HCN channels in the mammalian cochlea: Expression pattern, subcellular location, and age‐dependent changes
Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage‐gated channels, hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well e...
Saved in:
Published in | Journal of neuroscience research Vol. 99; no. 2; pp. 699 - 728 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.02.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage‐gated channels, hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co‐expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age‐related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, −2, and −4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, −2, and −4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age‐related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up‐ or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants.
All HCN channel subtypes were located at subcellular level in human and compared with other mammals such as guinea pig, cat, and three mouse strains. Changes in HCN expression levels were quantified in aging mice and murine postnatal development. The widespread expression and distinct localization emphasized the importance of HCN channels for sound coding and electrical stimulation with cochlear implants |
---|---|
AbstractList | Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage‐gated channels, hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co‐expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age‐related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, −2, and −4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, −2, and −4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age‐related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up‐ or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants.
All HCN channel subtypes were located at subcellular level in human and compared with other mammals such as guinea pig, cat, and three mouse strains. Changes in HCN expression levels were quantified in aging mice and murine postnatal development. The widespread expression and distinct localization emphasized the importance of HCN channels for sound coding and electrical stimulation with cochlear implants Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage-gated channels, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co-expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age-related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, -2, and -4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, -2, and -4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age-related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up- or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants. Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage-gated channels, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co-expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age-related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, -2, and -4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, -2, and -4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age-related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up- or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants.Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage-gated channels, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co-expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age-related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, -2, and -4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, -2, and -4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age-related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up- or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants. Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage‐gated channels, hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co‐expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age‐related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, −2, and −4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, −2, and −4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age‐related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up‐ or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants. |
Author | Schrott‐Fischer, Anneliese Rask‐Andersen, Helge Dudas, Jozsef Liu, Wei Glueckert, Rudolf Pechriggl, Elisabeth Luque, Maria Brenner, Erich |
AuthorAffiliation | 2 Department of Anatomy, Histology & Embryology Division of Clinical & Functional Anatomy Medical University of Innsbruck Innsbruck Austria 4 Tirol Kliniken University Clinics Innsbruck Innsbruck Austria 3 Department of Surgical Sciences, Head and Neck Surgery Section of Otolaryngology Uppsala University Hospital Uppsala Sweden 1 Department of Otorhinolaryngology Medical University of Innsbruck Innsbruck Austria |
AuthorAffiliation_xml | – name: 4 Tirol Kliniken University Clinics Innsbruck Innsbruck Austria – name: 1 Department of Otorhinolaryngology Medical University of Innsbruck Innsbruck Austria – name: 2 Department of Anatomy, Histology & Embryology Division of Clinical & Functional Anatomy Medical University of Innsbruck Innsbruck Austria – name: 3 Department of Surgical Sciences, Head and Neck Surgery Section of Otolaryngology Uppsala University Hospital Uppsala Sweden |
Author_xml | – sequence: 1 givenname: Maria surname: Luque fullname: Luque, Maria organization: Medical University of Innsbruck – sequence: 2 givenname: Anneliese orcidid: 0000-0002-4514-9867 surname: Schrott‐Fischer fullname: Schrott‐Fischer, Anneliese organization: Medical University of Innsbruck – sequence: 3 givenname: Jozsef surname: Dudas fullname: Dudas, Jozsef organization: Medical University of Innsbruck – sequence: 4 givenname: Elisabeth surname: Pechriggl fullname: Pechriggl, Elisabeth organization: Medical University of Innsbruck – sequence: 5 givenname: Erich orcidid: 0000-0001-6739-1198 surname: Brenner fullname: Brenner, Erich organization: Medical University of Innsbruck – sequence: 6 givenname: Helge surname: Rask‐Andersen fullname: Rask‐Andersen, Helge organization: Uppsala University Hospital – sequence: 7 givenname: Wei surname: Liu fullname: Liu, Wei organization: Uppsala University Hospital – sequence: 8 givenname: Rudolf orcidid: 0000-0002-2900-6866 surname: Glueckert fullname: Glueckert, Rudolf email: rudolf.glueckert@i-med.ac.at organization: University Clinics Innsbruck |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33181864$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438945$$DView record from Swedish Publication Index |
BookMark | eNp1kt9qFDEUxoNU7LZ64QtIwBsLO22SyfxJL4SyVquUCqLehkzm7G6WTDImM7a98xF8Rp_E7J-KLXoVyPl9X76ccw7QnvMOEHpOyTElhJ2sXDhmvCr4IzShRFQZL3i1hyYkL0nGCWX76CDGFSFEiCJ_gvbznNa0LvkE2YvZFdZL5RzYiI3DwxJwp7pOWaMc1l4vLahTfH7TB4jReId7NQwQ3BTHsdFg7WhVwNZrNaTqFCvXYrWAXz9-ttCDa8ENmwcWEJ-ix3NlIzzbnYfoy9vzz7OL7PLju_ezs8tM85rwjNG2UYJBrlhDgeiSgc5BtOlOFCBy0vCS8nre8rJuSa2ZUlUBVSlKTZliIj9E061vvIZ-bGQfTKfCrfTKyDfm65n0YSHHUfK8FrxI-OstntgOWp0SB2Xvqe5XnFnKhf8uqzoXVc2TwaudQfDfRoiD7Exct0Y58GOUjJekSpEpS-jLB-jKj8GlbiSqorRiTKw_8OLvRH-i3M0tASdbQAcfY4C51GbYDCAFNFZSItebIdNmyM1mJMXRA8Wd6b_Ynfu1sXD7f1B-uPq0VfwGCRfJvg |
CitedBy_id | crossref_primary_10_1111_bph_15455 crossref_primary_10_1523_JNEUROSCI_0442_24_2024 crossref_primary_10_3390_ijms24032013 crossref_primary_10_1109_TBME_2021_3102129 crossref_primary_10_3390_molecules27010299 crossref_primary_10_1007_s10162_022_00864_0 crossref_primary_10_1002_cpz1_239 crossref_primary_10_3389_fncel_2021_642211 |
Cites_doi | 10.1016/0378-5955(91)90138-Y 10.1002/cne.22398 10.3109/00016488709124979 10.1109/TBME.2014.2327055 10.1073/pnas.1419017112 10.1038/nrn2759 10.1007/s00424-006-0095-0 10.1288/00005537-198810000-00009 10.1016/S0378-5955(02)00391-X 10.1074/jbc.M112.375832 10.1046/j.1460-9568.2003.02441.x 10.1016/j.neuron.2018.07.004 10.1016/j.heares.2011.04.003 10.1016/j.conb.2011.10.006 10.1523/JNEUROSCI.4439-09.2010 10.1016/j.heares.2016.03.011 10.1523/JNEUROSCI.0123-05.2005 10.1007/s00441-014-2071-x 10.1038/nn.4293 10.1121/1.429612 10.3389/fnmol.2018.00183 10.1152/jn.00506.2009 10.1523/JNEUROSCI.1187-16.2016 10.1016/j.neuroscience.2014.09.059 10.1074/jbc.M806177200 10.3389/fncir.2013.00117 10.1007/s00018-008-8525-0 10.1016/j.pneurobio.2013.10.001 10.1038/s41467-018-06033-3 10.3109/00016487209138937 10.1038/35012009 10.1152/physiol.00036.2011 10.1016/j.neuroscience.2013.10.065 10.1038/nrn1886 10.1523/JNEUROSCI.3882-11.2012 10.21315/mjms2017.24.5.11 10.1111/nyas.13718 10.1121/1.428269 10.1523/JNEUROSCI.3428-13.2014 10.1016/j.jneumeth.2008.09.007 10.1016/j.cophys.2018.01.001 10.1152/jn.1997.77.3.1294 10.1016/j.neuron.2018.09.018 10.1085/jgp.201311019 10.1016/j.heares.2011.11.007 10.1113/jphysiol.1992.sp019230 10.1016/S0165-3806(99)00169-8 10.1016/j.neuroscience.2012.03.033 10.1016/j.neuroscience.2008.10.056 10.1007/s10162-015-0545-5 10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6 10.1016/S0378-5955(03)00401-5 10.1085/jgp.201311126 10.1016/0165-3806(81)90060-2 10.1038/nature08487 10.1016/0378-5955(87)90137-7 10.1152/jn.00337.2012 10.1177/000348940010901105 10.1007/s10162-014-0446-z 10.1371/journal.pone.0008627 10.1126/sciadv.aau8621 10.1007/s10162-016-0610-8 10.1002/wdev.324 10.1016/j.heares.2004.05.006 10.1523/JNEUROSCI.3064-11.2011 10.1242/dev.001925 10.1016/j.tips.2012.04.004 10.1007/s10162-010-0228-1 10.3389/fnagi.2018.00353 10.1371/journal.pone.0079256 10.1016/j.neuron.2014.08.027 10.1016/0378-5955(84)90094-7 10.3389/fncel.2019.00060 10.1002/cne.21619 10.1523/JNEUROSCI.3875-09.2010 10.1038/nature06233 10.4103/0976-500X.119726 10.1016/j.heares.2008.06.001 10.1124/pr.117.014035 10.1007/s00424-008-0586-2 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals LLC 2020 The Authors. Journal of Neuroscience Research published by Wiley Periodicals LLC. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC – notice: 2020 The Authors. Journal of Neuroscience Research published by Wiley Periodicals LLC. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QG 7QP 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1002/jnr.24754 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef PubMed Technology Research Database Toxicology Abstracts Animal Behavior Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | LUQUE et al |
EISSN | 1097-4547 |
EndPage | 728 |
ExternalDocumentID | oai_DiVA_org_uu_438945 PMC7839784 33181864 10_1002_jnr_24754 JNR24754 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Austrian Science Fund – fundername: MedEl Innsbruck – fundername: ; |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 YYP ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QG 7QP 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
ID | FETCH-LOGICAL-c4804-21dba92e3a2b1e0c62ec3e9da9295e930b46148fd468d08c2aa75e7696c12a293 |
IEDL.DBID | DR2 |
ISSN | 0360-4012 1097-4547 |
IngestDate | Thu Aug 21 06:59:51 EDT 2025 Thu Aug 21 14:34:42 EDT 2025 Fri Jul 11 03:42:38 EDT 2025 Fri Jul 25 11:51:24 EDT 2025 Wed Feb 19 02:29:59 EST 2025 Tue Jul 01 02:28:23 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Wed Jan 22 16:32:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | auditory development voltage gated RRID:AB_2313726 RRID:SCR_014823 RRID:AB_2756742 RRID:AB_90725 RRID:AB_2617143 RRID:AB_2756625 RRID:AB_2302038 RRID:AB_2313584 RRID:AB_2336420 RRID:AB_2340477 RRID:AB_2341028 RRID:AB_2336419 spiral ganglion neurons RRID:AB_2340452 prestin RRID:AB_2039906 RRID:AB_2340593 auditory neuron diversity RRID:SCR_013652 axon initial segment RRID:AB_2336790 RRID:SCR_002865 sound coding HCN channels |
Language | English |
License | Attribution 2020 The Authors. Journal of Neuroscience Research published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4804-21dba92e3a2b1e0c62ec3e9da9295e930b46148fd468d08c2aa75e7696c12a293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Lisa Nolan. Reviewed by Ping Lv, Robin Davis, and Elizabeth Glowatzki. |
ORCID | 0000-0001-6739-1198 0000-0002-2900-6866 0000-0002-4514-9867 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnr.24754 |
PMID | 33181864 |
PQID | 2471172299 |
PQPubID | 1006396 |
PageCount | 0 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_438945 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7839784 proquest_miscellaneous_2460761412 proquest_journals_2471172299 pubmed_primary_33181864 crossref_citationtrail_10_1002_jnr_24754 crossref_primary_10_1002_jnr_24754 wiley_primary_10_1002_jnr_24754_JNR24754 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of neuroscience research |
PublicationTitleAlternate | J Neurosci Res |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2010; 11 2012; 283 2011; 278 2013; 4 2012; 287 1987; 30 1991; 54 2019; 13 2010; 103 2008; 507 2012; 16 2013; 7 2013; 8 2014; 61 2009; 158 2014; 257 2016; 36 2006; 452 2005; 25 2018; 7 2018; 1420 2007; 134 2018; 9 2010; 518 2018; 2 2018; 4 1987; 436 2000; 405 1984; 13 2007; 450 1996; 371 2014; 15 2012; 27 2009; 284 2012; 214 2010; 5 2012; 22 2010; 30 2015; 361 2015; 284 2009; 66 2018; 100 2002; 170 2016; 19 2005; 199 2017; 69 2017; 24 2000; 119 2009; 176 2011; 31 2006; 7 1988; 98 2008; 12 1976; 1 2013; 142 2016; 17 2008; 243 2014; 83 2012; 33 2012; 32 2012; 108 2014; 112 2009; 457 2011; 9 1997; 77 2004; 190 1992; 453 2000; 107 2015; 112 2000; 108 1981; 254 2000; 109 1965 2017; 18 2016; 336 1972; 73 2009; 461 2014; 143 2018; 99 2018; 11 2018; 10 2014; 34 e_1_2_11_70_1 e_1_2_11_72_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_76_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_81_1 McHanwell S. (e_1_2_11_53_1) 2008; 12 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_85_1 Ehret G. (e_1_2_11_15_1) 1976; 1 e_1_2_11_17_1 Kiang N. Y. (e_1_2_11_40_1) 1965 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Riederer B. M. (e_1_2_11_67_1) 2012; 16 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_25_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 453 start-page: 307 year: 1992 end-page: 318 article-title: Control of the hyperpolarization‐activated cation current by external anions in rabbit sino‐atrial node cells publication-title: Journal of Physiology – volume: 257 start-page: 96 year: 2014 end-page: 110 article-title: Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels publication-title: Neuroscience – volume: 254 start-page: 77 issue: 1 year: 1981 end-page: 88 article-title: Age‐related changes in the C57BL/6J mouse cochlea. II. Ultrastructural findings publication-title: Developmental Brain Research – volume: 100 start-page: 564 issue: 3 year: 2018 end-page: 578.e3 article-title: Ephaptic coupling promotes synchronous firing of cerebellar Purkinje cells publication-title: Neuron – volume: 24 start-page: 101 issue: 5 year: 2017 end-page: 105 article-title: Sample size calculation in animal studies using resource equation approach publication-title: Malaysian Journal of Medical Sciences – volume: 4 start-page: 303 issue: 4 year: 2013 article-title: How to calculate sample size in animal studies? publication-title: Journal of Pharmacology and Pharmacotherapeutics – volume: 108 start-page: 2264 issue: 8 year: 2012 end-page: 2275 article-title: Molecular identity, ontogeny, and cAMP modulation of the hyperpolarization‐activated current in vestibular ganglion neurons publication-title: Journal of Neurophysiology – volume: 112 start-page: 1 year: 2014 end-page: 23 article-title: Neurophysiology of HCN channels: From cellular functions to multiple regulations publication-title: Progress in Neurobiology – volume: 284 start-page: 3227 issue: 5 year: 2009 end-page: 3238 article-title: Calcium‐dependent binding of HCN1 channel protein to hair cell stereociliary tip link protein protocadherin 15 CD3 publication-title: Journal of Biological Chemistry – volume: 77 start-page: 1294 issue: 3 year: 1997 end-page: 1305 article-title: Endogenous firing patterns of murine spiral ganglion neurons publication-title: Journal of Neurophysiology – volume: 142 start-page: 207 issue: 3 year: 2013 end-page: 223 article-title: Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear publication-title: Journal of General Physiology – volume: 34 start-page: 2365 issue: 6 year: 2014 end-page: 2373 article-title: Excitability of type II cochlear afferents publication-title: Journal of Neuroscience – volume: 31 start-page: 16814 issue: 46 year: 2011 end-page: 16825 article-title: HCN channels expressed in the inner ear are necessary for normal balance function publication-title: Journal of Neuroscience – volume: 405 start-page: 149 issue: 6783 year: 2000 end-page: 155 article-title: Prestin is the motor protein of cochlear outer hair cells publication-title: Nature – volume: 66 start-page: 470 issue: 3 year: 2009 end-page: 494 article-title: HCN channels: Structure, cellular regulation and physiological function publication-title: Cellular and Molecular Life Sciences – volume: 17 start-page: 1 issue: 1 year: 2016 end-page: 17 article-title: Temporal considerations for stimulating spiral ganglion neurons with cochlear implants publication-title: Journal of the Association for Research in Otolaryngology – volume: 7 start-page: e324 issue: 6 year: 2018 article-title: Talking back: Development of the olivocochlear efferent system publication-title: Wiley Interdisciplinary Reviews: Developmental Biology – volume: 98 start-page: 1069 issue: 10 year: 1988 end-page: 1077 article-title: Comparative studies of speech processing strategies for cochlear implants publication-title: Laryngoscope – volume: 109 start-page: 1009 issue: 11 year: 2000 end-page: 1020 article-title: Optimized speech understanding with the continuous interleaved sampling speech coding strategy in patients with cochlear implants: Effect of variations in stimulation rate and number of channels publication-title: Annals of Otology, Rhinology, and Laryngology – volume: 36 start-page: 10584 issue: 41 year: 2016 end-page: 10597 article-title: Maturation of spontaneous firing properties after hearing onset in rat auditory nerve fibers: Spontaneous rates, refractoriness, and interfiber correlations publication-title: Journal of Neuroscience – volume: 1 start-page: 179 issue: 5 year: 1976 end-page: 184 article-title: Development of absolute auditory thresholds in the house mouse (Mus musculus) publication-title: Journal of the American Audiology Society – volume: 11 start-page: 605 issue: 4 year: 2010 end-page: 623 article-title: Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae publication-title: Journal of the Association for Research in Otolaryngology – volume: 25 start-page: 6857 issue: 29 year: 2005 end-page: 6868 article-title: Where is the spike generator of the cochlear nerve? Voltage‐gated sodium channels in the mouse cochlea publication-title: Journal of Neuroscience – volume: 243 start-page: 87 issue: 1–2 year: 2008 end-page: 94 article-title: Age‐related auditory pathology in the CBA/J mouse publication-title: Hearing Research – year: 1965 – volume: 30 start-page: 4210 issue: 12 year: 2010 end-page: 4220 article-title: Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse publication-title: Journal of Neuroscience – volume: 83 start-page: 1404 issue: 6 year: 2014 end-page: 1417 article-title: Phase‐locking precision is enhanced by multiquantal release at an auditory hair cell ribbon synapse publication-title: Neuron – volume: 16 start-page: 1 year: 2012 end-page: 21 article-title: The legal and ethical framework governing Body Donation in Europe—1st update on current practice publication-title: European Journal of Anatomy – volume: 361 start-page: 115 issue: 1 year: 2015 end-page: 127 article-title: Dynamic firing properties of type I spiral ganglion neurons publication-title: Cell and Tissue Research – volume: 214 start-page: 120 year: 2012 end-page: 135 article-title: Morphometric classification and spatial organization of spiral ganglion neurons in the human cochlea: Consequences for single fiber response to electrical stimulation publication-title: Neuroscience – volume: 18 start-page: 427 issue: 3 year: 2017 end-page: 440 article-title: Deleting the HCN1 subunit of hyperpolarization‐activated ion channels in mice impairs acoustic startle reflexes, gap detection, and spatial localization publication-title: Journal of the Association for Research in Otolaryngology – volume: 27 start-page: 100 issue: 2 year: 2012 end-page: 112 article-title: Neural circuit development in the mammalian cochlea publication-title: Physiology – volume: 507 start-page: 1602 issue: 4 year: 2008 end-page: 1621 article-title: Deafferentation‐associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain‐derived neurotrophic factor and acidic fibroblast growth factor publication-title: Journal of Comparative Neurology – volume: 13 start-page: 60 year: 2019 article-title: Cellular differences in the cochlea of CBA and B6 mice may underlie their difference in susceptibility to hearing loss publication-title: Frontiers in Cellular Neuroscience – volume: 7 start-page: 117 year: 2013 article-title: Tonotopic organization of the hyperpolarization‐activated current (Ih) in the mammalian medial superior olive publication-title: Frontiers in Neural Circuits – volume: 199 start-page: 40 issue: 1–2 year: 2005 end-page: 56 article-title: High resolution scanning electron microscopy of the human organ of Corti. A study using freshly fixed surgical specimens publication-title: Hearing Research – volume: 19 start-page: 826 issue: 6 year: 2016 end-page: 834 article-title: Serotonin modulates spike probability in the axon initial segment through HCN channels publication-title: Nature Neuroscience – volume: 7 start-page: 278 issue: 4 year: 2006 end-page: 294 article-title: Ageing and neuronal vulnerability publication-title: Nature Reviews Neuroscience – volume: 11 start-page: 18 issue: 1 year: 2010 end-page: 29 article-title: Mechanisms underlying spontaneous patterned activity in developing neural circuits publication-title: Nature Reviews Neuroscience – volume: 457 start-page: 1303 issue: 6 year: 2009 end-page: 1325 article-title: Spiral ganglion neurones: An overview of morphology, firing behaviour, ionic channels and function publication-title: Pflugers Archiv. European Journal of Physiology – volume: 4 issue: 11 year: 2018 article-title: An axon initial segment is required for temporal precision in action potential encoding by neuronal populations publication-title: Science Advances – volume: 33 start-page: 456 issue: 8 year: 2012 end-page: 463 article-title: HCN2 ion channels: An emerging role as the pacemakers of pain publication-title: Trends in Pharmacological Sciences – volume: 12 start-page: 1 year: 2008 end-page: 24 article-title: The legal and ethical framework governing Body Donation in Europe—A review of current practice and recommendations for good practice publication-title: European Journal of Anatomy – volume: 54 start-page: 75 issue: 1 year: 1991 end-page: 90 article-title: Auditory nerve of the normal and jaundiced rat. I. Spontaneous discharge rate and cochlear nerve histology publication-title: Hearing Research – volume: 9 start-page: 66 year: 2011 article-title: Characterization of the axon initial segment (AIS) of motor neurons and identification of a para‐AIS and a juxtapara‐AIS, organized by protein 4.1B publication-title: BMC Biology – volume: 283 start-page: 80 issue: 1–2 year: 2012 end-page: 88 article-title: Genetic background effects on age‐related hearing loss associated with Cdh23 variants in mice publication-title: Hearing Research – volume: 436 start-page: 76 year: 1987 end-page: 84 article-title: Myelination of the human spiral ganglion publication-title: Acta Oto‐Laryngologica. Supplement – volume: 30 start-page: 1539 issue: 4 year: 2010 end-page: 1550 article-title: Developmental regulation of spontaneous activity in the Mammalian cochlea publication-title: Journal of Neuroscience – volume: 158 start-page: 1469 issue: 4 year: 2009 end-page: 1477 article-title: Hyperpolarization‐activated, cyclic nucleotide‐gated, cation non‐selective channel subunit expression pattern of guinea‐pig spiral ganglion cells publication-title: Neuroscience – volume: 287 start-page: 37628 issue: 45 year: 2012 end-page: 37646 article-title: HCN1 and HCN2 proteins are expressed in cochlear hair cells: HCN1 can form a ternary complex with protocadherin 15 CD3 and F‐actin‐binding filamin A or can interact with HCN2 publication-title: Journal of Biological Chemistry – volume: 103 start-page: 2532 issue: 5 year: 2010 end-page: 2543 article-title: Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea publication-title: Journal of Neurophysiology – volume: 10 start-page: 353 year: 2018 article-title: Age‐dependent up‐regulation of HCN channels in spiral ganglion neurons coincide with hearing loss in mice publication-title: Frontiers in Aging Neuroscience – volume: 8 issue: 11 year: 2013 article-title: Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons publication-title: PLoS One – volume: 119 start-page: 297 issue: 2 year: 2000 end-page: 305 article-title: Endogenously generated spontaneous spiking activities recorded from postnatal spiral ganglion neurons in vitro publication-title: Brain Research. Developmental Brain Research – volume: 13 start-page: 47 issue: 1 year: 1984 end-page: 62 article-title: Discharge patterns of cat primary auditory fibers with electrical stimulation of the cochlea publication-title: Hearing Research – volume: 99 start-page: 511 issue: 3 year: 2018 end-page: 524.e5 article-title: Homeostatic control of spontaneous activity in the developing auditory system publication-title: Neuron – volume: 107 start-page: 908 issue: 2 year: 2000 end-page: 921 article-title: Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination publication-title: Journal of the Acoustical Society of America – volume: 11 start-page: 183 year: 2018 article-title: Accelerated Development of the First‐Order Central Auditory Neurons With Spontaneous Activity publication-title: Frontiers in Molecular Neuroscience – volume: 190 start-page: 141 issue: 1–2 year: 2004 end-page: 148 article-title: Males lose hearing earlier in mouse models of late‐onset age‐related hearing loss; females lose hearing earlier in mouse models of early‐onset hearing loss publication-title: Hearing Research – volume: 73 start-page: 235 issue: 2 year: 1972 end-page: 248 article-title: Innervation densities of the cochlea publication-title: Acta Oto‐Laryngologica – volume: 278 start-page: 2 issue: 1–2 year: 2011 end-page: 20 article-title: The spiral ganglion: Connecting the peripheral and central auditory systems publication-title: Hearing Research – volume: 22 start-page: 366 issue: 3 year: 2012 end-page: 371 article-title: Differential subcellular distribution of ion channels and the diversity of neuronal function publication-title: Current Opinion in Neurobiology – volume: 32 start-page: 2814 issue: 8 year: 2012 end-page: 2823 article-title: An essential role for modulation of hyperpolarization‐activated current in the development of binaural temporal precision publication-title: Journal of Neuroscience – volume: 30 start-page: 207 issue: 2–3 year: 1987 end-page: 218 article-title: Aging and the auditory brainstem response in mice with severe or minimal presbycusis publication-title: Hearing Research – volume: 518 start-page: 3254 issue: 16 year: 2010 end-page: 3271 article-title: Unmyelinated auditory type I spiral ganglion neurons in congenic Ly5.1 mice publication-title: Journal of Comparative Neurology – volume: 452 start-page: 718 issue: 6 year: 2006 end-page: 727 article-title: The enhancement of HCN channel instantaneous current facilitated by slow deactivation is regulated by intracellular chloride concentration publication-title: Pflugers Archiv. European Journal of Physiology – volume: 461 start-page: 1126 issue: 7267 year: 2009 end-page: 1129 article-title: The postsynaptic function of type II cochlear afferents publication-title: Nature – volume: 284 start-page: 470 year: 2015 end-page: 482 article-title: The pre‐ and post‐somatic segments of the human type I spiral ganglion neurons–structural and functional considerations related to cochlear implantation publication-title: Neuroscience – volume: 450 start-page: 50 issue: 7166 year: 2007 end-page: 55 article-title: The origin of spontaneous activity in the developing auditory system publication-title: Nature – volume: 15 start-page: 585 issue: 4 year: 2014 end-page: 599 article-title: I h and HCN channels in murine spiral ganglion neurons: Tonotopic variation, local heterogeneity, and kinetic model publication-title: Journal of the Association for Research in Otolaryngology – volume: 5 issue: 1 year: 2010 article-title: HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear publication-title: PLoS One – volume: 108 start-page: 790 issue: 2 year: 2000 end-page: 802 article-title: The effect of parametric variations of cochlear implant processors on speech understanding publication-title: Journal of the Acoustical Society of America – volume: 134 start-page: 2925 issue: 16 year: 2007 end-page: 2933 article-title: Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea publication-title: Development – volume: 1420 start-page: 46 issue: 1 year: 2018 end-page: 61 article-title: Axon initial segments: Structure, function, and disease publication-title: Annals of the New York Academy of Sciences – volume: 170 start-page: 107 issue: 1–2 year: 2002 end-page: 115 article-title: Sex‐ and age‐related elevation of cochlear nerve envelope response (CNER) and auditory brainstem response (ABR) thresholds in C57BL/6 mice publication-title: Hearing Research – volume: 9 start-page: 3691 issue: 1 year: 2018 article-title: Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system publication-title: Nature Communications – volume: 143 start-page: 481 issue: 4 year: 2014 end-page: 497 article-title: Mechanotransduction and hyperpolarization‐activated currents contribute to spontaneous activity in mouse vestibular ganglion neurons publication-title: Journal of General Physiology – volume: 61 start-page: 2749 issue: 11 year: 2014 end-page: 2759 article-title: The effects of HCN and KLT ion channels on adaptation and refractoriness in a stochastic auditory nerve model publication-title: IEEE Transactions on Biomedical Engineering – volume: 2 start-page: 92 year: 2018 end-page: 97 article-title: Neuronal HCN channel function and plasticity publication-title: Current Opinion in Physiology – volume: 112 start-page: E2207 issue: 17 year: 2015 end-page: E2216 article-title: HCN channels enhance spike phase coherence and regulate the phase of spikes and LFPs in the theta‐frequency range publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 371 start-page: 208 issue: 2 year: 1996 end-page: 221 article-title: Ultrastructural differences among afferent synapses on cochlear hair cells: Correlations with spontaneous discharge rate publication-title: Journal of Comparative Neurology – volume: 176 start-page: 144 issue: 2 year: 2009 end-page: 151 article-title: A protocol for cryoembedding the adult guinea pig cochlea for fluorescence immunohistology publication-title: Journal of Neuroscience Methods – volume: 69 start-page: 354 issue: 4 year: 2017 end-page: 395 article-title: The hyperpolarization‐activated cyclic nucleotide‐gated channels: From biophysics to pharmacology of a unique family of ion channels publication-title: Pharmacological Reviews – volume: 336 start-page: 1 year: 2016 end-page: 16 article-title: The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery publication-title: Hearing Research – ident: e_1_2_11_16_1 doi: 10.1016/0378-5955(91)90138-Y – ident: e_1_2_11_37_1 doi: 10.1002/cne.22398 – ident: e_1_2_11_4_1 doi: 10.3109/00016488709124979 – ident: e_1_2_11_58_1 doi: 10.1109/TBME.2014.2327055 – ident: e_1_2_11_74_1 doi: 10.1073/pnas.1419017112 – ident: e_1_2_11_8_1 doi: 10.1038/nrn2759 – ident: e_1_2_11_55_1 doi: 10.1007/s00424-006-0095-0 – ident: e_1_2_11_81_1 doi: 10.1288/00005537-198810000-00009 – ident: e_1_2_11_26_1 doi: 10.1016/S0378-5955(02)00391-X – ident: e_1_2_11_64_1 doi: 10.1074/jbc.M112.375832 – ident: e_1_2_11_14_1 doi: 10.1046/j.1460-9568.2003.02441.x – ident: e_1_2_11_5_1 doi: 10.1016/j.neuron.2018.07.004 – ident: e_1_2_11_57_1 doi: 10.1016/j.heares.2011.04.003 – ident: e_1_2_11_59_1 doi: 10.1016/j.conb.2011.10.006 – ident: e_1_2_11_22_1 doi: 10.1523/JNEUROSCI.4439-09.2010 – ident: e_1_2_11_66_1 doi: 10.1016/j.heares.2016.03.011 – ident: e_1_2_11_31_1 doi: 10.1523/JNEUROSCI.0123-05.2005 – volume: 12 start-page: 1 year: 2008 ident: e_1_2_11_53_1 article-title: The legal and ethical framework governing Body Donation in Europe—A review of current practice and recommendations for good practice publication-title: European Journal of Anatomy – ident: e_1_2_11_13_1 doi: 10.1007/s00441-014-2071-x – ident: e_1_2_11_43_1 doi: 10.1038/nn.4293 – ident: e_1_2_11_51_1 doi: 10.1121/1.429612 – ident: e_1_2_11_84_1 doi: 10.3389/fnmol.2018.00183 – ident: e_1_2_11_83_1 doi: 10.1152/jn.00506.2009 – ident: e_1_2_11_82_1 doi: 10.1523/JNEUROSCI.1187-16.2016 – ident: e_1_2_11_50_1 doi: 10.1016/j.neuroscience.2014.09.059 – ident: e_1_2_11_63_1 doi: 10.1074/jbc.M806177200 – ident: e_1_2_11_7_1 doi: 10.3389/fncir.2013.00117 – ident: e_1_2_11_78_1 doi: 10.1007/s00018-008-8525-0 – ident: e_1_2_11_25_1 doi: 10.1016/j.pneurobio.2013.10.001 – ident: e_1_2_11_61_1 doi: 10.1038/s41467-018-06033-3 – ident: e_1_2_11_75_1 doi: 10.3109/00016487209138937 – ident: e_1_2_11_85_1 doi: 10.1038/35012009 – ident: e_1_2_11_10_1 doi: 10.1152/physiol.00036.2011 – ident: e_1_2_11_48_1 doi: 10.1016/j.neuroscience.2013.10.065 – ident: e_1_2_11_52_1 doi: 10.1038/nrn1886 – ident: e_1_2_11_39_1 doi: 10.1523/JNEUROSCI.3882-11.2012 – ident: e_1_2_11_3_1 doi: 10.21315/mjms2017.24.5.11 – ident: e_1_2_11_32_1 doi: 10.1111/nyas.13718 – ident: e_1_2_11_36_1 doi: 10.1121/1.428269 – ident: e_1_2_11_80_1 doi: 10.1523/JNEUROSCI.3428-13.2014 – ident: e_1_2_11_12_1 doi: 10.1016/j.jneumeth.2008.09.007 – ident: e_1_2_11_71_1 doi: 10.1016/j.cophys.2018.01.001 – ident: e_1_2_11_56_1 doi: 10.1152/jn.1997.77.3.1294 – ident: e_1_2_11_23_1 doi: 10.1016/j.neuron.2018.09.018 – ident: e_1_2_11_42_1 doi: 10.1085/jgp.201311019 – ident: e_1_2_11_38_1 doi: 10.1016/j.heares.2011.11.007 – ident: e_1_2_11_18_1 doi: 10.1113/jphysiol.1992.sp019230 – volume-title: Discharge patterns of single fibers in the cat's auditory nerve year: 1965 ident: e_1_2_11_40_1 – ident: e_1_2_11_46_1 doi: 10.1016/S0165-3806(99)00169-8 – ident: e_1_2_11_62_1 doi: 10.1016/j.neuroscience.2012.03.033 – ident: e_1_2_11_6_1 doi: 10.1016/j.neuroscience.2008.10.056 – ident: e_1_2_11_9_1 doi: 10.1007/s10162-015-0545-5 – ident: e_1_2_11_54_1 doi: 10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6 – volume: 16 start-page: 1 year: 2012 ident: e_1_2_11_67_1 article-title: The legal and ethical framework governing Body Donation in Europe—1st update on current practice publication-title: European Journal of Anatomy – ident: e_1_2_11_27_1 doi: 10.1016/S0378-5955(03)00401-5 – ident: e_1_2_11_29_1 doi: 10.1085/jgp.201311126 – ident: e_1_2_11_73_1 doi: 10.1016/0165-3806(81)90060-2 – ident: e_1_2_11_79_1 doi: 10.1038/nature08487 – ident: e_1_2_11_34_1 doi: 10.1016/0378-5955(87)90137-7 – ident: e_1_2_11_2_1 doi: 10.1152/jn.00337.2012 – ident: e_1_2_11_41_1 doi: 10.1177/000348940010901105 – ident: e_1_2_11_49_1 doi: 10.1007/s10162-014-0446-z – ident: e_1_2_11_28_1 doi: 10.1371/journal.pone.0008627 – ident: e_1_2_11_44_1 doi: 10.1126/sciadv.aau8621 – ident: e_1_2_11_35_1 doi: 10.1007/s10162-016-0610-8 – ident: e_1_2_11_19_1 doi: 10.1002/wdev.324 – ident: e_1_2_11_21_1 doi: 10.1016/j.heares.2004.05.006 – ident: e_1_2_11_30_1 doi: 10.1523/JNEUROSCI.3064-11.2011 – ident: e_1_2_11_33_1 doi: 10.1242/dev.001925 – ident: e_1_2_11_17_1 doi: 10.1016/j.tips.2012.04.004 – ident: e_1_2_11_60_1 doi: 10.1007/s10162-010-0228-1 – ident: e_1_2_11_72_1 doi: 10.3389/fnagi.2018.00353 – ident: e_1_2_11_65_1 doi: 10.1371/journal.pone.0079256 – ident: e_1_2_11_45_1 doi: 10.1016/j.neuron.2014.08.027 – ident: e_1_2_11_24_1 doi: 10.1016/0378-5955(84)90094-7 – volume: 1 start-page: 179 issue: 5 year: 1976 ident: e_1_2_11_15_1 article-title: Development of absolute auditory thresholds in the house mouse (Mus musculus) publication-title: Journal of the American Audiology Society – ident: e_1_2_11_47_1 doi: 10.3389/fncel.2019.00060 – ident: e_1_2_11_20_1 doi: 10.1002/cne.21619 – ident: e_1_2_11_76_1 doi: 10.1523/JNEUROSCI.3875-09.2010 – ident: e_1_2_11_77_1 doi: 10.1038/nature06233 – ident: e_1_2_11_11_1 doi: 10.4103/0976-500X.119726 – ident: e_1_2_11_70_1 doi: 10.1016/j.heares.2008.06.001 – ident: e_1_2_11_69_1 doi: 10.1124/pr.117.014035 – ident: e_1_2_11_68_1 doi: 10.1007/s00424-008-0586-2 |
SSID | ssj0009953 |
Score | 2.3908865 |
Snippet | Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage‐gated channels, hyperpolarization‐activated cyclic nucleotide‐gated... Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage-gated channels, hyperpolarization-activated cyclic nucleotide-gated... |
SourceID | swepub pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 699 |
SubjectTerms | AB_2039906 AB_2302038 AB_2313584 AB_2313726 AB_2336419 AB_2336420 AB_2336790 AB_2340452 AB_2340477 AB_2340593 AB_2341028 AB_2617143 AB_2756625 AB_2756742 AB_90725 Age auditory development auditory neuron diversity Auditory system axon initial segment Cochlea Cochlear implants Depolarization Electrical stimuli Epithelium Fibers Guinea pigs Hair HCN channels Hearing Hyperpolarization Innervation Ion channels Ion channels (cyclic nucleotide-gated) Localization Mammals Membrane potential Membranes Neurons Nucleotides prestin RRID RRID:AB_2039906 RRID:AB_2302038 RRID:AB_2313584 RRID:AB_2313726 RRID:AB_2336419 RRID:AB_2336420 RRID:AB_2336790 RRID:AB_2340452 RRID:AB_2340477 RRID:AB_2340593 RRID:AB_2341028 RRID:AB_2617143 RRID:AB_2756625 RRID:AB_2756742 RRID:AB_90725 RRID:SCR_002865 RRID:SCR_013652 RRID:SCR_014823 SCR_002865 SCR_013652 SCR_014823 Sensory epithelium Sensory neurons Sensory stimulation sound coding spiral ganglion neurons Subunit structure voltage gated |
Title | HCN channels in the mammalian cochlea: Expression pattern, subcellular location, and age‐dependent changes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnr.24754 https://www.ncbi.nlm.nih.gov/pubmed/33181864 https://www.proquest.com/docview/2471172299 https://www.proquest.com/docview/2460761412 https://pubmed.ncbi.nlm.nih.gov/PMC7839784 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-438945 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKT1x4lcdCqQwCxKHZOo5jJ3BalVarSqxQRVEPSJFfaRd2vdVmIwEnfgK_kV-Cx3lUS0FC3KJ4nMjOzPjzZOYzQs9YImxKiY4UKVnEcm6iTIkk8ujelElmjApk1W8nfHzCjk7T0w30uquFafgh-oAbWEbw12DgUlV7l6Shn9xySJlIgQsUcrUAEB1fUkflecNAmXDi90gx7ViFCN3re66vRVcA5tU8yZZNdB3IhpXo8Cb62I2hSUD5PKxXaqi__Ubv-J-DvIVutAgVjxqVuo02rLuDtkbO787nX_ELHHJGQzB-C83G-xMMtcP-PRWeOuzhJJ7L-TxET7B3tuczK1_hgy9tvq3DF4HQ0-3iqlbw1wDSYDGsqKAhu1g6g72L-_n9R3c87wo3xcnVXXRyePB-fxy15zdEmmWERTQ2SubUJpKq2BLNqdWJzY2_l6c2T4hiQENaGsYzQzJNpRSpFTznOqbS45B7aNMtnH2AcGZNAjW0HhClTJRaxboUhAnDLREmJwP0svuShW7JzeGMjVnR0DLTws9kEWZygJ72ohcNo8efhLY7dShao66gJfZ4zy_gA_Skb_bmCLMlnV3UIMMhMsRiOkD3G-3p35J4_xln3D9crOlVLwBU3-stbnoeKL-Fx7Ei8z2fNxq41uXN9MOoWCzPirou4DB7lvrpCFr19wEWR5PjcPHw30UfoesUMnpCzvo22lwta_vYQ7KV2kHXKHu3EyzwF1U6NdU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcCFV3ksFDAIEIdm6ziOnSAuq9JqKe0eqhb1gqL4kXbLrrfa3UjAiZ_Ab-SXMHYeVShIiFsUjxN5MmN_noy_QegFi4SJKVGBJAULWMp1kEgRBYDudRElWktPVr0_4sMjtnscH6-gt81ZmIofog24Oc_w87VzcBeQ3rxgDT2z8z5lImZX0FVX0dtvqA4uyKPStOKgjDiBXVJIG14hQjfbrt3V6BLEvJwpWfOJdqGsX4t2bqJPzSiqFJTP_XIp--rbbwSP_zvMW-hGDVLxoLKq22jF2DtobWBhgz79il9hnzbq4_FraDLcGmF3fBhetMBjiwFR4mk-nfoACob59nRi8jd4-0udcmvxuef0tBt4UUr348BlwmK3qDoj2cC51RhmuZ_ffzQVepe4Op-8uIuOdrYPt4ZBXcIhUCwhLKChlnlKTZRTGRqiODUqMqmGe2ls0ohI5phIC814okmiaJ6L2AiechXSHKDIPbRqZ9Y8QDgxOnLHaAETxUwUSoaqEIQJzQ0ROiU99Lr5lJmq-c1dmY1JVjEz0ww0mXlN9tDzVvS8IvX4k9B6Yw9Z7dcL1xIC5IM1vIeetc3gkU5buTWz0slwFxxiIe2h-5X5tG-JYAoNEw4PFx3DagUc23e3xY5PPeu3ACgrEuj5sjLBTpd344-DbDY_ycoyc_XsWQzq8Gb19wFmu6MDf_Hw30WfomvDw_29bO_96MMjdJ26BB-fwr6OVpfz0jwGhLaUT7wj_gI0QDkZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkBAv3MalMMAgQDwsneM4dgJP1bqqDKjQxKY9IFmJ7bBC61ZtIwFP_AR-I7-EY-cylYGEeIvi40R2zjn-fHLOZ4SesEiYmBIV5KRgAUu5DpJcRAGge11Eida5J6t-O-LDI3ZwEp9soJdNLUzFD9EG3JxleH_tDHyui90z0tBPdtGlTMTsArrIOEmcSvcPz7ij0rSioIw4gU1SSBtaIUJ3267ri9E5hHk-UbKmE11Hsn4pGlxFH5pBVBkon7vlKu-qb7_xO_7nKK-hKzVExb1Kp66jDWNvoK2ehe359Ct-hn3SqI_Gb6HJcG-EXfEwvGeJxxYDnsTTbDr14RMM3vZ0YrIXeP9LnXBr8dwzetodvCxz99vA5cFit6Q6FdnBmdUYfNzP7z-a83lXuKpOXt5ER4P993vDoD7AIVAsISygoc6zlJooo3loiOLUqMikGu6lsUkjkjPHQ1poxhNNEkWzTMRG8JSrkGYARG6hTTuz5g7CidGRK6IFRBQzUag8VIUgTGhuiNAp6aDnzZeUqmY3d4dsTGTFy0wlzKT0M9lBj1vReUXp8Seh7UYdZG3VS9cSAuCDFbyDHrXNYI9utjJrZqWT4S40xELaQbcr7WnfEoEDDRMODxdretUKOK7v9RY7PvWc3wKArEig59NKA9e69MfHPTlbfJRlKd1p9iyG6fBa9fcByoPRob-4---iD9Gld_2BfPNq9Poeukxddo_PX99Gm6tFae4DPFvlD7wZ_gKKBDfR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HCN+channels+in+the+mammalian+cochlea%3A+Expression+pattern%2C+subcellular+location%2C+and+age-dependent+changes&rft.jtitle=Journal+of+neuroscience+research&rft.au=Luque%2C+Maria&rft.au=Schrott-Fischer%2C+Anneliese&rft.au=Dudas%2C+Jozsef&rft.au=Pechriggl%2C+Elisabeth&rft.date=2021-02-01&rft.issn=1097-4547&rft.eissn=1097-4547&rft.volume=99&rft.issue=2&rft.spage=699&rft_id=info:doi/10.1002%2Fjnr.24754&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-4012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-4012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-4012&client=summon |