Properties of Slow Oscillation during Slow-Wave Sleep and Anesthesia in Cats

Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine–xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neuro...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 31; no. 42; pp. 14998 - 15008
Main Authors Chauvette, Sylvain, Crochet, Sylvain, Volgushev, Maxim, Timofeev, Igor
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 19.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine–xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine–xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine–xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1–4 Hz) and spindle (8–14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30–100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine–xylazine anesthesia.
AbstractList Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine–xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine–xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine–xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1–4 Hz) and spindle (8–14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30–100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine–xylazine anesthesia.
Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia.Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia.
Author Crochet, Sylvain
Timofeev, Igor
Chauvette, Sylvain
Volgushev, Maxim
Author_xml – sequence: 1
  givenname: Sylvain
  surname: Chauvette
  fullname: Chauvette, Sylvain
– sequence: 2
  givenname: Sylvain
  surname: Crochet
  fullname: Crochet, Sylvain
– sequence: 3
  givenname: Maxim
  surname: Volgushev
  fullname: Volgushev, Maxim
– sequence: 4
  givenname: Igor
  surname: Timofeev
  fullname: Timofeev, Igor
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22016533$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtPGzEQtipQCYG_gPbW06Z-7K53paoSiqCliggiII7WrD0LRhs7tTdU_fd1IESFC6exZr6HZ75Dsue8Q0JOGJ2wkouvvy7Pbq_ni-nFhAvR5IxNOGXsExmlaZPzgrI9MqJc0rwqZHFADmN8pJRKyuRncsATuCqFGJHZVfArDIPFmPkuW_T-TzaP2vY9DNa7zKyDdffP_fwOnjC9EFcZOJOdOozDA0YLmXXZFIZ4RPY76CMeb-uY3J6f3Ux_5rP5j4vp6SzXhWyGHHmNDNoCOlqDhLJuW-QGGtm1Rcu5SX-UAqTRtDS647XRbQc11QKbxmgNYky-v-iu1u0SjUY3BOjVKtglhL_Kg1VvJ84-qHv_pASnTVmzJPBlKxD873VaQy1t1JiWdujXUTW0KsuKFWVCnvxvtfN4vWACfHsB6OBjDNgpbYfn2yVn2ytG1SYwtQtMbQJTjKlNYIlevaO_OnxA_Acypp1L
CitedBy_id crossref_primary_10_3389_fncir_2019_00038
crossref_primary_10_1113_JP280146
crossref_primary_10_1016_j_cub_2015_10_014
crossref_primary_10_1093_sleep_zsy105
crossref_primary_10_1093_cercor_bhs287
crossref_primary_10_1038_s41583_019_0223_4
crossref_primary_10_1073_pnas_1210907109
crossref_primary_10_1111_jsr_12009
crossref_primary_10_7554_eLife_27602
crossref_primary_10_1016_j_celrep_2019_01_038
crossref_primary_10_1177_1535759719835355
crossref_primary_10_1016_j_neuron_2017_05_015
crossref_primary_10_3389_fnsys_2020_00008
crossref_primary_10_1016_j_neubiorev_2020_03_030
crossref_primary_10_1038_s41467_024_47617_6
crossref_primary_10_3109_07853890_2013_866439
crossref_primary_10_1038_s41586_019_1336_7
crossref_primary_10_3389_fncom_2021_738362
crossref_primary_10_1016_j_neuroscience_2021_09_009
crossref_primary_10_3389_fnins_2019_00813
crossref_primary_10_7554_eLife_42950
crossref_primary_10_1126_science_adh3916
crossref_primary_10_1186_1741_7007_12_16
crossref_primary_10_7554_eLife_75769
crossref_primary_10_1093_sleep_zsab230
crossref_primary_10_1007_s10827_025_00895_5
crossref_primary_10_1016_j_neuroimage_2023_120484
crossref_primary_10_1117_1_NPh_6_3_035002
crossref_primary_10_1016_j_neubiorev_2014_07_019
crossref_primary_10_1016_j_jneumeth_2015_08_030
crossref_primary_10_3389_fncir_2019_00048
crossref_primary_10_1113_JP279045
crossref_primary_10_1038_s41598_017_06073_7
crossref_primary_10_1093_sleep_zsz028
crossref_primary_10_1523_JNEUROSCI_1729_23_2024
crossref_primary_10_1016_j_phrs_2025_107593
crossref_primary_10_1016_j_bios_2018_01_060
crossref_primary_10_1093_cercor_bhz061
crossref_primary_10_1109_TIT_2023_3296336
crossref_primary_10_7554_eLife_64337
crossref_primary_10_1111_ejn_14675
crossref_primary_10_1177_0269881113495117
crossref_primary_10_3389_fncir_2015_00088
crossref_primary_10_3390_ijms23073608
crossref_primary_10_1371_journal_pone_0228076
crossref_primary_10_3389_fnhum_2022_848026
crossref_primary_10_1523_ENEURO_0365_19_2019
crossref_primary_10_1111_cns_14012
crossref_primary_10_1134_S0022093022060357
crossref_primary_10_1523_JNEUROSCI_0476_18_2018
crossref_primary_10_1523_JNEUROSCI_3169_13_2013
crossref_primary_10_1016_j_neuron_2023_04_012
crossref_primary_10_1016_j_celrep_2021_109270
crossref_primary_10_3389_fnins_2022_909999
crossref_primary_10_1007_s10827_017_0663_7
crossref_primary_10_1007_s00424_014_1477_3
crossref_primary_10_1523_JNEUROSCI_1164_12_2012
crossref_primary_10_3389_fnins_2019_00567
crossref_primary_10_1101_cshperspect_a027730
crossref_primary_10_7554_eLife_90826_3
crossref_primary_10_1113_JP276904
crossref_primary_10_1152_jn_00858_2013
crossref_primary_10_7554_eLife_90826
crossref_primary_10_1016_j_jneumeth_2018_08_020
crossref_primary_10_1038_s41467_023_43509_3
crossref_primary_10_1097_ALN_0000000000000841
crossref_primary_10_1016_j_smrv_2015_05_002
crossref_primary_10_1093_sleep_zsab093
crossref_primary_10_1113_JP277717
crossref_primary_10_1073_pnas_1703309114
crossref_primary_10_1093_brain_awy348
crossref_primary_10_1098_rsos_172353
crossref_primary_10_3389_fnsys_2018_00064
crossref_primary_10_1371_journal_pone_0236594
crossref_primary_10_3389_fnsys_2019_00051
crossref_primary_10_3389_fnins_2022_913042
crossref_primary_10_1073_pnas_2220532121
crossref_primary_10_7554_eLife_22425
crossref_primary_10_1213_ANE_0000000000005262
crossref_primary_10_1126_science_aaj1497
crossref_primary_10_3389_fnagi_2022_813531
crossref_primary_10_1038_s41586_024_07108_6
crossref_primary_10_3389_fnins_2022_969712
crossref_primary_10_3389_fnsys_2021_609645
crossref_primary_10_1016_j_ijpsycho_2013_01_017
crossref_primary_10_1007_s12035_019_01732_4
crossref_primary_10_1523_JNEUROSCI_0934_21_2022
crossref_primary_10_1111_ejn_15836
crossref_primary_10_1371_journal_pone_0080845
crossref_primary_10_1523_JNEUROSCI_1296_23_2024
crossref_primary_10_1016_j_brainres_2019_146471
crossref_primary_10_1038_nn_4137
crossref_primary_10_1093_cercor_bht173
crossref_primary_10_1016_j_mehy_2019_109307
crossref_primary_10_1371_journal_pcbi_1003923
crossref_primary_10_1016_j_neuroimage_2015_02_056
crossref_primary_10_1016_j_conb_2017_03_019
crossref_primary_10_1523_JNEUROSCI_1359_15_2015
crossref_primary_10_1038_s41598_020_59151_8
crossref_primary_10_2196_67188
crossref_primary_10_31083_j_jin2205111
crossref_primary_10_3390_cells9010054
crossref_primary_10_1103_PhysRevE_89_062701
crossref_primary_10_3389_fncir_2016_00086
crossref_primary_10_1016_j_schres_2019_11_002
crossref_primary_10_1109_TSP_2022_3221892
crossref_primary_10_1016_j_jneumeth_2018_08_016
crossref_primary_10_1093_sleep_zsac106
crossref_primary_10_1097_ALN_0000000000000419
crossref_primary_10_1111_ejn_12338
crossref_primary_10_1371_journal_pone_0185759
crossref_primary_10_1016_j_isci_2020_101589
crossref_primary_10_1093_cercor_bhw311
crossref_primary_10_1371_journal_pone_0258939
crossref_primary_10_1523_JNEUROSCI_5079_12_2013
crossref_primary_10_3390_mps3010014
crossref_primary_10_1093_cercor_bhx122
crossref_primary_10_1152_jn_00812_2015
crossref_primary_10_1016_j_neuron_2012_08_034
crossref_primary_10_1371_journal_pcbi_1005022
crossref_primary_10_1038_nn_3951
crossref_primary_10_1016_j_expneurol_2012_12_001
crossref_primary_10_1371_journal_pbio_2005982
crossref_primary_10_3389_fnins_2022_998704
crossref_primary_10_1152_jn_00424_2021
crossref_primary_10_1111_cns_70262
crossref_primary_10_3389_fnins_2018_00881
crossref_primary_10_1002_advs_202205191
crossref_primary_10_1016_j_celrep_2023_113267
crossref_primary_10_1016_j_neuroscience_2017_09_016
crossref_primary_10_1016_j_sleep_2013_10_017
crossref_primary_10_1016_j_neuron_2015_01_025
crossref_primary_10_1109_ACCESS_2019_2950066
crossref_primary_10_1523_ENEURO_0017_16_2016
crossref_primary_10_3389_fncir_2017_00036
crossref_primary_10_1371_journal_pone_0145307
crossref_primary_10_1111_ejn_13274
crossref_primary_10_1152_jn_00299_2018
crossref_primary_10_1002_hipo_22757
crossref_primary_10_1093_cercor_bhw218
crossref_primary_10_1073_pnas_1221180110
crossref_primary_10_1523_JNEUROSCI_1156_13_2014
crossref_primary_10_1038_s42003_020_1110_2
crossref_primary_10_1016_j_cub_2019_04_007
crossref_primary_10_3389_fnagi_2023_1143848
crossref_primary_10_1016_j_jphs_2018_01_004
crossref_primary_10_1111_eos_12817
crossref_primary_10_1016_j_neuroscience_2020_03_011
crossref_primary_10_1111_jsr_12532
crossref_primary_10_1152_jn_00217_2021
crossref_primary_10_3389_fnsys_2019_00017
crossref_primary_10_7554_eLife_53186
crossref_primary_10_1093_sleep_zsy230
crossref_primary_10_1523_ENEURO_0282_17_2017
crossref_primary_10_1093_cercor_bhz320
crossref_primary_10_3389_fnsys_2024_1413780
crossref_primary_10_3389_fncom_2018_00044
crossref_primary_10_1523_JNEUROSCI_1614_16_2016
crossref_primary_10_1016_j_cophys_2020_01_007
crossref_primary_10_1523_ENEURO_0329_17_2018
crossref_primary_10_1016_j_neures_2016_11_001
crossref_primary_10_1109_TSP_2020_3010197
Cites_doi 10.1152/jn.2001.85.5.1969
10.1126/science.1149213
10.1113/jphysiol.2003.054932
10.1523/JNEUROSCI.5443-07.2008
10.1101/lm.77104
10.1038/nature02663
10.1016/j.neuron.2009.08.024
10.1111/j.1469-7793.1998.057br.x
10.1152/ajplegacy.1937.119.4.692
10.1523/JNEUROSCI.13-12-05312.1993
10.1152/jn.1996.76.6.4152
10.1016/S0306-4522(00)00442-5
10.1523/JNEUROSCI.13-08-03252.1993
10.1523/JNEUROSCI.4652-06.2007
10.1523/JNEUROSCI.5297-05.2006
10.1523/JNEUROSCI.3481-08.2009
10.1073/pnas.98.4.1924
10.1016/0006-8993(79)90149-5
10.1038/nature07150
10.1523/JNEUROSCI.13-08-03266.1993
10.1113/jphysiol.1991.sp018396
10.1093/cercor/bhq009
10.1073/pnas.0906419106
10.1196/annals.1440.004
10.1152/jn.01114.2006
10.1523/JNEUROSCI.3987-06.2006
10.1113/jphysiol.1996.sp021489
10.1523/JNEUROSCI.5062-09.2010
10.1016/j.neuron.2011.02.040
10.1152/jn.01065.2009
10.1038/nature10009
10.1523/JNEUROSCI.5594-05.2006
10.1016/j.neuron.2010.01.006
10.1523/JNEUROSCI.13-08-03284.1993
10.1152/jn.00178.2010
10.1016/0006-8993(83)91264-7
10.1073/pnas.0605643104
10.1016/j.cell.2007.03.015
10.1152/jn.1994.71.1.17
10.2741/1064
10.1016/0014-2999(81)90430-1
10.1016/0014-4886(67)90110-0
10.1038/nn1690
10.1016/j.lfs.2005.08.027
10.1016/j.neuron.2011.02.043
10.1371/journal.pone.0002004
10.1002/cne.903280409
10.1523/JNEUROSCI.1318-04.2004
10.1152/jn.01126.2007
10.1126/science.158.3808.1597
10.1523/JNEUROSCI.0279-06.2006
10.1523/JNEUROSCI.2532-10.2010
10.1093/cercor/bhj157
10.1523/JNEUROSCI.5502-08.2009
10.1073/pnas.0931349100
10.1007/BF00237198
10.1523/JNEUROSCI.15-01-00604.1995
10.1016/j.neuron.2010.09.023
10.1111/j.1460-9568.1995.tb01034.x
10.1523/JNEUROSCI.2184-07.2007
10.1523/JNEUROSCI.16-07-02397.1996
10.1038/nrn1496
10.1113/jphysiol.1996.sp021488
ContentType Journal Article
Copyright Copyright © 2011 the authors 0270-6474/11/3114998-11$15.00/0 2011
Copyright_xml – notice: Copyright © 2011 the authors 0270-6474/11/3114998-11$15.00/0 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.2339-11.2011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 15008
ExternalDocumentID PMC3209581
22016533
10_1523_JNEUROSCI_2339_11_2011
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: 1R01-NS059740
– fundername: NINDS NIH HHS
  grantid: R01 NS060870
– fundername: CIHR
  grantid: MOP-67175
– fundername: NINDS NIH HHS
  grantid: 1R01-NS060870
– fundername: NINDS NIH HHS
  grantid: R01 NS059740
– fundername: CIHR
  grantid: MOP-37862
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFFNX
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c479t-e28e1ab4af08a7a58bbe2da97fb4b22d01773a7dc05dcf28dcbfa80c3e99dcca3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 17:56:14 EDT 2025
Sun Aug 24 04:09:15 EDT 2025
Sat May 31 02:11:11 EDT 2025
Tue Jul 01 02:59:29 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c479t-e28e1ab4af08a7a58bbe2da97fb4b22d01773a7dc05dcf28dcbfa80c3e99dcca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: I.T. designed research; S.Ch., S.Cr., and I.T. performed research; S.Ch., M.V., and I.T. analyzed data; S.Ch., S.Cr., M.V., and I.T. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/31/42/14998.full.pdf
PMID 22016533
PQID 906556145
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3209581
proquest_miscellaneous_906556145
pubmed_primary_22016533
crossref_citationtrail_10_1523_JNEUROSCI_2339_11_2011
crossref_primary_10_1523_JNEUROSCI_2339_11_2011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-19
2011-Oct-19
20111019
PublicationDateYYYYMMDD 2011-10-19
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2011
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References Cowan (2023041303530639000_31.42.14998.14) 1994; 71
MacDonald (2023041303530639000_31.42.14998.31) 1991; 432
2023041303530639000_31.42.14998.19
2023041303530639000_31.42.14998.18
2023041303530639000_31.42.14998.17
2023041303530639000_31.42.14998.27
Steriade (2023041303530639000_31.42.14998.52) 1993; 13
2023041303530639000_31.42.14998.26
2023041303530639000_31.42.14998.25
Blake (2023041303530639000_31.42.14998.5) 1937; 119
2023041303530639000_31.42.14998.24
2023041303530639000_31.42.14998.23
2023041303530639000_31.42.14998.22
2023041303530639000_31.42.14998.66
2023041303530639000_31.42.14998.21
2023041303530639000_31.42.14998.20
2023041303530639000_31.42.14998.63
2023041303530639000_31.42.14998.62
Wilson (2023041303530639000_31.42.14998.64) 1996; 16
Contreras (2023041303530639000_31.42.14998.12) 1995; 15
2023041303530639000_31.42.14998.61
2023041303530639000_31.42.14998.60
Contreras (2023041303530639000_31.42.14998.13) 1996; 494
Steriade (2023041303530639000_31.42.14998.54) 1993; 13
2023041303530639000_31.42.14998.16
2023041303530639000_31.42.14998.15
2023041303530639000_31.42.14998.59
2023041303530639000_31.42.14998.58
2023041303530639000_31.42.14998.11
2023041303530639000_31.42.14998.10
Timofeev (2023041303530639000_31.42.14998.56) 1996; 76
Wilson (2023041303530639000_31.42.14998.65) 1983; 51
2023041303530639000_31.42.14998.51
2023041303530639000_31.42.14998.50
2023041303530639000_31.42.14998.1
2023041303530639000_31.42.14998.4
2023041303530639000_31.42.14998.3
Timofeev (2023041303530639000_31.42.14998.57) 1996; 494
2023041303530639000_31.42.14998.2
2023041303530639000_31.42.14998.9
2023041303530639000_31.42.14998.8
2023041303530639000_31.42.14998.7
2023041303530639000_31.42.14998.6
2023041303530639000_31.42.14998.39
2023041303530639000_31.42.14998.49
2023041303530639000_31.42.14998.48
2023041303530639000_31.42.14998.47
2023041303530639000_31.42.14998.46
2023041303530639000_31.42.14998.45
Metherate (2023041303530639000_31.42.14998.35) 1993; 13
2023041303530639000_31.42.14998.44
2023041303530639000_31.42.14998.43
2023041303530639000_31.42.14998.42
2023041303530639000_31.42.14998.41
2023041303530639000_31.42.14998.40
2023041303530639000_31.42.14998.29
2023041303530639000_31.42.14998.28
2023041303530639000_31.42.14998.38
2023041303530639000_31.42.14998.37
2023041303530639000_31.42.14998.36
2023041303530639000_31.42.14998.34
2023041303530639000_31.42.14998.33
2023041303530639000_31.42.14998.32
Steriade (2023041303530639000_31.42.14998.55) 2001; 85
2023041303530639000_31.42.14998.30
Steriade (2023041303530639000_31.42.14998.53) 1993; 13
References_xml – volume: 85
  start-page: 1969
  year: 2001
  ident: 2023041303530639000_31.42.14998.55
  article-title: Natural waking and sleep states: a view from inside neocortical neurons
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.85.5.1969
– ident: 2023041303530639000_31.42.14998.2
  doi: 10.1126/science.1149213
– ident: 2023041303530639000_31.42.14998.50
  doi: 10.1113/jphysiol.2003.054932
– ident: 2023041303530639000_31.42.14998.23
  doi: 10.1523/JNEUROSCI.5443-07.2008
– ident: 2023041303530639000_31.42.14998.40
  doi: 10.1101/lm.77104
– ident: 2023041303530639000_31.42.14998.25
  doi: 10.1038/nature02663
– ident: 2023041303530639000_31.42.14998.61
  doi: 10.1016/j.neuron.2009.08.024
– ident: 2023041303530639000_31.42.14998.3
  doi: 10.1111/j.1469-7793.1998.057br.x
– volume: 119
  start-page: 692
  year: 1937
  ident: 2023041303530639000_31.42.14998.5
  article-title: Brain potentials during sleep
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1937.119.4.692
– volume: 13
  start-page: 5312
  year: 1993
  ident: 2023041303530639000_31.42.14998.35
  article-title: Ionic flux contributions to neocortical slow waves and nucleus basalis-mediated activation: whole-cell recordings in vivo
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.13-12-05312.1993
– volume: 76
  start-page: 4152
  year: 1996
  ident: 2023041303530639000_31.42.14998.56
  article-title: Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1996.76.6.4152
– ident: 2023041303530639000_31.42.14998.41
  doi: 10.1016/S0306-4522(00)00442-5
– volume: 13
  start-page: 3252
  year: 1993
  ident: 2023041303530639000_31.42.14998.53
  article-title: A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.13-08-03252.1993
– ident: 2023041303530639000_31.42.14998.46
  doi: 10.1523/JNEUROSCI.4652-06.2007
– ident: 2023041303530639000_31.42.14998.19
  doi: 10.1523/JNEUROSCI.5297-05.2006
– ident: 2023041303530639000_31.42.14998.9
  doi: 10.1523/JNEUROSCI.3481-08.2009
– ident: 2023041303530639000_31.42.14998.58
  doi: 10.1073/pnas.98.4.1924
– ident: 2023041303530639000_31.42.14998.34
  doi: 10.1016/0006-8993(79)90149-5
– ident: 2023041303530639000_31.42.14998.43
  doi: 10.1038/nature07150
– volume: 13
  start-page: 3266
  year: 1993
  ident: 2023041303530639000_31.42.14998.52
  article-title: Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillations and other sleep rhythms of electroencephalogram
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.13-08-03266.1993
– volume: 432
  start-page: 483
  year: 1991
  ident: 2023041303530639000_31.42.14998.31
  article-title: Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1991.sp018396
– ident: 2023041303530639000_31.42.14998.8
  doi: 10.1093/cercor/bhq009
– ident: 2023041303530639000_31.42.14998.17
  doi: 10.1073/pnas.0906419106
– ident: 2023041303530639000_31.42.14998.59
  doi: 10.1196/annals.1440.004
– ident: 2023041303530639000_31.42.14998.20
  doi: 10.1152/jn.01114.2006
– ident: 2023041303530639000_31.42.14998.32
  doi: 10.1523/JNEUROSCI.3987-06.2006
– volume: 494
  start-page: 265
  year: 1996
  ident: 2023041303530639000_31.42.14998.57
  article-title: Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1996.sp021489
– ident: 2023041303530639000_31.42.14998.39
  doi: 10.1523/JNEUROSCI.5062-09.2010
– ident: 2023041303530639000_31.42.14998.11
  doi: 10.1016/j.neuron.2011.02.040
– ident: 2023041303530639000_31.42.14998.49
  doi: 10.1152/jn.01065.2009
– ident: 2023041303530639000_31.42.14998.62
  doi: 10.1038/nature10009
– ident: 2023041303530639000_31.42.14998.26
– ident: 2023041303530639000_31.42.14998.51
– ident: 2023041303530639000_31.42.14998.66
  doi: 10.1523/JNEUROSCI.5594-05.2006
– ident: 2023041303530639000_31.42.14998.18
  doi: 10.1016/j.neuron.2010.01.006
– volume: 13
  start-page: 3284
  year: 1993
  ident: 2023041303530639000_31.42.14998.54
  article-title: The slow (<1 Hz) oscillation in reticular thalamic and thalamo-cortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.13-08-03284.1993
– ident: 2023041303530639000_31.42.14998.48
  doi: 10.1152/jn.00178.2010
– ident: 2023041303530639000_31.42.14998.24
  doi: 10.1016/0006-8993(83)91264-7
– ident: 2023041303530639000_31.42.14998.30
  doi: 10.1073/pnas.0605643104
– ident: 2023041303530639000_31.42.14998.63
  doi: 10.1016/j.cell.2007.03.015
– volume: 71
  start-page: 17
  year: 1994
  ident: 2023041303530639000_31.42.14998.14
  article-title: Spontaneous firing pattern and axonal projections of single corticostriatal neurons in the rat medial agranular cortex
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1994.71.1.17
– ident: 2023041303530639000_31.42.14998.1
  doi: 10.2741/1064
– ident: 2023041303530639000_31.42.14998.22
  doi: 10.1016/0014-2999(81)90430-1
– ident: 2023041303530639000_31.42.14998.4
  doi: 10.1016/0014-4886(67)90110-0
– ident: 2023041303530639000_31.42.14998.15
  doi: 10.1038/nn1690
– ident: 2023041303530639000_31.42.14998.29
  doi: 10.1016/j.lfs.2005.08.027
– ident: 2023041303530639000_31.42.14998.38
  doi: 10.1016/j.neuron.2011.02.043
– ident: 2023041303530639000_31.42.14998.10
  doi: 10.1371/journal.pone.0002004
– ident: 2023041303530639000_31.42.14998.45
– ident: 2023041303530639000_31.42.14998.37
  doi: 10.1002/cne.903280409
– ident: 2023041303530639000_31.42.14998.33
  doi: 10.1523/JNEUROSCI.1318-04.2004
– ident: 2023041303530639000_31.42.14998.42
  doi: 10.1152/jn.01126.2007
– ident: 2023041303530639000_31.42.14998.28
  doi: 10.1126/science.158.3808.1597
– ident: 2023041303530639000_31.42.14998.60
  doi: 10.1523/JNEUROSCI.0279-06.2006
– ident: 2023041303530639000_31.42.14998.27
  doi: 10.1523/JNEUROSCI.2532-10.2010
– ident: 2023041303530639000_31.42.14998.36
  doi: 10.1093/cercor/bhj157
– ident: 2023041303530639000_31.42.14998.6
  doi: 10.1523/JNEUROSCI.5502-08.2009
– ident: 2023041303530639000_31.42.14998.16
  doi: 10.1073/pnas.0931349100
– volume: 51
  start-page: 227
  year: 1983
  ident: 2023041303530639000_31.42.14998.65
  article-title: Disfacilitation and long-lasting inhibition of neostriatal neurons in the rat
  publication-title: Exp Brain Res
  doi: 10.1007/BF00237198
– volume: 15
  start-page: 604
  year: 1995
  ident: 2023041303530639000_31.42.14998.12
  article-title: Cellular basis of eeg slow rhythms: a study of dynamic corticothalamic relationships
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-01-00604.1995
– ident: 2023041303530639000_31.42.14998.7
  doi: 10.1016/j.neuron.2010.09.023
– ident: 2023041303530639000_31.42.14998.44
  doi: 10.1111/j.1460-9568.1995.tb01034.x
– ident: 2023041303530639000_31.42.14998.21
  doi: 10.1523/JNEUROSCI.2184-07.2007
– volume: 16
  start-page: 2397
  year: 1996
  ident: 2023041303530639000_31.42.14998.64
  article-title: The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-07-02397.1996
– ident: 2023041303530639000_31.42.14998.47
  doi: 10.1038/nrn1496
– volume: 494
  start-page: 251
  year: 1996
  ident: 2023041303530639000_31.42.14998.13
  article-title: Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1996.sp021488
SSID ssj0007017
Score 2.460029
Snippet Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine–xylazine anesthesia reproduces the main features of sleep slow oscillation:...
Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation:...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 14998
SubjectTerms Action Potentials - drug effects
Action Potentials - physiology
Analgesics - pharmacology
Anesthesia
Animals
Cats
Cerebral Cortex - cytology
Cerebral Cortex - drug effects
Electrophysiology
Female
Ketamine - pharmacology
Male
Neurons - drug effects
Neurons - physiology
Periodicity
Sleep Stages - drug effects
Sleep Stages - physiology
Spectrum Analysis
Xylazine - pharmacology
Title Properties of Slow Oscillation during Slow-Wave Sleep and Anesthesia in Cats
URI https://www.ncbi.nlm.nih.gov/pubmed/22016533
https://www.proquest.com/docview/906556145
https://pubmed.ncbi.nlm.nih.gov/PMC3209581
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFAeOj40N-QLygdI2TNPFjVYG2gQZoG-wtshNnjZQlU5sMxn_Cf8udnTrpVgHjJari5pTkfjnf2Xe_I-S1y6SbCvy-E8Yd38ckABeMoZBuOBGJQq8Usy0OJ3sn_sFpcDoY_OplLTW1HCU_N9aV_I9W4RzoFatkb6FZKxROwG_QLxxBw3D8Jx1_xpX0BVKi6tqTovr-9hNMaYXJb1uVIOJ55xt2GToqlLrQ2wVTsHDg-i1zocv-hOFzWnmpXb2Y9lR7nJcWBrO5aC4xTUgvn14VlyK3MJvpNlz1hpGvVXHWLOfwnLpM6Ed-blcOADOZMgP7Z9Wivxph0uFam2eMFgshHPVN552Rao0q07s4bt_qtrbfoMsQbLU2FGI205i6nZDBZdXUDzetfaBZJw4OMenxaLY_Yp7HHdfVxKzd_Lba07827dlkRAyDQFJs5cQoB0KjGOXcIXcZRCDYHOPDl46IPhzrZs72cdvic5Czu_l-1v2eG8HM9ZzcnpNz_IDcb3VOpwZqD8lAlY_I9rQUdXV-Rd9QnS-sN2K2yccOfbTKKKKM9tBHDfqoRR_V6KOAPtqhj-YlRfQ9Jifv3x3P9py2N4eT-CGvHcUi5Qrpi2wciVAEkZSKpYKHmfQlYym8ntATYZqMgzTJWJQmMhPROPEU5ylYDe8J2SqrUj0jlGGUxwQLA8V84TEpOfe9iat4wAU4S0MSrN5cnLTE9dg_pYj_rLkh2bXXXRjqlr9eQVeKicHK4taZKFXVLGMOnjpy5gZD8tToyYpkDCsCPW9IwjUN2j8ggfv6SJnPNZG7xyDAidydW9_oc3Kv-_hekK160aiX4BzX8pWG6W8ki7bC
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+Slow+Oscillation+during+Slow-Wave+Sleep+and+Anesthesia+in+Cats&rft.jtitle=The+Journal+of+neuroscience&rft.au=Chauvette%2C+Sylvain&rft.au=Crochet%2C+Sylvain&rft.au=Volgushev%2C+Maxim&rft.au=Timofeev%2C+Igor&rft.date=2011-10-19&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=31&rft.issue=42&rft.spage=14998&rft.epage=15008&rft_id=info:doi/10.1523%2FJNEUROSCI.2339-11.2011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_2339_11_2011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon