Universal correlation for the rise velocity of long gas bubbles in round pipes
We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s wer...
Saved in:
Published in | Journal of fluid mechanics Vol. 494; pp. 379 - 398 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.11.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log–log plots of the normalized rise velocity, $\hbox{\it Fr} \,{=}\,U/(gD)^{1/2}$ Froude velocity vs. buoyancy Reynolds number, $R\,{=}\,(D^{3}g (\rho_{l}-\rho_{g}) \rho_{l})^{1/2}/\mu $ for fixed ranges of the Eötvös number, $\hbox{\it Eo}\,{=}\,g\rho_{l}D^{2}/\sigma $ where $D$ is the pipe diameter, $\rho_{l}$, $\rho_{g}$ and $\sigma$ are densities and surface tension. The plots give rise to power laws in $Eo$; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large $R$ ($>200$) we find
\[\hbox{\it Fr} = {0.34}/(1+3805/\hbox{\it Eo}^{3.06})^{0.58}.\]
For small $R$ ($<10$) we find
\[ \hbox{\it Fr} = \frac{9.494\times 10^{-3}}{({1+{6197}/\hbox{\it Eo}^{2.561}})^{0.5793}}R^{1.026}.\]
The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region ($10\,{<}\,R\,{<}\, 200$) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation:
\[ \hbox{\it Fr} = L[{R;A,B,C,G}] \equiv \frac{A}{({1+({{R}/{B}})^C})^G} \]
where
\[ A = L[\hbox{\it Eo};a,b,c,d],\quad B = L[\hbox{\it Eo};e,f,g,h],\quad C = L[\hbox{\it Eo};i,j,k,l],\quad G = m/C \]
and the parameters ($a, b,\ldots,l$) are
\begin{eqnarray*} &&\hspace*{-5pt}a \hspace*{-0.8pt}\,{=}\,\hspace*{-0.8pt} 0.34;\quad b\hspace*{-0.8pt} \,{=}\,\hspace*{-0.8pt} 14.793;\quad c\hspace*{-0.8pt} \,{=}\,\hspace*{-0.6pt}{-}3.06;\quad d\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}0.58;\quad e\hspace*{-0.6pt} \,{=}\,\hspace*{-0.6pt} 31.08;\quad f\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}29.868;\quad g\hspace*{-0.6pt}\,{ =}\,\hspace*{-0.6pt}{ -}1.96;\\ &&\hspace*{-5pt}h = -0.49;\quad i = -1.45;\quad j = 24.867;\quad k = -9.93;\quad l = -0.094;\quad m = -1.0295.\end{eqnarray*}
The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented. |
---|---|
AbstractList | We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log-log plots of the normalized rise velocity, $\hbox{\it Fr} \,{=}\,U/(gD)^{1/2}$ Froude velocity vs. buoyancy Reynolds number, $R\,{=}\,(D^{3}g (\rho_{l}-\rho_{g}) \rho_{l})^{1/2}/\mu $ for fixed ranges of the Eötvös number, $\hbox{\it Eo}\,{=}\,g\rho_{l}D^{2}/\sigma $ where $D$ is the pipe diameter, $\rho_{l}$, $\rho_{g}$ and $\sigma$ are densities and surface tension. The plots give rise to power laws in $Eo$; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large $R$ ($>200$) we find\[\hbox{\it Fr} = {0.34}/(1+3805/\hbox{\it Eo}^{3.06})^{0.58}.\]For small $R$ ($<10$) we find\[ \hbox{\it Fr} = \frac{9.494\times 10^{-3}}{({1+{6197}/\hbox{\it Eo}^{2.561}})^{0.5793}}R^{1.026}.\]The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region ($10\,{<}\,R\,{<}\, 200$) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation:\[ \hbox{\it Fr} = L[{R;A,B,C,G}] \equiv \frac{A}{({1+({{R}/{B}})^C})^G} \]where\[ A = L[\hbox{\it Eo};a,b,c,d],\quad B = L[\hbox{\it Eo};e,f,g,h],\quad C = L[\hbox{\it Eo};i,j,k,l],\quad G = m/C \]and the parameters ($a, b,\ldots,l$) are\begin{eqnarray*} &&\hspace*{-5pt}a \hspace*{-0.8pt}\,{=}\,\hspace*{-0.8pt} 0.34;\quad b\hspace*{-0.8pt} \,{=}\,\hspace*{-0.8pt} 14.793;\quad c\hspace*{-0.8pt} \,{=}\,\hspace*{-0.6pt}{-}3.06;\quad d\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}0.58;\quad e\hspace*{-0.6pt} \,{=}\,\hspace*{-0.6pt} 31.08;\quad f\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}29.868;\quad g\hspace*{-0.6pt}\,{ =}\,\hspace*{-0.6pt}{ -}1.96;\\ &&\hspace*{-5pt}h = -0.49;\quad i = -1.45;\quad j = 24.867;\quad k = -9.93;\quad l = -0.094;\quad m = -1.0295.\end{eqnarray*}The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented. [PUBLICATION ABSTRACT] We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log–log plots of the normalized rise velocity, $\hbox{\it Fr} \,{=}\,U/(gD)^{1/2}$ Froude velocity vs. buoyancy Reynolds number, $R\,{=}\,(D^{3}g (\rho_{l}-\rho_{g}) \rho_{l})^{1/2}/\mu $ for fixed ranges of the Eötvös number, $\hbox{\it Eo}\,{=}\,g\rho_{l}D^{2}/\sigma $ where $D$ is the pipe diameter, $\rho_{l}$, $\rho_{g}$ and $\sigma$ are densities and surface tension. The plots give rise to power laws in $Eo$; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large $R$ ($>200$) we find \[\hbox{\it Fr} = {0.34}/(1+3805/\hbox{\it Eo}^{3.06})^{0.58}.\] For small $R$ ($<10$) we find \[ \hbox{\it Fr} = \frac{9.494\times 10^{-3}}{({1+{6197}/\hbox{\it Eo}^{2.561}})^{0.5793}}R^{1.026}.\] The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region ($10\,{<}\,R\,{<}\, 200$) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation: \[ \hbox{\it Fr} = L[{R;A,B,C,G}] \equiv \frac{A}{({1+({{R}/{B}})^C})^G} \] where \[ A = L[\hbox{\it Eo};a,b,c,d],\quad B = L[\hbox{\it Eo};e,f,g,h],\quad C = L[\hbox{\it Eo};i,j,k,l],\quad G = m/C \] and the parameters ($a, b,\ldots,l$) are \begin{eqnarray*} &&\hspace*{-5pt}a \hspace*{-0.8pt}\,{=}\,\hspace*{-0.8pt} 0.34;\quad b\hspace*{-0.8pt} \,{=}\,\hspace*{-0.8pt} 14.793;\quad c\hspace*{-0.8pt} \,{=}\,\hspace*{-0.6pt}{-}3.06;\quad d\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}0.58;\quad e\hspace*{-0.6pt} \,{=}\,\hspace*{-0.6pt} 31.08;\quad f\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}29.868;\quad g\hspace*{-0.6pt}\,{ =}\,\hspace*{-0.6pt}{ -}1.96;\\ &&\hspace*{-5pt}h = -0.49;\quad i = -1.45;\quad j = 24.867;\quad k = -9.93;\quad l = -0.094;\quad m = -1.0295.\end{eqnarray*} The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented. We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log-log plots of the normalized rise velocity, Fr = U/(gD)1/2 Froude velocity vs. buoyancy Reynolds number, R = (D3g(*rl - *rg)*rl)1/2/*m for fixed ranges of the Eotvos number, E0 = gplD2/*s where D is the pipe diameter, *rl, *rg and *s are densities and surface tension. The plots give rise to power laws in Eo; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large R ( > 200) we find Fr = 0.34/(1 + 3805/Eo3.06)0DT58. For small R ( < 10) we find Fr = (9.494x10-3/((1+6197/Eo2.561)0.5793)) xR1.026. The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region (10 < R < 200) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation: Fr= L[R;A,B,C,G] = A/(1+(R/B)C)G where A = L[Eo;a, b, c,d], B = L[Eo;e, f, g, h], C = L[Eo; i, j, k, l], G=m/C and the parameters (a, b, ..., l) are a=0.34; b = 14.793; c =-3.06; d = 0.58; e = 31.08; f = 29.868; g = -1.96; h = -0.49; i =-1.45; j = 24.867; k = -9.93; l =-0.094; m =-1.0295. The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented. We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log–log plots of the normalized rise velocity, $\hbox{\it Fr} \,{=}\,U/(gD)^{1/2}$ Froude velocity vs. buoyancy Reynolds number, $R\,{=}\,(D^{3}g (\rho_{l}-\rho_{g}) \rho_{l})^{1/2}/\mu $ for fixed ranges of the Eötvös number, $\hbox{\it Eo}\,{=}\,g\rho_{l}D^{2}/\sigma $ where $D$ is the pipe diameter, $\rho_{l}$ , $\rho_{g}$ and $\sigma$ are densities and surface tension. The plots give rise to power laws in $Eo$ ; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large $R$ ( $>200$ ) we find \[\hbox{\it Fr} = {0.34}/(1+3805/\hbox{\it Eo}^{3.06})^{0.58}.\] For small $R$ ( $<10$ ) we find \[ \hbox{\it Fr} = \frac{9.494\times 10^{-3}}{({1+{6197}/\hbox{\it Eo}^{2.561}})^{0.5793}}R^{1.026}.\] The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region ( $10\,{<}\,R\,{<}\, 200$ ) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation: \[ \hbox{\it Fr} = L[{R;A,B,C,G}] \equiv \frac{A}{({1+({{R}/{B}})^C})^G} \] where \[ A = L[\hbox{\it Eo};a,b,c,d],\quad B = L[\hbox{\it Eo};e,f,g,h],\quad C = L[\hbox{\it Eo};i,j,k,l],\quad G = m/C \] and the parameters ( $a, b,\ldots,l$ ) are \begin{eqnarray*} &&\hspace*{-5pt}a \hspace*{-0.8pt}\,{=}\,\hspace*{-0.8pt} 0.34;\quad b\hspace*{-0.8pt} \,{=}\,\hspace*{-0.8pt} 14.793;\quad c\hspace*{-0.8pt} \,{=}\,\hspace*{-0.6pt}{-}3.06;\quad d\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}0.58;\quad e\hspace*{-0.6pt} \,{=}\,\hspace*{-0.6pt} 31.08;\quad f\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}29.868;\quad g\hspace*{-0.6pt}\,{ =}\,\hspace*{-0.6pt}{ -}1.96;\\ &&\hspace*{-5pt}h = -0.49;\quad i = -1.45;\quad j = 24.867;\quad k = -9.93;\quad l = -0.094;\quad m = -1.0295.\end{eqnarray*} The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented. |
Author | VIANA, FLAVIA PARDO, RAIMUNDO TRALLERO, JOSÉ L. YÁNEZ, RODOLFO JOSEPH, DANIEL D. |
Author_xml | – sequence: 1 givenname: FLAVIA surname: VIANA fullname: VIANA, FLAVIA organization: PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela – sequence: 2 givenname: RAIMUNDO surname: PARDO fullname: PARDO, RAIMUNDO organization: PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela – sequence: 3 givenname: RODOLFO surname: YÁNEZ fullname: YÁNEZ, RODOLFO organization: PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela – sequence: 4 givenname: JOSÉ L. surname: TRALLERO fullname: TRALLERO, JOSÉ L. organization: PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela – sequence: 5 givenname: DANIEL D. surname: JOSEPH fullname: JOSEPH, DANIEL D. organization: Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15305557$$DView record in Pascal Francis |
BookMark | eNp9kU9PGzEQxa2KSg20H6A3q1K5Ldjrf7tHiiggISpUqHqzvM44NXXsYO-i8u1xSFQkUHuaw_zevJk3u2gnpggIfaTkgBKqDr8T0raUtoQwQiSV4g2aUS77RkkudtBs3W7W_Xdot5RbQigjvZqhy5vo7yEXE7BNOUMwo08Ru5Tx-Atw9gXwPYRk_fiAk8MhxQVemIKHaRgCFOwjzmmKc7zyKyjv0VtnQoEP27qHbr6eXB-fNRffTs-Pjy4ay1U_NiA7cKoTvOOMycHNhemcVcz13CoCjImBdNYYajrLOQgFPeOst0K00go3sD20v5m7yulugjLqpS8WQjAR0lR0q3oiawwV_PQCvE1TjnU33VLS1xykqtDnLWSKNcFlE60vepX90uQHTQUjQog1RzeczamUDO4ZIXr9Bv3qDVWjXmhqlE8hj9n48F9ls1H6MsKfv1Ym_9Z1ZyW0PL3S9Prnj7MvrdRXlWdbJ7Mcsp8v4PnWf7s8ApP5qdA |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_1016_j_cej_2017_07_090 crossref_primary_10_2139_ssrn_4087097 crossref_primary_10_1103_PhysRevE_81_066308 crossref_primary_10_1016_j_ijmultiphaseflow_2016_07_002 crossref_primary_10_1016_j_ijmultiphaseflow_2017_07_009 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104670 crossref_primary_10_1017_S0022112008002516 crossref_primary_10_6110_KJACR_2013_25_5_246 crossref_primary_10_2355_isijinternational_46_647 crossref_primary_10_1016_j_jnnfm_2020_104408 crossref_primary_10_1016_j_ijmultiphaseflow_2015_09_005 crossref_primary_10_1016_j_cep_2022_109219 crossref_primary_10_1016_j_compfluid_2013_03_022 crossref_primary_10_1021_ie8004429 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105098 crossref_primary_10_1016_j_physd_2009_09_026 crossref_primary_10_1115_1_3026730 crossref_primary_10_1186_s40623_019_0992_z crossref_primary_10_1007_s40430_015_0331_7 crossref_primary_10_1016_j_epsl_2015_04_034 crossref_primary_10_1016_j_anucene_2014_07_022 crossref_primary_10_1007_s00445_019_1339_0 crossref_primary_10_1016_j_jvolgeores_2017_02_009 crossref_primary_10_1080_19942060_2016_1224737 crossref_primary_10_1016_j_jnnfm_2017_04_009 crossref_primary_10_1021_acs_iecr_8b05964 crossref_primary_10_1002_cjce_24312 crossref_primary_10_1016_j_ces_2009_04_048 crossref_primary_10_1016_j_ces_2019_04_028 crossref_primary_10_1016_j_epsl_2019_115931 crossref_primary_10_1016_j_ijmultiphaseflow_2014_03_003 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103912 crossref_primary_10_1029_2011JB008392 crossref_primary_10_1016_j_ijmultiphaseflow_2015_04_007 crossref_primary_10_1016_j_ijmultiphaseflow_2014_03_010 crossref_primary_10_1017_jfm_2022_676 crossref_primary_10_1017_jfm_2023_1021 crossref_primary_10_2118_219753_PA crossref_primary_10_1016_j_ijmultiphaseflow_2011_04_004 crossref_primary_10_1017_jfm_2018_696 crossref_primary_10_6110_KJACR_2012_24_5_401 crossref_primary_10_1016_j_flowmeasinst_2025_102885 crossref_primary_10_1016_j_ijmultiphaseflow_2016_09_021 crossref_primary_10_1016_j_ijrefrig_2015_04_014 crossref_primary_10_1016_j_expthermflusci_2021_110349 crossref_primary_10_1016_j_ijmultiphaseflow_2019_04_001 crossref_primary_10_1134_S0869864313010034 crossref_primary_10_1021_acs_iecr_3c00602 crossref_primary_10_1016_j_upstre_2021_100037 crossref_primary_10_1029_2019JB017665 crossref_primary_10_1007_s10740_006_0094_z crossref_primary_10_17122_ntj_oil_2017_4_9_25 crossref_primary_10_1063_1_4803878 crossref_primary_10_1016_j_cej_2020_125261 crossref_primary_10_1063_5_0180157 crossref_primary_10_1016_j_oceaneng_2018_04_096 crossref_primary_10_1021_acs_iecr_7b03663 crossref_primary_10_1016_j_ces_2010_03_035 crossref_primary_10_1103_PhysRevFluids_4_073903 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125422 crossref_primary_10_1515_ijcre_2020_0155 crossref_primary_10_1063_1_2711478 crossref_primary_10_1016_j_ijmultiphaseflow_2012_08_001 crossref_primary_10_1016_j_ijthermalsci_2007_02_011 crossref_primary_10_1061__ASCE_WR_1943_5452_0000695 crossref_primary_10_1134_S0040579513060134 crossref_primary_10_1017_jfm_2022_261 crossref_primary_10_2118_217433_PA crossref_primary_10_1016_j_ijmultiphaseflow_2020_103376 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103095 crossref_primary_10_1017_jfm_2018_156 crossref_primary_10_1098_rspa_2011_0476 crossref_primary_10_1016_j_carbpol_2020_117328 crossref_primary_10_1515_ijfe_2015_0138 crossref_primary_10_1016_j_petrol_2014_09_006 crossref_primary_10_1016_j_petrol_2017_10_023 crossref_primary_10_1016_j_compfluid_2021_105083 crossref_primary_10_1016_S0301_9322_03_00139_3 crossref_primary_10_1021_acs_iecr_4c01939 crossref_primary_10_1016_j_nucengdes_2012_07_014 crossref_primary_10_1016_j_ijmultiphaseflow_2004_11_010 crossref_primary_10_1016_j_ces_2016_01_020 crossref_primary_10_1080_00221686_2010_547718 crossref_primary_10_1680_wama_2007_160_1_25 crossref_primary_10_1016_j_ijmultiphaseflow_2014_08_013 crossref_primary_10_1063_5_0061694 crossref_primary_10_1016_j_cherd_2010_10_020 crossref_primary_10_1016_j_ijheatmasstransfer_2016_07_012 crossref_primary_10_1080_10618561003785775 crossref_primary_10_1061_JHEND8_HYENG_13538 crossref_primary_10_3390_en14030578 crossref_primary_10_1017_jfm_2020_596 crossref_primary_10_1029_2021JB022120 crossref_primary_10_1016_j_expthermflusci_2017_10_023 crossref_primary_10_1029_2011JB008747 crossref_primary_10_1007_s40799_021_00522_9 crossref_primary_10_1063_1_2824414 crossref_primary_10_1017_jfm_2021_432 crossref_primary_10_1016_j_ces_2016_02_016 crossref_primary_10_1016_j_ijmultiphaseflow_2011_11_001 crossref_primary_10_1016_j_ijmultiphaseflow_2012_03_007 crossref_primary_10_1016_j_petrol_2021_109182 crossref_primary_10_1029_2010JB008167 crossref_primary_10_1515_revce_2021_0026 crossref_primary_10_3390_geosciences8020042 crossref_primary_10_1016_j_expthermflusci_2014_08_004 crossref_primary_10_1016_j_ijmultiphaseflow_2014_04_006 crossref_primary_10_2118_205362_PA crossref_primary_10_1016_j_ces_2021_116895 crossref_primary_10_1103_PhysRevE_84_036320 crossref_primary_10_1007_s10064_022_02652_9 crossref_primary_10_1016_j_ijmultiphaseflow_2017_11_018 crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_034 crossref_primary_10_1016_j_expthermflusci_2020_110109 crossref_primary_10_1021_acs_iecr_8b04788 crossref_primary_10_1016_j_expthermflusci_2020_110247 crossref_primary_10_1016_j_jvolgeores_2014_12_013 crossref_primary_10_1016_j_petrol_2013_10_007 crossref_primary_10_1016_j_ijmultiphaseflow_2010_10_008 crossref_primary_10_1016_j_taml_2025_100581 crossref_primary_10_1016_j_ijmultiphaseflow_2022_103972 crossref_primary_10_1016_j_jvolgeores_2017_10_009 crossref_primary_10_1016_j_ces_2006_08_002 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104309 crossref_primary_10_1016_j_ijmultiphaseflow_2016_03_020 crossref_primary_10_2139_ssrn_4135059 crossref_primary_10_1016_j_ijmultiphaseflow_2016_11_001 crossref_primary_10_1029_2009JB000826 crossref_primary_10_1016_j_ijmultiphaseflow_2005_07_007 crossref_primary_10_1016_j_flowmeasinst_2015_10_016 crossref_primary_10_1080_00221686_2010_481839 |
ContentType | Journal Article |
Copyright | 2003 Cambridge University Press 2004 INIST-CNRS |
Copyright_xml | – notice: 2003 Cambridge University Press – notice: 2004 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/S0022112003006165 |
DatabaseName | Istex CrossRef Pascal-Francis ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep Civil Engineering Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
EndPage | 398 |
ExternalDocumentID | 1399073151 15305557 10_1017_S0022112003006165 ark_67375_6GQ_1TXVHB26_Q |
Genre | Feature |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 6TJ 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 8WZ A6W AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKAW ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTAH ABTCQ ABUWG ABZCX ABZUI ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC COF CS3 D-I DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ H~9 I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 VOH WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZY4 ZYDXJ ~02 AATMM ABVKB ABXAU ABXHF ACDLN ACRPL ADMLS ADNMO AEMFK AEUYN AFZFC AGQPQ AKMAY BSCLL PHGZM PHGZT PQGLB PUEGO AAYXX CITATION -1F -2P -2V -~6 -~N 6~7 9M5 AANRG ABDMP ABDPE ABFSI ABVFV ABVZP ACETC ACKIV ADOVH AEBPU AENCP AGLWM AI. ALEEW BESQT BMAJL CCUQV CDIZJ DC4 I.7 I.9 IQODW KAFGG NMFBF VH1 ZJOSE ZMEZD ~V1 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c479t-e68ef785484336bfd5a8fc73f94c70e335b08caa1a8c44e57e93439c5526c5fb3 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Fri Jul 11 05:00:32 EDT 2025 Sat Aug 23 12:44:19 EDT 2025 Mon Jul 21 09:15:01 EDT 2025 Tue Aug 05 12:04:17 EDT 2025 Thu Apr 24 22:51:54 EDT 2025 Sun Aug 31 06:49:12 EDT 2025 Wed Mar 13 05:41:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bubbles Bubble ascent Correlations Circular pipe Wakes Instrumentation Rising velocity Experimental study |
Language | English |
License | https://www.cambridge.org/core/terms CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c479t-e68ef785484336bfd5a8fc73f94c70e335b08caa1a8c44e57e93439c5526c5fb3 |
Notes | istex:4F72781665B05E76C659E9CBDEBE15D61651FD77 ark:/67375/6GQ-1TXVHB26-Q PII:S0022112003006165 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 210900167 |
PQPubID | 34769 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_27906616 proquest_journals_210900167 pascalfrancis_primary_15305557 crossref_primary_10_1017_S0022112003006165 crossref_citationtrail_10_1017_S0022112003006165 istex_primary_ark_67375_6GQ_1TXVHB26_Q cambridge_journals_10_1017_S0022112003006165 |
PublicationCentury | 2000 |
PublicationDate | 2003-11-10 |
PublicationDateYYYYMMDD | 2003-11-10 |
PublicationDate_xml | – month: 11 year: 2003 text: 2003-11-10 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2003 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
SSID | ssj0013097 |
Score | 2.1948955 |
Snippet | We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255... |
SourceID | proquest pascalfrancis crossref istex cambridge |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 379 |
SubjectTerms | Bubbles Buoyancy Drops and bubbles Exact sciences and technology Flows in ducts, channels, nozzles, and conduits Fluid dynamics Fundamental areas of phenomenology (including applications) Nonhomogeneous flows Physics Reynolds number Surface tension |
Title | Universal correlation for the rise velocity of long gas bubbles in round pipes |
URI | https://www.cambridge.org/core/product/identifier/S0022112003006165/type/journal_article https://api.istex.fr/ark:/67375/6GQ-1TXVHB26-Q/fulltext.pdf https://www.proquest.com/docview/210900167 https://www.proquest.com/docview/27906616 |
Volume | 494 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6xVUjwMKAwkQ2KHxAPiIg0sePkCW2wrkKsYrChvkW2a08TVVKaVuLnc5e4KdOkvjq2pfju7M-5L_cBvI0RhDgd56HNExNyqXioYqlDgb7FneMiMvQ38sUkHV_zr1Mx9dyc2tMqN3tis1HPKkPfyD_GxCAkzvynxZ-QRKMoueoVNPaghztwhnev3unZ5PuPbRohyuWmXDgCiy6t2dSMxkZqQy_HM40Ol21xhTuHVI_W-y-RJlWN6-ZawYt7e3dzII2ewoFHkuykNf0zeGDLPjzxqJL5mK378Pi_koN9eNhQPk39HCaek4FzGJLoaElxDEEsQ1DIMPgtI0KRQZzOKsfmVXnDblTN9Frrua3ZbcmWJMrEFrcLW7-A69HZ1edx6NUVQsNlvgptmlknM7yx8CRJtZsJlTkjE5dzIyObJEJHmVFqqDLDuRUSrYnoxQgRp0Y4nRzCflmV9iWwWY7WEXhR0aRekhlNubs85XYmSUViGMCHbmkLHyN10fLLZHHPEgFEm9UvjK9UToIZ811D3ndDFm2Zjl2d3zUm7Xqq5W_it0lRpOeXxfBq-mt8GqfFZQCDOzbfTi2aQmkygOONE2zfq_PUAN50TzFoKROjSlutsYvMEeoN06Od44_hUUsdJNLhK9hfLdf2NUKglR7AXjY6H0Dv5MvFt58D7_b_AJsq_y4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4amxDwwKWACIPND8ADIiJN7Dh5QIhb17Gt0qQO9S3Yrj1NVElpWgE_iv_IObmVaVLf9prYluJz-5zz-RyAFyGCEKfD1LdpZHwuFfdVKLUvULe4c1wEhm4jn4zi4Rn_OhGTLfjb3oUhWmXrEytHPS0M_SN_GxKDkDjz7-c_fWoaRcnVtoNGrRVH9s8vPLGV7w4_o3hfhuHgy_jT0G-aCviGy3Tp2zixTiYI1HkUxdpNhUqckZFLuZGBjSKhg8Qo1VeJ4dwKiR-BQdsIEcZGOB3hujdgByenZFDJ4GCdtAhS2RYnRxjTJVGrCtX4kJ6hTWEEpVC2LuVwKSTukHR_E0VTlSglV7fXuBIpqvA3uA93G9zKPtSK9gC2bN6Dew2GZY2HKHtw578Chz24WRFMTfkQRg0DBNcw1BCkpuAxhMwMIShDV2MZ0ZcMngpY4disyM_ZuSqZXmk9syW7yNmCWkCx-cXclo_g7Fq2_TFs50VunwCbpqgLAo9FmnqlJEZTpjCNuZ1K6lnR9-BNt7VZY5FlVrPZZHZFEh4E7e5npqmLTu05ZpumvO6mzOuiIJsGv6pE2o1Uix_EppMiiw9Os_548m34MYyzUw_2Lsl8vbSoyrJJD3ZbJVh_V2cXHux3b9FFUN5H5bZY4RCZIrDsx083zt-HW8PxyXF2fDg62oXbNWmR6I7PYHu5WNnnCL6Weq9SeQbfr9vG_gE9ADhV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+correlation+for+the+rise+velocity+of+long+gas+bubbles+in+round+pipes&rft.jtitle=Journal+of+fluid+mechanics&rft.au=VIANA%2C+FLAVIA&rft.au=PARDO%2C+RAIMUNDO&rft.au=Y%C3%81NEZ%2C+RODOLFO&rft.au=TRALLERO%2C+JOS%C3%89+L.&rft.date=2003-11-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=494&rft.spage=379&rft.epage=398&rft_id=info:doi/10.1017%2FS0022112003006165&rft.externalDocID=10_1017_S0022112003006165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |