Universal correlation for the rise velocity of long gas bubbles in round pipes

We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s wer...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 494; pp. 379 - 398
Main Authors VIANA, FLAVIA, PARDO, RAIMUNDO, YÁNEZ, RODOLFO, TRALLERO, JOSÉ L., JOSEPH, DANIEL D.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.11.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log–log plots of the normalized rise velocity, $\hbox{\it Fr} \,{=}\,U/(gD)^{1/2}$ Froude velocity vs. buoyancy Reynolds number, $R\,{=}\,(D^{3}g (\rho_{l}-\rho_{g}) \rho_{l})^{1/2}/\mu $ for fixed ranges of the Eötvös number, $\hbox{\it Eo}\,{=}\,g\rho_{l}D^{2}/\sigma $ where $D$ is the pipe diameter, $\rho_{l}$, $\rho_{g}$ and $\sigma$ are densities and surface tension. The plots give rise to power laws in $Eo$; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large $R$ ($>200$) we find \[\hbox{\it Fr} = {0.34}/(1+3805/\hbox{\it Eo}^{3.06})^{0.58}.\] For small $R$ ($<10$) we find \[ \hbox{\it Fr} = \frac{9.494\times 10^{-3}}{({1+{6197}/\hbox{\it Eo}^{2.561}})^{0.5793}}R^{1.026}.\] The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region ($10\,{<}\,R\,{<}\, 200$) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation: \[ \hbox{\it Fr} = L[{R;A,B,C,G}] \equiv \frac{A}{({1+({{R}/{B}})^C})^G} \] where \[ A = L[\hbox{\it Eo};a,b,c,d],\quad B = L[\hbox{\it Eo};e,f,g,h],\quad C = L[\hbox{\it Eo};i,j,k,l],\quad G = m/C \] and the parameters ($a, b,\ldots,l$) are \begin{eqnarray*} &&\hspace*{-5pt}a \hspace*{-0.8pt}\,{=}\,\hspace*{-0.8pt} 0.34;\quad b\hspace*{-0.8pt} \,{=}\,\hspace*{-0.8pt} 14.793;\quad c\hspace*{-0.8pt} \,{=}\,\hspace*{-0.6pt}{-}3.06;\quad d\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}0.58;\quad e\hspace*{-0.6pt} \,{=}\,\hspace*{-0.6pt} 31.08;\quad f\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}29.868;\quad g\hspace*{-0.6pt}\,{ =}\,\hspace*{-0.6pt}{ -}1.96;\\ &&\hspace*{-5pt}h = -0.49;\quad i = -1.45;\quad j = 24.867;\quad k = -9.93;\quad l = -0.094;\quad m = -1.0295.\end{eqnarray*} The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented.
AbstractList We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log-log plots of the normalized rise velocity, $\hbox{\it Fr} \,{=}\,U/(gD)^{1/2}$ Froude velocity vs. buoyancy Reynolds number, $R\,{=}\,(D^{3}g (\rho_{l}-\rho_{g}) \rho_{l})^{1/2}/\mu $ for fixed ranges of the Eötvös number, $\hbox{\it Eo}\,{=}\,g\rho_{l}D^{2}/\sigma $ where $D$ is the pipe diameter, $\rho_{l}$, $\rho_{g}$ and $\sigma$ are densities and surface tension. The plots give rise to power laws in $Eo$; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large $R$ ($>200$) we find\[\hbox{\it Fr} = {0.34}/(1+3805/\hbox{\it Eo}^{3.06})^{0.58}.\]For small $R$ ($<10$) we find\[ \hbox{\it Fr} = \frac{9.494\times 10^{-3}}{({1+{6197}/\hbox{\it Eo}^{2.561}})^{0.5793}}R^{1.026}.\]The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region ($10\,{<}\,R\,{<}\, 200$) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation:\[ \hbox{\it Fr} = L[{R;A,B,C,G}] \equiv \frac{A}{({1+({{R}/{B}})^C})^G} \]where\[ A = L[\hbox{\it Eo};a,b,c,d],\quad B = L[\hbox{\it Eo};e,f,g,h],\quad C = L[\hbox{\it Eo};i,j,k,l],\quad G = m/C \]and the parameters ($a, b,\ldots,l$) are\begin{eqnarray*} &&\hspace*{-5pt}a \hspace*{-0.8pt}\,{=}\,\hspace*{-0.8pt} 0.34;\quad b\hspace*{-0.8pt} \,{=}\,\hspace*{-0.8pt} 14.793;\quad c\hspace*{-0.8pt} \,{=}\,\hspace*{-0.6pt}{-}3.06;\quad d\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}0.58;\quad e\hspace*{-0.6pt} \,{=}\,\hspace*{-0.6pt} 31.08;\quad f\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}29.868;\quad g\hspace*{-0.6pt}\,{ =}\,\hspace*{-0.6pt}{ -}1.96;\\ &&\hspace*{-5pt}h = -0.49;\quad i = -1.45;\quad j = 24.867;\quad k = -9.93;\quad l = -0.094;\quad m = -1.0295.\end{eqnarray*}The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented. [PUBLICATION ABSTRACT]
We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log–log plots of the normalized rise velocity, $\hbox{\it Fr} \,{=}\,U/(gD)^{1/2}$ Froude velocity vs. buoyancy Reynolds number, $R\,{=}\,(D^{3}g (\rho_{l}-\rho_{g}) \rho_{l})^{1/2}/\mu $ for fixed ranges of the Eötvös number, $\hbox{\it Eo}\,{=}\,g\rho_{l}D^{2}/\sigma $ where $D$ is the pipe diameter, $\rho_{l}$, $\rho_{g}$ and $\sigma$ are densities and surface tension. The plots give rise to power laws in $Eo$; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large $R$ ($>200$) we find \[\hbox{\it Fr} = {0.34}/(1+3805/\hbox{\it Eo}^{3.06})^{0.58}.\] For small $R$ ($<10$) we find \[ \hbox{\it Fr} = \frac{9.494\times 10^{-3}}{({1+{6197}/\hbox{\it Eo}^{2.561}})^{0.5793}}R^{1.026}.\] The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region ($10\,{<}\,R\,{<}\, 200$) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation: \[ \hbox{\it Fr} = L[{R;A,B,C,G}] \equiv \frac{A}{({1+({{R}/{B}})^C})^G} \] where \[ A = L[\hbox{\it Eo};a,b,c,d],\quad B = L[\hbox{\it Eo};e,f,g,h],\quad C = L[\hbox{\it Eo};i,j,k,l],\quad G = m/C \] and the parameters ($a, b,\ldots,l$) are \begin{eqnarray*} &&\hspace*{-5pt}a \hspace*{-0.8pt}\,{=}\,\hspace*{-0.8pt} 0.34;\quad b\hspace*{-0.8pt} \,{=}\,\hspace*{-0.8pt} 14.793;\quad c\hspace*{-0.8pt} \,{=}\,\hspace*{-0.6pt}{-}3.06;\quad d\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}0.58;\quad e\hspace*{-0.6pt} \,{=}\,\hspace*{-0.6pt} 31.08;\quad f\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}29.868;\quad g\hspace*{-0.6pt}\,{ =}\,\hspace*{-0.6pt}{ -}1.96;\\ &&\hspace*{-5pt}h = -0.49;\quad i = -1.45;\quad j = 24.867;\quad k = -9.93;\quad l = -0.094;\quad m = -1.0295.\end{eqnarray*} The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented.
We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log-log plots of the normalized rise velocity, Fr = U/(gD)1/2 Froude velocity vs. buoyancy Reynolds number, R = (D3g(*rl - *rg)*rl)1/2/*m for fixed ranges of the Eotvos number, E0 = gplD2/*s where D is the pipe diameter, *rl, *rg and *s are densities and surface tension. The plots give rise to power laws in Eo; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large R ( > 200) we find Fr = 0.34/(1 + 3805/Eo3.06)0DT58. For small R ( < 10) we find Fr = (9.494x10-3/((1+6197/Eo2.561)0.5793)) xR1.026. The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region (10 < R < 200) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation: Fr= L[R;A,B,C,G] = A/(1+(R/B)C)G where A = L[Eo;a, b, c,d], B = L[Eo;e, f, g, h], C = L[Eo; i, j, k, l], G=m/C and the parameters (a, b, ..., l) are a=0.34; b = 14.793; c =-3.06; d = 0.58; e = 31.08; f = 29.868; g = -1.96; h = -0.49; i =-1.45; j = 24.867; k = -9.93; l =-0.094; m =-1.0295. The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented.
We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log–log plots of the normalized rise velocity, $\hbox{\it Fr} \,{=}\,U/(gD)^{1/2}$ Froude velocity vs. buoyancy Reynolds number, $R\,{=}\,(D^{3}g (\rho_{l}-\rho_{g}) \rho_{l})^{1/2}/\mu $ for fixed ranges of the Eötvös number, $\hbox{\it Eo}\,{=}\,g\rho_{l}D^{2}/\sigma $ where $D$ is the pipe diameter, $\rho_{l}$ , $\rho_{g}$ and $\sigma$ are densities and surface tension. The plots give rise to power laws in $Eo$ ; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large $R$ ( $>200$ ) we find \[\hbox{\it Fr} = {0.34}/(1+3805/\hbox{\it Eo}^{3.06})^{0.58}.\] For small $R$ ( $<10$ ) we find \[ \hbox{\it Fr} = \frac{9.494\times 10^{-3}}{({1+{6197}/\hbox{\it Eo}^{2.561}})^{0.5793}}R^{1.026}.\] The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region ( $10\,{<}\,R\,{<}\, 200$ ) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation: \[ \hbox{\it Fr} = L[{R;A,B,C,G}] \equiv \frac{A}{({1+({{R}/{B}})^C})^G} \] where \[ A = L[\hbox{\it Eo};a,b,c,d],\quad B = L[\hbox{\it Eo};e,f,g,h],\quad C = L[\hbox{\it Eo};i,j,k,l],\quad G = m/C \] and the parameters ( $a, b,\ldots,l$ ) are \begin{eqnarray*} &&\hspace*{-5pt}a \hspace*{-0.8pt}\,{=}\,\hspace*{-0.8pt} 0.34;\quad b\hspace*{-0.8pt} \,{=}\,\hspace*{-0.8pt} 14.793;\quad c\hspace*{-0.8pt} \,{=}\,\hspace*{-0.6pt}{-}3.06;\quad d\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}0.58;\quad e\hspace*{-0.6pt} \,{=}\,\hspace*{-0.6pt} 31.08;\quad f\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}29.868;\quad g\hspace*{-0.6pt}\,{ =}\,\hspace*{-0.6pt}{ -}1.96;\\ &&\hspace*{-5pt}h = -0.49;\quad i = -1.45;\quad j = 24.867;\quad k = -9.93;\quad l = -0.094;\quad m = -1.0295.\end{eqnarray*} The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented.
Author VIANA, FLAVIA
PARDO, RAIMUNDO
TRALLERO, JOSÉ L.
YÁNEZ, RODOLFO
JOSEPH, DANIEL D.
Author_xml – sequence: 1
  givenname: FLAVIA
  surname: VIANA
  fullname: VIANA, FLAVIA
  organization: PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela
– sequence: 2
  givenname: RAIMUNDO
  surname: PARDO
  fullname: PARDO, RAIMUNDO
  organization: PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela
– sequence: 3
  givenname: RODOLFO
  surname: YÁNEZ
  fullname: YÁNEZ, RODOLFO
  organization: PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela
– sequence: 4
  givenname: JOSÉ L.
  surname: TRALLERO
  fullname: TRALLERO, JOSÉ L.
  organization: PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela
– sequence: 5
  givenname: DANIEL D.
  surname: JOSEPH
  fullname: JOSEPH, DANIEL D.
  organization: Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15305557$$DView record in Pascal Francis
BookMark eNp9kU9PGzEQxa2KSg20H6A3q1K5Ldjrf7tHiiggISpUqHqzvM44NXXsYO-i8u1xSFQkUHuaw_zevJk3u2gnpggIfaTkgBKqDr8T0raUtoQwQiSV4g2aUS77RkkudtBs3W7W_Xdot5RbQigjvZqhy5vo7yEXE7BNOUMwo08Ru5Tx-Atw9gXwPYRk_fiAk8MhxQVemIKHaRgCFOwjzmmKc7zyKyjv0VtnQoEP27qHbr6eXB-fNRffTs-Pjy4ay1U_NiA7cKoTvOOMycHNhemcVcz13CoCjImBdNYYajrLOQgFPeOst0K00go3sD20v5m7yulugjLqpS8WQjAR0lR0q3oiawwV_PQCvE1TjnU33VLS1xykqtDnLWSKNcFlE60vepX90uQHTQUjQog1RzeczamUDO4ZIXr9Bv3qDVWjXmhqlE8hj9n48F9ls1H6MsKfv1Ym_9Z1ZyW0PL3S9Prnj7MvrdRXlWdbJ7Mcsp8v4PnWf7s8ApP5qdA
CODEN JFLSA7
CitedBy_id crossref_primary_10_1016_j_cej_2017_07_090
crossref_primary_10_2139_ssrn_4087097
crossref_primary_10_1103_PhysRevE_81_066308
crossref_primary_10_1016_j_ijmultiphaseflow_2016_07_002
crossref_primary_10_1016_j_ijmultiphaseflow_2017_07_009
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104670
crossref_primary_10_1017_S0022112008002516
crossref_primary_10_6110_KJACR_2013_25_5_246
crossref_primary_10_2355_isijinternational_46_647
crossref_primary_10_1016_j_jnnfm_2020_104408
crossref_primary_10_1016_j_ijmultiphaseflow_2015_09_005
crossref_primary_10_1016_j_cep_2022_109219
crossref_primary_10_1016_j_compfluid_2013_03_022
crossref_primary_10_1021_ie8004429
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105098
crossref_primary_10_1016_j_physd_2009_09_026
crossref_primary_10_1115_1_3026730
crossref_primary_10_1186_s40623_019_0992_z
crossref_primary_10_1007_s40430_015_0331_7
crossref_primary_10_1016_j_epsl_2015_04_034
crossref_primary_10_1016_j_anucene_2014_07_022
crossref_primary_10_1007_s00445_019_1339_0
crossref_primary_10_1016_j_jvolgeores_2017_02_009
crossref_primary_10_1080_19942060_2016_1224737
crossref_primary_10_1016_j_jnnfm_2017_04_009
crossref_primary_10_1021_acs_iecr_8b05964
crossref_primary_10_1002_cjce_24312
crossref_primary_10_1016_j_ces_2009_04_048
crossref_primary_10_1016_j_ces_2019_04_028
crossref_primary_10_1016_j_epsl_2019_115931
crossref_primary_10_1016_j_ijmultiphaseflow_2014_03_003
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103912
crossref_primary_10_1029_2011JB008392
crossref_primary_10_1016_j_ijmultiphaseflow_2015_04_007
crossref_primary_10_1016_j_ijmultiphaseflow_2014_03_010
crossref_primary_10_1017_jfm_2022_676
crossref_primary_10_1017_jfm_2023_1021
crossref_primary_10_2118_219753_PA
crossref_primary_10_1016_j_ijmultiphaseflow_2011_04_004
crossref_primary_10_1017_jfm_2018_696
crossref_primary_10_6110_KJACR_2012_24_5_401
crossref_primary_10_1016_j_flowmeasinst_2025_102885
crossref_primary_10_1016_j_ijmultiphaseflow_2016_09_021
crossref_primary_10_1016_j_ijrefrig_2015_04_014
crossref_primary_10_1016_j_expthermflusci_2021_110349
crossref_primary_10_1016_j_ijmultiphaseflow_2019_04_001
crossref_primary_10_1134_S0869864313010034
crossref_primary_10_1021_acs_iecr_3c00602
crossref_primary_10_1016_j_upstre_2021_100037
crossref_primary_10_1029_2019JB017665
crossref_primary_10_1007_s10740_006_0094_z
crossref_primary_10_17122_ntj_oil_2017_4_9_25
crossref_primary_10_1063_1_4803878
crossref_primary_10_1016_j_cej_2020_125261
crossref_primary_10_1063_5_0180157
crossref_primary_10_1016_j_oceaneng_2018_04_096
crossref_primary_10_1021_acs_iecr_7b03663
crossref_primary_10_1016_j_ces_2010_03_035
crossref_primary_10_1103_PhysRevFluids_4_073903
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125422
crossref_primary_10_1515_ijcre_2020_0155
crossref_primary_10_1063_1_2711478
crossref_primary_10_1016_j_ijmultiphaseflow_2012_08_001
crossref_primary_10_1016_j_ijthermalsci_2007_02_011
crossref_primary_10_1061__ASCE_WR_1943_5452_0000695
crossref_primary_10_1134_S0040579513060134
crossref_primary_10_1017_jfm_2022_261
crossref_primary_10_2118_217433_PA
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103376
crossref_primary_10_1016_j_ijmultiphaseflow_2019_103095
crossref_primary_10_1017_jfm_2018_156
crossref_primary_10_1098_rspa_2011_0476
crossref_primary_10_1016_j_carbpol_2020_117328
crossref_primary_10_1515_ijfe_2015_0138
crossref_primary_10_1016_j_petrol_2014_09_006
crossref_primary_10_1016_j_petrol_2017_10_023
crossref_primary_10_1016_j_compfluid_2021_105083
crossref_primary_10_1016_S0301_9322_03_00139_3
crossref_primary_10_1021_acs_iecr_4c01939
crossref_primary_10_1016_j_nucengdes_2012_07_014
crossref_primary_10_1016_j_ijmultiphaseflow_2004_11_010
crossref_primary_10_1016_j_ces_2016_01_020
crossref_primary_10_1080_00221686_2010_547718
crossref_primary_10_1680_wama_2007_160_1_25
crossref_primary_10_1016_j_ijmultiphaseflow_2014_08_013
crossref_primary_10_1063_5_0061694
crossref_primary_10_1016_j_cherd_2010_10_020
crossref_primary_10_1016_j_ijheatmasstransfer_2016_07_012
crossref_primary_10_1080_10618561003785775
crossref_primary_10_1061_JHEND8_HYENG_13538
crossref_primary_10_3390_en14030578
crossref_primary_10_1017_jfm_2020_596
crossref_primary_10_1029_2021JB022120
crossref_primary_10_1016_j_expthermflusci_2017_10_023
crossref_primary_10_1029_2011JB008747
crossref_primary_10_1007_s40799_021_00522_9
crossref_primary_10_1063_1_2824414
crossref_primary_10_1017_jfm_2021_432
crossref_primary_10_1016_j_ces_2016_02_016
crossref_primary_10_1016_j_ijmultiphaseflow_2011_11_001
crossref_primary_10_1016_j_ijmultiphaseflow_2012_03_007
crossref_primary_10_1016_j_petrol_2021_109182
crossref_primary_10_1029_2010JB008167
crossref_primary_10_1515_revce_2021_0026
crossref_primary_10_3390_geosciences8020042
crossref_primary_10_1016_j_expthermflusci_2014_08_004
crossref_primary_10_1016_j_ijmultiphaseflow_2014_04_006
crossref_primary_10_2118_205362_PA
crossref_primary_10_1016_j_ces_2021_116895
crossref_primary_10_1103_PhysRevE_84_036320
crossref_primary_10_1007_s10064_022_02652_9
crossref_primary_10_1016_j_ijmultiphaseflow_2017_11_018
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_034
crossref_primary_10_1016_j_expthermflusci_2020_110109
crossref_primary_10_1021_acs_iecr_8b04788
crossref_primary_10_1016_j_expthermflusci_2020_110247
crossref_primary_10_1016_j_jvolgeores_2014_12_013
crossref_primary_10_1016_j_petrol_2013_10_007
crossref_primary_10_1016_j_ijmultiphaseflow_2010_10_008
crossref_primary_10_1016_j_taml_2025_100581
crossref_primary_10_1016_j_ijmultiphaseflow_2022_103972
crossref_primary_10_1016_j_jvolgeores_2017_10_009
crossref_primary_10_1016_j_ces_2006_08_002
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104309
crossref_primary_10_1016_j_ijmultiphaseflow_2016_03_020
crossref_primary_10_2139_ssrn_4135059
crossref_primary_10_1016_j_ijmultiphaseflow_2016_11_001
crossref_primary_10_1029_2009JB000826
crossref_primary_10_1016_j_ijmultiphaseflow_2005_07_007
crossref_primary_10_1016_j_flowmeasinst_2015_10_016
crossref_primary_10_1080_00221686_2010_481839
ContentType Journal Article
Copyright 2003 Cambridge University Press
2004 INIST-CNRS
Copyright_xml – notice: 2003 Cambridge University Press
– notice: 2004 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0022112003006165
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

Civil Engineering Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 398
ExternalDocumentID 1399073151
15305557
10_1017_S0022112003006165
ark_67375_6GQ_1TXVHB26_Q
Genre Feature
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
6TJ
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
8WZ
A6W
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKAW
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABZCX
ABZUI
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
H~9
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
VOH
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZY4
ZYDXJ
~02
AATMM
ABVKB
ABXAU
ABXHF
ACDLN
ACRPL
ADMLS
ADNMO
AEMFK
AEUYN
AFZFC
AGQPQ
AKMAY
BSCLL
PHGZM
PHGZT
PQGLB
PUEGO
AAYXX
CITATION
-1F
-2P
-2V
-~6
-~N
6~7
9M5
AANRG
ABDMP
ABDPE
ABFSI
ABVFV
ABVZP
ACETC
ACKIV
ADOVH
AEBPU
AENCP
AGLWM
AI.
ALEEW
BESQT
BMAJL
CCUQV
CDIZJ
DC4
I.7
I.9
IQODW
KAFGG
NMFBF
VH1
ZJOSE
ZMEZD
~V1
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c479t-e68ef785484336bfd5a8fc73f94c70e335b08caa1a8c44e57e93439c5526c5fb3
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Fri Jul 11 05:00:32 EDT 2025
Sat Aug 23 12:44:19 EDT 2025
Mon Jul 21 09:15:01 EDT 2025
Tue Aug 05 12:04:17 EDT 2025
Thu Apr 24 22:51:54 EDT 2025
Sun Aug 31 06:49:12 EDT 2025
Wed Mar 13 05:41:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Bubbles
Bubble ascent
Correlations
Circular pipe
Wakes
Instrumentation
Rising velocity
Experimental study
Language English
License https://www.cambridge.org/core/terms
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-e68ef785484336bfd5a8fc73f94c70e335b08caa1a8c44e57e93439c5526c5fb3
Notes istex:4F72781665B05E76C659E9CBDEBE15D61651FD77
ark:/67375/6GQ-1TXVHB26-Q
PII:S0022112003006165
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 210900167
PQPubID 34769
PageCount 20
ParticipantIDs proquest_miscellaneous_27906616
proquest_journals_210900167
pascalfrancis_primary_15305557
crossref_primary_10_1017_S0022112003006165
crossref_citationtrail_10_1017_S0022112003006165
istex_primary_ark_67375_6GQ_1TXVHB26_Q
cambridge_journals_10_1017_S0022112003006165
PublicationCentury 2000
PublicationDate 2003-11-10
PublicationDateYYYYMMDD 2003-11-10
PublicationDate_xml – month: 11
  year: 2003
  text: 2003-11-10
  day: 10
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2003
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0013097
Score 2.1948955
Snippet We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255...
SourceID proquest
pascalfrancis
crossref
istex
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 379
SubjectTerms Bubbles
Buoyancy
Drops and bubbles
Exact sciences and technology
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Nonhomogeneous flows
Physics
Reynolds number
Surface tension
Title Universal correlation for the rise velocity of long gas bubbles in round pipes
URI https://www.cambridge.org/core/product/identifier/S0022112003006165/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-1TXVHB26-Q/fulltext.pdf
https://www.proquest.com/docview/210900167
https://www.proquest.com/docview/27906616
Volume 494
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED6xVUjwMKAwkQ2KHxAPiIg0sePkCW2wrkKsYrChvkW2a08TVVKaVuLnc5e4KdOkvjq2pfju7M-5L_cBvI0RhDgd56HNExNyqXioYqlDgb7FneMiMvQ38sUkHV_zr1Mx9dyc2tMqN3tis1HPKkPfyD_GxCAkzvynxZ-QRKMoueoVNPaghztwhnev3unZ5PuPbRohyuWmXDgCiy6t2dSMxkZqQy_HM40Ol21xhTuHVI_W-y-RJlWN6-ZawYt7e3dzII2ewoFHkuykNf0zeGDLPjzxqJL5mK378Pi_koN9eNhQPk39HCaek4FzGJLoaElxDEEsQ1DIMPgtI0KRQZzOKsfmVXnDblTN9Frrua3ZbcmWJMrEFrcLW7-A69HZ1edx6NUVQsNlvgptmlknM7yx8CRJtZsJlTkjE5dzIyObJEJHmVFqqDLDuRUSrYnoxQgRp0Y4nRzCflmV9iWwWY7WEXhR0aRekhlNubs85XYmSUViGMCHbmkLHyN10fLLZHHPEgFEm9UvjK9UToIZ811D3ndDFm2Zjl2d3zUm7Xqq5W_it0lRpOeXxfBq-mt8GqfFZQCDOzbfTi2aQmkygOONE2zfq_PUAN50TzFoKROjSlutsYvMEeoN06Od44_hUUsdJNLhK9hfLdf2NUKglR7AXjY6H0Dv5MvFt58D7_b_AJsq_y4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4amxDwwKWACIPND8ADIiJN7Dh5QIhb17Gt0qQO9S3Yrj1NVElpWgE_iv_IObmVaVLf9prYluJz-5zz-RyAFyGCEKfD1LdpZHwuFfdVKLUvULe4c1wEhm4jn4zi4Rn_OhGTLfjb3oUhWmXrEytHPS0M_SN_GxKDkDjz7-c_fWoaRcnVtoNGrRVH9s8vPLGV7w4_o3hfhuHgy_jT0G-aCviGy3Tp2zixTiYI1HkUxdpNhUqckZFLuZGBjSKhg8Qo1VeJ4dwKiR-BQdsIEcZGOB3hujdgByenZFDJ4GCdtAhS2RYnRxjTJVGrCtX4kJ6hTWEEpVC2LuVwKSTukHR_E0VTlSglV7fXuBIpqvA3uA93G9zKPtSK9gC2bN6Dew2GZY2HKHtw578Chz24WRFMTfkQRg0DBNcw1BCkpuAxhMwMIShDV2MZ0ZcMngpY4disyM_ZuSqZXmk9syW7yNmCWkCx-cXclo_g7Fq2_TFs50VunwCbpqgLAo9FmnqlJEZTpjCNuZ1K6lnR9-BNt7VZY5FlVrPZZHZFEh4E7e5npqmLTu05ZpumvO6mzOuiIJsGv6pE2o1Uix_EppMiiw9Os_548m34MYyzUw_2Lsl8vbSoyrJJD3ZbJVh_V2cXHux3b9FFUN5H5bZY4RCZIrDsx083zt-HW8PxyXF2fDg62oXbNWmR6I7PYHu5WNnnCL6Weq9SeQbfr9vG_gE9ADhV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+correlation+for+the+rise+velocity+of+long+gas+bubbles+in+round+pipes&rft.jtitle=Journal+of+fluid+mechanics&rft.au=VIANA%2C+FLAVIA&rft.au=PARDO%2C+RAIMUNDO&rft.au=Y%C3%81NEZ%2C+RODOLFO&rft.au=TRALLERO%2C+JOS%C3%89+L.&rft.date=2003-11-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=494&rft.spage=379&rft.epage=398&rft_id=info:doi/10.1017%2FS0022112003006165&rft.externalDocID=10_1017_S0022112003006165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon