Properties of Slow Oscillation during Slow-Wave Sleep and Anesthesia in Cats
Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine–xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neuro...
Saved in:
Published in | The Journal of neuroscience Vol. 31; no. 42; pp. 14998 - 15008 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
19.10.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine–xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine–xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine–xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1–4 Hz) and spindle (8–14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30–100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine–xylazine anesthesia. |
---|---|
AbstractList | Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine–xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine–xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine–xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1–4 Hz) and spindle (8–14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30–100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine–xylazine anesthesia. Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia.Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia. |
Author | Crochet, Sylvain Timofeev, Igor Chauvette, Sylvain Volgushev, Maxim |
Author_xml | – sequence: 1 givenname: Sylvain surname: Chauvette fullname: Chauvette, Sylvain – sequence: 2 givenname: Sylvain surname: Crochet fullname: Crochet, Sylvain – sequence: 3 givenname: Maxim surname: Volgushev fullname: Volgushev, Maxim – sequence: 4 givenname: Igor surname: Timofeev fullname: Timofeev, Igor |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22016533$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUtPGzEQtipQCYG_gPbW06Z-7K53paoSiqCliggiII7WrD0LRhs7tTdU_fd1IESFC6exZr6HZ75Dsue8Q0JOGJ2wkouvvy7Pbq_ni-nFhAvR5IxNOGXsExmlaZPzgrI9MqJc0rwqZHFADmN8pJRKyuRncsATuCqFGJHZVfArDIPFmPkuW_T-TzaP2vY9DNa7zKyDdffP_fwOnjC9EFcZOJOdOozDA0YLmXXZFIZ4RPY76CMeb-uY3J6f3Ux_5rP5j4vp6SzXhWyGHHmNDNoCOlqDhLJuW-QGGtm1Rcu5SX-UAqTRtDS647XRbQc11QKbxmgNYky-v-iu1u0SjUY3BOjVKtglhL_Kg1VvJ84-qHv_pASnTVmzJPBlKxD873VaQy1t1JiWdujXUTW0KsuKFWVCnvxvtfN4vWACfHsB6OBjDNgpbYfn2yVn2ytG1SYwtQtMbQJTjKlNYIlevaO_OnxA_Acypp1L |
CitedBy_id | crossref_primary_10_3389_fncir_2019_00038 crossref_primary_10_1113_JP280146 crossref_primary_10_1016_j_cub_2015_10_014 crossref_primary_10_1093_sleep_zsy105 crossref_primary_10_1093_cercor_bhs287 crossref_primary_10_1038_s41583_019_0223_4 crossref_primary_10_1073_pnas_1210907109 crossref_primary_10_1111_jsr_12009 crossref_primary_10_7554_eLife_27602 crossref_primary_10_1016_j_celrep_2019_01_038 crossref_primary_10_1177_1535759719835355 crossref_primary_10_1016_j_neuron_2017_05_015 crossref_primary_10_3389_fnsys_2020_00008 crossref_primary_10_1016_j_neubiorev_2020_03_030 crossref_primary_10_1038_s41467_024_47617_6 crossref_primary_10_3109_07853890_2013_866439 crossref_primary_10_1038_s41586_019_1336_7 crossref_primary_10_3389_fncom_2021_738362 crossref_primary_10_1016_j_neuroscience_2021_09_009 crossref_primary_10_3389_fnins_2019_00813 crossref_primary_10_7554_eLife_42950 crossref_primary_10_1126_science_adh3916 crossref_primary_10_1186_1741_7007_12_16 crossref_primary_10_7554_eLife_75769 crossref_primary_10_1093_sleep_zsab230 crossref_primary_10_1007_s10827_025_00895_5 crossref_primary_10_1016_j_neuroimage_2023_120484 crossref_primary_10_1117_1_NPh_6_3_035002 crossref_primary_10_1016_j_neubiorev_2014_07_019 crossref_primary_10_1016_j_jneumeth_2015_08_030 crossref_primary_10_3389_fncir_2019_00048 crossref_primary_10_1113_JP279045 crossref_primary_10_1038_s41598_017_06073_7 crossref_primary_10_1093_sleep_zsz028 crossref_primary_10_1523_JNEUROSCI_1729_23_2024 crossref_primary_10_1016_j_phrs_2025_107593 crossref_primary_10_1016_j_bios_2018_01_060 crossref_primary_10_1093_cercor_bhz061 crossref_primary_10_1109_TIT_2023_3296336 crossref_primary_10_7554_eLife_64337 crossref_primary_10_1111_ejn_14675 crossref_primary_10_1177_0269881113495117 crossref_primary_10_3389_fncir_2015_00088 crossref_primary_10_3390_ijms23073608 crossref_primary_10_1371_journal_pone_0228076 crossref_primary_10_3389_fnhum_2022_848026 crossref_primary_10_1523_ENEURO_0365_19_2019 crossref_primary_10_1111_cns_14012 crossref_primary_10_1134_S0022093022060357 crossref_primary_10_1523_JNEUROSCI_0476_18_2018 crossref_primary_10_1523_JNEUROSCI_3169_13_2013 crossref_primary_10_1016_j_neuron_2023_04_012 crossref_primary_10_1016_j_celrep_2021_109270 crossref_primary_10_3389_fnins_2022_909999 crossref_primary_10_1007_s10827_017_0663_7 crossref_primary_10_1007_s00424_014_1477_3 crossref_primary_10_1523_JNEUROSCI_1164_12_2012 crossref_primary_10_3389_fnins_2019_00567 crossref_primary_10_1101_cshperspect_a027730 crossref_primary_10_7554_eLife_90826_3 crossref_primary_10_1113_JP276904 crossref_primary_10_1152_jn_00858_2013 crossref_primary_10_7554_eLife_90826 crossref_primary_10_1016_j_jneumeth_2018_08_020 crossref_primary_10_1038_s41467_023_43509_3 crossref_primary_10_1097_ALN_0000000000000841 crossref_primary_10_1016_j_smrv_2015_05_002 crossref_primary_10_1093_sleep_zsab093 crossref_primary_10_1113_JP277717 crossref_primary_10_1073_pnas_1703309114 crossref_primary_10_1093_brain_awy348 crossref_primary_10_1098_rsos_172353 crossref_primary_10_3389_fnsys_2018_00064 crossref_primary_10_1371_journal_pone_0236594 crossref_primary_10_3389_fnsys_2019_00051 crossref_primary_10_3389_fnins_2022_913042 crossref_primary_10_1073_pnas_2220532121 crossref_primary_10_7554_eLife_22425 crossref_primary_10_1213_ANE_0000000000005262 crossref_primary_10_1126_science_aaj1497 crossref_primary_10_3389_fnagi_2022_813531 crossref_primary_10_1038_s41586_024_07108_6 crossref_primary_10_3389_fnins_2022_969712 crossref_primary_10_3389_fnsys_2021_609645 crossref_primary_10_1016_j_ijpsycho_2013_01_017 crossref_primary_10_1007_s12035_019_01732_4 crossref_primary_10_1523_JNEUROSCI_0934_21_2022 crossref_primary_10_1111_ejn_15836 crossref_primary_10_1371_journal_pone_0080845 crossref_primary_10_1523_JNEUROSCI_1296_23_2024 crossref_primary_10_1016_j_brainres_2019_146471 crossref_primary_10_1038_nn_4137 crossref_primary_10_1093_cercor_bht173 crossref_primary_10_1016_j_mehy_2019_109307 crossref_primary_10_1371_journal_pcbi_1003923 crossref_primary_10_1016_j_neuroimage_2015_02_056 crossref_primary_10_1016_j_conb_2017_03_019 crossref_primary_10_1523_JNEUROSCI_1359_15_2015 crossref_primary_10_1038_s41598_020_59151_8 crossref_primary_10_2196_67188 crossref_primary_10_31083_j_jin2205111 crossref_primary_10_3390_cells9010054 crossref_primary_10_1103_PhysRevE_89_062701 crossref_primary_10_3389_fncir_2016_00086 crossref_primary_10_1016_j_schres_2019_11_002 crossref_primary_10_1109_TSP_2022_3221892 crossref_primary_10_1016_j_jneumeth_2018_08_016 crossref_primary_10_1093_sleep_zsac106 crossref_primary_10_1097_ALN_0000000000000419 crossref_primary_10_1111_ejn_12338 crossref_primary_10_1371_journal_pone_0185759 crossref_primary_10_1016_j_isci_2020_101589 crossref_primary_10_1093_cercor_bhw311 crossref_primary_10_1371_journal_pone_0258939 crossref_primary_10_1523_JNEUROSCI_5079_12_2013 crossref_primary_10_3390_mps3010014 crossref_primary_10_1093_cercor_bhx122 crossref_primary_10_1152_jn_00812_2015 crossref_primary_10_1016_j_neuron_2012_08_034 crossref_primary_10_1371_journal_pcbi_1005022 crossref_primary_10_1038_nn_3951 crossref_primary_10_1016_j_expneurol_2012_12_001 crossref_primary_10_1371_journal_pbio_2005982 crossref_primary_10_3389_fnins_2022_998704 crossref_primary_10_1152_jn_00424_2021 crossref_primary_10_1111_cns_70262 crossref_primary_10_3389_fnins_2018_00881 crossref_primary_10_1002_advs_202205191 crossref_primary_10_1016_j_celrep_2023_113267 crossref_primary_10_1016_j_neuroscience_2017_09_016 crossref_primary_10_1016_j_sleep_2013_10_017 crossref_primary_10_1016_j_neuron_2015_01_025 crossref_primary_10_1109_ACCESS_2019_2950066 crossref_primary_10_1523_ENEURO_0017_16_2016 crossref_primary_10_3389_fncir_2017_00036 crossref_primary_10_1371_journal_pone_0145307 crossref_primary_10_1111_ejn_13274 crossref_primary_10_1152_jn_00299_2018 crossref_primary_10_1002_hipo_22757 crossref_primary_10_1093_cercor_bhw218 crossref_primary_10_1073_pnas_1221180110 crossref_primary_10_1523_JNEUROSCI_1156_13_2014 crossref_primary_10_1038_s42003_020_1110_2 crossref_primary_10_1016_j_cub_2019_04_007 crossref_primary_10_3389_fnagi_2023_1143848 crossref_primary_10_1016_j_jphs_2018_01_004 crossref_primary_10_1111_eos_12817 crossref_primary_10_1016_j_neuroscience_2020_03_011 crossref_primary_10_1111_jsr_12532 crossref_primary_10_1152_jn_00217_2021 crossref_primary_10_3389_fnsys_2019_00017 crossref_primary_10_7554_eLife_53186 crossref_primary_10_1093_sleep_zsy230 crossref_primary_10_1523_ENEURO_0282_17_2017 crossref_primary_10_1093_cercor_bhz320 crossref_primary_10_3389_fnsys_2024_1413780 crossref_primary_10_3389_fncom_2018_00044 crossref_primary_10_1523_JNEUROSCI_1614_16_2016 crossref_primary_10_1016_j_cophys_2020_01_007 crossref_primary_10_1523_ENEURO_0329_17_2018 crossref_primary_10_1016_j_neures_2016_11_001 crossref_primary_10_1109_TSP_2020_3010197 |
Cites_doi | 10.1152/jn.2001.85.5.1969 10.1126/science.1149213 10.1113/jphysiol.2003.054932 10.1523/JNEUROSCI.5443-07.2008 10.1101/lm.77104 10.1038/nature02663 10.1016/j.neuron.2009.08.024 10.1111/j.1469-7793.1998.057br.x 10.1152/ajplegacy.1937.119.4.692 10.1523/JNEUROSCI.13-12-05312.1993 10.1152/jn.1996.76.6.4152 10.1016/S0306-4522(00)00442-5 10.1523/JNEUROSCI.13-08-03252.1993 10.1523/JNEUROSCI.4652-06.2007 10.1523/JNEUROSCI.5297-05.2006 10.1523/JNEUROSCI.3481-08.2009 10.1073/pnas.98.4.1924 10.1016/0006-8993(79)90149-5 10.1038/nature07150 10.1523/JNEUROSCI.13-08-03266.1993 10.1113/jphysiol.1991.sp018396 10.1093/cercor/bhq009 10.1073/pnas.0906419106 10.1196/annals.1440.004 10.1152/jn.01114.2006 10.1523/JNEUROSCI.3987-06.2006 10.1113/jphysiol.1996.sp021489 10.1523/JNEUROSCI.5062-09.2010 10.1016/j.neuron.2011.02.040 10.1152/jn.01065.2009 10.1038/nature10009 10.1523/JNEUROSCI.5594-05.2006 10.1016/j.neuron.2010.01.006 10.1523/JNEUROSCI.13-08-03284.1993 10.1152/jn.00178.2010 10.1016/0006-8993(83)91264-7 10.1073/pnas.0605643104 10.1016/j.cell.2007.03.015 10.1152/jn.1994.71.1.17 10.2741/1064 10.1016/0014-2999(81)90430-1 10.1016/0014-4886(67)90110-0 10.1038/nn1690 10.1016/j.lfs.2005.08.027 10.1016/j.neuron.2011.02.043 10.1371/journal.pone.0002004 10.1002/cne.903280409 10.1523/JNEUROSCI.1318-04.2004 10.1152/jn.01126.2007 10.1126/science.158.3808.1597 10.1523/JNEUROSCI.0279-06.2006 10.1523/JNEUROSCI.2532-10.2010 10.1093/cercor/bhj157 10.1523/JNEUROSCI.5502-08.2009 10.1073/pnas.0931349100 10.1007/BF00237198 10.1523/JNEUROSCI.15-01-00604.1995 10.1016/j.neuron.2010.09.023 10.1111/j.1460-9568.1995.tb01034.x 10.1523/JNEUROSCI.2184-07.2007 10.1523/JNEUROSCI.16-07-02397.1996 10.1038/nrn1496 10.1113/jphysiol.1996.sp021488 |
ContentType | Journal Article |
Copyright | Copyright © 2011 the authors 0270-6474/11/3114998-11$15.00/0 2011 |
Copyright_xml | – notice: Copyright © 2011 the authors 0270-6474/11/3114998-11$15.00/0 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.2339-11.2011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 15008 |
ExternalDocumentID | PMC3209581 22016533 10_1523_JNEUROSCI_2339_11_2011 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: 1R01-NS059740 – fundername: NINDS NIH HHS grantid: R01 NS060870 – fundername: CIHR grantid: MOP-67175 – fundername: NINDS NIH HHS grantid: 1R01-NS060870 – fundername: NINDS NIH HHS grantid: R01 NS059740 – fundername: CIHR grantid: MOP-37862 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFFNX AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c479t-e28e1ab4af08a7a58bbe2da97fb4b22d01773a7dc05dcf28dcbfa80c3e99dcca3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 17:56:14 EDT 2025 Sun Aug 24 04:09:15 EDT 2025 Sat May 31 02:11:11 EDT 2025 Tue Jul 01 02:59:29 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c479t-e28e1ab4af08a7a58bbe2da97fb4b22d01773a7dc05dcf28dcbfa80c3e99dcca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: I.T. designed research; S.Ch., S.Cr., and I.T. performed research; S.Ch., M.V., and I.T. analyzed data; S.Ch., S.Cr., M.V., and I.T. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/31/42/14998.full.pdf |
PMID | 22016533 |
PQID | 906556145 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3209581 proquest_miscellaneous_906556145 pubmed_primary_22016533 crossref_citationtrail_10_1523_JNEUROSCI_2339_11_2011 crossref_primary_10_1523_JNEUROSCI_2339_11_2011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-19 2011-Oct-19 20111019 |
PublicationDateYYYYMMDD | 2011-10-19 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2011 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | Cowan (2023041303530639000_31.42.14998.14) 1994; 71 MacDonald (2023041303530639000_31.42.14998.31) 1991; 432 2023041303530639000_31.42.14998.19 2023041303530639000_31.42.14998.18 2023041303530639000_31.42.14998.17 2023041303530639000_31.42.14998.27 Steriade (2023041303530639000_31.42.14998.52) 1993; 13 2023041303530639000_31.42.14998.26 2023041303530639000_31.42.14998.25 Blake (2023041303530639000_31.42.14998.5) 1937; 119 2023041303530639000_31.42.14998.24 2023041303530639000_31.42.14998.23 2023041303530639000_31.42.14998.22 2023041303530639000_31.42.14998.66 2023041303530639000_31.42.14998.21 2023041303530639000_31.42.14998.20 2023041303530639000_31.42.14998.63 2023041303530639000_31.42.14998.62 Wilson (2023041303530639000_31.42.14998.64) 1996; 16 Contreras (2023041303530639000_31.42.14998.12) 1995; 15 2023041303530639000_31.42.14998.61 2023041303530639000_31.42.14998.60 Contreras (2023041303530639000_31.42.14998.13) 1996; 494 Steriade (2023041303530639000_31.42.14998.54) 1993; 13 2023041303530639000_31.42.14998.16 2023041303530639000_31.42.14998.15 2023041303530639000_31.42.14998.59 2023041303530639000_31.42.14998.58 2023041303530639000_31.42.14998.11 2023041303530639000_31.42.14998.10 Timofeev (2023041303530639000_31.42.14998.56) 1996; 76 Wilson (2023041303530639000_31.42.14998.65) 1983; 51 2023041303530639000_31.42.14998.51 2023041303530639000_31.42.14998.50 2023041303530639000_31.42.14998.1 2023041303530639000_31.42.14998.4 2023041303530639000_31.42.14998.3 Timofeev (2023041303530639000_31.42.14998.57) 1996; 494 2023041303530639000_31.42.14998.2 2023041303530639000_31.42.14998.9 2023041303530639000_31.42.14998.8 2023041303530639000_31.42.14998.7 2023041303530639000_31.42.14998.6 2023041303530639000_31.42.14998.39 2023041303530639000_31.42.14998.49 2023041303530639000_31.42.14998.48 2023041303530639000_31.42.14998.47 2023041303530639000_31.42.14998.46 2023041303530639000_31.42.14998.45 Metherate (2023041303530639000_31.42.14998.35) 1993; 13 2023041303530639000_31.42.14998.44 2023041303530639000_31.42.14998.43 2023041303530639000_31.42.14998.42 2023041303530639000_31.42.14998.41 2023041303530639000_31.42.14998.40 2023041303530639000_31.42.14998.29 2023041303530639000_31.42.14998.28 2023041303530639000_31.42.14998.38 2023041303530639000_31.42.14998.37 2023041303530639000_31.42.14998.36 2023041303530639000_31.42.14998.34 2023041303530639000_31.42.14998.33 2023041303530639000_31.42.14998.32 Steriade (2023041303530639000_31.42.14998.55) 2001; 85 2023041303530639000_31.42.14998.30 Steriade (2023041303530639000_31.42.14998.53) 1993; 13 |
References_xml | – volume: 85 start-page: 1969 year: 2001 ident: 2023041303530639000_31.42.14998.55 article-title: Natural waking and sleep states: a view from inside neocortical neurons publication-title: J Neurophysiol doi: 10.1152/jn.2001.85.5.1969 – ident: 2023041303530639000_31.42.14998.2 doi: 10.1126/science.1149213 – ident: 2023041303530639000_31.42.14998.50 doi: 10.1113/jphysiol.2003.054932 – ident: 2023041303530639000_31.42.14998.23 doi: 10.1523/JNEUROSCI.5443-07.2008 – ident: 2023041303530639000_31.42.14998.40 doi: 10.1101/lm.77104 – ident: 2023041303530639000_31.42.14998.25 doi: 10.1038/nature02663 – ident: 2023041303530639000_31.42.14998.61 doi: 10.1016/j.neuron.2009.08.024 – ident: 2023041303530639000_31.42.14998.3 doi: 10.1111/j.1469-7793.1998.057br.x – volume: 119 start-page: 692 year: 1937 ident: 2023041303530639000_31.42.14998.5 article-title: Brain potentials during sleep publication-title: Am J Physiol doi: 10.1152/ajplegacy.1937.119.4.692 – volume: 13 start-page: 5312 year: 1993 ident: 2023041303530639000_31.42.14998.35 article-title: Ionic flux contributions to neocortical slow waves and nucleus basalis-mediated activation: whole-cell recordings in vivo publication-title: J Neurosci doi: 10.1523/JNEUROSCI.13-12-05312.1993 – volume: 76 start-page: 4152 year: 1996 ident: 2023041303530639000_31.42.14998.56 article-title: Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats publication-title: J Neurophysiol doi: 10.1152/jn.1996.76.6.4152 – ident: 2023041303530639000_31.42.14998.41 doi: 10.1016/S0306-4522(00)00442-5 – volume: 13 start-page: 3252 year: 1993 ident: 2023041303530639000_31.42.14998.53 article-title: A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components publication-title: J Neurosci doi: 10.1523/JNEUROSCI.13-08-03252.1993 – ident: 2023041303530639000_31.42.14998.46 doi: 10.1523/JNEUROSCI.4652-06.2007 – ident: 2023041303530639000_31.42.14998.19 doi: 10.1523/JNEUROSCI.5297-05.2006 – ident: 2023041303530639000_31.42.14998.9 doi: 10.1523/JNEUROSCI.3481-08.2009 – ident: 2023041303530639000_31.42.14998.58 doi: 10.1073/pnas.98.4.1924 – ident: 2023041303530639000_31.42.14998.34 doi: 10.1016/0006-8993(79)90149-5 – ident: 2023041303530639000_31.42.14998.43 doi: 10.1038/nature07150 – volume: 13 start-page: 3266 year: 1993 ident: 2023041303530639000_31.42.14998.52 article-title: Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillations and other sleep rhythms of electroencephalogram publication-title: J Neurosci doi: 10.1523/JNEUROSCI.13-08-03266.1993 – volume: 432 start-page: 483 year: 1991 ident: 2023041303530639000_31.42.14998.31 article-title: Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones publication-title: J Physiol doi: 10.1113/jphysiol.1991.sp018396 – ident: 2023041303530639000_31.42.14998.8 doi: 10.1093/cercor/bhq009 – ident: 2023041303530639000_31.42.14998.17 doi: 10.1073/pnas.0906419106 – ident: 2023041303530639000_31.42.14998.59 doi: 10.1196/annals.1440.004 – ident: 2023041303530639000_31.42.14998.20 doi: 10.1152/jn.01114.2006 – ident: 2023041303530639000_31.42.14998.32 doi: 10.1523/JNEUROSCI.3987-06.2006 – volume: 494 start-page: 265 year: 1996 ident: 2023041303530639000_31.42.14998.57 article-title: Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat publication-title: J Physiol doi: 10.1113/jphysiol.1996.sp021489 – ident: 2023041303530639000_31.42.14998.39 doi: 10.1523/JNEUROSCI.5062-09.2010 – ident: 2023041303530639000_31.42.14998.11 doi: 10.1016/j.neuron.2011.02.040 – ident: 2023041303530639000_31.42.14998.49 doi: 10.1152/jn.01065.2009 – ident: 2023041303530639000_31.42.14998.62 doi: 10.1038/nature10009 – ident: 2023041303530639000_31.42.14998.26 – ident: 2023041303530639000_31.42.14998.51 – ident: 2023041303530639000_31.42.14998.66 doi: 10.1523/JNEUROSCI.5594-05.2006 – ident: 2023041303530639000_31.42.14998.18 doi: 10.1016/j.neuron.2010.01.006 – volume: 13 start-page: 3284 year: 1993 ident: 2023041303530639000_31.42.14998.54 article-title: The slow (<1 Hz) oscillation in reticular thalamic and thalamo-cortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks publication-title: J Neurosci doi: 10.1523/JNEUROSCI.13-08-03284.1993 – ident: 2023041303530639000_31.42.14998.48 doi: 10.1152/jn.00178.2010 – ident: 2023041303530639000_31.42.14998.24 doi: 10.1016/0006-8993(83)91264-7 – ident: 2023041303530639000_31.42.14998.30 doi: 10.1073/pnas.0605643104 – ident: 2023041303530639000_31.42.14998.63 doi: 10.1016/j.cell.2007.03.015 – volume: 71 start-page: 17 year: 1994 ident: 2023041303530639000_31.42.14998.14 article-title: Spontaneous firing pattern and axonal projections of single corticostriatal neurons in the rat medial agranular cortex publication-title: J Neurophysiol doi: 10.1152/jn.1994.71.1.17 – ident: 2023041303530639000_31.42.14998.1 doi: 10.2741/1064 – ident: 2023041303530639000_31.42.14998.22 doi: 10.1016/0014-2999(81)90430-1 – ident: 2023041303530639000_31.42.14998.4 doi: 10.1016/0014-4886(67)90110-0 – ident: 2023041303530639000_31.42.14998.15 doi: 10.1038/nn1690 – ident: 2023041303530639000_31.42.14998.29 doi: 10.1016/j.lfs.2005.08.027 – ident: 2023041303530639000_31.42.14998.38 doi: 10.1016/j.neuron.2011.02.043 – ident: 2023041303530639000_31.42.14998.10 doi: 10.1371/journal.pone.0002004 – ident: 2023041303530639000_31.42.14998.45 – ident: 2023041303530639000_31.42.14998.37 doi: 10.1002/cne.903280409 – ident: 2023041303530639000_31.42.14998.33 doi: 10.1523/JNEUROSCI.1318-04.2004 – ident: 2023041303530639000_31.42.14998.42 doi: 10.1152/jn.01126.2007 – ident: 2023041303530639000_31.42.14998.28 doi: 10.1126/science.158.3808.1597 – ident: 2023041303530639000_31.42.14998.60 doi: 10.1523/JNEUROSCI.0279-06.2006 – ident: 2023041303530639000_31.42.14998.27 doi: 10.1523/JNEUROSCI.2532-10.2010 – ident: 2023041303530639000_31.42.14998.36 doi: 10.1093/cercor/bhj157 – ident: 2023041303530639000_31.42.14998.6 doi: 10.1523/JNEUROSCI.5502-08.2009 – ident: 2023041303530639000_31.42.14998.16 doi: 10.1073/pnas.0931349100 – volume: 51 start-page: 227 year: 1983 ident: 2023041303530639000_31.42.14998.65 article-title: Disfacilitation and long-lasting inhibition of neostriatal neurons in the rat publication-title: Exp Brain Res doi: 10.1007/BF00237198 – volume: 15 start-page: 604 year: 1995 ident: 2023041303530639000_31.42.14998.12 article-title: Cellular basis of eeg slow rhythms: a study of dynamic corticothalamic relationships publication-title: J Neurosci doi: 10.1523/JNEUROSCI.15-01-00604.1995 – ident: 2023041303530639000_31.42.14998.7 doi: 10.1016/j.neuron.2010.09.023 – ident: 2023041303530639000_31.42.14998.44 doi: 10.1111/j.1460-9568.1995.tb01034.x – ident: 2023041303530639000_31.42.14998.21 doi: 10.1523/JNEUROSCI.2184-07.2007 – volume: 16 start-page: 2397 year: 1996 ident: 2023041303530639000_31.42.14998.64 article-title: The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-07-02397.1996 – ident: 2023041303530639000_31.42.14998.47 doi: 10.1038/nrn1496 – volume: 494 start-page: 251 year: 1996 ident: 2023041303530639000_31.42.14998.13 article-title: Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks publication-title: J Physiol doi: 10.1113/jphysiol.1996.sp021488 |
SSID | ssj0007017 |
Score | 2.460029 |
Snippet | Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine–xylazine anesthesia reproduces the main features of sleep slow oscillation:... Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation:... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 14998 |
SubjectTerms | Action Potentials - drug effects Action Potentials - physiology Analgesics - pharmacology Anesthesia Animals Cats Cerebral Cortex - cytology Cerebral Cortex - drug effects Electrophysiology Female Ketamine - pharmacology Male Neurons - drug effects Neurons - physiology Periodicity Sleep Stages - drug effects Sleep Stages - physiology Spectrum Analysis Xylazine - pharmacology |
Title | Properties of Slow Oscillation during Slow-Wave Sleep and Anesthesia in Cats |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22016533 https://www.proquest.com/docview/906556145 https://pubmed.ncbi.nlm.nih.gov/PMC3209581 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFAeOj40N-QLygdI2TNPFjVYG2gQZoG-wtshNnjZQlU5sMxn_Cf8udnTrpVgHjJari5pTkfjnf2Xe_I-S1y6SbCvy-E8Yd38ckABeMoZBuOBGJQq8Usy0OJ3sn_sFpcDoY_OplLTW1HCU_N9aV_I9W4RzoFatkb6FZKxROwG_QLxxBw3D8Jx1_xpX0BVKi6tqTovr-9hNMaYXJb1uVIOJ55xt2GToqlLrQ2wVTsHDg-i1zocv-hOFzWnmpXb2Y9lR7nJcWBrO5aC4xTUgvn14VlyK3MJvpNlz1hpGvVXHWLOfwnLpM6Ed-blcOADOZMgP7Z9Wivxph0uFam2eMFgshHPVN552Rao0q07s4bt_qtrbfoMsQbLU2FGI205i6nZDBZdXUDzetfaBZJw4OMenxaLY_Yp7HHdfVxKzd_Lba07827dlkRAyDQFJs5cQoB0KjGOXcIXcZRCDYHOPDl46IPhzrZs72cdvic5Czu_l-1v2eG8HM9ZzcnpNz_IDcb3VOpwZqD8lAlY_I9rQUdXV-Rd9QnS-sN2K2yccOfbTKKKKM9tBHDfqoRR_V6KOAPtqhj-YlRfQ9Jifv3x3P9py2N4eT-CGvHcUi5Qrpi2wciVAEkZSKpYKHmfQlYym8ntATYZqMgzTJWJQmMhPROPEU5ylYDe8J2SqrUj0jlGGUxwQLA8V84TEpOfe9iat4wAU4S0MSrN5cnLTE9dg_pYj_rLkh2bXXXRjqlr9eQVeKicHK4taZKFXVLGMOnjpy5gZD8tToyYpkDCsCPW9IwjUN2j8ggfv6SJnPNZG7xyDAidydW9_oc3Kv-_hekK160aiX4BzX8pWG6W8ki7bC |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+Slow+Oscillation+during+Slow-Wave+Sleep+and+Anesthesia+in+Cats&rft.jtitle=The+Journal+of+neuroscience&rft.au=Chauvette%2C+Sylvain&rft.au=Crochet%2C+Sylvain&rft.au=Volgushev%2C+Maxim&rft.au=Timofeev%2C+Igor&rft.date=2011-10-19&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=31&rft.issue=42&rft.spage=14998&rft.epage=15008&rft_id=info:doi/10.1523%2FJNEUROSCI.2339-11.2011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_2339_11_2011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |