Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers
An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, withou...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 19 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick‐layer‐based devices. Overall, double‐BHJ OSC with optimal ≈50 nm near‐infrared PDPP3T:PC71BM layer atop of ≈200 nm PTB7‐Th:PC71BM BHJ results in high power conversion efficiencies over 12%.
An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp‐transferring of low bandgap BHJ layer atop of mediate bandgap active layers. Such devices obtain a large gain in photocurrent due to the enhanced photo harvest with little fill‐factor drop. Overall, double‐BHJ OSC results in high power conversion efficiencies over 12%. |
---|---|
AbstractList | An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick‐layer‐based devices. Overall, double‐BHJ OSC with optimal ≈50 nm near‐infrared PDPP3T:PC71BM layer atop of ≈200 nm PTB7‐Th:PC71BM BHJ results in high power conversion efficiencies over 12%.
An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp‐transferring of low bandgap BHJ layer atop of mediate bandgap active layers. Such devices obtain a large gain in photocurrent due to the enhanced photo harvest with little fill‐factor drop. Overall, double‐BHJ OSC results in high power conversion efficiencies over 12%. An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick-layer-based devices. Overall, double-BHJ OSC with optimal ≈50 nm near-infrared PDPP3T:PC BM layer atop of ≈200 nm PTB7-Th:PC BM BHJ results in high power conversion efficiencies over 12%. An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick-layer-based devices. Overall, double-BHJ OSC with optimal ≈50 nm near-infrared PDPP3T:PC71 BM layer atop of ≈200 nm PTB7-Th:PC71 BM BHJ results in high power conversion efficiencies over 12%.An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick-layer-based devices. Overall, double-BHJ OSC with optimal ≈50 nm near-infrared PDPP3T:PC71 BM layer atop of ≈200 nm PTB7-Th:PC71 BM BHJ results in high power conversion efficiencies over 12%. An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick‐layer‐based devices. Overall, double‐BHJ OSC with optimal ≈50 nm near‐infrared PDPP3T:PC 71 BM layer atop of ≈200 nm PTB7‐Th:PC 71 BM BHJ results in high power conversion efficiencies over 12%. An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick-layer-based devices. Overall, double-BHJ OSC with optimal [asymp]50 nm near-infrared PDPP3T:PC71BM layer atop of [asymp]200 nm PTB7-Th:PC71BM BHJ results in high power conversion efficiencies over 12%. |
Author | Wang, Hanyu Yan, Kangrong Yu, Junsheng Huang, Jiang Chen, Hongzheng Li, Chang‐Zhi Zhang, Xiaohua |
Author_xml | – sequence: 1 givenname: Jiang surname: Huang fullname: Huang, Jiang organization: University of Electronic Science and Technology of China (UESTC) – sequence: 2 givenname: Hanyu surname: Wang fullname: Wang, Hanyu organization: University of Electronic Science and Technology of China (UESTC) – sequence: 3 givenname: Kangrong surname: Yan fullname: Yan, Kangrong organization: Zhejiang University – sequence: 4 givenname: Xiaohua surname: Zhang fullname: Zhang, Xiaohua organization: University of Electronic Science and Technology of China (UESTC) – sequence: 5 givenname: Hongzheng surname: Chen fullname: Chen, Hongzheng organization: Zhejiang University – sequence: 6 givenname: Chang‐Zhi surname: Li fullname: Li, Chang‐Zhi email: czli@zju.edu.cn organization: Zhejiang University – sequence: 7 givenname: Junsheng surname: Yu fullname: Yu, Junsheng email: jsyu@uestc.edu.cn organization: University of Electronic Science and Technology of China (UESTC) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28295706$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1PIzEQhq0TpyN8tJTIEg3NhrHX3l2XIXDkpJwogNpyvHZwcGywd4Xy72-j8CEhnaimeZ5XM_MeoL0Qg0HohMCYANAL1a7VmAKpoKqp-IFGhFNSMBB8D41AlLwQFWv20UHOKwAQA_cL7dOGCl5DNUL3M7d89Bt8ba3TzoQO36alCk7ju-hVwlPjfcbTGLLLnQtLHC2-iv3CG3zZ-yc8M51JcdUH3bkY8FxtTMpH6KdVPpvjt3mIHn5f309nxfz25s90Mi80a0AUFbOKmVYvKgDSatoqRUtdC1FzsIIDoZw0hC7A6hJaXlNWUaWULStLDbSiPETnu9znFF96kzu5dlkPG6tgYp8laeq64bxhW_TsC7qKfQrDdpIICozQkjYDdfpG9Yu1aeVzcmuVNvL9XwPAdoBOMedkrNSuU9vTu6SclwTktha5rUV-1DJo4y_ae_J_BbETXp03m29oObn6O_l0_wGRp54n |
CitedBy_id | crossref_primary_10_1109_JPHOTOV_2018_2855108 crossref_primary_10_1002_cjoc_201700812 crossref_primary_10_1007_s12274_020_3169_y crossref_primary_10_1039_D0EE03490H crossref_primary_10_1021_acsami_2c03340 crossref_primary_10_1039_D3MA00754E crossref_primary_10_1016_j_nanoen_2019_06_003 crossref_primary_10_1039_C9TA08620J crossref_primary_10_1039_C9TA13974E crossref_primary_10_1088_1755_1315_665_1_012020 crossref_primary_10_1002_solr_201900042 crossref_primary_10_1109_JPHOTOV_2019_2925556 crossref_primary_10_1016_j_jpowsour_2017_08_061 crossref_primary_10_1016_j_scib_2019_06_006 crossref_primary_10_1002_aenm_201802012 crossref_primary_10_1039_C8RA07398H crossref_primary_10_1016_j_tetlet_2017_06_056 crossref_primary_10_1002_smll_201701120 crossref_primary_10_1002_aenm_201900190 crossref_primary_10_1016_j_cej_2025_160263 crossref_primary_10_1002_pola_29293 crossref_primary_10_1002_cjoc_202200686 crossref_primary_10_1002_adma_201704271 crossref_primary_10_1016_j_dyepig_2020_108808 crossref_primary_10_1038_s41598_022_19346_7 crossref_primary_10_1002_aenm_201900887 crossref_primary_10_1002_adma_202208997 crossref_primary_10_1002_marc_201900074 crossref_primary_10_1002_adma_201803166 crossref_primary_10_1016_j_dyepig_2021_109606 crossref_primary_10_1039_D0TA10594E crossref_primary_10_1002_pip_3078 crossref_primary_10_1002_solr_201800141 crossref_primary_10_1016_j_crci_2018_05_011 crossref_primary_10_1016_j_mattod_2018_09_004 crossref_primary_10_1080_15421406_2020_1741824 crossref_primary_10_1021_acs_jpclett_1c02323 crossref_primary_10_1021_acs_jpcc_8b07694 crossref_primary_10_1002_advs_201900565 crossref_primary_10_1039_D0EE03387A crossref_primary_10_1039_D0MA00532K crossref_primary_10_1002_adma_201903441 crossref_primary_10_1002_solr_201700169 crossref_primary_10_1039_D2TC04917A crossref_primary_10_1016_j_orgel_2022_106709 crossref_primary_10_1021_acs_energyfuels_1c03579 crossref_primary_10_1016_j_orgel_2017_12_037 crossref_primary_10_1021_acsmacrolett_8b00412 crossref_primary_10_1002_aenm_201701370 crossref_primary_10_1002_adfm_202103445 crossref_primary_10_1088_1757_899X_1248_1_012011 crossref_primary_10_1016_j_orgel_2018_06_047 crossref_primary_10_1039_C8TC05692G crossref_primary_10_1002_slct_202003216 crossref_primary_10_1007_s11426_019_9556_7 crossref_primary_10_1016_j_solener_2019_11_030 crossref_primary_10_1016_j_solener_2017_09_060 crossref_primary_10_1002_marc_202400728 crossref_primary_10_1021_acsenergylett_8b01400 crossref_primary_10_1016_j_apsusc_2020_148266 crossref_primary_10_1039_D0DT00637H crossref_primary_10_1002_adma_201705706 crossref_primary_10_1002_aenm_201702730 crossref_primary_10_1039_C7PY01521F crossref_primary_10_1002_adma_201706083 crossref_primary_10_1016_j_comptc_2020_112833 crossref_primary_10_7567_1347_4065_ab0a84 crossref_primary_10_1016_j_nanoen_2017_09_011 crossref_primary_10_1080_15421406_2019_1645458 crossref_primary_10_1088_1361_6463_aaab34 crossref_primary_10_1007_s11426_022_1429_x crossref_primary_10_1002_aenm_202000826 crossref_primary_10_1016_j_joule_2022_04_012 crossref_primary_10_1002_aenm_201802293 crossref_primary_10_3390_nano7090233 crossref_primary_10_1016_j_orgel_2020_105636 crossref_primary_10_1016_j_cej_2021_134337 crossref_primary_10_1021_acsaom_4c00533 crossref_primary_10_1021_acsaem_2c03634 crossref_primary_10_1016_j_cclet_2017_08_009 crossref_primary_10_1016_j_polymer_2019_04_011 crossref_primary_10_1021_acs_chemrev_1c00955 crossref_primary_10_1002_pol_20230432 crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1016_j_solener_2020_01_086 crossref_primary_10_1039_D4TA07953A crossref_primary_10_1016_j_orgel_2018_09_015 crossref_primary_10_1021_acs_jpcc_8b12476 crossref_primary_10_1002_adma_201803769 crossref_primary_10_3390_ma15227883 crossref_primary_10_1002_adfm_202103988 crossref_primary_10_1002_slct_201800762 crossref_primary_10_1002_macp_201900084 crossref_primary_10_3390_ma10070820 crossref_primary_10_1088_1361_6463_ac6a8d crossref_primary_10_1038_s41467_019_10098_z crossref_primary_10_1002_solr_202400479 crossref_primary_10_1002_aenm_201900376 crossref_primary_10_1021_acs_energyfuels_3c00531 crossref_primary_10_1016_j_polymer_2021_123991 crossref_primary_10_1002_aenm_201802197 crossref_primary_10_1007_s11664_021_08868_x crossref_primary_10_1007_s40843_017_9084_x crossref_primary_10_1002_inf2_12276 crossref_primary_10_1016_j_nanoen_2017_12_005 crossref_primary_10_1016_j_progpolymsci_2023_101711 crossref_primary_10_1016_j_dyepig_2019_04_050 crossref_primary_10_1016_j_nanoen_2018_03_006 crossref_primary_10_1016_j_solener_2021_03_075 crossref_primary_10_1021_acsami_1c22396 crossref_primary_10_1002_adma_202107476 crossref_primary_10_1039_C8TA02633E crossref_primary_10_1021_acsami_9b15476 crossref_primary_10_1021_acsphotonics_7b00618 crossref_primary_10_1002_advs_202203870 crossref_primary_10_1002_bkcs_11752 crossref_primary_10_1016_j_dyepig_2018_09_032 crossref_primary_10_1002_ente_201800666 crossref_primary_10_1039_D0NJ01245A crossref_primary_10_1002_adma_202313251 crossref_primary_10_3390_polym10030332 crossref_primary_10_1016_j_xcrp_2024_102390 crossref_primary_10_1021_acsenergylett_0c00857 crossref_primary_10_1039_C7TA02582C crossref_primary_10_1039_D0TC00269K crossref_primary_10_1002_solr_202000364 crossref_primary_10_1021_jacs_9b09012 crossref_primary_10_1063_5_0096556 crossref_primary_10_1002_cphc_202400671 crossref_primary_10_1002_adfm_202403770 crossref_primary_10_1016_j_polymer_2020_122408 crossref_primary_10_1016_j_joule_2018_02_010 crossref_primary_10_1039_C8RA05360J |
Cites_doi | 10.1038/nphoton.2015.128 10.1021/la400137g 10.1002/adma.201301476 10.1021/nl8014022 10.1038/nphoton.2014.172 10.1038/ncomms6293 10.1021/cm502991d 10.1002/adma.201400384 10.1063/1.370757 10.1038/nphoton.2014.269 10.1002/adma.201003690 10.1002/aenm.201500406 10.1002/adma.201604603 10.1002/aenm.201100128 10.1038/nphoton.2012.11 10.1002/adma.201504014 10.1002/adma.201604059 10.1021/ja205977z 10.1038/nphoton.2015.84 10.1002/aenm.201401259 10.1038/nphoton.2015.6 10.1002/aenm.201400378 10.1002/aenm.201400891 10.1039/C4EE00688G 10.1002/adma.201602776 10.1039/C4EE03048F 10.1038/ncomms7013 10.1038/nphoton.2015.9 10.1039/C4EE03824J 10.1063/1.1534621 10.1002/adfm.200800056 10.1038/nphoton.2013.207 10.1039/c3ee40860d 10.1039/C4TC02449D 10.1021/ja2104747 10.1002/adma.201603518 10.1021/ja907506r 10.1002/adma.201000883 10.1002/adma.201601161 10.1002/adma.201603178 10.1021/jacs.6b00853 10.1002/adma.201404535 10.1039/C6EE01623E 10.1039/C5NR02657A 10.1002/adma.201404598 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201606729 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 28295706 10_1002_adma_201606729 ADMA201606729 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Foundation for Innovation Research Groups of the National Natural Science Foundation of China funderid: 61421002 – fundername: NSFC funderid: 61675041; 21674093; 61177032; 21372168 – fundername: International Science and Technology Cooperation Program of China funderid: 2016YFE0102900 – fundername: Project of Science and Technology of Sichuan Province funderid: 2016HH0027 – fundername: Young 1000 Talents Global Recruitment Program of China – fundername: UESTC Excellent Young Scholar Project |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4809-64fa4edcb6001dc2daa23c799750f9501251812b0fc30d572462aaaf36f2e0d93 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 11:38:28 EDT 2025 Fri Jul 25 03:38:12 EDT 2025 Mon Jul 21 05:41:57 EDT 2025 Tue Jul 01 00:44:32 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Jan 22 17:06:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | organic solar cells power conversion efficiency mobility stamping transfer method double bulk heterojunctions |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4809-64fa4edcb6001dc2daa23c799750f9501251812b0fc30d572462aaaf36f2e0d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28295706 |
PQID | 1920412328 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1877855849 proquest_journals_1920412328 pubmed_primary_28295706 crossref_citationtrail_10_1002_adma_201606729 crossref_primary_10_1002_adma_201606729 wiley_primary_10_1002_adma_201606729_ADMA201606729 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-May |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 29 2015; 6 2013; 25 2015; 5 2015; 3 2011; 1 2010 2008; 18 2014; 26 1999; 86 2017; 29 2009; 131 2013; 7 2003; 93 2015; 9 2015; 8 2015; 7 2013; 6 2010; 22 2015; 28 2014; 5 2015; 27 2014; 4 2012; 134 2013; 133 2009; 9 2016; 138 2011; 23 2012; 6 2016; 28 2014; 8 2014; 7 2016; 9 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 Trucks G. W. (e_1_2_4_46_1) 2010 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 18 start-page: 2064 year: 2008 publication-title: Adv. Funct. Mater. – volume: 131 start-page: 16616 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 870 year: 2011 publication-title: Adv. Energy Mater. – volume: 9 start-page: 491 year: 2015 publication-title: Nat. Photonics – volume: 9 start-page: 2835 year: 2016 publication-title: Energy Environ. Sci. – volume: 6 start-page: 153 year: 2012 publication-title: Nat. Photonics – volume: 7 start-page: 2145 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 start-page: 174 year: 2015 publication-title: Nat. Photonics – volume: 29 start-page: 5377 year: 2013 publication-title: Langmuir – volume: 9 start-page: 35 year: 2015 publication-title: Nat. Photonics – volume: 8 start-page: 716 year: 2014 publication-title: Nat. Photonics – volume: 29 start-page: 1604603 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 1401259 year: 2015 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1400378 year: 2014 publication-title: Adv. Energy Mater. – volume: 23 start-page: 2284 year: 2011 publication-title: Adv. Mater. – volume: 8 start-page: 1160 year: 2015 publication-title: Energy Environ. Sci. – volume: 29 start-page: 1604059 year: 2017 publication-title: Adv. Mater. – volume: 133 start-page: 14534 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 2973 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 4413 year: 2014 publication-title: Adv. Mater. – year: 2010 – volume: 134 start-page: 2884 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 7269 year: 2016 publication-title: Adv. Mater. – volume: 22 start-page: 3293 year: 2010 publication-title: Adv. Mater. – volume: 6 start-page: 6013 year: 2015 publication-title: Nat. Commun. – volume: 28 start-page: 9811 year: 2016 publication-title: Adv. Mater. – volume: 8 start-page: 303 year: 2015 publication-title: Energy Environ. Sci. – volume: 9 start-page: 190 year: 2015 publication-title: Nat. Photonics – volume: 25 start-page: 4766 year: 2013 publication-title: Adv. Mater. – volume: 5 start-page: 5293 year: 2014 publication-title: Nat. Commun. – volume: 7 start-page: 10936 year: 2015 publication-title: Nanoscale – volume: 9 start-page: 403 year: 2015 publication-title: Nat. Photonics – volume: 9 start-page: 507 year: 2009 publication-title: Nano Lett. – volume: 27 start-page: 1241 year: 2015 publication-title: Adv. Mater. – volume: 6 start-page: 2714 year: 2013 publication-title: Energy Environ. Sci. – volume: 7 start-page: 825 year: 2013 publication-title: Nat. Photonics – volume: 28 start-page: 9423 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 1500406 year: 2015 publication-title: Adv. Energy Mater. – volume: 27 start-page: 1035 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 564 year: 2015 publication-title: J. Mater. Chem. C – volume: 93 start-page: 3693 year: 2003 publication-title: J. Appl. Phys. – volume: 86 start-page: 487 year: 1999 publication-title: J. Appl. Phys. – volume: 5 start-page: 1400891 year: 2015 publication-title: Adv. Energy Mater. – volume: 28 start-page: 967 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 9729 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 6963 year: 2014 publication-title: Chem. Mater. – ident: e_1_2_4_16_1 doi: 10.1038/nphoton.2015.128 – ident: e_1_2_4_31_1 doi: 10.1021/la400137g – ident: e_1_2_4_5_1 doi: 10.1002/adma.201301476 – ident: e_1_2_4_41_1 doi: 10.1021/nl8014022 – ident: e_1_2_4_37_1 doi: 10.1038/nphoton.2014.172 – ident: e_1_2_4_9_1 doi: 10.1038/ncomms6293 – ident: e_1_2_4_22_1 doi: 10.1021/cm502991d – ident: e_1_2_4_21_1 doi: 10.1002/adma.201400384 – ident: e_1_2_4_44_1 doi: 10.1063/1.370757 – ident: e_1_2_4_3_1 doi: 10.1038/nphoton.2014.269 – ident: e_1_2_4_42_1 doi: 10.1002/adma.201003690 – ident: e_1_2_4_12_1 doi: 10.1002/aenm.201500406 – ident: e_1_2_4_28_1 doi: 10.1002/adma.201604603 – ident: e_1_2_4_40_1 doi: 10.1002/aenm.201100128 – ident: e_1_2_4_1_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_4_6_1 doi: 10.1002/adma.201504014 – ident: e_1_2_4_27_1 doi: 10.1002/adma.201604059 – ident: e_1_2_4_38_1 doi: 10.1021/ja205977z – ident: e_1_2_4_17_1 doi: 10.1038/nphoton.2015.84 – ident: e_1_2_4_33_1 doi: 10.1002/aenm.201401259 – ident: e_1_2_4_2_1 doi: 10.1038/nphoton.2015.6 – ident: e_1_2_4_20_1 doi: 10.1002/aenm.201400378 – ident: e_1_2_4_26_1 doi: 10.1002/aenm.201400891 – ident: e_1_2_4_32_1 doi: 10.1039/C4EE00688G – ident: e_1_2_4_11_1 doi: 10.1002/adma.201602776 – ident: e_1_2_4_23_1 doi: 10.1039/C4EE03048F – ident: e_1_2_4_13_1 doi: 10.1038/ncomms7013 – ident: e_1_2_4_25_1 doi: 10.1038/nphoton.2015.9 – ident: e_1_2_4_34_1 doi: 10.1039/C4EE03824J – ident: e_1_2_4_39_1 doi: 10.1063/1.1534621 – ident: e_1_2_4_36_1 doi: 10.1002/adfm.200800056 – ident: e_1_2_4_4_1 doi: 10.1038/nphoton.2013.207 – ident: e_1_2_4_24_1 doi: 10.1039/c3ee40860d – ident: e_1_2_4_29_1 doi: 10.1039/C4TC02449D – ident: e_1_2_4_43_1 doi: 10.1021/ja2104747 – ident: e_1_2_4_8_1 doi: 10.1002/adma.201603518 – ident: e_1_2_4_30_1 doi: 10.1021/ja907506r – volume-title: Gaussian Development Version Revision H.13 year: 2010 ident: e_1_2_4_46_1 – ident: e_1_2_4_45_1 doi: 10.1002/adma.201000883 – ident: e_1_2_4_35_1 doi: 10.1002/adma.201601161 – ident: e_1_2_4_18_1 doi: 10.1002/adma.201603178 – ident: e_1_2_4_7_1 doi: 10.1021/jacs.6b00853 – ident: e_1_2_4_10_1 doi: 10.1002/adma.201404535 – ident: e_1_2_4_19_1 doi: 10.1039/C6EE01623E – ident: e_1_2_4_14_1 doi: 10.1039/C5NR02657A – ident: e_1_2_4_15_1 doi: 10.1002/adma.201404598 |
SSID | ssj0009606 |
Score | 2.5663717 |
Snippet | An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double‐BHJ OSCs is constructed via stamp transferring of low bandgap... An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Devices double bulk heterojunctions Energy conversion efficiency Materials science mobility Near infrared radiation organic solar cells Photoelectric effect Photoelectric emission Photovoltaic cells power conversion efficiency Solar cells stamping transfer method |
Title | Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606729 https://www.ncbi.nlm.nih.gov/pubmed/28295706 https://www.proquest.com/docview/1920412328 https://www.proquest.com/docview/1877855849 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctxAQD70ehICMhMQVcx3l4LAVUIcoAVOoWnR17gKhFtB3g0-Nz2rQFISQYo9h52L7c7-Lz34ScgnRhg23wQDIhXIBibQAOmwObJyAN2NR6MZ3Ofdzuitte1JtbxV_qQ1Q_3NAy_PcaDRzU8GImGgq51w1qxDiZiCv4MGELqehhph-FeO7F9sIokLFIp6qNjF8sVl_0St9Qc5Fcveu5WScwfegy4-TlfDxS5_rji57jf95qg6xNuJQ2y4G0SZZMf4uszqkVbpMnzAkp3um1V51wzoqWCzk1fcT4mLZMUQyp3wF0iMnUdGCp43NVGHo5Ll5oGzNvBs_OkeJgoHeAtL9DujfXT612MNmUIdAiZTKIhQVhcq2QlHLNcwAe6kRKhx5WRgyByUGDYlaHLI8SLmIOADaMLTcsl-EuWe4P-mafUK0aGqxiykYol94ApiQI6SIoayBN8xoJpp2S6YliOW6cUWSl1jLPsLWyqrVq5Kwq_1pqdfxYsj7t42xis8PMsS6Kj4U8rZGT6rSzNpxCgb4ZjF2ZNEnSyEGbu8ReOTaqW-GcdJSwuEa47-FfniFrXnWa1dHBXyodkhWOlOHzL-tkefQ2NkeOkUbq2NvBJ0jSBxc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefYBxgB36PFQYzEhKndK7j_PCxdJ3KaHfYWolb9OzYBxa109oetr8eP6fJ6BBCgmMUO3Fsv_j77OePAT6h8m6D64lIcSm9g-JchF42R67MUFl0uQswnclZOprJ0-9JE01Ie2FqPkQ74UaWEf7XZOA0IX10Rw3FMoCDeimtJqqH8IiO9Q5e1fkdQYoEesDtxUmkUpk33EYujrbzb49Lv4nNbe0aBp-TZ6CbYtcxJ5fd9Up3ze09ouN_fddzeLqRpqxf96UX8MDOX8LuL8DCVzClsJDqhg0DeMKPV6zey2nYBbnIbGCrasnCIaBLiqdmC8e8RNeVZV_W1SUbUfDN4ocfS6k_sDGS4H8Ns5PhdDCKNucyREbmXEWpdChtaTSJpdKIElHEJlPKqw-nEk6ayesGzZ2JeZlkQqYCEV2cOmF5qeI92Jkv5nYfmNE9g05z7RIipveQa4VSeSfKWczzsgNR0yqF2UDL6eyMqqhxy6Kg2ira2urA5zb9VY3r-GPKg6aRi43ZLgsvd4k_Fou8Ax_b297gaBUF53ax9mnyLMsTr9v8I97UnaN9FS1LJxlPOyBCE_-lDEX_eNJvr97-S6ZDeDyaTsbF-OvZt3fwRJDoCOGYB7Czul7b914yrfSHYBQ_Ab4NCzI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPMCTEHvjNVhhgJCSesrmOk9iPZV1VYJsQbNLeovOvBxa109o-wF-Pz2mzlQlNgscodn7Yd_Hn4vPXAO9Rx7Ah9EWmuZQxQAkhw4jNWXAVao9BhSSmc3Rcjk_l57Pi7Noq_lYfovvhRp6Rvtfk4Bcu7F2JhqJLukH9kiYT9V24J0uuyK6H364EpIjPk9peXmS6lGol28jF3nr99WHpBmuuo2sae0aPAFdP3aacnO8u5mbX_vpD0PF_XusxPFyCKRu0lvQE7vjJU9i8Jlf4DE4oKaT5yQ6S7EQcrVi7ktOy7xQgs33fNDOWtgCdUTY1mwYWAd00nn1cNOdsTKk30x9xJCVrYIdIuP8cTkcHJ_vjbLkrQ2al4jorZUDpnTWESs4KhyhyW2kd2SPoghMxRWowPNicu6ISshSIGPIyCM-dzl_AxmQ68dvArOlbDIabUJBeeh-50Sh1DKGCR6VcD7JVp9R2KVlOO2c0dSu2LGpqrbprrR586MpftGIdfy25s-rjeum0szrCLqmP5UL14F13OrobzaHgxE8XsYyqKlVEaouX2Gpto7sVTUoXFS97IFIP3_IM9WB4NOiOXv5Lpbdw_-twVB9-Ov7yCh4IIo6Ui7kDG_PLhX8deWlu3iSX-A2mRwnq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Efficient+Organic+Solar+Cells+Consisting+of+Double+Bulk+Heterojunction+Layers&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Jiang&rft.au=Wang%2C+Hanyu&rft.au=Yan%2C+Kangrong&rft.au=Zhang%2C+Xiaohua&rft.date=2017-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201606729&rft.externalDBID=10.1002%252Fadma.201606729&rft.externalDocID=ADMA201606729 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |