Action Potential Morphology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Does Not Predict Cardiac Chamber Specificity and Is Dependent on Cell Density
Previous studies investigating human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have proposed the distinction of heart chamber-specific (atrial, ventricular, pacemaker) electrophysiological phenotypes based on action potential (AP) morphology. This suggestion has been based on d...
Saved in:
Published in | Biophysical journal Vol. 108; no. 1; pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.01.2015
Biophysical Society The Biophysical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous studies investigating human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have proposed the distinction of heart chamber-specific (atrial, ventricular, pacemaker) electrophysiological phenotypes based on action potential (AP) morphology. This suggestion has been based on data acquired using techniques that allow measurements from only a small number of cells and at low seeding densities. It has also been observed that density of culture affects the properties of iPSC-CMs. Here we systematically analyze AP morphology from iPSC-CMs at two seeding densities: 60,000 cells/well (confluent monolayer) and 15,000 cells/well (sparsely-seeded) using a noninvasive optical method. The confluent cells (n = 360) demonstrate a series of AP morphologies on a normally distributed spectrum with no evidence for specific subpopulations. The AP morphologies of sparsely seeded cells (n = 32) displayed a significantly different distribution, but even in this case there is no clear evidence of chamber-specificity. Reduction in gap junction conductance using carbenoxolone only minimally affected APD distribution in confluent cells. These data suggest that iPSC-CMs possess a sui generis AP morphology, and when observed in different seeding densities may encompass any shape including those resembling chamber-specific subtypes. These results may be explained by different functional maturation due to culture conditions. |
---|---|
AbstractList | Previous studies investigating human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have proposed the distinction of heart chamber-specific (atrial, ventricular, pacemaker) electrophysiological phenotypes based on action potential (AP) morphology. This suggestion has been based on data acquired using techniques that allow measurements from only a small number of cells and at low seeding densities. It has also been observed that density of culture affects the properties of iPSC-CMs. Here we systematically analyze AP morphology from iPSC-CMs at two seeding densities: 60,000 cells/well (confluent monolayer) and 15,000 cells/well (sparsely-seeded) using a noninvasive optical method. The confluent cells (n = 360) demonstrate a series of AP morphologies on a normally distributed spectrum with no evidence for specific subpopulations. The AP morphologies of sparsely seeded cells (n = 32) displayed a significantly different distribution, but even in this case there is no clear evidence of chamber-specificity. Reduction in gap junction conductance using carbenoxolone only minimally affected APD distribution in confluent cells. These data suggest that iPSC-CMs possess a sui generis AP morphology, and when observed in different seeding densities may encompass any shape including those resembling chamber-specific subtypes. These results may be explained by different functional maturation due to culture conditions. Previous studies investigating human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have proposed the distinction of heart chamber-specific (atrial, ventricular, pacemaker) electrophysiological phenotypes based on action potential (AP) morphology. This suggestion has been based on data acquired using techniques that allow measurements from only a small number of cells and at low seeding densities. It has also been observed that density of culture affects the properties of iPSC-CMs. Here we systematically analyze AP morphology from iPSC-CMs at two seeding densities: 60,000 cells/well (confluent monolayer) and 15,000 cells/well (sparsely-seeded) using a noninvasive optical method. The confluent cells (n = 360) demonstrate a series of AP morphologies on a normally distributed spectrum with no evidence for specific subpopulations. The AP morphologies of sparsely seeded cells (n = 32) displayed a significantly different distribution, but even in this case there is no clear evidence of chamber-specificity. Reduction in gap junction conductance using carbenoxolone only minimally affected APD distribution in confluent cells. These data suggest that iPSC-CMs possess a sui generis AP morphology, and when observed in different seeding densities may encompass any shape including those resembling chamber-specific subtypes. These results may be explained by different functional maturation due to culture conditions.Previous studies investigating human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have proposed the distinction of heart chamber-specific (atrial, ventricular, pacemaker) electrophysiological phenotypes based on action potential (AP) morphology. This suggestion has been based on data acquired using techniques that allow measurements from only a small number of cells and at low seeding densities. It has also been observed that density of culture affects the properties of iPSC-CMs. Here we systematically analyze AP morphology from iPSC-CMs at two seeding densities: 60,000 cells/well (confluent monolayer) and 15,000 cells/well (sparsely-seeded) using a noninvasive optical method. The confluent cells (n = 360) demonstrate a series of AP morphologies on a normally distributed spectrum with no evidence for specific subpopulations. The AP morphologies of sparsely seeded cells (n = 32) displayed a significantly different distribution, but even in this case there is no clear evidence of chamber-specificity. Reduction in gap junction conductance using carbenoxolone only minimally affected APD distribution in confluent cells. These data suggest that iPSC-CMs possess a sui generis AP morphology, and when observed in different seeding densities may encompass any shape including those resembling chamber-specific subtypes. These results may be explained by different functional maturation due to culture conditions. Previous studies investigating human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have proposed the distinction of heart chamber-specific (atrial, ventricular, pacemaker) electrophysiological phenotypes based on action potential (AP) morphology. This suggestion has been based on data acquired using techniques that allow measurements from only a small number of cells and at low seeding densities. It has also been observed that density of culture affects the properties of iPSC-CMs. Here we systematically analyze AP morphology from iPSC-CMs at two seeding densities: 60,000 cells/well (confluent monolayer) and 15,000 cells/well (sparsely-seeded) using a noninvasive optical method. The confluent cells ( n = 360) demonstrate a series of AP morphologies on a normally distributed spectrum with no evidence for specific subpopulations. The AP morphologies of sparsely seeded cells ( n = 32) displayed a significantly different distribution, but even in this case there is no clear evidence of chamber-specificity. Reduction in gap junction conductance using carbenoxolone only minimally affected APD distribution in confluent cells. These data suggest that iPSC-CMs possess a sui generis AP morphology, and when observed in different seeding densities may encompass any shape including those resembling chamber-specific subtypes. These results may be explained by different functional maturation due to culture conditions. |
Author | Du, David T.M. Hellen, Nicola Terracciano, Cesare M.N. Kane, Christopher |
AuthorAffiliation | 1 Myocardial Function Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom |
AuthorAffiliation_xml | – name: 1 Myocardial Function Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom |
Author_xml | – sequence: 1 givenname: David T.M. surname: Du fullname: Du, David T.M. organization: Myocardial Function Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom – sequence: 2 givenname: Nicola surname: Hellen fullname: Hellen, Nicola organization: Myocardial Function Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom – sequence: 3 givenname: Christopher surname: Kane fullname: Kane, Christopher organization: Myocardial Function Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom – sequence: 4 givenname: Cesare M.N. surname: Terracciano fullname: Terracciano, Cesare M.N. email: c.terracciano@imperial.ac.uk organization: Myocardial Function Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25564842$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksFu1DAQhi1URLeFB-CCLHHhksVO7NgRElK1BbpSgZUKZ8uxJ12vEjt1kpX2iXhNHLZU0EMvtuX5_l8zmv8MnfjgAaHXlCwpoeX73bLud8ucULakdEmIfIYWlLM8S8_yBC0IIWVWsIqforNh2BFCc07oC3Sac14yyfIF-nVhRhc83oQR_Oh0i7-G2G9DG24PODT4auq0x2tvJwMWb9opuv4Pim9G6PAK2ja7hOj2qbrS0brQHYI5jDDgy5COb2HEmwjWmfFY1wavtrqrIeKbHoxrnHHjAWtv8TppoAdvZ_vU02yefvyQgJfoeaPbAV7d3-fo5-dPP1ZX2fX3L-vVxXVmmKjGDIqmMlYzZriRwjDW8KpoivQhiOUFo9KWshamNnUjCAVWSy1lXutKCMFZUZyjj0fffqo7sCa1EnWr-ug6HQ8qaKf-r3i3Vbdhr1guS16xZPDu3iCGuwmGUXVuMGkS7SFMg6Il40KUgsuEvn2E7sIUfRpvpiSlhJE8UW_-7eihlb87TAA9AiaGYYjQPCCUqDknaqdSTtScE0WpSuFIGvFIk7ag5ySkoVz7pPLDUQlpC3sHUQ3GgU_pcBHMqGxwT6h_A_ub2gA |
CitedBy_id | crossref_primary_10_1089_scd_2018_0210 crossref_primary_10_3390_ijms19113296 crossref_primary_10_3390_cells8111331 crossref_primary_10_3390_life14111370 crossref_primary_10_1016_j_vascn_2016_09_001 crossref_primary_10_1016_j_stemcr_2016_12_012 crossref_primary_10_1016_j_stemcr_2018_10_008 crossref_primary_10_1093_cvr_cvab045 crossref_primary_10_1371_journal_pone_0172671 crossref_primary_10_3390_cells13242045 crossref_primary_10_1016_j_yjmcc_2015_10_023 crossref_primary_10_3390_ijms231810940 crossref_primary_10_1016_j_vascn_2020_106915 crossref_primary_10_1038_srep18544 crossref_primary_10_3390_cells10123370 crossref_primary_10_1152_ajpheart_00148_2020 crossref_primary_10_1016_j_stemcr_2018_01_012 crossref_primary_10_1007_s12551_023_01055_8 crossref_primary_10_1089_scd_2019_0098 crossref_primary_10_1186_s13148_019_0679_0 crossref_primary_10_1038_s41598_017_14198_y crossref_primary_10_3390_ijms19113361 crossref_primary_10_1016_j_bpj_2015_08_052 crossref_primary_10_3389_fcell_2015_00059 crossref_primary_10_1016_j_bbamcr_2015_10_014 crossref_primary_10_1093_eurheartj_ehy249 crossref_primary_10_1093_toxsci_kfw171 crossref_primary_10_1016_j_vascn_2015_06_004 crossref_primary_10_1093_toxsci_kfv128 crossref_primary_10_1007_s00395_022_00973_0 crossref_primary_10_1371_journal_pone_0221763 crossref_primary_10_1016_j_vascn_2017_12_002 crossref_primary_10_1016_j_stemcr_2020_10_005 crossref_primary_10_1016_j_tcm_2016_05_001 crossref_primary_10_1016_j_bpj_2015_06_070 crossref_primary_10_3389_fbioe_2020_00955 crossref_primary_10_1016_j_mbs_2021_108567 crossref_primary_10_3389_fphys_2017_00986 crossref_primary_10_1016_j_vascn_2016_05_003 crossref_primary_10_1089_scd_2018_0231 crossref_primary_10_1007_s10237_015_0674_0 crossref_primary_10_1016_j_bpj_2015_11_026 crossref_primary_10_3389_fphys_2023_1132165 crossref_primary_10_23868_201707020 crossref_primary_10_1007_s00392_018_1377_1 crossref_primary_10_1007_s12551_023_01099_w crossref_primary_10_1038_s41467_022_29726_2 crossref_primary_10_1089_scd_2019_0030 crossref_primary_10_1161_CIRCRESAHA_117_305365 crossref_primary_10_1242_dev_133652 crossref_primary_10_1113_JP284618 crossref_primary_10_2147_IJN_S443117 crossref_primary_10_1371_journal_pone_0174181 crossref_primary_10_2174_1389201020666190405182251 crossref_primary_10_1089_scd_2016_0073 crossref_primary_10_1139_cjpp_2016_0726 crossref_primary_10_1186_s13287_020_01919_w crossref_primary_10_1016_j_biomaterials_2023_122363 crossref_primary_10_1093_toxsci_kfaa058 crossref_primary_10_1152_ajpheart_00793_2015 crossref_primary_10_1089_scd_2017_0172 crossref_primary_10_1089_scd_2017_0054 crossref_primary_10_1002_stem_2649 crossref_primary_10_1016_j_cels_2018_08_013 crossref_primary_10_1007_s11538_018_0516_1 crossref_primary_10_1113_JP277724 crossref_primary_10_1152_ajpheart_00599_2023 crossref_primary_10_31083_j_fbs1404031 |
Cites_doi | 10.1152/ajpheart.00694.2011 10.1161/CIRCRESAHA.108.192237 10.1016/j.pbiomolbio.2012.07.012 10.1161/CIRCEP.113.000848 10.1152/ajpheart.00819.2012 10.1056/NEJMoa0908679 10.1371/journal.pone.0018293 10.1038/nature09747 10.1016/j.scr.2013.09.003 10.1016/j.stem.2009.08.021 10.1038/cr.2011.171 |
ContentType | Journal Article |
Copyright | 2015 Biophysical Society Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved. Copyright Biophysical Society Jan 6, 2015 2015 by the Biophysical Society. 2015 Biophysical Society |
Copyright_xml | – notice: 2015 Biophysical Society – notice: Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved. – notice: Copyright Biophysical Society Jan 6, 2015 – notice: 2015 by the Biophysical Society. 2015 Biophysical Society |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 7TM 7U9 8FD FR3 H94 K9. P64 7X8 5PM |
DOI | 10.1016/j.bpj.2014.11.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1542-0086 |
EndPage | 4 |
ExternalDocumentID | PMC4286594 3568999071 25564842 10_1016_j_bpj_2014_11_008 S0006349514011916 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: British Heart Foundation grantid: RG/14/1/30588 – fundername: Medical Research Council grantid: MR/L012618/1 – fundername: British Heart Foundation grantid: FS/13/46/30282 |
GroupedDBID | --- -DZ -~X .55 0R~ 23N 2WC 4.4 457 5GY 5RE 62- 6I. 6J9 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGHFR AGKMS AHMBA AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FRP HYE IH2 IXB JIG KQ8 L7B M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ WOW WQ6 X7M YNY YWH ZA5 ~02 --K .GJ 3O- 53G 6TJ 7X2 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AEUYN AFKRA AFPUW AGCQF AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP ALIPV APXCP ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION DWQXO FEDTE FGOYB FYUFA G-2 GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HVGLF HX~ HZ~ LK8 M0K M1P M2O M2P M2Q M7P MVM OZT P62 PHGZM PHGZT PQQKQ PRG PROAC PSQYO Q2X R2- S0X UKHRP UKR VH1 YYP ZGI ZXP ~KM CGR CUY CVF ECM EFKBS EIF NPM 7QO 7QP 7TK 7TM 7U9 8FD FR3 H94 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c479t-e3f9cda44c5c87c44f593f3a4470d53418d68b7cbcbf701e4b8a882ba97775433 |
IEDL.DBID | IXB |
ISSN | 0006-3495 1542-0086 |
IngestDate | Thu Aug 21 18:09:56 EDT 2025 Fri Jul 11 04:21:58 EDT 2025 Fri Jul 25 10:51:08 EDT 2025 Mon Jul 21 05:49:14 EDT 2025 Tue Jul 01 03:05:46 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Fri Feb 23 02:32:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c479t-e3f9cda44c5c87c44f593f3a4470d53418d68b7cbcbf701e4b8a882ba97775433 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006349514011916 |
PMID | 25564842 |
PQID | 1648110402 |
PQPubID | 7454 |
PageCount | 4 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4286594 proquest_miscellaneous_1645776758 proquest_journals_1648110402 pubmed_primary_25564842 crossref_primary_10_1016_j_bpj_2014_11_008 crossref_citationtrail_10_1016_j_bpj_2014_11_008 elsevier_sciencedirect_doi_10_1016_j_bpj_2014_11_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-06 |
PublicationDateYYYYMMDD | 2015-01-06 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biophysical journal |
PublicationTitleAlternate | Biophys J |
PublicationYear | 2015 |
Publisher | Elsevier Inc Biophysical Society The Biophysical Society |
Publisher_xml | – name: Elsevier Inc – name: Biophysical Society – name: The Biophysical Society |
References | Xu, Yi, Chien (bib8) 2012; 22 Burridge, Thompson, Zambidis (bib2) 2011; 6 Itzhaki, Maizels, Gepstein (bib4) 2011; 471 Blazeski, Zhu, Tung (bib10) 2012; 110 Moretti, Bellin, Laugwitz (bib7) 2010; 363 Haase, Olmer, Martin (bib3) 2009; 5 Ma, Guo, January (bib6) 2011; 301 Zhang, Wilson, Kamp (bib9) 2009; 104 Bizy, Guerrero-Serna, Jalife (bib1) 2013; 11 Ivashchenko, Pipes, Willette (bib5) 2013; 305 Dhillon, Gray, Peters (bib11) 2013; 6 Xu (10.1016/j.bpj.2014.11.008_bib8) 2012; 22 Blazeski (10.1016/j.bpj.2014.11.008_bib10) 2012; 110 Ma (10.1016/j.bpj.2014.11.008_bib6) 2011; 301 Burridge (10.1016/j.bpj.2014.11.008_bib2) 2011; 6 Ivashchenko (10.1016/j.bpj.2014.11.008_bib5) 2013; 305 Moretti (10.1016/j.bpj.2014.11.008_bib7) 2010; 363 Bizy (10.1016/j.bpj.2014.11.008_bib1) 2013; 11 Itzhaki (10.1016/j.bpj.2014.11.008_bib4) 2011; 471 Zhang (10.1016/j.bpj.2014.11.008_bib9) 2009; 104 Dhillon (10.1016/j.bpj.2014.11.008_bib11) 2013; 6 Haase (10.1016/j.bpj.2014.11.008_bib3) 2009; 5 26745431 - Biophys J. 2016 Jan 5;110(1):281-3. doi: 10.1016/j.bpj.2015.08.052. 26745430 - Biophys J. 2016 Jan 5;110(1):278-80. doi: 10.1016/j.bpj.2015.06.070. |
References_xml | – volume: 11 start-page: 1335 year: 2013 end-page: 1347 ident: bib1 article-title: Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes publication-title: Stem Cell Res. (Amst.) – volume: 6 start-page: e18293 year: 2011 ident: bib2 article-title: A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability publication-title: PLoS ONE – volume: 6 start-page: 1208 year: 2013 end-page: 1214 ident: bib11 article-title: Relationship between gap-junctional conductance and conduction velocity in mammalian myocardium publication-title: Circ. Arrhythm. Electrophysiol – volume: 471 start-page: 225 year: 2011 end-page: 229 ident: bib4 article-title: Modelling the long QT syndrome with induced pluripotent stem cells publication-title: Nature – volume: 104 start-page: e30 year: 2009 end-page: e41 ident: bib9 article-title: Functional cardiomyocytes derived from human induced pluripotent stem cells publication-title: Circ. Res. – volume: 110 start-page: 178 year: 2012 end-page: 195 ident: bib10 article-title: Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells publication-title: Prog. Biophys. Mol. Biol. – volume: 301 start-page: H2006 year: 2011 end-page: H2017 ident: bib6 article-title: High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 363 start-page: 1397 year: 2010 end-page: 1409 ident: bib7 article-title: Patient-specific induced pluripotent stem-cell models for long-QT syndrome publication-title: N. Engl. J. Med. – volume: 305 start-page: H913 year: 2013 end-page: H922 ident: bib5 article-title: Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 22 start-page: 142 year: 2012 end-page: 154 ident: bib8 article-title: Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature publication-title: Cell Res. – volume: 5 start-page: 434 year: 2009 end-page: 441 ident: bib3 article-title: Generation of induced pluripotent stem cells from human cord blood publication-title: Cell Stem Cell – volume: 301 start-page: H2006 year: 2011 ident: 10.1016/j.bpj.2014.11.008_bib6 article-title: High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00694.2011 – volume: 104 start-page: e30 year: 2009 ident: 10.1016/j.bpj.2014.11.008_bib9 article-title: Functional cardiomyocytes derived from human induced pluripotent stem cells publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.108.192237 – volume: 110 start-page: 178 year: 2012 ident: 10.1016/j.bpj.2014.11.008_bib10 article-title: Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2012.07.012 – volume: 6 start-page: 1208 year: 2013 ident: 10.1016/j.bpj.2014.11.008_bib11 article-title: Relationship between gap-junctional conductance and conduction velocity in mammalian myocardium publication-title: Circ. Arrhythm. Electrophysiol doi: 10.1161/CIRCEP.113.000848 – volume: 305 start-page: H913 year: 2013 ident: 10.1016/j.bpj.2014.11.008_bib5 article-title: Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00819.2012 – volume: 363 start-page: 1397 year: 2010 ident: 10.1016/j.bpj.2014.11.008_bib7 article-title: Patient-specific induced pluripotent stem-cell models for long-QT syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0908679 – volume: 6 start-page: e18293 year: 2011 ident: 10.1016/j.bpj.2014.11.008_bib2 article-title: A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability publication-title: PLoS ONE doi: 10.1371/journal.pone.0018293 – volume: 471 start-page: 225 year: 2011 ident: 10.1016/j.bpj.2014.11.008_bib4 article-title: Modelling the long QT syndrome with induced pluripotent stem cells publication-title: Nature doi: 10.1038/nature09747 – volume: 11 start-page: 1335 year: 2013 ident: 10.1016/j.bpj.2014.11.008_bib1 article-title: Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes publication-title: Stem Cell Res. (Amst.) doi: 10.1016/j.scr.2013.09.003 – volume: 5 start-page: 434 year: 2009 ident: 10.1016/j.bpj.2014.11.008_bib3 article-title: Generation of induced pluripotent stem cells from human cord blood publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.08.021 – volume: 22 start-page: 142 year: 2012 ident: 10.1016/j.bpj.2014.11.008_bib8 article-title: Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature publication-title: Cell Res. doi: 10.1038/cr.2011.171 – reference: 26745431 - Biophys J. 2016 Jan 5;110(1):281-3. doi: 10.1016/j.bpj.2015.08.052. – reference: 26745430 - Biophys J. 2016 Jan 5;110(1):278-80. doi: 10.1016/j.bpj.2015.06.070. |
SSID | ssj0012501 |
Score | 2.4199378 |
Snippet | Previous studies investigating human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have proposed the distinction of heart chamber-specific... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Action Potentials - drug effects Action Potentials - physiology Biophysical Letter Carbenoxolone - pharmacology Cardiomyocytes Cardiovascular Agents - pharmacology Cell Count Cell culture Cell Culture Techniques Cells, Cultured Gap Junctions - drug effects Gap Junctions - physiology Genotype & phenotype Human subjects Humans Induced Pluripotent Stem Cells - drug effects Induced Pluripotent Stem Cells - physiology Linear Models Morphology Myocytes, Cardiac - drug effects Myocytes, Cardiac - physiology Optical Imaging Stem cells Subpopulations |
Title | Action Potential Morphology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Does Not Predict Cardiac Chamber Specificity and Is Dependent on Cell Density |
URI | https://dx.doi.org/10.1016/j.bpj.2014.11.008 https://www.ncbi.nlm.nih.gov/pubmed/25564842 https://www.proquest.com/docview/1648110402 https://www.proquest.com/docview/1645776758 https://pubmed.ncbi.nlm.nih.gov/PMC4286594 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelMNjL2NZ9ZOuGCnsaeE1iyZYfO3el3WjJ2Ap5M5Is05TUDp0zyF-0f3O_k2WzrKMPezFYdxKy7qS7s-6DsXe6nCinNKyTqYOBkk1lpKyWUSwzyldlJiajeOfzi-T0Unyey_kOy_tYGHKrDGd_d6b70zq0HIbVPFwtFhTjC_EK_Z5MBFgdlHY7FsoH8c0_DjcJEPGhal4SEXZ_s-l9vMzqmry7xAdK5EkVJv8tm-7qnn-7UP4hk04es0dBmeRH3XyfsB1XP2UPuvKSmz3268gHLfBZ05JPEDDPGyyrh_Km4v4HPqfiHVgGPluucYB4VP6tdTc8d8tldAwO_Qlo7v1WbzaN3UA55ccNHhdNy2e3dNPTdnBteX6lqcQI93XtKTtFu-G6LvkZ-oR6uy3HnGhwtNTkEvKMXZ58-p6fRqEwQ2RFmrWRi6vMlloIK61KrRCVzOIqRkM6LiXkoioTZVJrrKnS8cQJA25QU6OhbKZSxPFztls3tXvJeKVM4sAdWVphHCWNMJUp5dhCbTGxdiM27klS2JC1nIpnLIvePe26ABULoiKsmQJUHLH3Q5dVl7LjPmTR07nY4rsCIuW-bvs9TxRh0_8oYHkqaFOwyEfsYABju9IdjK5ds_Y4khIoSQzxomOhYZKUDU4ogd7pFnMNCJQKfBtSL658SnBBAcaZePV_X_OaPcSb9H-Wkn22296u3RvoWq156zcTnl--qt9ELSro |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKEaIXVF5toICROCEtTbL22nssW6oEmigSrZSbZXu9aqp0NyoOUn4Rf5MZ70MNoB645OAZW45n7JlZj-cj5IPOB9JJDdHJ0EGAkg55JK3mUcxTrFdlBibF986TaTK6ZF_nfL5DsvYtDKZVNmd_faaH07ppOW5W83i1WOAbXzCv4N9jiABRR_KAPARvQCB-w3j-ubtKABvfwOYlEbK3V5shycusrjG9i33CSp4IMflv4_S38_lnDuUdo3S2T5403iQ9qSf8lOy48hl5VONLbp6TXyfh1QKdVR6TgoBzUsG6BiqtChq-4FNE74B1oLPlGk6QwEq_e3dDM7dcRqegoj-BmoXE1ZtNZTfgndLTCn6mlaezW7zq8TVdW5pdacQYoQHYHstT-A3VZU7H0KcB3PUU5oSDQ0uJOSEvyOXZl4tsFDXIDJFlIvWRi4vU5poxy60UlrGCp3ERQ4Po5xwMo8wTaYQ11hSiP3DMgDrIodHgbQrO4vgl2S2r0h0SWkiTOFCPVBQwjuSGmcLkvG_BbzGxdj3Sb0WibFO2HNEzlqrNT7tWIEWFUoRwRoEUe-Rj12VV1-y4j5m1clZbiqfAptzX7ajVCdXs-h8KQk8J7hSE5D3yviPDfsVLGF26ah14OFZQ4jDEQa1C3SSxHByTDHqLLeXqGLAW-DalXFyFmuAMXxin7NX__Zt35PHoYnKuzsfTb6_JHlB4-MyUHJFdf7t2b8Dx8uZt2Fi_ATSLLRI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Action+Potential+Morphology+of+Human+Induced+Pluripotent+Stem+Cell-Derived+Cardiomyocytes+Does+Not+Predict+Cardiac+Chamber+Specificity+and+Is+Dependent+on+Cell+Density&rft.jtitle=Biophysical+journal&rft.au=Du%2C+David%C2%A0T.M.&rft.au=Hellen%2C+Nicola&rft.au=Kane%2C+Christopher&rft.au=Terracciano%2C+Cesare%C2%A0M.N.&rft.date=2015-01-06&rft.pub=Elsevier+Inc&rft.issn=0006-3495&rft.eissn=1542-0086&rft.volume=108&rft.issue=1&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1016%2Fj.bpj.2014.11.008&rft.externalDocID=S0006349514011916 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |