Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology

Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeut...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutics Vol. 14; no. 8; p. 1586
Main Authors Huang, Jinxing, Xiao, Kai
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases. Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major translational challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and the combination with other therapeutic modalities. In addition, we also provide an outlook on the ongoing challenges and possible future developments of siRNA-based cancer therapeutics during clinical translation.
AbstractList Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases. Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major translational challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and the combination with other therapeutic modalities. In addition, we also provide an outlook on the ongoing challenges and possible future developments of siRNA-based cancer therapeutics during clinical translation.
Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases. Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major translational challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and the combination with other therapeutic modalities. In addition, we also provide an outlook on the ongoing challenges and possible future developments of siRNA-based cancer therapeutics during clinical translation.Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases. Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major translational challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and the combination with other therapeutic modalities. In addition, we also provide an outlook on the ongoing challenges and possible future developments of siRNA-based cancer therapeutics during clinical translation.
Audience Academic
Author Huang, Jinxing
Xiao, Kai
AuthorAffiliation 1 Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; hesterjx@163.com
2 Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
AuthorAffiliation_xml – name: 1 Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; hesterjx@163.com
– name: 2 Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
Author_xml – sequence: 1
  givenname: Jinxing
  surname: Huang
  fullname: Huang, Jinxing
– sequence: 2
  givenname: Kai
  orcidid: 0000-0002-7526-4233
  surname: Xiao
  fullname: Xiao, Kai
BookMark eNqFkl1v2yAUhtHUae2y_oRJSLvZjTswNhhNmpR2X5Gqdlq7a4TxsUNkgwtOpPz7kSbalqrS4AIE7_sczuG8RifOO0DoLSUXjEnyYVzqMGgD68maSAtS0bLiL9AZlVJmhczZyT_7U3Qe44qkwRitmHyFThkntMxpfoYebrTzow4J1EPMLnWEBt9NQU_QWYh48ngxjMFvAE9LwJ-htxsIW-xbfL-EoMfHN-C7Qfc9XrgJQgvBug7_vJlj6_CPAMZG6x2-dcb3vtu-QS9b3Uc4P6wz9Ovrl_ur79n17bfF1fw6M4WQUwZSF0TyNmeiFKZgtC1lSbjWhlQ854yCgIa3TaNrXvFKA6llYUrOammYqAs2Q4s9t_F6pcZgBx22ymurHg986NQhbVXUtDWS5IzVVQG5qWXFjKxB1JqZWpDE-rRnjet6gMaASxXqj6DHN84uVec3Sha0FKnoM_T-AAj-YQ1xUoONBvpeO_DrqHJBBCekFDxJ3z2Rrvw6uFSqnYrngrKS_lV1OiVgXetTXLODqrnIC8GFZDvVxTOqNBsYrEk91dp0fmQo9wYTfIwB2j85UqJ2raeebb3k-_jEZ-ykp_TvKaDt_-P-DV965Rc
CitedBy_id crossref_primary_10_1016_j_eurpolymj_2024_112983
crossref_primary_10_3390_ijms25179302
crossref_primary_10_1007_s12274_023_5971_9
crossref_primary_10_3389_fphar_2022_1025618
crossref_primary_10_3390_ijms24076638
crossref_primary_10_1016_j_apsb_2024_08_014
crossref_primary_10_1007_s11033_023_08749_y
crossref_primary_10_3390_cancers16244187
crossref_primary_10_3390_pharmaceutics16080969
crossref_primary_10_1186_s12935_024_03558_0
crossref_primary_10_1016_j_envres_2023_117263
crossref_primary_10_3390_cancers15153912
crossref_primary_10_3390_ph16070970
crossref_primary_10_1186_s12967_024_05711_9
crossref_primary_10_1021_acsomega_4c07025
crossref_primary_10_1186_s13046_023_02741_x
crossref_primary_10_3390_nano12244450
crossref_primary_10_1016_j_omtn_2024_102195
crossref_primary_10_3390_app132413039
crossref_primary_10_3390_pharmaceutics17030296
crossref_primary_10_1016_j_jddst_2024_106589
crossref_primary_10_1089_nat_2023_0068
Cites_doi 10.1038/s41392-018-0008-7
10.1158/1078-0432.CCR-14-2662
10.1016/j.msec.2017.03.124
10.1002/adfm.202007166
10.3390/ijms20040840
10.1038/nature03121
10.1021/acsami.0c06614
10.1016/j.bmcl.2003.12.074
10.1007/s12195-016-0457-4
10.1038/s41467-019-12275-6
10.1016/j.colsurfb.2016.06.034
10.1007/s40265-021-01473-6
10.1021/acsami.9b21525
10.1038/nature22341
10.1126/science.1235122
10.1039/c2cs15309b
10.1002/eji.200535708
10.1093/nar/gkn958
10.3390/genes10010025
10.1016/j.biomaterials.2015.01.049
10.1038/nrm1911
10.1056/NEJMoa1716153
10.1038/s41568-018-0060-1
10.3390/vaccines9040359
10.3322/caac.20114
10.1016/j.cbpa.2004.10.007
10.1002/asia.201600447
10.1016/S0169-5002(01)00343-9
10.1200/JCO.2016.34.15_suppl.2547
10.1002/jemt.10177
10.1038/nrd3010
10.2147/IJN.S106625
10.2174/1389450118666170823121248
10.1038/35078107
10.1042/bst0311203
10.18632/oncotarget.4183
10.3322/caac.21660
10.1021/acs.biomac.0c00438
10.1016/j.addr.2019.05.004
10.1016/j.jconrel.2019.12.005
10.1016/j.biomaterials.2018.04.054
10.1126/science.286.5441.950
10.1200/JCO.2013.55.0376
10.1016/j.biomaterials.2009.09.048
10.1016/j.lungcan.2018.07.013
10.1021/acsnano.5b05470
10.1016/j.ijpharm.2017.04.008
10.1021/nn102711d
10.1016/j.biomaterials.2021.120711
10.1016/j.addr.2018.06.017
10.1111/php.13300
10.1016/j.bbamem.2006.03.020
10.3390/cancers11081197
10.1016/j.biomaterials.2007.05.025
10.1021/acsnano.8b01516
10.1056/NEJMoa2034577
10.3390/biomedicines9030305
10.1093/nar/gkg147
10.1016/j.nantod.2016.04.008
10.1002/adma.201906128
10.1158/1078-0432.CCR-18-1543
10.1124/pr.54.4.561
10.3390/cancers12113130
10.1021/acs.bioconjchem.9b00231
10.1089/nat.2018.0736
10.1016/j.bbrc.2014.12.030
10.1016/j.jconrel.2007.05.021
10.1002/smll.202106291
10.18632/aging.100934
10.1038/nbt.3802
10.1126/scitranslmed.abb6981
10.1016/j.tcb.2018.12.001
10.1016/j.ejphar.2018.07.034
10.1016/j.jconrel.2016.05.066
10.1016/j.jconrel.2020.03.006
10.1016/j.it.2016.01.004
10.1080/10717544.2018.1450910
10.1016/j.ctrv.2020.102070
10.1002/adma.202201516
10.1038/35053110
10.1038/nature15756
10.1016/j.jconrel.2015.02.022
10.1016/j.biomaterials.2018.11.004
10.1126/sciadv.aax5032
10.1016/j.bmc.2008.03.017
10.3322/caac.21654
10.1016/j.canlet.2014.03.013
10.1002/jbm.a.36862
10.1002/anie.202006890
10.1016/j.jconrel.2017.06.027
10.1016/j.biomaterials.2010.09.032
10.1016/j.biomaterials.2019.119463
10.1016/j.jconrel.2013.06.026
10.1016/j.biomaterials.2009.06.026
10.1038/s41565-020-0669-6
10.1056/NEJMoa1912387
10.1002/cbin.11137
10.1016/B978-0-12-800148-6.00004-3
10.1080/13506129.2018.1549825
10.1021/acsnano.7b05465
10.1016/j.addr.2011.06.017
10.1056/NEJMoa2021712
10.1242/jcs.066399
10.1038/nbt.1807
10.1085/jgp.8.6.519
10.1016/j.ccr.2013.11.007
10.1021/mp800176t
10.1056/NEJMoa2035389
10.1016/j.biomaterials.2016.06.024
10.1248/bpb.b19-00032
10.1038/nrc.2017.8
10.1002/anie.201814289
10.1001/jamaoncol.2018.2168
10.1021/acsnano.0c03648
10.1038/s41563-020-00886-0
10.1158/1078-0432.CCR-12-0858
10.1021/acsnano.7b03037
10.1186/s40169-015-0080-3
10.1126/sciadv.abf4398
10.1038/nrclinonc.2016.217
10.1056/NEJMoa1609243
10.1038/natrevmats.2016.14
10.1016/j.carbpol.2017.02.036
10.1016/j.dmpk.2021.100424
10.1038/nrm2858
10.1016/j.jconrel.2005.03.024
10.1016/j.ymthe.2005.11.002
10.2967/jnumed.109.069906
10.1016/j.biomaterials.2020.119976
10.2147/IJN.S131078
10.1038/nbt.3330
10.1016/j.xphs.2019.06.012
10.1056/NEJMoa1208760
10.1021/acsnano.9b04857
10.1038/nrc.2015.17
10.1038/nature06765
10.1158/2159-8290.CD-12-0429
10.1016/j.cell.2009.01.035
10.1002/cmdc.201000156
10.1158/0008-5472.CAN-08-2428
10.1039/C7CS00479F
10.1016/j.jconrel.2019.08.021
10.1007/s12094-019-02075-1
10.1021/acs.biomac.9b00999
10.1021/bc800278e
10.1021/acs.nanolett.0c04468
10.1016/j.molcel.2014.02.015
10.1021/nl900031y
10.1021/acs.accounts.1c00544
10.1016/j.ymthe.2006.06.001
10.3402/nano.v3i0.18496
10.1002/(SICI)1520-6017(200005)89:5<652::AID-JPS11>3.0.CO;2-H
10.1016/j.jconrel.2019.05.030
10.1007/s40265-020-01269-0
10.1007/s40265-020-01463-0
10.1021/acs.molpharmaceut.2c00033
10.1007/s10555-013-9441-9
10.1016/j.biomaterials.2006.09.047
10.1016/j.ymthe.2019.12.007
10.1016/j.bcp.2020.113813
10.1038/sj.onc.1209597
10.1208/s12248-010-9210-4
10.15252/embr.201439363
10.1038/embor.2013.92
10.1038/s41467-018-02989-4
10.1158/1535-7163.MCT-13-0502
10.1158/0008-5472.CAN-11-2612
10.1021/acsami.8b01806
10.1007/s12032-021-01537-3
10.1021/acs.nanolett.6b01994
10.1016/j.jconrel.2016.07.028
10.1038/nature08956
10.1016/j.taap.2009.01.014
10.1016/j.biomaterials.2020.120369
10.1111/1759-7714.13255
10.1038/s41568-018-0005-8
10.1080/21645515.2019.1571892
10.1146/annurev-immunol-041015-055700
10.1016/j.clinthera.2016.03.026
10.1093/nar/gkaa670
10.3402/jev.v4.26316
10.1016/j.biomaterials.2017.01.008
10.3390/pharmaceutics13071009
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/pharmaceutics14081586
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (New)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1999-4923
ExternalDocumentID oai_doaj_org_article_4b1fc90233b84e2cb983c9be7ba3cb70
PMC9415718
A724767931
10_3390_pharmaceutics14081586
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Innovation Spark Project of Sichuan University
  grantid: 2019SCUH0015
– fundername: 1·3·5 project for disciplines of excellence
  grantid: ZYJC18026
– fundername: 1·3·5 project for disciplines of excellence-Clinical Research Incubation Project
  grantid: 2020HXFH023
– fundername: National Natural Science Foundation of China
  grantid: 81572617; 81630101
– fundername: Central Government Fund for Local Science and Technology Development of Sichuan Province
  grantid: 2021ZYD0097
– fundername: Fundamental Research Funds for the Central Universities
  grantid: SCU2022D025
– fundername: International Cooperation Project of Chengdu Science and Technology Bureau
  grantid: 2019-GH02-00020-HZ
GroupedDBID ---
53G
5VS
8G5
AADQD
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACUHS
AEAQA
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EBD
ESX
F5P
FD6
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HH5
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MK0
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
TUS
PMFND
3V.
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c479t-e9a4096f23757c431f59506aac0862631e7ed6fddab6868ae0b94c563b9c37b43
IEDL.DBID M48
ISSN 1999-4923
IngestDate Wed Aug 27 01:25:27 EDT 2025
Thu Aug 21 18:29:05 EDT 2025
Fri Jul 11 16:51:52 EDT 2025
Mon Jun 30 02:50:15 EDT 2025
Tue Jun 17 22:20:02 EDT 2025
Tue Jun 10 21:23:59 EDT 2025
Tue Jul 01 03:36:15 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-e9a4096f23757c431f59506aac0862631e7ed6fddab6868ae0b94c563b9c37b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7526-4233
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/pharmaceutics14081586
PMID 36015212
PQID 2706271351
PQPubID 2032349
ParticipantIDs doaj_primary_oai_doaj_org_article_4b1fc90233b84e2cb983c9be7ba3cb70
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9415718
proquest_miscellaneous_2707600576
proquest_journals_2706271351
gale_infotracmisc_A724767931
gale_infotracacademiconefile_A724767931
crossref_primary_10_3390_pharmaceutics14081586
crossref_citationtrail_10_3390_pharmaceutics14081586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220729
PublicationDateYYYYMMDD 2022-07-29
PublicationDate_xml – month: 7
  year: 2022
  text: 20220729
  day: 29
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Pharmaceutics
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bholakant (ref_11) 2020; 21
Benson (ref_73) 2019; 25
Lamichhane (ref_113) 2016; 9
Prior (ref_133) 2012; 72
Brown (ref_106) 2020; 48
Rahma (ref_154) 2019; 25
Perrault (ref_46) 2009; 9
Tang (ref_149) 2015; 48
Jia (ref_94) 2021; 271
Zugazagoitia (ref_10) 2016; 38
Eygeris (ref_83) 2022; 55
Wang (ref_118) 2021; 13
Pistritto (ref_167) 2016; 8
Adams (ref_72) 2018; 379
Kulkarni (ref_70) 2018; 12
Wang (ref_17) 2010; 12
Lindenbergh (ref_120) 2018; 36
Hayes (ref_62) 2006; 1758
Liu (ref_59) 2021; 20
Nguyen (ref_144) 2020; 174
Leung (ref_69) 2014; 88
(ref_125) 2001; 34
Saini (ref_178) 2018; 19
Sondka (ref_7) 2018; 18
Schultheis (ref_27) 2014; 32
Sioud (ref_35) 2006; 36
Jeong (ref_98) 2009; 20
Zheng (ref_122) 2019; 311–312
ref_128
Polack (ref_81) 2020; 383
Kang (ref_19) 2010; 51
Huang (ref_176) 2022; 34
Aleku (ref_26) 2008; 68
Wu (ref_135) 2016; 146
Kreuger (ref_136) 2006; 7
Ferraresso (ref_84) 2022; 19
Lunavat (ref_109) 2016; 102
Schlee (ref_29) 2006; 14
Sung (ref_3) 2021; 71
Wang (ref_95) 2017; 122
Keller (ref_140) 2014; 53
Wang (ref_165) 2021; 31
Braasch (ref_20) 2004; 14
Ting (ref_4) 2018; 834
Peng (ref_85) 2019; 20
Shi (ref_61) 2020; 59
ref_28
Wang (ref_48) 2020; 12
Kamada (ref_67) 2015; 456
Jiang (ref_89) 2009; 6
Warburg (ref_138) 1927; 8
Lv (ref_88) 2017; 168
Fitzgerald (ref_9) 2017; 376
Zhang (ref_68) 2018; 10
Azmi (ref_116) 2013; 32
ref_159
ref_71
Yu (ref_79) 2019; 108
Armstrong (ref_110) 2018; 130
Ma (ref_49) 2022; 18
Hayakawa (ref_147) 2019; 11
ref_150
Peeler (ref_56) 2019; 192
Agostinis (ref_172) 2011; 61
Song (ref_63) 2019; 42
Bussey (ref_129) 2016; 5
Wang (ref_137) 2017; 12
Elbashir (ref_16) 2001; 411
McCormick (ref_124) 2015; 21
Golan (ref_160) 2015; 6
Wang (ref_175) 2017; 16
Harvie (ref_76) 2000; 89
Bernstein (ref_2) 2001; 409
Nakamoto (ref_130) 2002; 59
Ray (ref_108) 2020; 382
Tian (ref_91) 2013; 172
Ramishetti (ref_78) 2020; 32
(ref_162) 2019; 43
Cramer (ref_174) 2020; 96
Seow (ref_111) 2011; 29
Babina (ref_127) 2017; 17
Ding (ref_179) 2020; 245
Tabernero (ref_24) 2013; 3
Meijer (ref_170) 2012; 18
He (ref_58) 2016; 10
Coelho (ref_181) 2013; 369
Xue (ref_96) 2019; 30
Kleinman (ref_30) 2008; 452
Shi (ref_145) 2019; 58
Maugeri (ref_52) 2019; 10
Patil (ref_163) 2010; 31
Khorev (ref_102) 2008; 16
Dowdy (ref_14) 2017; 35
Wu (ref_142) 2014; 347
Zhang (ref_97) 2020; 12
Carthew (ref_1) 2009; 136
Dominska (ref_51) 2010; 123
ref_177
Autio (ref_184) 2018; 4
Zhao (ref_115) 2020; 318
Soutschek (ref_99) 2004; 432
Alipour (ref_42) 2020; 108
Negrini (ref_5) 2010; 11
Lim (ref_25) 2019; 24
Shen (ref_13) 2018; 47
Szebeni (ref_180) 2011; 63
Qian (ref_45) 2002; 54
Gao (ref_146) 2019; 21
Robey (ref_143) 2018; 18
Melo (ref_158) 2013; 14
ref_169
Wilhelm (ref_41) 2016; 1
Jeyaram (ref_114) 2020; 28
Qian (ref_156) 2017; 11
Baden (ref_80) 2021; 384
Martin (ref_38) 2014; 13
Judge (ref_34) 2006; 13
Uprety (ref_132) 2020; 89
Hoshino (ref_121) 2015; 527
Terrazas (ref_31) 2009; 37
Casazza (ref_155) 2013; 24
Xu (ref_112) 2021; 264
Chi (ref_66) 2017; 261
Kaneshiro (ref_90) 2009; 30
Winkler (ref_182) 2010; 5
Zwicke (ref_43) 2012; 3
Zatsepin (ref_23) 2016; 11
Patil (ref_92) 2011; 5
Manoharan (ref_33) 2004; 8
Dong (ref_12) 2019; 144
Nie (ref_65) 2011; 32
Malek (ref_54) 2009; 236
Cheng (ref_93) 2007; 28
Garrelfs (ref_104) 2021; 384
Ferrer (ref_131) 2018; 124
Vogelstein (ref_6) 2013; 339
Pelicano (ref_139) 2015; 25
Mantovani (ref_153) 2017; 14
Zhao (ref_173) 2018; 173
Jackson (ref_18) 2010; 9
Parsi (ref_100) 2021; 38
Kim (ref_21) 2021; 7
Wang (ref_47) 2016; 11
Schorey (ref_119) 2015; 16
Li (ref_60) 2016; 11
Cheng (ref_75) 2020; 15
Davis (ref_36) 2010; 464
Canton (ref_50) 2012; 41
Fischer (ref_126) 2003; 31
Springer (ref_101) 2018; 28
Scott (ref_107) 2021; 81
Martina (ref_39) 2007; 28
Janas (ref_183) 2018; 9
Kim (ref_57) 2016; 235
Lang (ref_151) 2019; 13
Kamerkar (ref_123) 2017; 546
Devarajan (ref_22) 2015; 203
Suzuki (ref_82) 2021; 41
Kumar (ref_152) 2016; 37
Gary (ref_87) 2007; 121
Delbridge (ref_166) 2016; 16
Hamilton (ref_15) 1999; 286
Blanco (ref_37) 2015; 33
Cavallaro (ref_86) 2017; 525
Li (ref_55) 2021; 21
Wiklander (ref_117) 2015; 4
Yong (ref_171) 2017; 11
Pastushenko (ref_148) 2019; 29
Siegel (ref_164) 2021; 71
Chen (ref_8) 2018; 3
Jiang (ref_157) 2019; 15
Amarzguioui (ref_32) 2003; 31
Suo (ref_168) 2017; 76
Sato (ref_74) 2020; 322
Huang (ref_44) 2018; 25
Ngoune (ref_40) 2016; 238
Lamb (ref_105) 2021; 81
Huang (ref_161) 2020; 6
Dang (ref_141) 2019; 223
Fz (ref_77) 2019; 305
Demeure (ref_134) 2016; 34
Kim (ref_53) 2005; 105
Gabizon (ref_64) 2020; 14
Scott (ref_103) 2020; 80
References_xml – volume: 3
  start-page: 5
  year: 2018
  ident: ref_8
  article-title: Targeting oncogenic Myc as a strategy for cancer treatment
  publication-title: Signal Transduct Target
  doi: 10.1038/s41392-018-0008-7
– volume: 21
  start-page: 1797
  year: 2015
  ident: ref_124
  article-title: KRAS as a Therapeutic Target
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-2662
– volume: 76
  start-page: 659
  year: 2017
  ident: ref_168
  article-title: Folate-decorated PEGylated triblock copolymer as a pH/reduction dual-responsive nanovehicle for targeted intracellular co-delivery of doxorubicin and Bcl-2 siRNA
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2017.03.124
– volume: 31
  start-page: 2007166
  year: 2021
  ident: ref_165
  article-title: siRNA nanoparticle suppresses drug-resistant gene and prolongs survival in an orthotopic glioblastoma xenograft mouse model
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007166
– ident: ref_150
  doi: 10.3390/ijms20040840
– volume: 432
  start-page: 173
  year: 2004
  ident: ref_99
  article-title: Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs
  publication-title: Nature
  doi: 10.1038/nature03121
– volume: 12
  start-page: 32289
  year: 2020
  ident: ref_97
  article-title: ROS-Activatable siRNA-Engineered Polyplex for NIR-Triggered Synergistic Cancer Treatment
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c06614
– volume: 14
  start-page: 1139
  year: 2004
  ident: ref_20
  article-title: Biodistribution of phosphodiester and phosphorothioate siRNA
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2003.12.074
– volume: 9
  start-page: 315
  year: 2016
  ident: ref_113
  article-title: Oncogene Knockdown via Active Loading of Small RNAs into Extracellular Vesicles by Sonication
  publication-title: Cell Mol. Bioeng.
  doi: 10.1007/s12195-016-0457-4
– volume: 10
  start-page: 4333
  year: 2019
  ident: ref_52
  article-title: Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12275-6
– volume: 146
  start-page: 318
  year: 2016
  ident: ref_135
  article-title: Phenylboronic acid-functionalized polyamidoamine-mediated Bcl-2 siRNA delivery for inhibiting the cell proliferation
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.06.034
– volume: 81
  start-page: 389
  year: 2021
  ident: ref_105
  article-title: Inclisiran: First Approval
  publication-title: Drugs
  doi: 10.1007/s40265-021-01473-6
– volume: 12
  start-page: 6933
  year: 2020
  ident: ref_48
  article-title: Size-Switchable Nanoparticles with Self-Destructive and Tumor Penetration Characteristics for Site-Specific Phototherapy of Cancer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21525
– volume: 546
  start-page: 498
  year: 2017
  ident: ref_123
  article-title: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer
  publication-title: Nature
  doi: 10.1038/nature22341
– volume: 339
  start-page: 1546
  year: 2013
  ident: ref_6
  article-title: Cancer genome landscapes
  publication-title: Science
  doi: 10.1126/science.1235122
– volume: 41
  start-page: 2718
  year: 2012
  ident: ref_50
  article-title: Endocytosis at the nanoscale
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15309b
– volume: 36
  start-page: 1222
  year: 2006
  ident: ref_35
  article-title: Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: A central role for 2’-hydroxyl uridines in immune responses
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200535708
– volume: 37
  start-page: 346
  year: 2009
  ident: ref_31
  article-title: RNA major groove modifications improve siRNA stability and biological activity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn958
– ident: ref_169
  doi: 10.3390/genes10010025
– volume: 48
  start-page: 1
  year: 2015
  ident: ref_149
  article-title: Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (β-amino ester) nanoparticles co-delivering two siRNA and paclitaxel
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.049
– volume: 7
  start-page: 359
  year: 2006
  ident: ref_136
  article-title: VEGF receptor signalling-in control of vascular function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1911
– volume: 379
  start-page: 11
  year: 2018
  ident: ref_72
  article-title: Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1716153
– volume: 18
  start-page: 696
  year: 2018
  ident: ref_7
  article-title: The COSMIC Cancer Gene Census: Describing genetic dysfunction across all human cancers
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0060-1
– ident: ref_71
  doi: 10.3390/vaccines9040359
– volume: 61
  start-page: 250
  year: 2011
  ident: ref_172
  article-title: Photodynamic therapy of cancer: An update
  publication-title: CA A Cancer J. Clin.
  doi: 10.3322/caac.20114
– volume: 8
  start-page: 570
  year: 2004
  ident: ref_33
  article-title: RNA interference and chemically modified small interfering RNAs
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2004.10.007
– volume: 11
  start-page: 2686
  year: 2016
  ident: ref_60
  article-title: Cationic Poly(p-phenylene vinylene) Materials as A Multifunctional Platform for Light-Enhanced siRNA Delivery
  publication-title: Chem.-Asian J.
  doi: 10.1002/asia.201600447
– volume: 34
  start-page: S43
  year: 2001
  ident: ref_125
  article-title: Myc oncogene: A key component in cell cycle regulation and its implication for lung cancer
  publication-title: Lung Cancer
  doi: 10.1016/S0169-5002(01)00343-9
– volume: 34
  start-page: 2547
  year: 2016
  ident: ref_134
  article-title: A phase I/II study of TKM-080301, a PLK1-targeted RNAi in patients with adrenocortical cancer (ACC)
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2016.34.15_suppl.2547
– volume: 59
  start-page: 58
  year: 2002
  ident: ref_130
  article-title: Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis
  publication-title: Microsc. Res. Tech
  doi: 10.1002/jemt.10177
– volume: 9
  start-page: 57
  year: 2010
  ident: ref_18
  article-title: Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3010
– volume: 11
  start-page: 3077
  year: 2016
  ident: ref_23
  article-title: Lipid nanoparticles for targeted siRNA delivery-going from bench to bedside
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S106625
– volume: 19
  start-page: 1478
  year: 2018
  ident: ref_178
  article-title: Clinical, Prognostic and Therapeutic Significance of Heat Shock Proteins in Cancer
  publication-title: Curr Drug Targets
  doi: 10.2174/1389450118666170823121248
– volume: 411
  start-page: 494
  year: 2001
  ident: ref_16
  article-title: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells
  publication-title: Nature
  doi: 10.1038/35078107
– volume: 31
  start-page: 1203
  year: 2003
  ident: ref_126
  article-title: EGFR signal transactivation in cancer cells
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0311203
– volume: 6
  start-page: 24560
  year: 2015
  ident: ref_160
  article-title: RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4183
– volume: 71
  start-page: 209
  year: 2021
  ident: ref_3
  article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 21
  start-page: 2966
  year: 2020
  ident: ref_11
  article-title: Recent Advances of Polycationic siRNA Vectors for Cancer Therapy
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c00438
– volume: 144
  start-page: 133
  year: 2019
  ident: ref_12
  article-title: Strategies, design, and chemistry in siRNA delivery systems
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2019.05.004
– volume: 318
  start-page: 1
  year: 2020
  ident: ref_115
  article-title: Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2019.12.005
– volume: 173
  start-page: 58
  year: 2018
  ident: ref_173
  article-title: Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.04.054
– volume: 286
  start-page: 950
  year: 1999
  ident: ref_15
  article-title: A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants
  publication-title: Science
  doi: 10.1126/science.286.5441.950
– volume: 32
  start-page: 4141
  year: 2014
  ident: ref_27
  article-title: First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2013.55.0376
– volume: 31
  start-page: 358
  year: 2010
  ident: ref_163
  article-title: The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.048
– volume: 124
  start-page: 53
  year: 2018
  ident: ref_131
  article-title: KRAS-Mutant non-small cell lung cancer: From biology to therapy
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2018.07.013
– volume: 10
  start-page: 1859
  year: 2016
  ident: ref_58
  article-title: Suppression of Hepatic Inflammation via Systemic siRNA Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide Hybrid Nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05470
– volume: 525
  start-page: 313
  year: 2017
  ident: ref_86
  article-title: Polymeric nanoparticles for siRNA delivery: Production and applications
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.04.008
– volume: 5
  start-page: 1877
  year: 2011
  ident: ref_92
  article-title: Multifunctional Triblock Nanocarrier (PAMAM-PEG-PLL) for the Efficient Intracellular siRNA Delivery and Gene Silencing
  publication-title: Acs Nano
  doi: 10.1021/nn102711d
– volume: 271
  start-page: 120711
  year: 2021
  ident: ref_94
  article-title: Enhanced response to PD-L1 silencing by modulation of TME via balancing glucose metabolism and robust co-delivery of siRNA/Resveratrol with dual-responsive polyplexes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120711
– volume: 130
  start-page: 12
  year: 2018
  ident: ref_110
  article-title: Strategic design of extracellular vesicle drug delivery systems
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2018.06.017
– volume: 96
  start-page: 954
  year: 2020
  ident: ref_174
  article-title: Photodynamic Therapy and Immune Checkpoint Blockade
  publication-title: Photochem. Photobiol.
  doi: 10.1111/php.13300
– volume: 24
  start-page: 747-e218
  year: 2019
  ident: ref_25
  article-title: An Open-Label, Multicenter, Phase I, Dose Escalation Study with Phase II Expansion Cohort to Determine the Safety, Pharmacokinetics, and Preliminary Antitumor Activity of Intravenous TKM-080301 in Subjects with Advanced Hepatocellular Carcinoma
  publication-title: Oncologist
– volume: 1758
  start-page: 429
  year: 2006
  ident: ref_62
  article-title: Assembly of nucleic acid-lipid nanoparticles from aqueous-organic monophases
  publication-title: BBA-Biomembr.
  doi: 10.1016/j.bbamem.2006.03.020
– ident: ref_128
  doi: 10.3390/cancers11081197
– volume: 28
  start-page: 4143
  year: 2007
  ident: ref_39
  article-title: The in vitro kinetics of the interactions between PEG-ylated magnetic-fluid-loaded liposomes and macrophages
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.05.025
– volume: 12
  start-page: 4787
  year: 2018
  ident: ref_70
  article-title: On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01516
– volume: 383
  start-page: 2603
  year: 2020
  ident: ref_81
  article-title: Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– ident: ref_177
  doi: 10.3390/biomedicines9030305
– volume: 31
  start-page: 589
  year: 2003
  ident: ref_32
  article-title: Tolerance for mutations and chemical modifications in a siRNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg147
– volume: 11
  start-page: 133
  year: 2016
  ident: ref_47
  article-title: Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.04.008
– volume: 32
  start-page: e1906128
  year: 2020
  ident: ref_78
  article-title: A Combinatorial Library of Lipid Nanoparticles for RNA Delivery to Leukocytes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906128
– volume: 25
  start-page: 5449
  year: 2019
  ident: ref_154
  article-title: The Intersection between Tumor Angiogenesis and Immune Suppression
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-1543
– volume: 54
  start-page: 561
  year: 2002
  ident: ref_45
  article-title: Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway
  publication-title: Pharm. Rev.
  doi: 10.1124/pr.54.4.561
– ident: ref_28
  doi: 10.3390/cancers12113130
– volume: 30
  start-page: 1585
  year: 2019
  ident: ref_96
  article-title: Porphyrin-Based Nanomedicines for Cancer Treatment
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.9b00231
– volume: 28
  start-page: 109
  year: 2018
  ident: ref_101
  article-title: GalNAc-siRNA Conjugates: Leading the Way for Delivery of RNAi Therapeutics
  publication-title: Nucleic Acid Ther.
  doi: 10.1089/nat.2018.0736
– volume: 456
  start-page: 908
  year: 2015
  ident: ref_67
  article-title: Generation and characterization of a bispecific diabody targeting both EPH receptor A10 and CD3
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.12.030
– volume: 121
  start-page: 64
  year: 2007
  ident: ref_87
  article-title: Polymer-based siRNA delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2007.05.021
– volume: 18
  start-page: e2106291
  year: 2022
  ident: ref_49
  article-title: Size-Transformable Bicomponent Peptide Nanoparticles for Deep Tumor Penetration and Photo-Chemo Combined Antitumor Therapy
  publication-title: Small
  doi: 10.1002/smll.202106291
– volume: 8
  start-page: 603
  year: 2016
  ident: ref_167
  article-title: Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies
  publication-title: Aging
  doi: 10.18632/aging.100934
– volume: 35
  start-page: 222
  year: 2017
  ident: ref_14
  article-title: Overcoming cellular barriers for RNA therapeutics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3802
– volume: 13
  start-page: eabb6981
  year: 2021
  ident: ref_118
  article-title: Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abb6981
– volume: 29
  start-page: 212
  year: 2019
  ident: ref_148
  article-title: EMT Transition States during Tumor Progression and Metastasis
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2018.12.001
– volume: 834
  start-page: 188
  year: 2018
  ident: ref_4
  article-title: Molecular targeted therapy: Treating cancer with specificity
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2018.07.034
– volume: 235
  start-page: 165
  year: 2016
  ident: ref_57
  article-title: Endosomal acidic pH-induced conformational changes of a cytosol-penetrating antibody mediate endosomal escape
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2016.05.066
– volume: 322
  start-page: 217
  year: 2020
  ident: ref_74
  article-title: Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.03.006
– volume: 37
  start-page: 208
  year: 2016
  ident: ref_152
  article-title: The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2016.01.004
– volume: 25
  start-page: 766
  year: 2018
  ident: ref_44
  article-title: Application of hyaluronic acid as carriers in drug delivery
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2018.1450910
– volume: 89
  start-page: 102070
  year: 2020
  ident: ref_132
  article-title: KRAS: From undruggable to a druggable Cancer Target
  publication-title: Cancer Treat. Rev.
  doi: 10.1016/j.ctrv.2020.102070
– volume: 34
  start-page: e2201516
  year: 2022
  ident: ref_176
  article-title: Targeted drug/gene/photodynamic therapy via a stimuli-responsive dendritic polymer-based nano-cocktail for treatment of EGFR-TKI-resistant non-small cell lung cancer
  publication-title: Adv Mater
  doi: 10.1002/adma.202201516
– volume: 409
  start-page: 363
  year: 2001
  ident: ref_2
  article-title: Role for a bidentate ribonuclease in the initiation step of RNA interference
  publication-title: Nature
  doi: 10.1038/35053110
– volume: 527
  start-page: 329
  year: 2015
  ident: ref_121
  article-title: Tumour exosome integrins determine organotropic metastasis
  publication-title: Nature
  doi: 10.1038/nature15756
– volume: 203
  start-page: 126
  year: 2015
  ident: ref_22
  article-title: Asialoglycoprotein receptor mediated hepatocyte targeting-strategies and applications
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2015.02.022
– volume: 192
  start-page: 235
  year: 2019
  ident: ref_56
  article-title: pH-sensitive polymer micelles provide selective and potentiated lytic capacity to venom peptides for effective intracellular delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.11.004
– volume: 6
  start-page: eaax5032
  year: 2020
  ident: ref_161
  article-title: Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax5032
– volume: 16
  start-page: 5216
  year: 2008
  ident: ref_102
  article-title: Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor
  publication-title: Bioorganic Med. Chem.
  doi: 10.1016/j.bmc.2008.03.017
– volume: 71
  start-page: 7
  year: 2021
  ident: ref_164
  article-title: Cancer Statistics, 2021
  publication-title: CA A Cancer J. Clin.
  doi: 10.3322/caac.21654
– volume: 347
  start-page: 159
  year: 2014
  ident: ref_142
  article-title: Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2014.03.013
– volume: 108
  start-page: 839
  year: 2020
  ident: ref_42
  article-title: Recent progress in biomedical applications of RGD-based ligand: From precise cancer theranostics to biomaterial engineering: A systematic review
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.36862
– volume: 59
  start-page: 19168
  year: 2020
  ident: ref_61
  article-title: Light-Induced Self-Escape of Spherical Nucleic Acid from Endo/Lysosome for Efficient Non-Cationic Gene Delivery
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202006890
– volume: 261
  start-page: 113
  year: 2017
  ident: ref_66
  article-title: Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.06.027
– volume: 32
  start-page: 858
  year: 2011
  ident: ref_65
  article-title: Pyridylhydrazone-based PEGylation for pH-reversible lipopolyplex shielding
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.09.032
– volume: 223
  start-page: 119463
  year: 2019
  ident: ref_141
  article-title: Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119463
– volume: 172
  start-page: 410
  year: 2013
  ident: ref_91
  article-title: Polylysine-modified polyethylenimine inducing tumor apoptosis as an efficient gene carrier
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.06.026
– volume: 30
  start-page: 5660
  year: 2009
  ident: ref_90
  article-title: Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.06.026
– volume: 15
  start-page: 313
  year: 2020
  ident: ref_75
  article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0669-6
– volume: 382
  start-page: 1507
  year: 2020
  ident: ref_108
  article-title: Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1912387
– volume: 43
  start-page: 582
  year: 2019
  ident: ref_162
  article-title: Cell death: A review of the major forms of apoptosis, necrosis and autophagy
  publication-title: Cell Biol. Int.
  doi: 10.1002/cbin.11137
– volume: 88
  start-page: 71
  year: 2014
  ident: ref_69
  article-title: Lipid nanoparticles for short interfering RNA delivery
  publication-title: Adv. Genet.
  doi: 10.1016/B978-0-12-800148-6.00004-3
– volume: 25
  start-page: 215
  year: 2019
  ident: ref_73
  article-title: Amyloid nomenclature 2018: Recommendations by the International Society of Amyloidosis (ISA) nomenclature committee
  publication-title: Amyloid
  doi: 10.1080/13506129.2018.1549825
– volume: 11
  start-page: 9536
  year: 2017
  ident: ref_156
  article-title: Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05465
– volume: 63
  start-page: 1020
  year: 2011
  ident: ref_180
  article-title: Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: Prediction and prevention
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.06.017
– volume: 384
  start-page: 1216
  year: 2021
  ident: ref_104
  article-title: Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2021712
– volume: 123
  start-page: 1183
  year: 2010
  ident: ref_51
  article-title: Breaking down the barriers: siRNA delivery and endosome escape
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.066399
– volume: 29
  start-page: 341
  year: 2011
  ident: ref_111
  article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1807
– volume: 8
  start-page: 519
  year: 1927
  ident: ref_138
  article-title: The Metabolism of Tumors in the Body
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.8.6.519
– volume: 24
  start-page: 695
  year: 2013
  ident: ref_155
  article-title: Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.11.007
– volume: 6
  start-page: 727
  year: 2009
  ident: ref_89
  article-title: Target specific intracellular delivery of siRNA/PEI-HA complex by receptor mediated endocytosis
  publication-title: Mol. Pharm.
  doi: 10.1021/mp800176t
– volume: 384
  start-page: 403
  year: 2021
  ident: ref_80
  article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035389
– volume: 102
  start-page: 231
  year: 2016
  ident: ref_109
  article-title: RNAi delivery by exosome-mimetic nanovesicles–Implications for targeting c-Myc in cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.06.024
– volume: 42
  start-page: 996
  year: 2019
  ident: ref_63
  article-title: Design of a Novel PEGylated Liposomal Vector for Systemic Delivery of siRNA to Solid Tumors
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.b19-00032
– volume: 17
  start-page: 318
  year: 2017
  ident: ref_127
  article-title: Advances and challenges in targeting FGFR signalling in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.8
– volume: 58
  start-page: 4938
  year: 2019
  ident: ref_145
  article-title: The siRNAsome: A Cation-Free and Versatile Nanostructure for siRNA and Drug Co-delivery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814289
– volume: 4
  start-page: 1344
  year: 2018
  ident: ref_184
  article-title: Safety and Efficacy of BIND-014, a Docetaxel Nanoparticle Targeting Prostate-Specific Membrane Antigen for Patients With Metastatic Castration-Resistant Prostate Cancer: A Phase 2 Clinical Trial
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2018.2168
– volume: 14
  start-page: 7682
  year: 2020
  ident: ref_64
  article-title: Complement Activation: A Potential Threat on the Safety of Poly(ethylene glycol)-Coated Nanomedicines
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03648
– volume: 20
  start-page: 701
  year: 2021
  ident: ref_59
  article-title: Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00886-0
– volume: 18
  start-page: 5585
  year: 2012
  ident: ref_170
  article-title: Targeting Hypoxia, HIF-1, and Tumor Glucose Metabolism to Improve Radiotherapy Efficacy
  publication-title: Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-0858
– volume: 11
  start-page: 7164
  year: 2017
  ident: ref_171
  article-title: Polyoxometalate-Based Radiosensitization Platform for Treating Hypoxic Tumors by Attenuating Radioresistance and Enhancing Radiation Response
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03037
– volume: 5
  start-page: 1
  year: 2016
  ident: ref_129
  article-title: Targeting polo-like kinase 1, a regulator of p53, in the treatment of adrenocortical carcinoma
  publication-title: Clin. Transl. Med.
  doi: 10.1186/s40169-015-0080-3
– volume: 7
  start-page: eabf4398
  year: 2021
  ident: ref_21
  article-title: Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf4398
– volume: 14
  start-page: 399
  year: 2017
  ident: ref_153
  article-title: Tumour-associated macrophages as treatment targets in oncology
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.217
– volume: 376
  start-page: 41
  year: 2017
  ident: ref_9
  article-title: A Highly Durable RNAi Therapeutic Inhibitor of PCSK9
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1609243
– volume: 1
  start-page: 16014
  year: 2016
  ident: ref_41
  article-title: Analysis of nanoparticle delivery to tumours
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.14
– volume: 168
  start-page: 103
  year: 2017
  ident: ref_88
  article-title: Modified-epsilon-polylysine-grafted-PEI-β-cyclodextrin supramolecular carrier for gene delivery
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.02.036
– volume: 41
  start-page: 100424
  year: 2021
  ident: ref_82
  article-title: Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs
  publication-title: Drug Metab Pharm.
  doi: 10.1016/j.dmpk.2021.100424
– volume: 11
  start-page: 220
  year: 2010
  ident: ref_5
  article-title: Genomic instability--an evolving hallmark of cancer
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2858
– volume: 105
  start-page: 354
  year: 2005
  ident: ref_53
  article-title: Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes
  publication-title: J. Control. Release Off. J. Control. Release Soc.
  doi: 10.1016/j.jconrel.2005.03.024
– volume: 13
  start-page: 494
  year: 2006
  ident: ref_34
  article-title: Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2005.11.002
– volume: 51
  start-page: 978
  year: 2010
  ident: ref_19
  article-title: Noninvasive visualization of RNA delivery with 99mTc-radiolabeled small-interference RNA in tumor xenografts
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.109.069906
– volume: 245
  start-page: 119976
  year: 2020
  ident: ref_179
  article-title: Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119976
– volume: 12
  start-page: 3591
  year: 2017
  ident: ref_137
  article-title: Polyethylene glycol–poly(ε-benzyloxycarbonyl-L-lysine)-conjugated VEGF siRNA for antiangiogenic gene therapy in hepatocellular carcinoma
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S131078
– volume: 33
  start-page: 941
  year: 2015
  ident: ref_37
  article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3330
– volume: 108
  start-page: 3218
  year: 2019
  ident: ref_79
  article-title: Synergistic Enhancement of Cellular Uptake With CD44-Expressing Malignant Pleural Mesothelioma by Combining Cationic Liposome and Hyaluronic Acid–Lipid Conjugate
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2019.06.012
– volume: 369
  start-page: 819
  year: 2013
  ident: ref_181
  article-title: Safety and efficacy of RNAi therapy for transthyretin amyloidosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1208760
– volume: 13
  start-page: 12357
  year: 2019
  ident: ref_151
  article-title: Reshaping Prostate Tumor Microenvironment To Suppress Metastasis via Cancer-Associated Fibroblast Inactivation with Peptide-Assembly-Based Nanosystem
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04857
– volume: 16
  start-page: 99
  year: 2016
  ident: ref_166
  article-title: Thirty years of BCL-2: Translating cell death discoveries into novel cancer therapies
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2015.17
– volume: 452
  start-page: 591
  year: 2008
  ident: ref_30
  article-title: Sequence- and target-independent angiogenesis suppression by siRNA via TLR3
  publication-title: Nature
  doi: 10.1038/nature06765
– volume: 3
  start-page: 406
  year: 2013
  ident: ref_24
  article-title: First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-12-0429
– volume: 136
  start-page: 642
  year: 2009
  ident: ref_1
  article-title: Origins and mechanisms of miRNAs and siRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.035
– volume: 5
  start-page: 1344
  year: 2010
  ident: ref_182
  article-title: Off-target effects related to the phosphorothioate modification of nucleic acids
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201000156
– volume: 68
  start-page: 9788
  year: 2008
  ident: ref_26
  article-title: Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-2428
– volume: 47
  start-page: 1969
  year: 2018
  ident: ref_13
  article-title: Engineering functional inorganic-organic hybrid systems: Advances in siRNA therapeutics
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00479F
– volume: 311–312
  start-page: 43
  year: 2019
  ident: ref_122
  article-title: Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.08.021
– volume: 21
  start-page: 1287
  year: 2019
  ident: ref_146
  article-title: Strategies to overcome acquired resistance to EGFR TKI in the treatment of non-small cell lung cancer
  publication-title: Clin. Transl. Oncol.
  doi: 10.1007/s12094-019-02075-1
– volume: 20
  start-page: 3613
  year: 2019
  ident: ref_85
  article-title: Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b00999
– volume: 20
  start-page: 5
  year: 2009
  ident: ref_98
  article-title: siRNA Conjugate Delivery Systems
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc800278e
– volume: 21
  start-page: 3680
  year: 2021
  ident: ref_55
  article-title: Core Role of Hydrophobic Core of Polymeric Nanomicelle in Endosomal Escape of siRNA
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04468
– volume: 53
  start-page: 700
  year: 2014
  ident: ref_140
  article-title: SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.02.015
– volume: 9
  start-page: 1909
  year: 2009
  ident: ref_46
  article-title: Mediating tumor targeting efficiency of nanoparticles through design
  publication-title: Nano Lett.
  doi: 10.1021/nl900031y
– volume: 55
  start-page: 2
  year: 2022
  ident: ref_83
  article-title: Chemistry of Lipid Nanoparticles for RNA Delivery
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00544
– volume: 14
  start-page: 463
  year: 2006
  ident: ref_29
  article-title: siRNA and isRNA: Two edges of one sword
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2006.06.001
– volume: 3
  start-page: 18496
  year: 2012
  ident: ref_43
  article-title: Utilizing the folate receptor for active targeting of cancer nanotherapeutics
  publication-title: Nano Rev.
  doi: 10.3402/nano.v3i0.18496
– volume: 89
  start-page: 652
  year: 2000
  ident: ref_76
  article-title: Use of poly(ethylene glycol)–lipid conjugates to regulate the surface attributes and transfection activity of lipid–DNA particles
  publication-title: J. Pharm. Sci.
  doi: 10.1002/(SICI)1520-6017(200005)89:5<652::AID-JPS11>3.0.CO;2-H
– volume: 305
  start-page: 194
  year: 2019
  ident: ref_77
  article-title: Liposome and immune system interplay: Challenges and potentials
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.05.030
– volume: 80
  start-page: 335
  year: 2020
  ident: ref_103
  article-title: Givosiran: First Approval
  publication-title: Drugs
  doi: 10.1007/s40265-020-01269-0
– volume: 81
  start-page: 277
  year: 2021
  ident: ref_107
  article-title: Lumasiran: First Approval
  publication-title: Drugs
  doi: 10.1007/s40265-020-01463-0
– volume: 19
  start-page: 2175
  year: 2022
  ident: ref_84
  article-title: Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.2c00033
– volume: 32
  start-page: 623
  year: 2013
  ident: ref_116
  article-title: Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-013-9441-9
– volume: 28
  start-page: 869
  year: 2007
  ident: ref_93
  article-title: Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.09.047
– volume: 28
  start-page: 975
  year: 2020
  ident: ref_114
  article-title: Enhanced Loading of Functional miRNA Cargo via pH Gradient Modification of Extracellular Vesicles
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2019.12.007
– volume: 174
  start-page: 113813
  year: 2020
  ident: ref_144
  article-title: The effects of anthracycline drugs on the conformational distribution of mouse P-glycoprotein explains their transport rate differences
  publication-title: Biochem. Pharm.
  doi: 10.1016/j.bcp.2020.113813
– volume: 25
  start-page: 4633
  year: 2015
  ident: ref_139
  article-title: Glycolysis inhibition for anticancer treatment
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209597
– volume: 12
  start-page: 492
  year: 2010
  ident: ref_17
  article-title: Delivery of siRNA therapeutics: Barriers and carriers
  publication-title: Aaps. J.
  doi: 10.1208/s12248-010-9210-4
– volume: 16
  start-page: 24
  year: 2015
  ident: ref_119
  article-title: Exosomes and other extracellular vesicles in host-pathogen interactions
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201439363
– volume: 14
  start-page: 686
  year: 2013
  ident: ref_158
  article-title: Cancer heterogeneity—A multifaceted view
  publication-title: Embo Rep.
  doi: 10.1038/embor.2013.92
– volume: 9
  start-page: 723
  year: 2018
  ident: ref_183
  article-title: Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02989-4
– volume: 13
  start-page: 71
  year: 2014
  ident: ref_38
  article-title: Surface-modified nanoparticles enhance transurothelial penetration and delivery of survivin siRNA in treating bladder cancer
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-13-0502
– volume: 72
  start-page: 2457
  year: 2012
  ident: ref_133
  article-title: A Comprehensive Survey of Ras Mutations in Cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-2612
– volume: 10
  start-page: 21590
  year: 2018
  ident: ref_68
  article-title: Overcoming Multidrug Resistance by Codelivery of MDR1-Targeting siRNA and Doxorubicin Using EphA10-Mediated pH-Sensitive Lipoplexes: In Vitro and In Vivo Evaluation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01806
– volume: 38
  start-page: 89
  year: 2021
  ident: ref_100
  article-title: PSMA: A game changer in the diagnosis and treatment of advanced prostate cancer
  publication-title: Med. Oncol.
  doi: 10.1007/s12032-021-01537-3
– volume: 16
  start-page: 5503
  year: 2017
  ident: ref_175
  article-title: Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01994
– volume: 238
  start-page: 58
  year: 2016
  ident: ref_40
  article-title: Accumulating nanoparticles by EPR: A route of no return
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.07.028
– volume: 464
  start-page: 1067
  year: 2010
  ident: ref_36
  article-title: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles
  publication-title: Nature
  doi: 10.1038/nature08956
– volume: 236
  start-page: 97
  year: 2009
  ident: ref_54
  article-title: In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes
  publication-title: Toxicol. Appl. Pharm.
  doi: 10.1016/j.taap.2009.01.014
– volume: 264
  start-page: 120369
  year: 2021
  ident: ref_112
  article-title: Exosome-mediated RNAi of PAK4 prolongs survival of pancreatic cancer mouse model after loco-regional treatment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120369
– volume: 11
  start-page: 140
  year: 2019
  ident: ref_147
  article-title: Activation of insulin-like growth factor-1 receptor confers acquired resistance to osimertinib in non-small cell lung cancer with EGFR T790M mutation
  publication-title: Thorac. Cancer
  doi: 10.1111/1759-7714.13255
– volume: 18
  start-page: 452
  year: 2018
  ident: ref_143
  article-title: Revisiting the role of ABC transporters in multidrug-resistant cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0005-8
– volume: 15
  start-page: 1111
  year: 2019
  ident: ref_157
  article-title: PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations
  publication-title: Hum. Vaccines Immunother.
  doi: 10.1080/21645515.2019.1571892
– volume: 36
  start-page: 435
  year: 2018
  ident: ref_120
  article-title: Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-041015-055700
– volume: 38
  start-page: 1551
  year: 2016
  ident: ref_10
  article-title: Current Challenges in Cancer Treatment
  publication-title: Clin. Ther.
  doi: 10.1016/j.clinthera.2016.03.026
– volume: 48
  start-page: 11827
  year: 2020
  ident: ref_106
  article-title: Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa670
– volume: 4
  start-page: 26316
  year: 2015
  ident: ref_117
  article-title: Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting
  publication-title: J. Extracell Vesicles
  doi: 10.3402/jev.v4.26316
– volume: 122
  start-page: 10
  year: 2017
  ident: ref_95
  article-title: Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.01.008
– ident: ref_159
  doi: 10.3390/pharmaceutics13071009
SSID ssj0000331839
Score 2.4053955
SecondaryResourceType review_article
Snippet Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases,...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1586
SubjectTerms Cancer
Cancer therapies
Care and treatment
Clinical trials
combination strategies
Drug resistance
Endothelium
FDA approval
gene delivery
Gene expression
Genes
Health aspects
Immunotherapy
Kinases
Ligands
Lipids
Liver cancer
Medical research
Methods
Nanoparticles
Patient compliance
Pharmaceutical industry
Proteins
Review
small interfering RNA
targeting
Tumors
Vascular endothelial growth factor
Vectors (Biology)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQFBCBgoyEyqWhiR3b8XELVBUSZQWt1FtkOxO10jZbutvD_vvOONndBJB64Rrb-bDHM_OcmTeMfXDWKQlCpTbkOkX8JVKHkpF6VYc6A5UFR_nO30_1yXnx7UJdDEp9UUxYRw_cTdxh4fMmWLQs0pcFiOBtKYP1YLyTwZuI1tHmDcBU1MGSZNV2KTsScf3hzeX2iHiBqKLMFeVPD4xR5Oz_WzP_GS05MD_HT9mT3m_kk-59n7FH0O6y_Wn3uNUBP9vmUS0O-D6fbimpV8_Zb1SiiI77ILj0CE1XzdfEtLDgyznvTheAo0PIv8CMwjVWfN4Mb8x_XbvZjMdDxCZSGPKfpxN-1fLpbV-qh_9ou2e-YOfHX88-n6R9sYU0FMYuU7AOoZ5uhDTKBHQrGmVVpp0LEfTIHAzUuqlr53WpSweZt0VQWnobpPGFfMl22nkLrxjXCLfrEojqRRYaoMycVU1uylqLIMAmrFjPehV6JnIqiDGrEJHQYlX_XKyEfdoMu-moOB4acERLuulMTNrxAspX1U959ZB8JewjCURF-x1fMrg-bQE_lZizqokRhdGo5fKE7Y164j4N4-a1SFW9nlhUwhBNNFVJTNj7TTONpNi3FuZ3sQ_9PUVgmDAzEsXRl41b2qvLyBVu0UFD9-P1_5iKN-yxoOSPzKTC7rGd5e0dvEWXbOnfxd13D3cqOg4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge-GCyksECjISKpeGJnH8OqFdaFUhsaxKK_UW2Y5DKy3Jdnd72H_fmcT7CCC4xnacxOPxfJOZbwh5b7ThzGc81i4VMeCvLDYgGbHlpSsTzxNnMN_521icXeZfr_hVcLgtQljlWie2irpsHPrIjzOJhLpYT-7T7DbGqlH4dzWU0HhI9kAFKzUge6OT8eR842VJGMqs7lJ3GOD749n11lW8AHShUo551DuHUsvd_6eG_j1qcucYOt0nj4P9SIfdgj8hD3z9lBxOuulWR_Rim0-1OKKHdLKlpl49I7egTAElh2C4eARHWEnXBLV-QZcN7bwMnoJhSL_4KYZtrGhT7d6Y_vhlplPaOhOrlsqQno-H9Kamk3ko2UO_192cz8nl6cnF57M4FF2IXS71MvbaAOQTVcYklw7Mi4prnghjXAt-WOqlL0VVlsYKJZTxidW544JZ7Zi0OXtBBnVT-5eECoDdpfJI-cJy4b1KjOZVKlUpMpd5HZF8_dULFxjJsTDGtABkgotV_HWxIvJxM2zWUXL8b8AIl3TTGRm12wvN_GcRPnmR27RyGiwYZlXuM2e1Yk5bL61hzsokIh9QIArc9_CQzoT0BXhVZNAqhjLLpQBtl0bkoNcT9qvrN69Fqgj6YlFspTsi7zbNOBJj4Grf3LV98C8qAMSIyJ4o9t6s31LfXLec4RoMNTBDXv178tfkUYbpHYmMM31ABsv5nX8DRtfSvg076x7mcjIa
  priority: 102
  providerName: ProQuest
Title Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology
URI https://www.proquest.com/docview/2706271351
https://www.proquest.com/docview/2707600576
https://pubmed.ncbi.nlm.nih.gov/PMC9415718
https://doaj.org/article/4b1fc90233b84e2cb983c9be7ba3cb70
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9sIL4lMERmUkNF6WkdixHT8g1MKmCWmlGqu0t8h2nG1SSbe2k-h_z52TtgsMwWv8Fdtn-35n3-8IeWe0EdwzEWuXyhjwF4sNSEZsRenKxIvEGfR3PhnK43H29Vycb5EVoUI7gPN7oR3GkxrPJgc_b5afYMF_RMQJkP3D9eXG-jsHwJCnIpcPyA4cTgqDGpy0Gn_YnDkKsQ53zRrjqzHe-PX8vabOiRWI_f_cvn9_UnnnjDp6TB61yiXtN9LwhGz5-inZGzXNLffp2cbZar5P9-how1u9fEZuYKcFCN2-lIsHcL6VdMVe6-d0MaWNCcJT0BrpFz_BNx1LOq3uVky__zCTCQ2WxirwHNLTYZ9e1XQ0a-P50G910-ZzMj46PPt8HLcRGWKXKb2IvTaAB2XFuBLKge5RCS0SaYwLyIinXvlSVmVprMxlbnxideaE5FY7rmzGX5Dtelr7l4RKwORl7pEPhmfS-zwxWlSpykvJHPM6Itlq1AvX0pVj1IxJAbAFJ6u4d7IicrAudt3wdfyrwACndJ0Z6bbDh-nsomiHvMhsWjkN6g23eeaZszrnTluvrOHOqiQi71EgChRT-ElnWt8G6CrSaxV9xTIlYStMI7LbyQmL2XWTVyJVrNZCwRRySWMoxYi8XSdjSXwgV_vpbciDV6yAHiOiOqLY6Vk3pb66DITiGrQ40FFe_Uftr8lDhg4giYqZ3iXbi9mtfwNq2cL2yM7gcDg67QWzRi8su19IyD22
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGd4AL4lMEBhgJxmVhiR3b8QGhlm3q2Faq0Um7Bdtx2KSSdG0n1H-Kv5HnfLQNIDjtGttxkvf8vvLe7yH0WknFqCXMlybkPvhfxFfAGb5mqUkDywKjXL3zyYD3z6JP5-x8A_1samFcWmUjE0tBnRbGxch3iXCAuq6f3IfJle-6Rrm_q00LjYotjuziB7hss_eHe0DfN4Qc7I8-9v26q4BvIiHnvpUKfBqeESqYMKA_MyZZwJUypXVPQytsyrM0VZrHPFY20DIyjFMtDRU6onDfW2gzojwgHbTZ2x8MT5dRnYC6MyKrUiFKZbA7uViFpmfgzcQhc3Xba0qw7BXwp0b4PUtzTe0d3EN3a3sVdysGu482bP4AbQ-r7RY7eLSq35rt4G08XEFhLx6iKxDe4JXXyXd-D1RmihtAXDvD8wJXUQ2LwRDFe3bs0kQWuMjWb4y_fFfjMS6Dl1kJnYhPB118mePhtG4RhD_n1Z6P0NmNkOMx6uRFbp8gzMHNT2PrIGZoxK2NAyVZFoo45cQQKz0UNV89MTUCumvEMU7AE3LESv5KLA-9Wy6bVBAg_1vQcyRdTnYI3uWFYvotqT95EukwMxIsJqrjyBKjZUyN1FZoRY0WgYfeOoZInJyBhzSqLpeAV3WIXUlXkEhwkK6hh7ZaM0E-mPZww1JJLZ9myeo0eejVctitdDl3uS2uyznury04pB4SLVZsvVl7JL-8KDHKJRiGYPY8_ffmL9Ht_ujkODk-HBw9Q3eIKy0JhE_kFurMp9f2ORh8c_2iPmUYfb3pg_0LG8dujQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEJ8iMMBIMF4WmtiJHT8g1NJVG4NSjU3aW7Adh00qSdd2Qv3X-Ou4S9IvQPC019iOk9yH7y53vyPkpVY65o7FvrKh8MH_Yr4GzvBNnNkscHFgNdY7fxqIg9Pow1l8tkV-LmphMK1yoRMrRZ2VFmPkbSYRUBf7ybXzJi1i2Ou_G1_62EEK_7Qu2mnULHLk5j_AfZu-PewBrV8x1t8_eX_gNx0GfBtJNfOd0uDfiJxxGUsLZ2keqzgQWtvK0uehky4TeZZpIxKRaBcYFdlYcKMslybicN8bZFuiV9Qi2939wfB4GeEJOMqLqsuGOFdBe3y-ClNPwbNJwhhruNcOxKpvwJ-nw-8Zm2tHYP8Oud3YrrRTM9tdsuWKe2R3WG8336Mnq1qu6R7dpcMVLPb8PrkERQ4eepOI53fh-MzoAhzXTemspHWEw1EwSmnPjTBlZE7LfP3G9Mt3PRrRKpCZVzCK9HjQoRcFHU6adkH0c1Hv-YCcXgs5HpJWURbuEaECXP4scQg3wyPhXBJoFeehTDLBLHPKI9Hiq6e2QUPHphyjFLwiJFb6V2J55M1y2biGA_nfgi6SdDkZ0byrC-XkW9p88jQyYW4VWE_cJJFj1qiEW2WcNJpbIwOPvEaGSFHnwENa3ZROwKsielfakSySAjRt6JGdjZmgK-zm8IKl0kZXTdOVZHnkxXIYV2L-XeHKq2oO_sEF59QjcoMVN95sc6S4OK_wyhUYiWACPf735s_JTRDo9OPh4OgJucWwyiSQPlM7pDWbXLmnYPvNzLNGyCj5et1y_Qvv9HLC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoparticles-Based+Strategies+to+Improve+the+Delivery+of+Therapeutic+Small+Interfering+RNA+in+Precision+Oncology&rft.jtitle=Pharmaceutics&rft.au=Huang%2C+Jinxing&rft.au=Xiao%2C+Kai&rft.date=2022-07-29&rft.issn=1999-4923&rft.eissn=1999-4923&rft.volume=14&rft.issue=8&rft_id=info:doi/10.3390%2Fpharmaceutics14081586&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4923&client=summon