronic Science and Technology of China (UESTC)
– sequence: 2
  givenname: Hanyu
  surname: Wang
  fullname: Wang, Hanyu
  organization: University of Electronic Science and Technology of China (UESTC)
– sequence: 3
  givenname: Kangrong
  surname: Yan
  fullname: Yan, Kangrong
  organization: Zhejiang University
– sequence: 4
  givenname: Xiaohua
  surname: Zhang
  fullname: Zhang, Xiaohua
  organization: University of Electronic Science and Technology of China (UESTC)
– sequence: 5
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
  organization: Zhejiang University
– sequence: 6
  givenname: Chang‐Zhi
  surname: Li
  fullname: Li, Chang‐Zhi
  email: czli@zju.edu.cn
  organization: Zhejiang University
– sequence: 7
  givenname: Junsheng
  surname: Yu
  fullname: Yu, Junsheng
  email: jsyu@uestc.edu.cn
  organization: University of Electronic Science and Technology of China (UESTC)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28295706$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1PIzEQhq0TpyN8tJTIEg3NhrHX3l2XIXDkpJwogNpyvHZwcGywd4Xy72-j8CEhnaimeZ5XM_MeoL0Qg0HohMCYANAL1a7VmAKpoKqp-IFGhFNSMBB8D41AlLwQFWv20UHOKwAQA_cL7dOGCl5DNUL3M7d89Bt8ba3TzoQO36alCk7ju-hVwlPjfcbTGLLLnQtLHC2-iv3CG3zZ-yc8M51JcdUH3bkY8FxtTMpH6KdVPpvjt3mIHn5f309nxfz25s90Mi80a0AUFbOKmVYvKgDSatoqRUtdC1FzsIIDoZw0hC7A6hJaXlNWUaWULStLDbSiPETnu9znFF96kzu5dlkPG6tgYp8laeq64bxhW_TsC7qKfQrDdpIICozQkjYDdfpG9Yu1aeVzcmuVNvL9XwPAdoBOMedkrNSuU9vTu6SclwTktha5rUV-1DJo4y_ae_J_BbETXp03m29oObn6O_l0_wGRp54n
CitedBy_id crossref_primary_10_1109_JPHOTOV_2018_2855108
crossref_primary_10_1002_cjoc_201700812
crossref_primary_10_1007_s12274_020_3169_y
crossref_primary_10_1039_D0EE03490H
crossref_primary_10_1021_acsami_2c03340
crossref_primary_10_1039_D3MA00754E
crossref_primary_10_1016_j_nanoen_2019_06_003
crossref_primary_10_1039_C9TA08620J
crossref_primary_10_1039_C9TA13974E
crossref_primary_10_1088_1755_1315_665_1_012020
crossref_primary_10_1002_solr_201900042
crossref_primary_10_1109_JPHOTOV_2019_2925556
crossref_primary_10_1016_j_jpowsour_2017_08_061
crossref_primary_10_1016_j_scib_2019_06_006
crossref_primary_10_1002_aenm_201802012
crossref_primary_10_1039_C8RA07398H
crossref_primary_10_1016_j_tetlet_2017_06_056
crossref_primary_10_1002_smll_201701120
crossref_primary_10_1002_aenm_201900190
crossref_primary_10_1016_j_cej_2025_160263
crossref_primary_10_1002_pola_29293
crossref_primary_10_1002_cjoc_202200686
crossref_primary_10_1002_adma_201704271
crossref_primary_10_1016_j_dyepig_2020_108808
crossref_primary_10_1038_s41598_022_19346_7
crossref_primary_10_1002_aenm_201900887
crossref_primary_10_1002_adma_202208997
crossref_primary_10_1002_marc_201900074
crossref_primary_10_1002_adma_201803166
crossref_primary_10_1016_j_dyepig_2021_109606
crossref_primary_10_1039_D0TA10594E
crossref_primary_10_1002_pip_3078
crossref_primary_10_1002_solr_201800141
crossref_primary_10_1016_j_crci_2018_05_011
crossref_primary_10_1016_j_mattod_2018_09_004
crossref_primary_10_1080_15421406_2020_1741824
crossref_primary_10_1021_acs_jpclett_1c02323
crossref_primary_10_1021_acs_jpcc_8b07694
crossref_primary_10_1002_advs_201900565
crossref_primary_10_1039_D0EE03387A
crossref_primary_10_1039_D0MA00532K
crossref_primary_10_1002_adma_201903441
crossref_primary_10_1002_solr_201700169
crossref_primary_10_1039_D2TC04917A
crossref_primary_10_1016_j_orgel_2022_106709
crossref_primary_10_1021_acs_energyfuels_1c03579
crossref_primary_10_1016_j_orgel_2017_12_037
crossref_primary_10_1021_acsmacrolett_8b00412
crossref_primary_10_1002_aenm_201701370
crossref_primary_10_1002_adfm_202103445
crossref_primary_10_1088_1757_899X_1248_1_012011
crossref_primary_10_1016_j_orgel_2018_06_047
crossref_primary_10_1039_C8TC05692G
crossref_primary_10_1002_slct_202003216
crossref_primary_10_1007_s11426_019_9556_7
crossref_primary_10_1016_j_solener_2019_11_030
crossref_primary_10_1016_j_solener_2017_09_060
crossref_primary_10_1002_marc_202400728
crossref_primary_10_1021_acsenergylett_8b01400
crossref_primary_10_1016_j_apsusc_2020_148266
crossref_primary_10_1039_D0DT00637H
crossref_primary_10_1002_adma_201705706
crossref_primary_10_1002_aenm_201702730
crossref_primary_10_1039_C7PY01521F
crossref_primary_10_1002_adma_201706083
crossref_primary_10_1016_j_comptc_2020_112833
crossref_primary_10_7567_1347_4065_ab0a84
crossref_primary_10_1016_j_nanoen_2017_09_011
crossref_primary_10_1080_15421406_2019_1645458
crossref_primary_10_1088_1361_6463_aaab34
crossref_primary_10_1007_s11426_022_1429_x
crossref_primary_10_1002_aenm_202000826
crossref_primary_10_1016_j_joule_2022_04_012
crossref_primary_10_1002_aenm_201802293
crossref_primary_10_3390_nano7090233
crossref_primary_10_1016_j_orgel_2020_105636
crossref_primary_10_1016_j_cej_2021_134337
crossref_primary_10_1021_acsaom_4c00533
crossref_primary_10_1021_acsaem_2c03634
crossref_primary_10_1016_j_cclet_2017_08_009
crossref_primary_10_1016_j_polymer_2019_04_011
crossref_primary_10_1021_acs_chemrev_1c00955
crossref_primary_10_1002_pol_20230432
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_1016_j_solener_2020_01_086
crossref_primary_10_1039_D4TA07953A
crossref_primary_10_1016_j_orgel_2018_09_015
crossref_primary_10_1021_acs_jpcc_8b12476
crossref_primary_10_1002_adma_201803769
crossref_primary_10_3390_ma15227883
crossref_primary_10_1002_adfm_202103988
crossref_primary_10_1002_slct_201800762
crossref_primary_10_1002_macp_201900084
crossref_primary_10_3390_ma10070820
crossref_primary_10_1088_1361_6463_ac6a8d
crossref_primary_10_1038_s41467_019_10098_z
crossref_primary_10_1002_solr_202400479
crossref_primary_10_1002_aenm_201900376
crossref_primary_10_1021_acs_energyfuels_3c00531
crossref_primary_10_1016_j_polymer_2021_123991
crossref_primary_10_1002_aenm_201802197
crossref_primary_10_1007_s11664_021_08868_x
crossref_primary_10_1007_s40843_017_9084_x
crossref_primary_10_1002_inf2_12276
crossref_primary_10_1016_j_nanoen_2017_12_005
crossref_primary_10_1016_j_progpolymsci_2023_101711
crossref_primary_10_1016_j_dyepig_2019_04_050
crossref_primary_10_1016_j_nanoen_2018_03_006
crossref_primary_10_1016_j_solener_2021_03_075
crossref_primary_10_1021_acsami_1c22396
crossref_primary_10_1002_adma_202107476
crossref_primary_10_1039_C8TA02633E
crossref_primary_10_1021_acsami_9b15476
crossref_primary_10_1021_acsphotonics_7b00618
crossref_primary_10_1002_advs_202203870
crossref_primary_10_1002_bkcs_11752
crossref_primary_10_1016_j_dyepig_2018_09_032
crossref_primary_10_1002_ente_201800666
crossref_primary_10_1039_D0NJ01245A
crossref_primary_10_1002_adma_202313251
crossref_primary_10_3390_polym10030332
crossref_primary_10_1016_j_xcrp_2024_102390
crossref_primary_10_1021_acsenergylett_0c00857
crossref_primary_10_1039_C7TA02582C
crossref_primary_10_1039_D0TC00269K
crossref_primary_10_1002_solr_202000364
crossref_primary_10_1021_jacs_9b09012
crossref_primary_10_1063_5_0096556
crossref_primary_10_1002_cphc_202400671
crossref_primary_10_1002_adfm_202403770
crossref_primary_10_1016_j_polymer_2020_122408
crossref_primary_10_1016_j_joule_2018_02_010
crossref_primary_10_1039_C8RA05360J
Cites_doi 10.1038/nphoton.2015.128
10.1021/la400137g
10.1002/adma.201301476
10.1021/nl8014022
10.1038/nphoton.2014.172
10.1038/ncomms6293
10.1021/cm502991d
10.1002/adma.201400384
10.1063/1.370757
10.1038/nphoton.2014.269
10.1002/adma.201003690
10.1002/aenm.201500406
10.1002/adma.201604603
10.1002/aenm.201100128
10.1038/nphoton.2012.11
10.1002/adma.201504014
10.1002/adma.201604059
10.1021/ja205977z
10.1038/nphoton.2015.84
10.1002/aenm.201401259
10.1038/nphoton.2015.6
10.1002/aenm.201400378
10.1002/aenm.201400891
10.1039/C4EE00688G
10.1002/adma.201602776
10.1039/C4EE03048F
10.1038/ncomms7013
10.1038/nphoton.2015.9
10.1039/C4EE03824J
10.1063/1.1534621
10.1002/adfm.200800056
10.1038/nphoton.2013.207
10.1039/c3ee40860d
10.1039/C4TC02449D
10.1021/ja2104747
10.1002/adma.201603518
10.1021/ja907506r
10.1002/adma.201000883
10.1002/adma.201601161
10.1002/adma.201603178
10.1021/jacs.6b00853
10.1002/adma.201404535
10.1039/C6EE01623E
10.1039/C5NR02657A
10.1002/adma.201404598
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201606729
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 28295706
10_1002_adma_201606729
ADMA201606729
Genre article
Journal Article
GrantInformation_xml – fundername: Foundation for Innovation Research Groups of the National Natural Science Foundation of China
  funderid: 61421002
– fundername: NSFC
  funderid: 61675041; 21674093; 61177032; 21372168
– fundername: International Science and Technology Cooperation Program of China
  funderid: 2016YFE0102900
– fundername: Project of Science and Technology of Sichuan Province
  funderid: 2016HH0027
– fundername: Young 1000 Talents Global Recruitment Program of China
– fundername: UESTC Excellent Young Scholar Project
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4809-64fa4edcb6001dc2daa23c799750f9501251812b0fc30d572462aaaf36f2e0d93
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 11:38:28 EDT 2025
Fri Jul 25 03:38:12 EDT 2025
Mon Jul 21 05:41:57 EDT 2025
Tue Jul 01 00:44:32 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Jan 22 17:06:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords organic solar cells
power conversion efficiency
mobility
stamping transfer method
double bulk heterojunctions
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4809-64fa4edcb6001dc2daa23c799750f9501251812b0fc30d572462aaaf36f2e0d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28295706
PQID 1920412328
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_1877855849
proquest_journals_1920412328
pubmed_primary_28295706
crossref_citationtrail_10_1002_adma_201606729
crossref_primary_10_1002_adma_201606729
wiley_primary_10_1002_adma_201606729_ADMA201606729
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-May
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 29
2015; 6
2013; 25
2015; 5
2015; 3
2011; 1
2010
2008; 18
2014; 26
1999; 86
2017; 29
2009; 131
2013; 7
2003; 93
2015; 9
2015; 8
2015; 7
2013; 6
2010; 22
2015; 28
2014; 5
2015; 27
2014; 4
2012; 134
2013; 133
2009; 9
2016; 138
2011; 23
2012; 6
2016; 28
2014; 8
2014; 7
2016; 9
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
Trucks G. W. (e_1_2_4_46_1) 2010
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 18
  start-page: 2064
  year: 2008
  publication-title: Adv. Funct. Mater.
– volume: 131
  start-page: 16616
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 870
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 491
  year: 2015
  publication-title: Nat. Photonics
– volume: 9
  start-page: 2835
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 153
  year: 2012
  publication-title: Nat. Photonics
– volume: 7
  start-page: 2145
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 174
  year: 2015
  publication-title: Nat. Photonics
– volume: 29
  start-page: 5377
  year: 2013
  publication-title: Langmuir
– volume: 9
  start-page: 35
  year: 2015
  publication-title: Nat. Photonics
– volume: 8
  start-page: 716
  year: 2014
  publication-title: Nat. Photonics
– volume: 29
  start-page: 1604603
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1401259
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1400378
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 2284
  year: 2011
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1160
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1604059
  year: 2017
  publication-title: Adv. Mater.
– volume: 133
  start-page: 14534
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 2973
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 4413
  year: 2014
  publication-title: Adv. Mater.
– year: 2010
– volume: 134
  start-page: 2884
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 7269
  year: 2016
  publication-title: Adv. Mater.
– volume: 22
  start-page: 3293
  year: 2010
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6013
  year: 2015
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9811
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 303
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 190
  year: 2015
  publication-title: Nat. Photonics
– volume: 25
  start-page: 4766
  year: 2013
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5293
  year: 2014
  publication-title: Nat. Commun.
– volume: 7
  start-page: 10936
  year: 2015
  publication-title: Nanoscale
– volume: 9
  start-page: 403
  year: 2015
  publication-title: Nat. Photonics
– volume: 9
  start-page: 507
  year: 2009
  publication-title: Nano Lett.
– volume: 27
  start-page: 1241
  year: 2015
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2714
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 825
  year: 2013
  publication-title: Nat. Photonics
– volume: 28
  start-page: 9423
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1500406
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 27
  start-page: 1035
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 564
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 93
  start-page: 3693
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 86
  start-page: 487
  year: 1999
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 1400891
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 967
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 9729
  year: 2016
  publication-title: Adv. Mater.
– volume: 26
  start-page: 6963
  year: 2014
  publication-title: Chem. Mater.
– ident: e_1_2_4_16_1
  doi: 10.1038/nphoton.2015.128
– ident: e_1_2_4_31_1
  doi: 10.1021/la400137g
– ident: e_1_2_4_5_1
  doi: 10.1002/adma.201301476
– ident: e_1_2_4_41_1
  doi: 10.1021/nl8014022
– ident: e_1_2_4_37_1
  doi: 10.1038/nphoton.2014.172
– ident: e_1_2_4_9_1
  doi: 10.1038/ncomms6293
– ident: e_1_2_4_22_1
  doi: 10.1021/cm502991d
– ident: e_1_2_4_21_1
  doi: 10.1002/adma.201400384
– ident: e_1_2_4_44_1
  doi: 10.1063/1.370757
– ident: e_1_2_4_3_1
  doi: 10.1038/nphoton.2014.269
– ident: e_1_2_4_42_1
  doi: 10.1002/adma.201003690
– ident: e_1_2_4_12_1
  doi: 10.1002/aenm.201500406
– ident: e_1_2_4_28_1
  doi: 10.1002/adma.201604603
– ident: e_1_2_4_40_1
  doi: 10.1002/aenm.201100128
– ident: e_1_2_4_1_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_4_6_1
  doi: 10.1002/adma.201504014
– ident: e_1_2_4_27_1
  doi: 10.1002/adma.201604059
– ident: e_1_2_4_38_1
  doi: 10.1021/ja205977z
– ident: e_1_2_4_17_1
  doi: 10.1038/nphoton.2015.84
– ident: e_1_2_4_33_1
  doi: 10.1002/aenm.201401259
– ident: e_1_2_4_2_1
  doi: 10.1038/nphoton.2015.6
– ident: e_1_2_4_20_1
  doi: 10.1002/aenm.201400378
– ident: e_1_2_4_26_1
  doi: 10.1002/aenm.201400891
– ident: e_1_2_4_32_1
  doi: 10.1039/C4EE00688G
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201602776
– ident: e_1_2_4_23_1
  doi: 10.1039/C4EE03048F
– ident: e_1_2_4_13_1
  doi: 10.1038/ncomms7013
– ident: e_1_2_4_25_1
  doi: 10.1038/nphoton.2015.9
– ident: e_1_2_4_34_1
  doi: 10.1039/C4EE03824J
– ident: e_1_2_4_39_1
  doi: 10.1063/1.1534621
– ident: e_1_2_4_36_1
  doi: 10.1002/adfm.200800056
– ident: e_1_2_4_4_1
  doi: 10.1038/nphoton.2013.207
– ident: e_1_2_4_24_1
  doi: 10.1039/c3ee40860d
– ident: e_1_2_4_29_1
  doi: 10.1039/C4TC02449D
– ident: e_1_2_4_43_1
  doi: 10.1021/ja2104747
– ident: e_1_2_4_8_1
  doi: 10.1002/adma.201603518
– ident: e_1_2_4_30_1
  doi: 10.1021/ja907506r
– volume-title: Gaussian Development Version Revision H.13
  year: 2010
  ident: e_1_2_4_46_1
– ident: e_1_2_4_45_1
  doi: 10.1002/adma.201000883
– ident: e_1_2_4_35_1
  doi: 10.1002/adma.201601161
– ident: e_1_2_4_18_1
  doi: 10.1002/adma.201603178
– ident: e_1_2_4_7_1
  doi: 10.1021/jacs.6b00853
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201404535
– ident: e_1_2_4_19_1
  doi: 10.1039/C6EE01623E
– ident: e_1_2_4_14_1
  doi: 10.1039/C5NR02657A
– ident: e_1_2_4_15_1
  doi: 10.1002/adma.201404598
SSID ssj0009606
Score 2.5663717
Snippet An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap...
An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Devices
double bulk heterojunctions
Energy conversion efficiency
Materials science
mobility
Near infrared radiation
organic solar cells
Photoelectric effect
Photoelectric emission
Photovoltaic cells
power conversion efficiency
Solar cells
stamping transfer method
Title Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606729
https://www.ncbi.nlm.nih.gov/pubmed/28295706
https://www.proquest.com/docview/1920412328
https://www.proquest.com/docview/1877855849
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctxAQD70ehICMhMQVcx3l4LAVUIcoAVOoWnR17gKhFtB3g0-Nz2rQFISQYo9h52L7c7-Lz34ScgnRhg23wQDIhXIBibQAOmwObJyAN2NR6MZ3Ofdzuitte1JtbxV_qQ1Q_3NAy_PcaDRzU8GImGgq51w1qxDiZiCv4MGELqehhph-FeO7F9sIokLFIp6qNjF8sVl_0St9Qc5Fcveu5WScwfegy4-TlfDxS5_rji57jf95qg6xNuJQ2y4G0SZZMf4uszqkVbpMnzAkp3um1V51wzoqWCzk1fcT4mLZMUQyp3wF0iMnUdGCp43NVGHo5Ll5oGzNvBs_OkeJgoHeAtL9DujfXT612MNmUIdAiZTKIhQVhcq2QlHLNcwAe6kRKhx5WRgyByUGDYlaHLI8SLmIOADaMLTcsl-EuWe4P-mafUK0aGqxiykYol94ApiQI6SIoayBN8xoJpp2S6YliOW6cUWSl1jLPsLWyqrVq5Kwq_1pqdfxYsj7t42xis8PMsS6Kj4U8rZGT6rSzNpxCgb4ZjF2ZNEnSyEGbu8ReOTaqW-GcdJSwuEa47-FfniFrXnWa1dHBXyodkhWOlOHzL-tkefQ2NkeOkUbq2NvBJ0jSBxc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefYBxgB36PFQYzEhKndK7j_PCxdJ3KaHfYWolb9OzYBxa109oetr8eP6fJ6BBCgmMUO3Fsv_j77OePAT6h8m6D64lIcSm9g-JchF42R67MUFl0uQswnclZOprJ0-9JE01Ie2FqPkQ74UaWEf7XZOA0IX10Rw3FMoCDeimtJqqH8IiO9Q5e1fkdQYoEesDtxUmkUpk33EYujrbzb49Lv4nNbe0aBp-TZ6CbYtcxJ5fd9Up3ze09ouN_fddzeLqRpqxf96UX8MDOX8LuL8DCVzClsJDqhg0DeMKPV6zey2nYBbnIbGCrasnCIaBLiqdmC8e8RNeVZV_W1SUbUfDN4ocfS6k_sDGS4H8Ns5PhdDCKNucyREbmXEWpdChtaTSJpdKIElHEJlPKqw-nEk6ayesGzZ2JeZlkQqYCEV2cOmF5qeI92Jkv5nYfmNE9g05z7RIipveQa4VSeSfKWczzsgNR0yqF2UDL6eyMqqhxy6Kg2ira2urA5zb9VY3r-GPKg6aRi43ZLgsvd4k_Fou8Ax_b297gaBUF53ax9mnyLMsTr9v8I97UnaN9FS1LJxlPOyBCE_-lDEX_eNJvr97-S6ZDeDyaTsbF-OvZt3fwRJDoCOGYB7Czul7b914yrfSHYBQ_Ab4NCzI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPMCTEHvjNVhhgJCSesrmOk9iPZV1VYJsQbNLeovOvBxa109o-wF-Pz2mzlQlNgscodn7Yd_Hn4vPXAO9Rx7Ah9EWmuZQxQAkhw4jNWXAVao9BhSSmc3Rcjk_l57Pi7Noq_lYfovvhRp6Rvtfk4Bcu7F2JhqJLukH9kiYT9V24J0uuyK6H364EpIjPk9peXmS6lGol28jF3nr99WHpBmuuo2sae0aPAFdP3aacnO8u5mbX_vpD0PF_XusxPFyCKRu0lvQE7vjJU9i8Jlf4DE4oKaT5yQ6S7EQcrVi7ktOy7xQgs33fNDOWtgCdUTY1mwYWAd00nn1cNOdsTKk30x9xJCVrYIdIuP8cTkcHJ_vjbLkrQ2al4jorZUDpnTWESs4KhyhyW2kd2SPoghMxRWowPNicu6ISshSIGPIyCM-dzl_AxmQ68dvArOlbDIabUJBeeh-50Sh1DKGCR6VcD7JVp9R2KVlOO2c0dSu2LGpqrbprrR586MpftGIdfy25s-rjeum0szrCLqmP5UL14F13OrobzaHgxE8XsYyqKlVEaouX2Gpto7sVTUoXFS97IFIP3_IM9WB4NOiOXv5Lpbdw_-twVB9-Ov7yCh4IIo6Ui7kDG_PLhX8deWlu3iSX-A2mRwnq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Organic+Solar+Cells+Consisting+of+Double+Bulk+Heterojunction+Layers&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Jiang&rft.au=Wang%2C+Hanyu&rft.au=Yan%2C+Kangrong&rft.au=Zhang%2C+Xiaohua&rft.date=2017-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201606729&rft.externalDBID=10.1002%252Fadma.201606729&rft.externalDocID=ADMA201606729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon