MicroRNA-302a-3p induces ferroptosis of non-small cell lung cancer cells via targeting ferroportin
Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and...
Saved in:
Published in | Free radical research Vol. 55; no. 7; pp. 722 - 731 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
03.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and NSCLCs remain unclear. Human NSCLCs cells were incubated with miR-302a-3pmimic or inhibitor in the presence or absence of erastin or RSL3. Cell viability, colony numbers, lactate dehydrogenase (LDH) releases, lipid peroxidation and intracellular iron level were measured. Besides, the synergistic effects of cisplatin and paclitaxel with miR-302a-3p were determined. miR-302a-3p level was reduced in human NSCLCs cells and tissues. ThemiR-302a-3p mimic induced lipid peroxidation, iron overload and ferroptosis, thereby inhibiting cell growth and colony formation of NSCLCs cells. Conversely, the miR-302a-3p inhibitor block ederastin- or RSL3-related ferroptosis and tumor suppression. Additionally, we found that miR-302a-3p directly bound to the 3′-untranslational region of ferroportin to decrease its protein expression, and that ferroportin overexpression significantly prevented miR-302a-3p mimic-induced ferroptosis and tumor inhibition. Moreover, the miR-302a-3p mimic sensitized NSCLCs cells to cisplatin and paclitaxel chemotherapy. miR-302a-3p functions as a tumor inhibitor, at least partly, via targeting ferroportin to induce ferroptosis of NSCLCs. |
---|---|
AbstractList | Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and NSCLCs remain unclear. Human NSCLCs cells were incubated with miR-302a-3pmimic or inhibitor in the presence or absence of erastin or RSL3. Cell viability, colony numbers, lactate dehydrogenase (LDH) releases, lipid peroxidation and intracellular iron level were measured. Besides, the synergistic effects of cisplatin and paclitaxel with miR-302a-3p were determined. miR-302a-3p level was reduced in human NSCLCs cells and tissues. ThemiR-302a-3p mimic induced lipid peroxidation, iron overload and ferroptosis, thereby inhibiting cell growth and colony formation of NSCLCs cells. Conversely, the miR-302a-3p inhibitor block ederastin- or RSL3-related ferroptosis and tumor suppression. Additionally, we found that miR-302a-3p directly bound to the 3'-untranslational region of ferroportin to decrease its protein expression, and that ferroportin overexpression significantly prevented miR-302a-3p mimic-induced ferroptosis and tumor inhibition. Moreover, the miR-302a-3p mimic sensitized NSCLCs cells to cisplatin and paclitaxel chemotherapy. miR-302a-3p functions as a tumor inhibitor, at least partly, via targeting ferroportin to induce ferroptosis of NSCLCs.Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and NSCLCs remain unclear. Human NSCLCs cells were incubated with miR-302a-3pmimic or inhibitor in the presence or absence of erastin or RSL3. Cell viability, colony numbers, lactate dehydrogenase (LDH) releases, lipid peroxidation and intracellular iron level were measured. Besides, the synergistic effects of cisplatin and paclitaxel with miR-302a-3p were determined. miR-302a-3p level was reduced in human NSCLCs cells and tissues. ThemiR-302a-3p mimic induced lipid peroxidation, iron overload and ferroptosis, thereby inhibiting cell growth and colony formation of NSCLCs cells. Conversely, the miR-302a-3p inhibitor block ederastin- or RSL3-related ferroptosis and tumor suppression. Additionally, we found that miR-302a-3p directly bound to the 3'-untranslational region of ferroportin to decrease its protein expression, and that ferroportin overexpression significantly prevented miR-302a-3p mimic-induced ferroptosis and tumor inhibition. Moreover, the miR-302a-3p mimic sensitized NSCLCs cells to cisplatin and paclitaxel chemotherapy. miR-302a-3p functions as a tumor inhibitor, at least partly, via targeting ferroportin to induce ferroptosis of NSCLCs. Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and NSCLCs remain unclear. Human NSCLCs cells were incubated with miR-302a-3pmimic or inhibitor in the presence or absence of erastin or RSL3. Cell viability, colony numbers, lactate dehydrogenase (LDH) releases, lipid peroxidation and intracellular iron level were measured. Besides, the synergistic effects of cisplatin and paclitaxel with miR-302a-3p were determined. miR-302a-3p level was reduced in human NSCLCs cells and tissues. ThemiR-302a-3p mimic induced lipid peroxidation, iron overload and ferroptosis, thereby inhibiting cell growth and colony formation of NSCLCs cells. Conversely, the miR-302a-3p inhibitor block ederastin- or RSL3-related ferroptosis and tumor suppression. Additionally, we found that miR-302a-3p directly bound to the 3'-untranslational region of ferroportin to decrease its protein expression, and that ferroportin overexpression significantly prevented miR-302a-3p mimic-induced ferroptosis and tumor inhibition. Moreover, the miR-302a-3p mimic sensitized NSCLCs cells to cisplatin and paclitaxel chemotherapy. miR-302a-3p functions as a tumor inhibitor, at least partly, targeting ferroportin to induce ferroptosis of NSCLCs. Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and NSCLCs remain unclear. Human NSCLCs cells were incubated with miR-302a-3pmimic or inhibitor in the presence or absence of erastin or RSL3. Cell viability, colony numbers, lactate dehydrogenase (LDH) releases, lipid peroxidation and intracellular iron level were measured. Besides, the synergistic effects of cisplatin and paclitaxel with miR-302a-3p were determined. miR-302a-3p level was reduced in human NSCLCs cells and tissues. ThemiR-302a-3p mimic induced lipid peroxidation, iron overload and ferroptosis, thereby inhibiting cell growth and colony formation of NSCLCs cells. Conversely, the miR-302a-3p inhibitor block ederastin- or RSL3-related ferroptosis and tumor suppression. Additionally, we found that miR-302a-3p directly bound to the 3′-untranslational region of ferroportin to decrease its protein expression, and that ferroportin overexpression significantly prevented miR-302a-3p mimic-induced ferroptosis and tumor inhibition. Moreover, the miR-302a-3p mimic sensitized NSCLCs cells to cisplatin and paclitaxel chemotherapy. miR-302a-3p functions as a tumor inhibitor, at least partly, via targeting ferroportin to induce ferroptosis of NSCLCs. |
Author | Cao, Ping Ke, Yao-Qi Wei, Dong Wang, Chang-Ying Duan, Peng Zhou, Lei |
Author_xml | – sequence: 1 givenname: Dong surname: Wei fullname: Wei, Dong organization: Department of Cardio-Thoracic Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine – sequence: 2 givenname: Yao-Qi surname: Ke fullname: Ke, Yao-Qi organization: Department of Respiratory Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science – sequence: 3 givenname: Peng surname: Duan fullname: Duan, Peng organization: Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine – sequence: 4 givenname: Lei surname: Zhou fullname: Zhou, Lei organization: Department of Cardio-Thoracic Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine – sequence: 5 givenname: Chang-Ying surname: Wang fullname: Wang, Chang-Ying organization: Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine – sequence: 6 givenname: Ping surname: Cao fullname: Cao, Ping organization: Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34181495$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtOAyEUhomp0Xp5BM0s3UzlOgxxY9N4S6omRteEMozBzAwVGE3fXsa2LlzohgOH7z-Q7wCMOtcZAE4QnCBYwnMEOWK8wBMMMZogQTmDZAeMEcQix5TD0bDnKB-gfXAQwhuEiFDG98A-oahEVLAxWNxb7d3TwzQnEKucLDPbVb02IauN924ZXbAhc3WWns9Dq5om0yYtTd-9Zlp12vjvRsg-rMqi8q8m2nS1TjufDkdgt1ZNMMebegherq-eZ7f5_PHmbjad55pyEXODsKgY5yWBiGmyqLEmSmNMTQEpW3CCRVEJVjJa0JJqwQVShFZYQSIUwZwcgrP13KV3770JUbY2DH9TnXF9kDglC4hEwRJ6ukH7RWsqufS2VX4lt14SwNZAkhOCN_UPgqAc_Mutfzn4lxv_KXfxK6dtVNG6Lnplm3_Tl-u07WrnW_XpfFPJqFaN87VPsm2Q5O8RX2kGm5U |
CitedBy_id | crossref_primary_10_1007_s13402_023_00840_7 crossref_primary_10_3390_ijms222413335 crossref_primary_10_1186_s40364_021_00338_0 crossref_primary_10_1038_s41420_025_02308_z crossref_primary_10_1002_mco2_70010 crossref_primary_10_3389_fphar_2023_1285799 crossref_primary_10_1016_j_ejphar_2025_177344 crossref_primary_10_1080_14728222_2022_2032651 crossref_primary_10_3389_fmolb_2023_1115996 crossref_primary_10_3389_fmolb_2022_919187 crossref_primary_10_1038_s41419_022_04927_1 crossref_primary_10_1155_2022_1450098 crossref_primary_10_3389_fonc_2021_792827 crossref_primary_10_3390_nu15245081 crossref_primary_10_1016_j_freeradbiomed_2024_11_023 crossref_primary_10_3390_ijms25116083 crossref_primary_10_1002_mco2_267 crossref_primary_10_1016_j_cellsig_2024_111503 crossref_primary_10_3389_fphar_2024_1509172 crossref_primary_10_3389_fphar_2024_1385565 crossref_primary_10_3892_ijo_2024_5714 crossref_primary_10_1038_s41419_023_05930_w crossref_primary_10_3389_fmolb_2022_1003045 crossref_primary_10_1007_s12094_024_03782_0 crossref_primary_10_3390_cells11132040 crossref_primary_10_1007_s13577_022_00699_0 crossref_primary_10_3389_fgene_2023_1136240 crossref_primary_10_3390_ijms241713336 crossref_primary_10_1016_j_prp_2023_155042 crossref_primary_10_1016_j_ijpharm_2024_124517 crossref_primary_10_1124_jpet_121_001225 crossref_primary_10_1038_s41405_023_00177_1 crossref_primary_10_1080_1120009X_2023_2213490 crossref_primary_10_1038_s41420_023_01407_z crossref_primary_10_1038_s41420_023_01486_y crossref_primary_10_1016_j_yexcr_2024_114272 crossref_primary_10_1007_s10495_022_01750_z crossref_primary_10_1089_ars_2023_0253 crossref_primary_10_1016_j_prp_2023_154906 crossref_primary_10_3389_fcell_2025_1522873 |
Cites_doi | 10.1007/s10565-021-09581-5 10.1038/s41401-020-00531-1 10.1038/s41418-018-0187-3 10.1016/j.redox.2020.101619 10.1016/j.canlet.2019.02.031 10.1016/j.apsb.2020.06.015 10.1016/j.redox.2020.101571 10.1016/j.redox.2020.101702 10.1016/j.apsb.2019.01.002 10.1038/s41418-019-0304-y 10.1016/j.apsb.2020.02.002 10.1016/j.apsb.2019.10.005 10.1038/s41418-019-0308-7 10.1002/ctm2.173 10.1038/s41401-020-0473-8 10.2147/OTT.S167162 10.1016/j.apsb.2018.10.006 10.7150/thno.46903 10.1007/s10565-019-09496-2 10.7150/ijbs.41768 10.7150/ijbs.29907 10.1038/s41401-020-0440-4 10.1111/jcmm.15719 10.1007/s00109-015-1362-3 10.1016/j.cmet.2005.02.005 10.1016/j.redox.2020.101670 10.1038/s41419-020-02939-3 10.1007/s10565-020-09513-9 10.1038/s41418-018-0120-9 10.1016/j.redox.2020.101697 10.1111/acel.13235 10.1016/j.apsb.2019.03.003 10.1038/s41401-020-00587-z 10.2174/1568011053352604 10.1038/s41418-019-0372-z 10.1371/journal.pgen.1003408 10.1016/j.redox.2020.101719 10.1016/j.apsb.2019.09.010 10.1038/s41419-019-1718-7 10.1016/j.redox.2020.101747 10.1038/s41401-019-0233-9 10.1038/s41419-018-0291-9 10.1007/s10565-020-09523-7 10.1038/s41418-018-0164-x 10.1038/s41419-017-0123-3 10.1002/ctm2.124 10.1038/s41418-020-0528-x 10.1038/s41392-020-0149-3 10.1016/j.cell.2013.12.010 10.1186/s40169-019-0219-8 10.1038/s41401-019-0284-y 10.1002/ctm2.190 10.3390/cells8101135 10.1038/s41418-019-0299-4 10.3322/caac.21590 10.1007/s10565-019-09479-3 10.7150/thno.43142 |
ContentType | Journal Article |
Copyright | 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
Copyright_xml | – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1080/10715762.2021.1947503 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry |
EISSN | 1029-2470 |
EndPage | 731 |
ExternalDocumentID | 34181495 10_1080_10715762_2021_1947503 1947503 |
Genre | Research Article Journal Article |
GroupedDBID | --- 00X 03L 0BK 0R~ 29H 30N 36B 4.4 53G 5GY A8Z AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABLKL ABPAQ ABXUL ABXYU ACGEJ ACGFS ACTIO ACUHS ADCVX ADGTB ADOPC ADRBQ ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOSN AGDLA AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AWYRJ BABNJ BLEHA CCCUG CS3 DGEBU DKSSO DU5 EAP EBC EBD EBS EMB EMK EMOBN EPL EST ESTFP ESX F5P H13 HZ~ KRBQP KSSTO KWAYT KYCEM LJTGL M4Z MM. O9- P2P RNANH ROSJB RTWRZ SV3 TBQAZ TDBHL TFDNU TFL TFT TFW TQWBC TTHFI TUROJ TUS V1S ZGOLN ~1N AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION .HR 5VS AAGME AALIY AAOAP AAPXX ABFMO ABJYH ABTAA ACBBU ACDHJ ACQMU ADGTR AFDYB AFFNX APNXG AURDB BFWEY CAG CGR COF CUY CVF CWRZV ECM EIF EJD HGUVV JEPSP M44 NPM NUSFT OWHGL PCLFJ RNS Z0Y ZXP 7X8 |
ID | FETCH-LOGICAL-c479t-e129d57783015c3bf2c3ac224e6045b73296d958546484c9791a34d2a039a3273 |
ISSN | 1071-5762 1029-2470 |
IngestDate | Fri Jul 11 03:28:11 EDT 2025 Wed Feb 19 02:27:26 EST 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 02:15:43 EDT 2025 Wed Dec 25 09:07:29 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | ferroportin ferroptosis miR-302a-3p NSCLCs |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c479t-e129d57783015c3bf2c3ac224e6045b73296d958546484c9791a34d2a039a3273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/MicroRNA-302a-3p_induces_ferroptosis_of_non-small_cell_lung_cancer_cells_via_targeting_ferroportin/15124264 |
PMID | 34181495 |
PQID | 2546601965 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1080_10715762_2021_1947503 crossref_citationtrail_10_1080_10715762_2021_1947503 proquest_miscellaneous_2546601965 informaworld_taylorfrancis_310_1080_10715762_2021_1947503 pubmed_primary_34181495 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-03 |
PublicationDateYYYYMMDD | 2021-07-03 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Free radical research |
PublicationTitleAlternate | Free Radic Res |
PublicationYear | 2021 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0013 CIT0057 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0044 doi: 10.1007/s10565-021-09581-5 – ident: CIT0050 doi: 10.1038/s41401-020-00531-1 – ident: CIT0048 doi: 10.1038/s41418-018-0187-3 – ident: CIT0026 doi: 10.1016/j.redox.2020.101619 – ident: CIT0019 doi: 10.1016/j.canlet.2019.02.031 – ident: CIT0029 doi: 10.1016/j.apsb.2020.06.015 – ident: CIT0003 doi: 10.1016/j.redox.2020.101571 – ident: CIT0006 doi: 10.1016/j.redox.2020.101702 – ident: CIT0046 doi: 10.1016/j.apsb.2019.01.002 – ident: CIT0018 doi: 10.1038/s41418-019-0304-y – ident: CIT0022 doi: 10.1016/j.apsb.2020.02.002 – ident: CIT0033 doi: 10.1016/j.apsb.2019.10.005 – ident: CIT0042 doi: 10.1038/s41418-019-0308-7 – ident: CIT0005 doi: 10.1002/ctm2.173 – ident: CIT0032 doi: 10.1038/s41401-020-0473-8 – ident: CIT0020 doi: 10.2147/OTT.S167162 – ident: CIT0031 doi: 10.1016/j.apsb.2018.10.006 – ident: CIT0036 doi: 10.7150/thno.46903 – ident: CIT0007 doi: 10.1007/s10565-019-09496-2 – ident: CIT0025 doi: 10.7150/ijbs.41768 – ident: CIT0028 doi: 10.7150/ijbs.29907 – ident: CIT0023 doi: 10.1038/s41401-020-0440-4 – ident: CIT0030 doi: 10.1111/jcmm.15719 – ident: CIT0054 doi: 10.1007/s00109-015-1362-3 – ident: CIT0012 doi: 10.1016/j.cmet.2005.02.005 – ident: CIT0009 doi: 10.1016/j.redox.2020.101670 – ident: CIT0052 doi: 10.1038/s41419-020-02939-3 – ident: CIT0041 doi: 10.1007/s10565-020-09513-9 – ident: CIT0047 doi: 10.1038/s41418-018-0120-9 – ident: CIT0051 doi: 10.1016/j.redox.2020.101697 – ident: CIT0056 doi: 10.1111/acel.13235 – ident: CIT0037 doi: 10.1016/j.apsb.2019.03.003 – ident: CIT0039 doi: 10.1038/s41401-020-00587-z – ident: CIT0049 doi: 10.2174/1568011053352604 – ident: CIT0034 doi: 10.1038/s41418-019-0372-z – ident: CIT0055 doi: 10.1371/journal.pgen.1003408 – ident: CIT0013 doi: 10.1016/j.redox.2020.101719 – ident: CIT0016 doi: 10.1016/j.apsb.2019.09.010 – ident: CIT0040 doi: 10.1038/s41419-019-1718-7 – ident: CIT0043 doi: 10.1016/j.redox.2020.101747 – ident: CIT0008 doi: 10.1038/s41401-019-0233-9 – ident: CIT0021 doi: 10.1038/s41419-018-0291-9 – ident: CIT0002 doi: 10.1007/s10565-020-09523-7 – ident: CIT0045 doi: 10.1038/s41418-018-0164-x – ident: CIT0038 doi: 10.1038/s41419-017-0123-3 – ident: CIT0053 doi: 10.1002/ctm2.124 – ident: CIT0011 doi: 10.1038/s41418-020-0528-x – ident: CIT0014 doi: 10.1038/s41392-020-0149-3 – ident: CIT0035 doi: 10.1016/j.cell.2013.12.010 – ident: CIT0004 doi: 10.1186/s40169-019-0219-8 – ident: CIT0017 doi: 10.1038/s41401-019-0284-y – ident: CIT0024 doi: 10.1002/ctm2.190 – ident: CIT0057 doi: 10.3390/cells8101135 – ident: CIT0010 doi: 10.1038/s41418-019-0299-4 – ident: CIT0001 doi: 10.3322/caac.21590 – ident: CIT0015 doi: 10.1007/s10565-019-09479-3 – ident: CIT0027 doi: 10.7150/thno.43142 |
SSID | ssj0013457 |
Score | 2.5211604 |
Snippet | Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 722 |
SubjectTerms | Apoptosis Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Carcinoma, Non-Small-Cell Lung - genetics Carcinoma, Non-Small-Cell Lung - metabolism Carcinoma, Non-Small-Cell Lung - pathology Cation Transport Proteins - antagonists & inhibitors Cation Transport Proteins - genetics Cation Transport Proteins - metabolism Cell Proliferation ferroportin Ferroptosis Gene Expression Regulation, Neoplastic Humans Lung Neoplasms - genetics Lung Neoplasms - metabolism Lung Neoplasms - pathology MicroRNAs - genetics miR-302a-3p NSCLCs Tumor Cells, Cultured |
Title | MicroRNA-302a-3p induces ferroptosis of non-small cell lung cancer cells via targeting ferroportin |
URI | https://www.tandfonline.com/doi/abs/10.1080/10715762.2021.1947503 https://www.ncbi.nlm.nih.gov/pubmed/34181495 https://www.proquest.com/docview/2546601965 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbbBNpeSpu-ti9U6M14a1uyZR2XtGUpbGjLhoRcjCzLZCGNF6-dQ359Rg8_0qSkj4tZ5JUl_H0ezYxGMwh94LEsgkREYJsEBC5c-oLF3FecBjIHbS4ptaG4PEgWh_TrcXw8mVyMopbaJp_Jy1vPlfwLqtAGuOpTsn-BbP9QaIDfgC9cAWG4_hHGSx1N9-Ng7pMgEj7ZeGBgtzrEqlR1XW2aymUbARPf3_7Um9DaT--dtfqgrYa7Ng1b72ItPBsTbgIrTe-q7rJyd1U8a6W8WtiNHZckqHcmHyl7Yr1yK6GR4Ua-i8r_vh70Zetw_aaG_52cVq1xD6j12AcRhSZelfSsWd0oBzKSqKDD-HEncpVri_S2jq0Y0olhm63X0Y2NZCqLotHyzOyicUPy21BJPZoebKZnOQs51du0w1LXByC6O_fQbgTmBcjH3fni08nRsP9ETY7YfvLd2a80-HjrENe0mms5b39vuRgNZvUYPXKmB55bHj1BE3W-hx7sdxX_9tD9pQu0eIryX6mFHbXwiFq4KnFPLayZhDW1sKWWadhioBbuqYVH1HqGDr98Xu0vfFeOw5eU8cZXoBoWMWMprAmxJHkZSSIkqIAqAbsgZwQ-7IKD-UkTmlLJGQ8FoUUkAsIFATX5OdqBSamXCIeKEsEEIXkuKAUtU-Qkpwk8IxU8KOQU0e51ZtLlqtclU86y0KW07VDINAqZQ2GKZn23jU3WclcHPsYqawyRS8vhjNzR930HbAY46XcqzlXVbjNdYiIxqTqn6IVFvJ8OKI2pdkq8-o-RX6OHw0f4Bu00davegmrc5O8cj68AkU6s5A |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VItFeChRol18jwTGrJHbi9YFDVai2tLsH1Eq9GdtxpBXbZLXJgspj8Sq8EDP5KRSp6gH1wGUjbeRk4pnJfBOPvwF4oxKXhamJMTcJOf4oFxiZqMArETqLaC7NKVGcTNPxqfh4lpytwY9-LwyVVVIOnbdEEc27mpybPkb3JXF4lBHiZNpHFUdDTMNpMa4rrDzyF98wbaveHb5HHb-N44MPJ_vjoOssEDghVR14jHJZIuUIzTtx3Oax48ZhNPMpQhwrOcqYKUTSIhUj4ZRUkeEii03IleEY8fG6d-BuolJJvsXD6e-VC9Gwi5KIAcnY7xq6Tuwr8fAKW-r1mLeJfQf34Wc_a23Jy5fhqrZD9_0vQsn_a1ofwFYHxdle6zsPYc0X27Cx33fA24Z7k67w4BHYCRUufpruBTyMTcAXbFZk6BUVy_1yWS7qsppVrMxZURZBdW7mc0ZLImyO71LmyLOWzR8V-zozrC2_R9DQjS6JyuExnN7K0z6BdRTK7wKLvOBGGs6tNUIg6jKWW5HiNUZGhZkbgOiNRLuOu51aiMx11FG89rrTpDvd6W4Aw8thi5a85KYB6k8L1HXz1ShvW7xofsPY1725atQTzakpfLmqNLVcSBvqygHstHZ8KQ6CqBEl6U__4c6vYGN8MjnWx4fTo2ewSaeagmr-HNbr5cq_QNhY25eNnzL4fNsW_AvEJ2Rv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIpVeCpRHw3OR4LiR7V3b2QOHqiVqKYkQolJvy-56LUUEO4qdVuVf8Vf4Rcz4UShS1QPqgUsiJVpnsjPj-cY78w3AaxW7LEhMhLlJIPBFOW7SWHGvZOAsorkkp0RxMk0OjuX7k_hkDX70vTBUVkk5dN4SRTT3anLuRZb3FXH4noYIk6mNKgqHmIXTWVxXV3nkz88wa6veHu6jit9E0fjd570D3g0W4E6mquYeg1wWp-kIrTt2wuaRE8ZhMPMJIhybChQxUwikZSJH0qlUhUbILDKBUEZgwMfr3oLbCTV2UtdIMP19cCEbclESkZOMfdPQVWJfCoeXyFKvhrxN6BvfhZ_9prUVL1-Hq9oO3fe_-CT_q129B1sdEGe7refchzVfbMOdvX7-3TZsTLqygwdgJ1S2-Gm6y0UQGS4WbFZk6BMVy_1yWS7qsppVrMxZURa8-mbmc0YHImyOd1LmyK-WzQcVO50Z1hbfI2ToVpdE5PAQjm_k3z6CdRTK7wALvRQmNUJYa6REzGWssDLBa4yMCjI3ANnbiHYdczsNEJnrsCN47XWnSXe6090AhhfLFi11yXUL1J8GqOvmmVHeDnjR4pq1r3pr1agn2lNT-HJVaRq4kDTElQN43JrxhTgIoUaUoj_5h19-CRsf98f6w-H06Cls0jdNNbV4Buv1cuWfI2as7YvGSxl8uWkD_gXDs2MT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-302a-3p+induces+ferroptosis+of+non-small+cell+lung+cancer+cells+via+targeting+ferroportin&rft.jtitle=Free+radical+research&rft.au=Wei%2C+Dong&rft.au=Ke%2C+Yao-Qi&rft.au=Duan%2C+Peng&rft.au=Zhou%2C+Lei&rft.date=2021-07-03&rft.pub=Taylor+%26+Francis&rft.issn=1071-5762&rft.eissn=1029-2470&rft.volume=55&rft.issue=7&rft.spage=722&rft.epage=731&rft_id=info:doi/10.1080%2F10715762.2021.1947503&rft.externalDocID=1947503 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-5762&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-5762&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-5762&client=summon |