MicroRNA-302a-3p induces ferroptosis of non-small cell lung cancer cells via targeting ferroportin

Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and...

Full description

Saved in:
Bibliographic Details
Published inFree radical research Vol. 55; no. 7; pp. 722 - 731
Main Authors Wei, Dong, Ke, Yao-Qi, Duan, Peng, Zhou, Lei, Wang, Chang-Ying, Cao, Ping
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 03.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and NSCLCs remain unclear. Human NSCLCs cells were incubated with miR-302a-3pmimic or inhibitor in the presence or absence of erastin or RSL3. Cell viability, colony numbers, lactate dehydrogenase (LDH) releases, lipid peroxidation and intracellular iron level were measured. Besides, the synergistic effects of cisplatin and paclitaxel with miR-302a-3p were determined. miR-302a-3p level was reduced in human NSCLCs cells and tissues. ThemiR-302a-3p mimic induced lipid peroxidation, iron overload and ferroptosis, thereby inhibiting cell growth and colony formation of NSCLCs cells. Conversely, the miR-302a-3p inhibitor block ederastin- or RSL3-related ferroptosis and tumor suppression. Additionally, we found that miR-302a-3p directly bound to the 3′-untranslational region of ferroportin to decrease its protein expression, and that ferroportin overexpression significantly prevented miR-302a-3p mimic-induced ferroptosis and tumor inhibition. Moreover, the miR-302a-3p mimic sensitized NSCLCs cells to cisplatin and paclitaxel chemotherapy. miR-302a-3p functions as a tumor inhibitor, at least partly, via targeting ferroportin to induce ferroptosis of NSCLCs.
AbstractList Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and NSCLCs remain unclear. Human NSCLCs cells were incubated with miR-302a-3pmimic or inhibitor in the presence or absence of erastin or RSL3. Cell viability, colony numbers, lactate dehydrogenase (LDH) releases, lipid peroxidation and intracellular iron level were measured. Besides, the synergistic effects of cisplatin and paclitaxel with miR-302a-3p were determined. miR-302a-3p level was reduced in human NSCLCs cells and tissues. ThemiR-302a-3p mimic induced lipid peroxidation, iron overload and ferroptosis, thereby inhibiting cell growth and colony formation of NSCLCs cells. Conversely, the miR-302a-3p inhibitor block ederastin- or RSL3-related ferroptosis and tumor suppression. Additionally, we found that miR-302a-3p directly bound to the 3'-untranslational region of ferroportin to decrease its protein expression, and that ferroportin overexpression significantly prevented miR-302a-3p mimic-induced ferroptosis and tumor inhibition. Moreover, the miR-302a-3p mimic sensitized NSCLCs cells to cisplatin and paclitaxel chemotherapy. miR-302a-3p functions as a tumor inhibitor, at least partly, via targeting ferroportin to induce ferroptosis of NSCLCs.Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and NSCLCs remain unclear. Human NSCLCs cells were incubated with miR-302a-3pmimic or inhibitor in the presence or absence of erastin or RSL3. Cell viability, colony numbers, lactate dehydrogenase (LDH) releases, lipid peroxidation and intracellular iron level were measured. Besides, the synergistic effects of cisplatin and paclitaxel with miR-302a-3p were determined. miR-302a-3p level was reduced in human NSCLCs cells and tissues. ThemiR-302a-3p mimic induced lipid peroxidation, iron overload and ferroptosis, thereby inhibiting cell growth and colony formation of NSCLCs cells. Conversely, the miR-302a-3p inhibitor block ederastin- or RSL3-related ferroptosis and tumor suppression. Additionally, we found that miR-302a-3p directly bound to the 3'-untranslational region of ferroportin to decrease its protein expression, and that ferroportin overexpression significantly prevented miR-302a-3p mimic-induced ferroptosis and tumor inhibition. Moreover, the miR-302a-3p mimic sensitized NSCLCs cells to cisplatin and paclitaxel chemotherapy. miR-302a-3p functions as a tumor inhibitor, at least partly, via targeting ferroportin to induce ferroptosis of NSCLCs.
Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and NSCLCs remain unclear. Human NSCLCs cells were incubated with miR-302a-3pmimic or inhibitor in the presence or absence of erastin or RSL3. Cell viability, colony numbers, lactate dehydrogenase (LDH) releases, lipid peroxidation and intracellular iron level were measured. Besides, the synergistic effects of cisplatin and paclitaxel with miR-302a-3p were determined. miR-302a-3p level was reduced in human NSCLCs cells and tissues. ThemiR-302a-3p mimic induced lipid peroxidation, iron overload and ferroptosis, thereby inhibiting cell growth and colony formation of NSCLCs cells. Conversely, the miR-302a-3p inhibitor block ederastin- or RSL3-related ferroptosis and tumor suppression. Additionally, we found that miR-302a-3p directly bound to the 3'-untranslational region of ferroportin to decrease its protein expression, and that ferroportin overexpression significantly prevented miR-302a-3p mimic-induced ferroptosis and tumor inhibition. Moreover, the miR-302a-3p mimic sensitized NSCLCs cells to cisplatin and paclitaxel chemotherapy. miR-302a-3p functions as a tumor inhibitor, at least partly, targeting ferroportin to induce ferroptosis of NSCLCs.
Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p (miR-302a-3p) plays critical roles in the tumorigenicity of different cancers; however, its function and underlying mechanism in ferroptosis and NSCLCs remain unclear. Human NSCLCs cells were incubated with miR-302a-3pmimic or inhibitor in the presence or absence of erastin or RSL3. Cell viability, colony numbers, lactate dehydrogenase (LDH) releases, lipid peroxidation and intracellular iron level were measured. Besides, the synergistic effects of cisplatin and paclitaxel with miR-302a-3p were determined. miR-302a-3p level was reduced in human NSCLCs cells and tissues. ThemiR-302a-3p mimic induced lipid peroxidation, iron overload and ferroptosis, thereby inhibiting cell growth and colony formation of NSCLCs cells. Conversely, the miR-302a-3p inhibitor block ederastin- or RSL3-related ferroptosis and tumor suppression. Additionally, we found that miR-302a-3p directly bound to the 3′-untranslational region of ferroportin to decrease its protein expression, and that ferroportin overexpression significantly prevented miR-302a-3p mimic-induced ferroptosis and tumor inhibition. Moreover, the miR-302a-3p mimic sensitized NSCLCs cells to cisplatin and paclitaxel chemotherapy. miR-302a-3p functions as a tumor inhibitor, at least partly, via targeting ferroportin to induce ferroptosis of NSCLCs.
Author Cao, Ping
Ke, Yao-Qi
Wei, Dong
Wang, Chang-Ying
Duan, Peng
Zhou, Lei
Author_xml – sequence: 1
  givenname: Dong
  surname: Wei
  fullname: Wei, Dong
  organization: Department of Cardio-Thoracic Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine
– sequence: 2
  givenname: Yao-Qi
  surname: Ke
  fullname: Ke, Yao-Qi
  organization: Department of Respiratory Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science
– sequence: 3
  givenname: Peng
  surname: Duan
  fullname: Duan, Peng
  organization: Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine
– sequence: 4
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
  organization: Department of Cardio-Thoracic Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine
– sequence: 5
  givenname: Chang-Ying
  surname: Wang
  fullname: Wang, Chang-Ying
  organization: Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine
– sequence: 6
  givenname: Ping
  surname: Cao
  fullname: Cao, Ping
  organization: Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34181495$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOAyEUhomp0Xp5BM0s3UzlOgxxY9N4S6omRteEMozBzAwVGE3fXsa2LlzohgOH7z-Q7wCMOtcZAE4QnCBYwnMEOWK8wBMMMZogQTmDZAeMEcQix5TD0bDnKB-gfXAQwhuEiFDG98A-oahEVLAxWNxb7d3TwzQnEKucLDPbVb02IauN924ZXbAhc3WWns9Dq5om0yYtTd-9Zlp12vjvRsg-rMqi8q8m2nS1TjufDkdgt1ZNMMebegherq-eZ7f5_PHmbjad55pyEXODsKgY5yWBiGmyqLEmSmNMTQEpW3CCRVEJVjJa0JJqwQVShFZYQSIUwZwcgrP13KV3770JUbY2DH9TnXF9kDglC4hEwRJ6ukH7RWsqufS2VX4lt14SwNZAkhOCN_UPgqAc_Mutfzn4lxv_KXfxK6dtVNG6Lnplm3_Tl-u07WrnW_XpfFPJqFaN87VPsm2Q5O8RX2kGm5U
CitedBy_id crossref_primary_10_1007_s13402_023_00840_7
crossref_primary_10_3390_ijms222413335
crossref_primary_10_1186_s40364_021_00338_0
crossref_primary_10_1038_s41420_025_02308_z
crossref_primary_10_1002_mco2_70010
crossref_primary_10_3389_fphar_2023_1285799
crossref_primary_10_1016_j_ejphar_2025_177344
crossref_primary_10_1080_14728222_2022_2032651
crossref_primary_10_3389_fmolb_2023_1115996
crossref_primary_10_3389_fmolb_2022_919187
crossref_primary_10_1038_s41419_022_04927_1
crossref_primary_10_1155_2022_1450098
crossref_primary_10_3389_fonc_2021_792827
crossref_primary_10_3390_nu15245081
crossref_primary_10_1016_j_freeradbiomed_2024_11_023
crossref_primary_10_3390_ijms25116083
crossref_primary_10_1002_mco2_267
crossref_primary_10_1016_j_cellsig_2024_111503
crossref_primary_10_3389_fphar_2024_1509172
crossref_primary_10_3389_fphar_2024_1385565
crossref_primary_10_3892_ijo_2024_5714
crossref_primary_10_1038_s41419_023_05930_w
crossref_primary_10_3389_fmolb_2022_1003045
crossref_primary_10_1007_s12094_024_03782_0
crossref_primary_10_3390_cells11132040
crossref_primary_10_1007_s13577_022_00699_0
crossref_primary_10_3389_fgene_2023_1136240
crossref_primary_10_3390_ijms241713336
crossref_primary_10_1016_j_prp_2023_155042
crossref_primary_10_1016_j_ijpharm_2024_124517
crossref_primary_10_1124_jpet_121_001225
crossref_primary_10_1038_s41405_023_00177_1
crossref_primary_10_1080_1120009X_2023_2213490
crossref_primary_10_1038_s41420_023_01407_z
crossref_primary_10_1038_s41420_023_01486_y
crossref_primary_10_1016_j_yexcr_2024_114272
crossref_primary_10_1007_s10495_022_01750_z
crossref_primary_10_1089_ars_2023_0253
crossref_primary_10_1016_j_prp_2023_154906
crossref_primary_10_3389_fcell_2025_1522873
Cites_doi 10.1007/s10565-021-09581-5
10.1038/s41401-020-00531-1
10.1038/s41418-018-0187-3
10.1016/j.redox.2020.101619
10.1016/j.canlet.2019.02.031
10.1016/j.apsb.2020.06.015
10.1016/j.redox.2020.101571
10.1016/j.redox.2020.101702
10.1016/j.apsb.2019.01.002
10.1038/s41418-019-0304-y
10.1016/j.apsb.2020.02.002
10.1016/j.apsb.2019.10.005
10.1038/s41418-019-0308-7
10.1002/ctm2.173
10.1038/s41401-020-0473-8
10.2147/OTT.S167162
10.1016/j.apsb.2018.10.006
10.7150/thno.46903
10.1007/s10565-019-09496-2
10.7150/ijbs.41768
10.7150/ijbs.29907
10.1038/s41401-020-0440-4
10.1111/jcmm.15719
10.1007/s00109-015-1362-3
10.1016/j.cmet.2005.02.005
10.1016/j.redox.2020.101670
10.1038/s41419-020-02939-3
10.1007/s10565-020-09513-9
10.1038/s41418-018-0120-9
10.1016/j.redox.2020.101697
10.1111/acel.13235
10.1016/j.apsb.2019.03.003
10.1038/s41401-020-00587-z
10.2174/1568011053352604
10.1038/s41418-019-0372-z
10.1371/journal.pgen.1003408
10.1016/j.redox.2020.101719
10.1016/j.apsb.2019.09.010
10.1038/s41419-019-1718-7
10.1016/j.redox.2020.101747
10.1038/s41401-019-0233-9
10.1038/s41419-018-0291-9
10.1007/s10565-020-09523-7
10.1038/s41418-018-0164-x
10.1038/s41419-017-0123-3
10.1002/ctm2.124
10.1038/s41418-020-0528-x
10.1038/s41392-020-0149-3
10.1016/j.cell.2013.12.010
10.1186/s40169-019-0219-8
10.1038/s41401-019-0284-y
10.1002/ctm2.190
10.3390/cells8101135
10.1038/s41418-019-0299-4
10.3322/caac.21590
10.1007/s10565-019-09479-3
10.7150/thno.43142
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/10715762.2021.1947503
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1029-2470
EndPage 731
ExternalDocumentID 34181495
10_1080_10715762_2021_1947503
1947503
Genre Research Article
Journal Article
GroupedDBID ---
00X
03L
0BK
0R~
29H
30N
36B
4.4
53G
5GY
A8Z
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABJNI
ABLIJ
ABLKL
ABPAQ
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
ADOPC
ADRBQ
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOSN
AGDLA
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AWYRJ
BABNJ
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EAP
EBC
EBD
EBS
EMB
EMK
EMOBN
EPL
EST
ESTFP
ESX
F5P
H13
HZ~
KRBQP
KSSTO
KWAYT
KYCEM
LJTGL
M4Z
MM.
O9-
P2P
RNANH
ROSJB
RTWRZ
SV3
TBQAZ
TDBHL
TFDNU
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TUS
V1S
ZGOLN
~1N
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
.HR
5VS
AAGME
AALIY
AAOAP
AAPXX
ABFMO
ABJYH
ABTAA
ACBBU
ACDHJ
ACQMU
ADGTR
AFDYB
AFFNX
APNXG
AURDB
BFWEY
CAG
CGR
COF
CUY
CVF
CWRZV
ECM
EIF
EJD
HGUVV
JEPSP
M44
NPM
NUSFT
OWHGL
PCLFJ
RNS
Z0Y
ZXP
7X8
ID FETCH-LOGICAL-c479t-e129d57783015c3bf2c3ac224e6045b73296d958546484c9791a34d2a039a3273
ISSN 1071-5762
1029-2470
IngestDate Fri Jul 11 03:28:11 EDT 2025
Wed Feb 19 02:27:26 EST 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Jul 01 02:15:43 EDT 2025
Wed Dec 25 09:07:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords ferroportin
ferroptosis
miR-302a-3p
NSCLCs
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c479t-e129d57783015c3bf2c3ac224e6045b73296d958546484c9791a34d2a039a3273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://figshare.com/articles/journal_contribution/MicroRNA-302a-3p_induces_ferroptosis_of_non-small_cell_lung_cancer_cells_via_targeting_ferroportin/15124264
PMID 34181495
PQID 2546601965
PQPubID 23479
PageCount 10
ParticipantIDs crossref_primary_10_1080_10715762_2021_1947503
crossref_citationtrail_10_1080_10715762_2021_1947503
proquest_miscellaneous_2546601965
informaworld_taylorfrancis_310_1080_10715762_2021_1947503
pubmed_primary_34181495
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-03
PublicationDateYYYYMMDD 2021-07-03
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Free radical research
PublicationTitleAlternate Free Radic Res
PublicationYear 2021
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0014
CIT0013
CIT0057
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0044
  doi: 10.1007/s10565-021-09581-5
– ident: CIT0050
  doi: 10.1038/s41401-020-00531-1
– ident: CIT0048
  doi: 10.1038/s41418-018-0187-3
– ident: CIT0026
  doi: 10.1016/j.redox.2020.101619
– ident: CIT0019
  doi: 10.1016/j.canlet.2019.02.031
– ident: CIT0029
  doi: 10.1016/j.apsb.2020.06.015
– ident: CIT0003
  doi: 10.1016/j.redox.2020.101571
– ident: CIT0006
  doi: 10.1016/j.redox.2020.101702
– ident: CIT0046
  doi: 10.1016/j.apsb.2019.01.002
– ident: CIT0018
  doi: 10.1038/s41418-019-0304-y
– ident: CIT0022
  doi: 10.1016/j.apsb.2020.02.002
– ident: CIT0033
  doi: 10.1016/j.apsb.2019.10.005
– ident: CIT0042
  doi: 10.1038/s41418-019-0308-7
– ident: CIT0005
  doi: 10.1002/ctm2.173
– ident: CIT0032
  doi: 10.1038/s41401-020-0473-8
– ident: CIT0020
  doi: 10.2147/OTT.S167162
– ident: CIT0031
  doi: 10.1016/j.apsb.2018.10.006
– ident: CIT0036
  doi: 10.7150/thno.46903
– ident: CIT0007
  doi: 10.1007/s10565-019-09496-2
– ident: CIT0025
  doi: 10.7150/ijbs.41768
– ident: CIT0028
  doi: 10.7150/ijbs.29907
– ident: CIT0023
  doi: 10.1038/s41401-020-0440-4
– ident: CIT0030
  doi: 10.1111/jcmm.15719
– ident: CIT0054
  doi: 10.1007/s00109-015-1362-3
– ident: CIT0012
  doi: 10.1016/j.cmet.2005.02.005
– ident: CIT0009
  doi: 10.1016/j.redox.2020.101670
– ident: CIT0052
  doi: 10.1038/s41419-020-02939-3
– ident: CIT0041
  doi: 10.1007/s10565-020-09513-9
– ident: CIT0047
  doi: 10.1038/s41418-018-0120-9
– ident: CIT0051
  doi: 10.1016/j.redox.2020.101697
– ident: CIT0056
  doi: 10.1111/acel.13235
– ident: CIT0037
  doi: 10.1016/j.apsb.2019.03.003
– ident: CIT0039
  doi: 10.1038/s41401-020-00587-z
– ident: CIT0049
  doi: 10.2174/1568011053352604
– ident: CIT0034
  doi: 10.1038/s41418-019-0372-z
– ident: CIT0055
  doi: 10.1371/journal.pgen.1003408
– ident: CIT0013
  doi: 10.1016/j.redox.2020.101719
– ident: CIT0016
  doi: 10.1016/j.apsb.2019.09.010
– ident: CIT0040
  doi: 10.1038/s41419-019-1718-7
– ident: CIT0043
  doi: 10.1016/j.redox.2020.101747
– ident: CIT0008
  doi: 10.1038/s41401-019-0233-9
– ident: CIT0021
  doi: 10.1038/s41419-018-0291-9
– ident: CIT0002
  doi: 10.1007/s10565-020-09523-7
– ident: CIT0045
  doi: 10.1038/s41418-018-0164-x
– ident: CIT0038
  doi: 10.1038/s41419-017-0123-3
– ident: CIT0053
  doi: 10.1002/ctm2.124
– ident: CIT0011
  doi: 10.1038/s41418-020-0528-x
– ident: CIT0014
  doi: 10.1038/s41392-020-0149-3
– ident: CIT0035
  doi: 10.1016/j.cell.2013.12.010
– ident: CIT0004
  doi: 10.1186/s40169-019-0219-8
– ident: CIT0017
  doi: 10.1038/s41401-019-0284-y
– ident: CIT0024
  doi: 10.1002/ctm2.190
– ident: CIT0057
  doi: 10.3390/cells8101135
– ident: CIT0010
  doi: 10.1038/s41418-019-0299-4
– ident: CIT0001
  doi: 10.3322/caac.21590
– ident: CIT0015
  doi: 10.1007/s10565-019-09479-3
– ident: CIT0027
  doi: 10.7150/thno.43142
SSID ssj0013457
Score 2.5211604
Snippet Ferroptosis is a newly described regulated form of cell death that contributes to the progression of non-small cell lung cancers (NSCLCs). MicroRNA-302a-3p...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 722
SubjectTerms Apoptosis
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Carcinoma, Non-Small-Cell Lung - genetics
Carcinoma, Non-Small-Cell Lung - metabolism
Carcinoma, Non-Small-Cell Lung - pathology
Cation Transport Proteins - antagonists & inhibitors
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Cell Proliferation
ferroportin
Ferroptosis
Gene Expression Regulation, Neoplastic
Humans
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
MicroRNAs - genetics
miR-302a-3p
NSCLCs
Tumor Cells, Cultured
Title MicroRNA-302a-3p induces ferroptosis of non-small cell lung cancer cells via targeting ferroportin
URI https://www.tandfonline.com/doi/abs/10.1080/10715762.2021.1947503
https://www.ncbi.nlm.nih.gov/pubmed/34181495
https://www.proquest.com/docview/2546601965
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbbBNpeSpu-ti9U6M14a1uyZR2XtGUpbGjLhoRcjCzLZCGNF6-dQ359Rg8_0qSkj4tZ5JUl_H0ezYxGMwh94LEsgkREYJsEBC5c-oLF3FecBjIHbS4ptaG4PEgWh_TrcXw8mVyMopbaJp_Jy1vPlfwLqtAGuOpTsn-BbP9QaIDfgC9cAWG4_hHGSx1N9-Ng7pMgEj7ZeGBgtzrEqlR1XW2aymUbARPf3_7Um9DaT--dtfqgrYa7Ng1b72ItPBsTbgIrTe-q7rJyd1U8a6W8WtiNHZckqHcmHyl7Yr1yK6GR4Ua-i8r_vh70Zetw_aaG_52cVq1xD6j12AcRhSZelfSsWd0oBzKSqKDD-HEncpVri_S2jq0Y0olhm63X0Y2NZCqLotHyzOyicUPy21BJPZoebKZnOQs51du0w1LXByC6O_fQbgTmBcjH3fni08nRsP9ETY7YfvLd2a80-HjrENe0mms5b39vuRgNZvUYPXKmB55bHj1BE3W-hx7sdxX_9tD9pQu0eIryX6mFHbXwiFq4KnFPLayZhDW1sKWWadhioBbuqYVH1HqGDr98Xu0vfFeOw5eU8cZXoBoWMWMprAmxJHkZSSIkqIAqAbsgZwQ-7IKD-UkTmlLJGQ8FoUUkAsIFATX5OdqBSamXCIeKEsEEIXkuKAUtU-Qkpwk8IxU8KOQU0e51ZtLlqtclU86y0KW07VDINAqZQ2GKZn23jU3WclcHPsYqawyRS8vhjNzR930HbAY46XcqzlXVbjNdYiIxqTqn6IVFvJ8OKI2pdkq8-o-RX6OHw0f4Bu00davegmrc5O8cj68AkU6s5A
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VItFeChRol18jwTGrJHbi9YFDVai2tLsH1Eq9GdtxpBXbZLXJgspj8Sq8EDP5KRSp6gH1wGUjbeRk4pnJfBOPvwF4oxKXhamJMTcJOf4oFxiZqMArETqLaC7NKVGcTNPxqfh4lpytwY9-LwyVVVIOnbdEEc27mpybPkb3JXF4lBHiZNpHFUdDTMNpMa4rrDzyF98wbaveHb5HHb-N44MPJ_vjoOssEDghVR14jHJZIuUIzTtx3Oax48ZhNPMpQhwrOcqYKUTSIhUj4ZRUkeEii03IleEY8fG6d-BuolJJvsXD6e-VC9Gwi5KIAcnY7xq6Tuwr8fAKW-r1mLeJfQf34Wc_a23Jy5fhqrZD9_0vQsn_a1ofwFYHxdle6zsPYc0X27Cx33fA24Z7k67w4BHYCRUufpruBTyMTcAXbFZk6BUVy_1yWS7qsppVrMxZURZBdW7mc0ZLImyO71LmyLOWzR8V-zozrC2_R9DQjS6JyuExnN7K0z6BdRTK7wKLvOBGGs6tNUIg6jKWW5HiNUZGhZkbgOiNRLuOu51aiMx11FG89rrTpDvd6W4Aw8thi5a85KYB6k8L1HXz1ShvW7xofsPY1725atQTzakpfLmqNLVcSBvqygHstHZ8KQ6CqBEl6U__4c6vYGN8MjnWx4fTo2ewSaeagmr-HNbr5cq_QNhY25eNnzL4fNsW_AvEJ2Rv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIpVeCpRHw3OR4LiR7V3b2QOHqiVqKYkQolJvy-56LUUEO4qdVuVf8Vf4Rcz4UShS1QPqgUsiJVpnsjPj-cY78w3AaxW7LEhMhLlJIPBFOW7SWHGvZOAsorkkp0RxMk0OjuX7k_hkDX70vTBUVkk5dN4SRTT3anLuRZb3FXH4noYIk6mNKgqHmIXTWVxXV3nkz88wa6veHu6jit9E0fjd570D3g0W4E6mquYeg1wWp-kIrTt2wuaRE8ZhMPMJIhybChQxUwikZSJH0qlUhUbILDKBUEZgwMfr3oLbCTV2UtdIMP19cCEbclESkZOMfdPQVWJfCoeXyFKvhrxN6BvfhZ_9prUVL1-Hq9oO3fe_-CT_q129B1sdEGe7refchzVfbMOdvX7-3TZsTLqygwdgJ1S2-Gm6y0UQGS4WbFZk6BMVy_1yWS7qsppVrMxZURa8-mbmc0YHImyOd1LmyK-WzQcVO50Z1hbfI2ToVpdE5PAQjm_k3z6CdRTK7wALvRQmNUJYa6REzGWssDLBa4yMCjI3ANnbiHYdczsNEJnrsCN47XWnSXe6090AhhfLFi11yXUL1J8GqOvmmVHeDnjR4pq1r3pr1agn2lNT-HJVaRq4kDTElQN43JrxhTgIoUaUoj_5h19-CRsf98f6w-H06Cls0jdNNbV4Buv1cuWfI2as7YvGSxl8uWkD_gXDs2MT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-302a-3p+induces+ferroptosis+of+non-small+cell+lung+cancer+cells+via+targeting+ferroportin&rft.jtitle=Free+radical+research&rft.au=Wei%2C+Dong&rft.au=Ke%2C+Yao-Qi&rft.au=Duan%2C+Peng&rft.au=Zhou%2C+Lei&rft.date=2021-07-03&rft.pub=Taylor+%26+Francis&rft.issn=1071-5762&rft.eissn=1029-2470&rft.volume=55&rft.issue=7&rft.spage=722&rft.epage=731&rft_id=info:doi/10.1080%2F10715762.2021.1947503&rft.externalDocID=1947503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-5762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-5762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-5762&client=summon