Deciphering the Interactions in the Root–Soil Nexus Caused by Urease and Nitrification Inhibitors: A Review

Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops is challenging due to the various pathways through which N can be lost, such as ammonia (NH3) volatilization, nitrous oxide emissions, denitr...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 13; no. 6; p. 1603
Main Authors Gupta, Sneha, Yildirim, Sibel, Andrikopoulos, Benjamin, Wille, Uta, Roessner, Ute
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops is challenging due to the various pathways through which N can be lost, such as ammonia (NH3) volatilization, nitrous oxide emissions, denitrification, nitrate (NO3−) leaching, and runoff. Additionally, N can become immobilized by soil minerals when ammonium (NH4+) gets trapped in the interlayers of clay minerals. Although synchronizing N availability with plant uptake could potentially reduce N loss, this approach is hindered by the fact that N loss from crop fields is typically influenced by a combination of management practices (which can be controlled) and weather dynamics, particularly precipitation, temperature fluctuations, and wind (which are beyond our control). In recent years, the use of urease and nitrification inhibitors has emerged as a strategy to temporarily delay the microbiological transformations of N-based fertilizers, thereby synchronizing N availability with plant uptake and mitigating N loss. Urease inhibitors slow down the hydrolysis of urea to NH4+ and reduce nitrogen loss through NH3 volatilization. Nitrification inhibitors temporarily inhibit soil bacteria (Nitrosomonas spp.) that convert NH4+ to nitrite (NO2−), thereby slowing down the first and rate-determining step of the nitrification process and reducing nitrogen loss as NO3− or through denitrification. This review aims to provide a comprehensive understanding of urease and nitrification inhibitor technologies and their profound implications for plants and root nitrogen uptake. It underscores the critical need to develop design principles for inhibitors with enhanced efficiency, highlighting their potential to revolutionize agricultural practices. Furthermore, this review offers valuable insights into future directions for inhibitor usage and emphasizes the essential traits that superior inhibitors should possess, thereby paving the way for innovative advancements in optimizing nitrogen management and ensuring sustainable crop production.
AbstractList Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops is challenging due to the various pathways through which N can be lost, such as ammonia (NH3) volatilization, nitrous oxide emissions, denitrification, nitrate (NO3−) leaching, and runoff. Additionally, N can become immobilized by soil minerals when ammonium (NH4+) gets trapped in the interlayers of clay minerals. Although synchronizing N availability with plant uptake could potentially reduce N loss, this approach is hindered by the fact that N loss from crop fields is typically influenced by a combination of management practices (which can be controlled) and weather dynamics, particularly precipitation, temperature fluctuations, and wind (which are beyond our control). In recent years, the use of urease and nitrification inhibitors has emerged as a strategy to temporarily delay the microbiological transformations of N-based fertilizers, thereby synchronizing N availability with plant uptake and mitigating N loss. Urease inhibitors slow down the hydrolysis of urea to NH4+ and reduce nitrogen loss through NH3 volatilization. Nitrification inhibitors temporarily inhibit soil bacteria (Nitrosomonas spp.) that convert NH4+ to nitrite (NO2−), thereby slowing down the first and rate-determining step of the nitrification process and reducing nitrogen loss as NO3− or through denitrification. This review aims to provide a comprehensive understanding of urease and nitrification inhibitor technologies and their profound implications for plants and root nitrogen uptake. It underscores the critical need to develop design principles for inhibitors with enhanced efficiency, highlighting their potential to revolutionize agricultural practices. Furthermore, this review offers valuable insights into future directions for inhibitor usage and emphasizes the essential traits that superior inhibitors should possess, thereby paving the way for innovative advancements in optimizing nitrogen management and ensuring sustainable crop production.
Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops is challenging due to the various pathways through which N can be lost, such as ammonia (NH₃) volatilization, nitrous oxide emissions, denitrification, nitrate (NO₃⁻) leaching, and runoff. Additionally, N can become immobilized by soil minerals when ammonium (NH₄⁺) gets trapped in the interlayers of clay minerals. Although synchronizing N availability with plant uptake could potentially reduce N loss, this approach is hindered by the fact that N loss from crop fields is typically influenced by a combination of management practices (which can be controlled) and weather dynamics, particularly precipitation, temperature fluctuations, and wind (which are beyond our control). In recent years, the use of urease and nitrification inhibitors has emerged as a strategy to temporarily delay the microbiological transformations of N-based fertilizers, thereby synchronizing N availability with plant uptake and mitigating N loss. Urease inhibitors slow down the hydrolysis of urea to NH₄⁺ and reduce nitrogen loss through NH₃ volatilization. Nitrification inhibitors temporarily inhibit soil bacteria (Nitrosomonas spp.) that convert NH₄⁺ to nitrite (NO₂⁻), thereby slowing down the first and rate-determining step of the nitrification process and reducing nitrogen loss as NO₃⁻ or through denitrification. This review aims to provide a comprehensive understanding of urease and nitrification inhibitor technologies and their profound implications for plants and root nitrogen uptake. It underscores the critical need to develop design principles for inhibitors with enhanced efficiency, highlighting their potential to revolutionize agricultural practices. Furthermore, this review offers valuable insights into future directions for inhibitor usage and emphasizes the essential traits that superior inhibitors should possess, thereby paving the way for innovative advancements in optimizing nitrogen management and ensuring sustainable crop production.
Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops is challenging due to the various pathways through which N can be lost, such as ammonia (NH[sub.3]) volatilization, nitrous oxide emissions, denitrification, nitrate (NO[sub.3] [sup.−]) leaching, and runoff. Additionally, N can become immobilized by soil minerals when ammonium (NH[sub.4] [sup.+]) gets trapped in the interlayers of clay minerals. Although synchronizing N availability with plant uptake could potentially reduce N loss, this approach is hindered by the fact that N loss from crop fields is typically influenced by a combination of management practices (which can be controlled) and weather dynamics, particularly precipitation, temperature fluctuations, and wind (which are beyond our control). In recent years, the use of urease and nitrification inhibitors has emerged as a strategy to temporarily delay the microbiological transformations of N-based fertilizers, thereby synchronizing N availability with plant uptake and mitigating N loss. Urease inhibitors slow down the hydrolysis of urea to NH[sub.4] [sup.+] and reduce nitrogen loss through NH[sub.3] volatilization. Nitrification inhibitors temporarily inhibit soil bacteria (Nitrosomonas spp.) that convert NH[sub.4] [sup.+] to nitrite (NO[sub.2] [sup.−]), thereby slowing down the first and rate-determining step of the nitrification process and reducing nitrogen loss as NO[sub.3] [sup.−] or through denitrification. This review aims to provide a comprehensive understanding of urease and nitrification inhibitor technologies and their profound implications for plants and root nitrogen uptake. It underscores the critical need to develop design principles for inhibitors with enhanced efficiency, highlighting their potential to revolutionize agricultural practices. Furthermore, this review offers valuable insights into future directions for inhibitor usage and emphasizes the essential traits that superior inhibitors should possess, thereby paving the way for innovative advancements in optimizing nitrogen management and ensuring sustainable crop production.
Audience Academic
Author Gupta, Sneha
Yildirim, Sibel
Andrikopoulos, Benjamin
Wille, Uta
Roessner, Ute
Author_xml – sequence: 1
  givenname: Sneha
  surname: Gupta
  fullname: Gupta, Sneha
– sequence: 2
  givenname: Sibel
  surname: Yildirim
  fullname: Yildirim, Sibel
– sequence: 3
  givenname: Benjamin
  surname: Andrikopoulos
  fullname: Andrikopoulos, Benjamin
– sequence: 4
  givenname: Uta
  orcidid: 0000-0003-1756-5449
  surname: Wille
  fullname: Wille, Uta
– sequence: 5
  givenname: Ute
  orcidid: 0000-0002-6482-2615
  surname: Roessner
  fullname: Roessner, Ute
BookMark eNp1kk1vEzEQhleoSJTSO0dLXLikrNdee80tCl-RqiIVerb8MU4cbexgO4Xc-A_8Q34JTgICIrAPY43e5x15Zh43ZyEGaJqnuL0iRLQv1CLFENc7TFqGWUseNOddy8mEEtGf_fF-1FzmvGrrEZgMLT9v1q_A-M0Skg8LVJaA5qFAUqb4GDLy4ZC7jbF8__rtQ_QjuoEv24xmapvBIr1DdwlUBqSCRTe-JO-8UXu4Gi299iWm_BJN0S3ce_j8pHno1Jjh8me8aO7evP44eze5fv92PpteTwzlokwsA8XAMdIBhsGBwk5RS8BpgzXn2vUMOyJ0byx1TFstjGICCMH9YBQ25KKZH31tVCu5SX6t0k5G5eUhEdNCqlS8GUFS7ayltIOhr8EypTnRtO-tad0wMFW9nh-9Nil-2kIucu2zgXFUAeI2y24YOCMUY1ylz06kq7hNof60qjrBBOV9_1u1ULW-Dy6W2vC9qZzyngreDVxU1dU_VPVaWHtTx-98zf8FsCNgUsw5gZPGl8MoKuhHiVu53xV5uisVbE_AXw37L_IDKAXHDg
CitedBy_id crossref_primary_10_1021_acsomega_4c01451
crossref_primary_10_3390_agriculture14020274
crossref_primary_10_1016_j_aej_2025_02_039
crossref_primary_10_1016_j_chemosphere_2023_139611
crossref_primary_10_3390_agronomy13112715
crossref_primary_10_3389_fmicb_2024_1433816
crossref_primary_10_3390_agronomy15010049
crossref_primary_10_3389_fpls_2024_1370593
Cites_doi 10.1007/s003740050335
10.1078/0176-1617-0774
10.1016/j.scitotenv.2016.04.120
10.2136/sssaj2001.6541314x
10.1016/j.eja.2016.07.001
10.1038/srep22075
10.1080/07352689.2014.897897
10.1016/j.tim.2016.05.004
10.1016/B978-0-12-394275-3.00001-8
10.1016/j.agrformet.2020.108110
10.1016/j.soilbio.2012.02.014
10.1007/s00344-020-10295-x
10.1016/j.jare.2018.05.008
10.1007/s10533-005-3070-5
10.1186/s13007-022-00875-1
10.1038/ncomms4858
10.1111/tpj.12626
10.1007/s11104-020-04719-6
10.1111/nph.13828
10.1021/jf072901y
10.1128/mr.53.1.68-84.1989
10.1186/s13717-021-00290-9
10.1016/j.atmosenv.2013.04.079
10.1023/A:1021471531188
10.1016/j.apsoil.2017.06.040
10.1093/jxb/ers036
10.1038/nature08465
10.2134/agronj2013.0081
10.1038/nrmicro3109
10.1016/j.envpol.2018.10.135
10.1579/0044-7447-31.2.132
10.1016/0038-0717(93)90159-9
10.1016/j.soilbio.2012.06.006
10.1016/S1002-0160(20)60076-5
10.1016/0038-0717(90)90132-J
10.1111/nph.15662
10.1038/ngeo325
10.1016/j.soilbio.2017.08.030
10.1016/j.ecoenv.2021.112338
10.1016/S0014-5793(01)02096-8
10.1139/cjss-2020-0044
10.1111/nph.12235
10.1890/0012-9658(1999)080[2408:SAAUAS]2.0.CO;2
10.1016/j.soilbio.2015.11.017
10.1016/j.scitotenv.2018.07.092
10.3389/fpls.2015.01007
10.1007/BF01049492
10.1002/jsfa.2740310714
10.1016/j.scitotenv.2018.11.316
10.1016/j.scitotenv.2018.05.356
10.2136/sssaj2012.0380
10.1128/jb.175.7.1971-1980.1993
10.1073/pnas.0903694106
10.1039/C6RA27872H
10.1016/0038-0717(94)90138-4
10.1016/j.soilbio.2004.08.008
10.1128/jb.120.1.556-558.1974
10.1104/pp.127.1.262
10.3390/plants9010097
10.1042/bj2120031
10.1007/BF00411254
10.1007/s10705-014-9660-7
10.1016/j.cosust.2011.08.012
10.1007/s004420100693
10.4161/psb.5.6.11211
10.1890/06-2057.1
10.3389/fpls.2016.01391
10.1002/prot.24535
10.1038/nature03311
10.1073/pnas.0810193105
10.1104/pp.110.165076
10.1073/pnas.0504219102
10.1007/s00374-016-1131-7
10.1093/aob/mcs230
10.1111/gcb.14877
10.1016/j.scitotenv.2010.04.017
10.1038/nature25978
10.1579/0044-7447-31.2.64
10.1016/j.tplants.2012.04.001
10.1016/j.febslet.2007.04.013
10.1038/srep43853
10.1071/SR16340
10.1111/gcb.13827
10.1016/j.jinorgbio.2008.01.032
10.1016/j.agee.2017.05.017
10.1016/S0021-9258(18)45979-0
10.1093/femsec/fiw036
10.1111/aab.12014
10.1007/s00253-014-6026-7
10.1111/nph.13832
10.1021/acs.jafc.0c07093
10.1007/s003740100380
10.1128/jb.172.9.5368-5373.1990
10.1016/S1001-0742(07)60140-5
10.1038/nature04983
10.1371/journal.pone.0019220
10.1016/j.tim.2012.08.001
10.1007/BF02323055
10.1111/j.1469-8137.2008.02751.x
10.1007/s11104-006-9094-3
10.1016/S0065-2113(08)60901-3
10.1890/06-0946.1
10.1073/pnas.86.4.1110
10.1098/rstb.2013.0116
10.4141/CJSS06007
10.1016/j.scitotenv.2017.12.241
10.1104/pp.103.4.1249
10.1038/nature02403
10.1038/ismej.2011.168
10.1016/j.soilbio.2009.12.014
10.1016/j.soilbio.2015.11.016
10.2136/sssaj2015.05.0169
10.1016/j.fcr.2016.11.009
10.1007/s11356-018-2873-6
10.1007/s10725-011-9567-0
10.1080/03650340.2019.1697805
10.1007/s00775-020-01808-w
10.1021/acs.jafc.8b04791
10.3390/su12156018
10.1007/BF00415273
10.1016/j.jplph.2010.07.024
10.1038/s41598-020-65107-9
10.1023/A:1004241722172
10.1128/aem.59.11.3718-3727.1993
10.1007/b97397
10.1111/j.1469-8137.2008.02576.x
10.4141/cjps95-075
10.1016/j.tplants.2013.08.008
10.1146/annurev.micro.55.1.485
10.1016/j.geoderma.2021.114947
10.1007/s007750000204
10.1071/SR15317
10.1128/JB.185.24.7266-7272.2003
10.1093/femsre/fuaa037
10.1016/j.agee.2016.08.019
10.1038/35082070
10.1016/j.scitotenv.2021.145483
10.1016/j.chemer.2016.04.002
10.1007/s003740050518
10.1016/j.apsoil.2017.05.034
10.1111/j.1747-0765.2007.00195.x
10.1007/s00374-010-0515-3
10.1016/j.agsy.2016.05.014
10.1111/j.1365-2486.2006.01100.x
10.4141/P98-121
10.1016/j.scitotenv.2017.12.250
10.1038/nplants.2017.74
10.1038/nature10452
10.1021/acsagscitech.2c00303
10.2134/agronj2013.0096
10.1038/srep15842
10.1038/nature16459
10.1890/14-1761.1
10.1071/SR10243
10.1016/j.jconrel.2021.10.003
10.1021/acsomega.1c05512
10.3390/molecules26082256
10.1039/D0RA02363A
10.1104/pp.017004
10.1016/j.agee.2019.106763
10.1016/j.jare.2018.01.007
10.1016/j.fcr.2013.08.014
10.1007/s11104-013-1830-x
10.1128/AEM.02388-19
10.1890/13-2107.1
10.1016/j.soilbio.2012.04.019
10.1105/tpc.111.092221
10.1039/C5RA07886E
10.1007/s00374-019-01375-6
10.1016/j.fcr.2010.10.012
10.1016/j.jare.2018.04.001
10.1016/S0065-2113(05)87003-8
10.1007/s003740100386
10.1074/jbc.M403974200
10.3390/plants10040681
10.3390/agronomy11081674
10.1016/0038-0717(89)90083-7
10.1111/j.1574-6968.1979.tb03329.x
10.2134/jeq2017.03.0106
10.3390/plants9080967
10.5402/2012/928901
10.1007/BF02451778
10.2134/agronj2016.08.0464
10.1071/SR15330
10.1016/j.scitotenv.2020.139113
10.1007/s10725-010-9513-6
10.1016/j.scitotenv.2020.141885
10.1039/C6DT00652C
10.1098/rstb.2013.0164
10.1038/158097a0
10.1007/978-3-642-70722-3
10.1104/pp.106.085209
10.1016/j.plantsci.2017.05.004
10.1111/nph.14876
10.1104/pp.105.075721
10.1007/BF00029272
10.1021/ac60252a045
10.1073/pnas.0712078105
10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2
10.1104/pp.106.091223
10.1016/j.agee.2014.01.026
10.1016/j.agee.2014.03.036
10.1099/00221287-133-2-283
10.2134/jeq2007.0268
10.1071/SR02144
10.1007/978-94-009-2817-6
10.1016/S1002-0160(08)60028-4
10.1016/S1002-0160(19)60803-9
10.1007/s11104-016-3100-1
10.1038/s41467-018-06681-5
10.1007/BF00414458
10.1007/s11104-021-04860-w
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy13061603
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Agricultural Science Database
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_4bfdd442e85d44d6ab73b455dc0f886a
A754972879
10_3390_agronomy13061603
GeographicLocations Australia
Serbia
GeographicLocations_xml – name: Serbia
– name: Australia
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
PMFND
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c479t-d6ea6ef632e1e8fea1fa4d3efbc1b77bf561f39b5cd4f6bdb9ca69e33158ca1c3
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Wed Aug 27 01:29:05 EDT 2025
Fri Jul 11 02:04:44 EDT 2025
Mon Jun 30 11:31:27 EDT 2025
Tue Jun 17 21:34:19 EDT 2025
Tue Jun 10 20:27:49 EDT 2025
Thu Apr 24 23:11:03 EDT 2025
Tue Jul 01 03:21:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-d6ea6ef632e1e8fea1fa4d3efbc1b77bf561f39b5cd4f6bdb9ca69e33158ca1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6482-2615
0000-0003-1756-5449
OpenAccessLink https://www.proquest.com/docview/2829694755?pq-origsite=%requestingapplication%
PQID 2829694755
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_4bfdd442e85d44d6ab73b455dc0f886a
proquest_miscellaneous_2887634111
proquest_journals_2829694755
gale_infotracmisc_A754972879
gale_infotracacademiconefile_A754972879
crossref_citationtrail_10_3390_agronomy13061603
crossref_primary_10_3390_agronomy13061603
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
Duncan (ref_129) 2017; 413
Slangen (ref_224) 1984; 5
ref_92
Nardi (ref_104) 2020; 44
Recio (ref_213) 2020; 292
Schulten (ref_54) 1998; 26
Zhang (ref_176) 2012; 6
Irigoyen (ref_163) 2003; 41
Fan (ref_186) 2018; 642
Whittaker (ref_144) 2000; 1459
Unkles (ref_37) 2004; 279
Miller (ref_29) 2007; 88
Imran (ref_118) 2020; 10
Soares (ref_191) 2012; 52
Zakir (ref_102) 2008; 5
Gong (ref_18) 2013; 77
Varala (ref_40) 2014; 19
Werneck (ref_214) 2022; 56
Lin (ref_21) 2011; 64
Subbarao (ref_107) 2013; 112
Suzuki (ref_128) 1974; 120
Guardia (ref_154) 2018; 624
Dawar (ref_207) 2022; 41
Bardgett (ref_72) 2016; 210
Linquist (ref_209) 2013; 154
Lonhienne (ref_50) 2008; 105
Hubley (ref_135) 1974; 95
Ensign (ref_147) 1993; 175
Sha (ref_156) 2019; 655
Grant (ref_196) 2011; 121
Li (ref_46) 2007; 143
Engel (ref_166) 2013; 77
ref_81
Berendsen (ref_70) 2012; 17
Kelliher (ref_162) 2014; 186
Meng (ref_215) 2021; 388
Erisman (ref_2) 2013; 368
Frame (ref_189) 2017; 109
Zhu (ref_158) 2019; 55
ref_85
Lieberman (ref_127) 2005; 434
Svane (ref_83) 2020; 10
Raab (ref_53) 1999; 80
Roumet (ref_75) 2016; 210
Lezhneva (ref_48) 2014; 80
Asgedom (ref_152) 2014; 106
Orsel (ref_44) 2006; 142
Recio (ref_149) 2019; 245
Jones (ref_217) 2017; 155
Larsen (ref_61) 2016; 92
Voysey (ref_139) 1987; 133
Stirling (ref_138) 1979; 5
Chen (ref_31) 2003; 185
ref_218
Britto (ref_27) 2002; 159
Grant (ref_195) 1999; 79
Dougherty (ref_153) 2016; 54
Halvorson (ref_229) 2008; 37
Cantarel (ref_74) 2015; 96
Galloway (ref_3) 2002; 31
Lasisi (ref_112) 2021; 101
Abalos (ref_210) 2014; 189
Hanif (ref_119) 2012; 2012
Wang (ref_19) 2015; 5
ref_204
Ward (ref_140) 1987; 147
McCarty (ref_123) 1999; 29
Hyman (ref_136) 1983; 212
Modolo (ref_116) 2018; 13
Tao (ref_168) 2006; 25
Warren (ref_62) 2014; 375
Subbarao (ref_100) 2006; 288
Remans (ref_45) 2006; 140
Halvorson (ref_78) 2014; 106
Rentsch (ref_55) 2007; 581
Zerulla (ref_99) 2001; 34
Fowler (ref_15) 2013; 368
Hyman (ref_137) 1984; 137
Suwanchaikasem (ref_225) 2022; 18
Rai (ref_7) 2019; 63
Estavillo (ref_148) 2016; 80
Mazzei (ref_82) 2019; 67
Coskun (ref_5) 2017; 3
Courty (ref_24) 2015; 34
ref_110
Gao (ref_150) 2021; 69
Hyman (ref_223) 1992; 267
Li (ref_80) 2017; 7
Wright (ref_76) 2004; 428
Bodirsky (ref_9) 2014; 5
Harty (ref_77) 2016; 563
Cruchaga (ref_200) 2013; 373
Kowalchuk (ref_88) 2001; 55
Schlesinger (ref_16) 2009; 106
Warren (ref_63) 2017; 115
Segler (ref_220) 2018; 555
ref_227
ref_228
Suter (ref_113) 2011; 49
Lan (ref_155) 2018; 25
Foley (ref_6) 2011; 478
Greenfield (ref_58) 2020; 456
Krogmeier (ref_202) 1989; 86
Fisher (ref_126) 2018; 9
Jia (ref_171) 2020; 30
Speth (ref_90) 2015; 528
Sha (ref_157) 2020; 290
Rasche (ref_142) 1990; 172
Knowles (ref_133) 1989; 53
Filleur (ref_42) 2001; 489
Wardak (ref_132) 2021; 58
Cassman (ref_12) 2002; 31
Zhang (ref_232) 2021; 10
Chen (ref_84) 2015; 101
Glanville (ref_67) 2016; 94
Dimkpa (ref_212) 2020; 731
Chen (ref_174) 2015; 99
Chen (ref_183) 2010; 42
Daims (ref_89) 2016; 24
ref_10
Vallejo (ref_188) 2019; 183
Lam (ref_187) 2018; 644
Carmona (ref_159) 1990; 22
Gazzarrini (ref_26) 1997; 196
Makino (ref_20) 2011; 155
Roberts (ref_66) 2012; 49
Marsden (ref_165) 2017; 246
Phillips (ref_60) 2006; 12
Kallio (ref_206) 1980; 31
Burton (ref_231) 2008; 88
Glibert (ref_11) 2006; 77
Philippot (ref_71) 2013; 11
Font (ref_97) 2008; 56
Kafarski (ref_115) 2018; 13
Wright (ref_131) 2020; 86
ref_23
Mazzei (ref_120) 2016; 45
Farzadfar (ref_68) 2021; 462
Zhou (ref_98) 2016; 27
Christianson (ref_179) 1993; 25
Subbarao (ref_105) 2017; 262
Yang (ref_211) 2016; 6
Brito (ref_117) 2015; 5
Behera (ref_17) 2010; 408
Di (ref_93) 2002; 64
Watson (ref_203) 1996; 184
Guardia (ref_233) 2020; 66
Kiba (ref_47) 2012; 24
Bernhard (ref_1) 2010; 3
Cameron (ref_79) 2013; 162
Hayatsu (ref_86) 2008; 54
Estrin (ref_143) 2008; 102
Kielland (ref_51) 2009; 182
Subbarao (ref_101) 2009; 106
Bajorath (ref_219) 2021; 6
Wang (ref_108) 2021; 220
Yildirim (ref_125) 2023; 3
He (ref_170) 2012; 3
Christianson (ref_122) 1994; 26
Kuzyakov (ref_30) 2013; 198
Ladha (ref_13) 2005; 87
Prasad (ref_109) 1995; 54
Musiani (ref_221) 2001; 6
Lees (ref_124) 1946; 158
Zanin (ref_198) 2015; 6
Rodrigues (ref_205) 2018; 624
Abalos (ref_73) 2018; 24
Oertel (ref_178) 2016; 76
Juliette (ref_134) 1993; 59
Mazzei (ref_111) 2020; 25
Singh (ref_95) 1984; 81
Barth (ref_182) 2008; 18
Artola (ref_199) 2011; 63
Pan (ref_190) 2016; 232
Drury (ref_194) 2017; 46
LeBauer (ref_4) 2008; 89
Lawton (ref_145) 2014; 82
Shi (ref_177) 2016; 52
ref_57
ref_56
Erisman (ref_14) 2011; 3
He (ref_169) 2012; 55
Subbarao (ref_106) 2012; 114
Dawar (ref_208) 2021; 31
Trevisan (ref_65) 2010; 5
Moreau (ref_69) 2015; 96
Babu (ref_121) 2017; 7
Seitzinger (ref_91) 2006; 16
Leininger (ref_130) 2006; 442
Lea (ref_59) 2018; 42
Engel (ref_167) 2015; 79
Wu (ref_181) 2007; 19
ref_64
Weiske (ref_216) 2001; 34
Moyo (ref_160) 1989; 21
Cruchaga (ref_201) 2011; 168
Hyman (ref_141) 1985; 143
Moulin (ref_32) 2001; 411
Sasse (ref_226) 2019; 222
Suter (ref_185) 2016; 54
Liu (ref_172) 2017; 119
Prosser (ref_87) 2012; 20
Lipson (ref_52) 2001; 128
Cerezo (ref_41) 2001; 127
Luo (ref_22) 2012; 63
ref_34
Little (ref_43) 2005; 102
Wang (ref_36) 1993; 103
Zhang (ref_180) 2004; 14
Zhao (ref_103) 2017; 119
Vejan (ref_151) 2021; 339
Noguero (ref_39) 2016; 7
Rozas (ref_230) 2001; 65
Erisman (ref_8) 2008; 1
Graham (ref_33) 2003; 131
Cui (ref_28) 2017; 201
Cantarella (ref_192) 2018; 13
Prosser (ref_173) 2020; 26
Dawar (ref_96) 2011; 47
Xiaobin (ref_197) 1995; 75
ref_184
Klimczyk (ref_114) 2021; 771
McGeough (ref_161) 2016; 94
Mario (ref_146) 2021; 752
ref_49
ref_193
Tegeder (ref_38) 2018; 217
Weatherburn (ref_222) 1967; 39
Jones (ref_25) 2005; 37
Berube (ref_175) 2009; 461
Hachiya (ref_35) 2017; 68
Mahmood (ref_164) 2017; 55
References_xml – volume: 26
  start-page: 1
  year: 1998
  ident: ref_54
  article-title: The chemistry of soil organic nitrogen: A review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740050335
– volume: 159
  start-page: 567
  year: 2002
  ident: ref_27
  article-title: NH4+ toxicity in higher plants: A critical review
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-0774
– volume: 563
  start-page: 576
  year: 2016
  ident: ref_77
  article-title: Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.04.120
– volume: 65
  start-page: 1314
  year: 2001
  ident: ref_230
  article-title: Denitrification in maize under no–tillage: Effect of nitrogen rate and application time
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.6541314x
– volume: 80
  start-page: 78
  year: 2016
  ident: ref_148
  article-title: The new nitrification inhibitor 3, 4-dimethylpyrazole succinic (DMPSA) as an alternative to DMPP for reducing N2O emissions from wheat crops under humid Mediterranean conditions
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2016.07.001
– volume: 6
  start-page: 22075
  year: 2016
  ident: ref_211
  article-title: Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis
  publication-title: Sci. Rep.
  doi: 10.1038/srep22075
– volume: 34
  start-page: 4
  year: 2015
  ident: ref_24
  article-title: Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2014.897897
– volume: 24
  start-page: 699
  year: 2016
  ident: ref_89
  article-title: A new perspective on microbes formerly known as nitrite-oxidizing bacteria
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2016.05.004
– ident: ref_184
– ident: ref_94
– volume: 63
  start-page: 79
  year: 2019
  ident: ref_7
  article-title: Agricultural nitrogen management for sustainable development and global food security
  publication-title: J. Sci. Res.
– volume: 114
  start-page: 249
  year: 2012
  ident: ref_106
  article-title: Biological nitrification inhibition: A novel strategy to regulate nitrification in agricultural systems
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-394275-3.00001-8
– volume: 292
  start-page: 108110
  year: 2020
  ident: ref_213
  article-title: Inhibitor-coated enhanced-efficiency N fertilizers for mitigating NOX and N2O emissions in a high-temperature irrigated agroecosystem
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.108110
– volume: 49
  start-page: 139
  year: 2012
  ident: ref_66
  article-title: Microbial and plant uptake of free amino sugars in grassland soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.02.014
– volume: 41
  start-page: 216
  year: 2022
  ident: ref_207
  article-title: Nitrification inhibitor and plant growth regulators improve wheat yield and nitrogen use efficiency
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-020-10295-x
– volume: 13
  start-page: 19
  year: 2018
  ident: ref_192
  article-title: Agronomic efficiency of NBPT as a urease inhibitor: A review
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2018.05.008
– volume: 77
  start-page: 441
  year: 2006
  ident: ref_11
  article-title: Escalating worldwide use of urea—A global change contributing to coastal eutrophication
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-005-3070-5
– volume: 18
  start-page: 46
  year: 2022
  ident: ref_225
  article-title: Root-TRAPR: A modular plant growth device to visualize root development and monitor growth parameters, as applied to an elicitor response of Cannabis sativa
  publication-title: Plant Methods
  doi: 10.1186/s13007-022-00875-1
– volume: 5
  start-page: 3858
  year: 2014
  ident: ref_9
  article-title: Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution
  publication-title: Nat. Comm.
  doi: 10.1038/ncomms4858
– volume: 80
  start-page: 230
  year: 2014
  ident: ref_48
  article-title: The Arabidopsis nitrate transporter NRT25 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants
  publication-title: Plant J.
  doi: 10.1111/tpj.12626
– volume: 456
  start-page: 355
  year: 2020
  ident: ref_58
  article-title: Do plants use root-derived proteases to promote the uptake of soil organic nitrogen?
  publication-title: Plant Soil
  doi: 10.1007/s11104-020-04719-6
– volume: 210
  start-page: 815
  year: 2016
  ident: ref_75
  article-title: Root structure–function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy
  publication-title: New Phytol.
  doi: 10.1111/nph.13828
– volume: 56
  start-page: 3721
  year: 2008
  ident: ref_97
  article-title: Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf072901y
– volume: 53
  start-page: 68
  year: 1989
  ident: ref_133
  article-title: Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.53.1.68-84.1989
– volume: 10
  start-page: 1
  year: 2021
  ident: ref_232
  article-title: Split nitrogen fertilizer application improved grain yield in winter wheat (Triticum aestivum L.) via modulating antioxidant capacity and 13C photosynthate mobilization under water-saving irrigation conditions
  publication-title: Ecol. Process.
  doi: 10.1186/s13717-021-00290-9
– volume: 77
  start-page: 893
  year: 2013
  ident: ref_18
  article-title: Role of atmospheric ammonia in particulate matter formation in Houston during summertime
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.04.079
– volume: 64
  start-page: 237
  year: 2002
  ident: ref_93
  article-title: Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/A:1021471531188
– volume: 119
  start-page: 260
  year: 2017
  ident: ref_103
  article-title: Intercropping affects genetic potential for inorganic nitrogen cycling by root-associated microorganisms in Medicago sativa and Dactylis glomerata
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2017.06.040
– volume: 63
  start-page: 3127
  year: 2012
  ident: ref_22
  article-title: Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants
  publication-title: J. Exp Bot.
  doi: 10.1093/jxb/ers036
– volume: 461
  start-page: 976
  year: 2009
  ident: ref_175
  article-title: Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria
  publication-title: Nature
  doi: 10.1038/nature08465
– volume: 106
  start-page: 715
  year: 2014
  ident: ref_78
  article-title: Enhanced-efficiency nitrogen fertilizers: Potential role in nitrous oxide emission mitigation
  publication-title: J. Agron.
  doi: 10.2134/agronj2013.0081
– volume: 11
  start-page: 789
  year: 2013
  ident: ref_71
  article-title: Going back to the roots: The microbial ecology of the rhizosphere
  publication-title: Nat Rev. Microbiol.
  doi: 10.1038/nrmicro3109
– volume: 245
  start-page: 199
  year: 2019
  ident: ref_149
  article-title: Nitrification inhibitor DMPSA mitigated N2O emission and promoted NO sink in rainfed wheat
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.10.135
– volume: 31
  start-page: 132
  year: 2002
  ident: ref_12
  article-title: Agroecosystems, nitrogen-use efficiency, and nitrogen management
  publication-title: AMBIO
  doi: 10.1579/0044-7447-31.2.132
– volume: 25
  start-page: 1107
  year: 1993
  ident: ref_179
  article-title: Microsite reactions of urea-nBTPT fertilizer on the soil surface
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(93)90159-9
– volume: 55
  start-page: 146
  year: 2012
  ident: ref_169
  article-title: Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.06.006
– volume: 31
  start-page: 323
  year: 2021
  ident: ref_208
  article-title: Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emission in maize fields under hot climatic conditions
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(20)60076-5
– volume: 22
  start-page: 933
  year: 1990
  ident: ref_159
  article-title: Temperature and low concentration effects of the urease inhibitor N-(n-butyl) thiophosphoric triamide (n-BTPT) on ammonia volatilization from urea
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(90)90132-J
– volume: 222
  start-page: 1149
  year: 2019
  ident: ref_226
  article-title: Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass
  publication-title: New Phytol.
  doi: 10.1111/nph.15662
– volume: 1
  start-page: 636
  year: 2008
  ident: ref_8
  article-title: How a century of ammonia synthesis changed the world
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo325
– volume: 115
  start-page: 197
  year: 2017
  ident: ref_63
  article-title: Variation in small organic N compounds and amino acid enantiomers along an altitudinal gradient
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.08.030
– volume: 220
  start-page: 112338
  year: 2021
  ident: ref_108
  article-title: Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.112338
– volume: 489
  start-page: 220
  year: 2001
  ident: ref_42
  article-title: An Arabidopsis T-DNA mutant affected in NRT2 genes is impaired in nitrate uptake
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02096-8
– volume: 101
  start-page: 192
  year: 2021
  ident: ref_112
  article-title: Kinetics and thermodynamics of urea hydrolysis in the presence of urease and nitrification inhibitors
  publication-title: Can. J. Soil Sci.
  doi: 10.1139/cjss-2020-0044
– volume: 198
  start-page: 656
  year: 2013
  ident: ref_30
  article-title: Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance
  publication-title: New Phytol.
  doi: 10.1111/nph.12235
– volume: 80
  start-page: 2408
  year: 1999
  ident: ref_53
  article-title: Soil amino acid utilization among species of the cyperaceae: Plant and soil processes
  publication-title: Ecology
  doi: 10.1890/0012-9658(1999)080[2408:SAAUAS]2.0.CO;2
– volume: 94
  start-page: 222
  year: 2016
  ident: ref_161
  article-title: Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.11.017
– volume: 644
  start-page: 1531
  year: 2018
  ident: ref_187
  article-title: Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.092
– volume: 6
  start-page: 1007
  year: 2015
  ident: ref_198
  article-title: The urease inhibitor NBPT negatively affects DUR3-mediated uptake and assimilation of urea in maize roots
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.01007
– volume: 5
  start-page: 1
  year: 1984
  ident: ref_224
  article-title: Nitrification inhibitors in agriculture and horticulture: A literature review
  publication-title: J. Fert. Res.
  doi: 10.1007/BF01049492
– volume: 31
  start-page: 701
  year: 1980
  ident: ref_206
  article-title: Effect of nitrapyrin on nitrapyrin residues and nitrate content in red beet roots fertilised with urea
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.2740310714
– volume: 655
  start-page: 1387
  year: 2019
  ident: ref_156
  article-title: Response of ammonia volatilization to biochar addition: A meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.316
– volume: 642
  start-page: 155
  year: 2018
  ident: ref_186
  article-title: The contrasting effects of N-(n-butyl) thiophosphoric triamide (NBPT) on N2O emissions in arable soils differing in pH are underlain by complex microbial mechanisms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.356
– volume: 77
  start-page: 1424
  year: 2013
  ident: ref_166
  article-title: Apparent persistence of N-(n-butyl) thiophosphoric triamide is greater in alkaline soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0380
– volume: 175
  start-page: 1971
  year: 1993
  ident: ref_147
  article-title: In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.175.7.1971-1980.1993
– volume: 106
  start-page: 17302
  year: 2009
  ident: ref_101
  article-title: Evidence for biological nitrification inhibition in Brachiaria pastures
  publication-title: Prod. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0903694106
– volume: 7
  start-page: 18277
  year: 2017
  ident: ref_121
  article-title: Molecular docking, molecular dynamics simulation, biological evaluation and 2D QSAR analysis of flavonoids from Syzygium alternifolium as potent anti-Helicobacter pylori agents
  publication-title: RSC Adv.
  doi: 10.1039/C6RA27872H
– volume: 26
  start-page: 1161
  year: 1994
  ident: ref_122
  article-title: Use of soil thin-layer chromatography to assess the mobility of the phosphoric triamide urease inhibitors and urea in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(94)90138-4
– volume: 37
  start-page: 413
  year: 2005
  ident: ref_25
  article-title: Dissolved organic nitrogen uptake by plants—An important N uptake pathway?
  publication-title: Soil. Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.08.008
– volume: 120
  start-page: 556
  year: 1974
  ident: ref_128
  article-title: Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.120.1.556-558.1974
– volume: 127
  start-page: 262
  year: 2001
  ident: ref_41
  article-title: Major alterations of the regulationof root NO3 uptake are associated with the mutation of NRT21 and NRT22 genes in Arabidopsis
  publication-title: Plant Phys.
  doi: 10.1104/pp.127.1.262
– volume: 3
  start-page: 296
  year: 2012
  ident: ref_170
  article-title: A review of ammonia-oxidizing bacteria and archaea in Chinese soils
  publication-title: Front. Microbiol.
– volume: 1459
  start-page: 346
  year: 2000
  ident: ref_144
  article-title: Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea
  publication-title: Biochem. Biophys. Acta.
– ident: ref_34
  doi: 10.3390/plants9010097
– volume: 212
  start-page: 31
  year: 1983
  ident: ref_136
  article-title: Methane oxidation by Nitrosomonas europaea
  publication-title: J. Biochem.
  doi: 10.1042/bj2120031
– volume: 56
  start-page: 01449
  year: 2022
  ident: ref_214
  article-title: Ammonia volatilization and agronomical efficiency of a mixture of urea with natural zeolite for rose fertilization
  publication-title: Pesqui. Agropecu. Bras.
– volume: 143
  start-page: 302
  year: 1985
  ident: ref_141
  article-title: A kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas europaea and evidence for the further oxidation of phenol to hydroquinone
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00411254
– volume: 101
  start-page: 139
  year: 2015
  ident: ref_84
  article-title: Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China
  publication-title: Nutr. Cycl. Agroecosys.
  doi: 10.1007/s10705-014-9660-7
– volume: 3
  start-page: 281
  year: 2011
  ident: ref_14
  article-title: Reactive nitrogen in the environment and its effect on climate change
  publication-title: Curr. Opin Environ. Sustain.
  doi: 10.1016/j.cosust.2011.08.012
– volume: 128
  start-page: 305
  year: 2001
  ident: ref_52
  article-title: The unexpected versatility of plants: Organic nitrogen use and availability in terrestrial ecosystems
  publication-title: Oecologia
  doi: 10.1007/s004420100693
– volume: 5
  start-page: 635
  year: 2010
  ident: ref_65
  article-title: Humic substances biological activity at the plant-soil interface: From environmental aspects to molecular factors
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.5.6.11211
– volume: 89
  start-page: 371
  year: 2008
  ident: ref_4
  article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed
  publication-title: Ecology
  doi: 10.1890/06-2057.1
– volume: 7
  start-page: 1391
  year: 2016
  ident: ref_39
  article-title: Transporters involved in root nitrate uptake and sensing by Arabidopsis
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2016.01391
– volume: 82
  start-page: 2263
  year: 2014
  ident: ref_145
  article-title: Structural conservation of the B subunit in the ammonia monooxygenase/particulate methane monooxygenase superfamily
  publication-title: Proteins
  doi: 10.1002/prot.24535
– volume: 434
  start-page: 177
  year: 2005
  ident: ref_127
  article-title: Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane
  publication-title: Nature
  doi: 10.1038/nature03311
– volume: 106
  start-page: 203
  year: 2009
  ident: ref_16
  article-title: On the fate of anthropogenic nitrogen
  publication-title: Prod. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810193105
– volume: 155
  start-page: 125
  year: 2011
  ident: ref_20
  article-title: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.165076
– ident: ref_110
– volume: 102
  start-page: 13693
  year: 2005
  ident: ref_43
  article-title: The putative high-affinity nitrate transporter NRT21 represses lateral root initiation in response to nutritional cues
  publication-title: Prod. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0504219102
– volume: 52
  start-page: 927
  year: 2016
  ident: ref_177
  article-title: Effects of 3, 4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-016-1131-7
– volume: 112
  start-page: 297
  year: 2013
  ident: ref_107
  article-title: A paradigm shift towards low-nitrifying production systems: The role of biological nitrification inhibition (BNI)
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs230
– volume: 26
  start-page: 103
  year: 2020
  ident: ref_173
  article-title: Nitrous Oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14877
– volume: 408
  start-page: 3569
  year: 2010
  ident: ref_17
  article-title: Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment Science
  publication-title: Total Environ.
  doi: 10.1016/j.scitotenv.2010.04.017
– volume: 555
  start-page: 604
  year: 2018
  ident: ref_220
  article-title: Planning chemical syntheses with deep neural networks and symbolic AI
  publication-title: Nature
  doi: 10.1038/nature25978
– volume: 31
  start-page: 64
  year: 2002
  ident: ref_3
  article-title: Reactive nitrogen and the world: 200 years of change
  publication-title: AMBIO
  doi: 10.1579/0044-7447-31.2.64
– volume: 17
  start-page: 478
  year: 2012
  ident: ref_70
  article-title: The rhizosphere microbiome and plant health
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.04.001
– volume: 581
  start-page: 2281
  year: 2007
  ident: ref_55
  article-title: Transporters for uptake and allocation of organic nitrogen compounds in plants
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.04.013
– volume: 7
  start-page: 43853
  year: 2017
  ident: ref_80
  article-title: A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain
  publication-title: Sci. Rep.
  doi: 10.1038/srep43853
– volume: 55
  start-page: 715
  year: 2017
  ident: ref_164
  article-title: 4-Amino-1, 2, 4-triazole can be more effective than commercial nitrification inhibitors at high soil temperatures
  publication-title: Soil Res.
  doi: 10.1071/SR16340
– volume: 24
  start-page: e248
  year: 2018
  ident: ref_73
  article-title: What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands?
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13827
– volume: 102
  start-page: 1523
  year: 2008
  ident: ref_143
  article-title: Theoretical insight into the hydroxylamine oxidoreductase mechanism
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2008.01.032
– volume: 246
  start-page: 1
  year: 2017
  ident: ref_165
  article-title: DMPP is ineffective at mitigating N2O emissions from sheep urine patches in a UK grassland under summer conditions
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.05.017
– volume: 267
  start-page: 1534
  year: 1992
  ident: ref_223
  article-title: 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)45979-0
– volume: 92
  start-page: fiw036
  year: 2016
  ident: ref_61
  article-title: Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants
  publication-title: FEMS Microbiol Ecol.
  doi: 10.1093/femsec/fiw036
– volume: 162
  start-page: 145
  year: 2013
  ident: ref_79
  article-title: Nitrogen losses from the soil/plant system: A review
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12014
– volume: 99
  start-page: 477
  year: 2015
  ident: ref_174
  article-title: Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-6026-7
– volume: 210
  start-page: 861
  year: 2016
  ident: ref_72
  article-title: Plant community controls on short-term ecosystem nitrogen retention
  publication-title: New Phytol.
  doi: 10.1111/nph.13832
– volume: 69
  start-page: 307
  year: 2021
  ident: ref_150
  article-title: Synthesis of a novel polymer nitrification inhibitor with acrylic acid and 3,4-Dimethylpyrazole
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c07093
– volume: 34
  start-page: 79
  year: 2001
  ident: ref_99
  article-title: 3,4-Dimethylpyrazole phosphate (DMPP)–A new nitrification inhibitor for agriculture and horticulture
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740100380
– volume: 172
  start-page: 5368
  year: 1990
  ident: ref_142
  article-title: Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.172.9.5368-5373.1990
– volume: 19
  start-page: 841
  year: 2007
  ident: ref_181
  article-title: Effects of a new nitrification inhibitor 3, 4–dimethylpyrazole phosphate (DMPP) on nitrate and potassium leaching in two soils
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(07)60140-5
– volume: 442
  start-page: 806
  year: 2006
  ident: ref_130
  article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils
  publication-title: Nature
  doi: 10.1038/nature04983
– ident: ref_49
  doi: 10.1371/journal.pone.0019220
– volume: 42
  start-page: 1
  year: 2018
  ident: ref_59
  article-title: Nitrogen assimilation and its relevance to crop improvement
  publication-title: Annu. Plant Rev. Online
– volume: 20
  start-page: 523
  year: 2012
  ident: ref_87
  article-title: Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2012.08.001
– volume: 81
  start-page: 411
  year: 1984
  ident: ref_95
  article-title: Leaching and transformation of urea in dry and wet soils as affected by irrigation water
  publication-title: Plant Soil
  doi: 10.1007/BF02323055
– ident: ref_204
– volume: 182
  start-page: 31
  year: 2009
  ident: ref_51
  article-title: Uptake of organic nitrogen by plants
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02751.x
– volume: 288
  start-page: 101
  year: 2006
  ident: ref_100
  article-title: A bioluminescence assay to detect nitrification inhibitors released from plant roots: A case study with Brachiaria Humidicola
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9094-3
– volume: 54
  start-page: 233
  year: 1995
  ident: ref_109
  article-title: Nitrification inhibitors for agriculture, health, and the environment
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60901-3
– volume: 25
  start-page: 1082
  year: 2006
  ident: ref_168
  article-title: Degradation and its affecting factors of NBPT in soil
  publication-title: Chin. J. Ecol.
– volume: 88
  start-page: 1832
  year: 2007
  ident: ref_29
  article-title: Plant uptake of inorganic and organic nitrogen: Neighbor identity matters
  publication-title: Ecology
  doi: 10.1890/06-0946.1
– volume: 86
  start-page: 1110
  year: 1989
  ident: ref_202
  article-title: Potential phytotoxicity associated with the use of soil urease inhibitors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.86.4.1110
– volume: 368
  start-page: 20130116
  year: 2013
  ident: ref_2
  article-title: Consequences of human modification of the global nitrogen cycle
  publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci.
  doi: 10.1098/rstb.2013.0116
– volume: 88
  start-page: 229
  year: 2008
  ident: ref_231
  article-title: Effect of split application of fertilizer nitrogen on N2O emissions from potatoes
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/CJSS06007
– volume: 624
  start-page: 1180
  year: 2018
  ident: ref_205
  article-title: 3,4-Dimethylpyrazole phosphate and 2-(N-3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture nitrification inhibitors: Quantification in plant tissues and toxicity assays
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.241
– volume: 103
  start-page: 1249
  year: 1993
  ident: ref_36
  article-title: Ammonium uptake by rice roots. (I. Fluxes and subcellular distribution of 13NH4+)
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.4.1249
– volume: 428
  start-page: 821
  year: 2004
  ident: ref_76
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
  doi: 10.1038/nature02403
– volume: 6
  start-page: 1032
  year: 2012
  ident: ref_176
  article-title: Ammonia-Oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.168
– volume: 42
  start-page: 660
  year: 2010
  ident: ref_183
  article-title: Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.12.014
– volume: 94
  start-page: 154
  year: 2016
  ident: ref_67
  article-title: Combined use of empirical data and mathematical modelling to better estimate the microbial turnover of isotopically labelled carbon substrates in soil
  publication-title: Soil Biol.Biochem.
  doi: 10.1016/j.soilbio.2015.11.016
– volume: 79
  start-page: 1674
  year: 2015
  ident: ref_167
  article-title: Degradation of the urease inhibitor NBPT as affected by soil pH
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.05.0169
– volume: 201
  start-page: 192
  year: 2017
  ident: ref_28
  article-title: Plant preference for NH4+ versus NO3− at different growth stages in an alpine agroecosystem
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2016.11.009
– volume: 25
  start-page: 28344
  year: 2018
  ident: ref_155
  article-title: Effects of nitrification inhibitors on gross N nitrification rate, ammonia oxidizers, and N2O production under different temperatures in two pasture soils
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-2873-6
– volume: 64
  start-page: 263
  year: 2011
  ident: ref_21
  article-title: Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-011-9567-0
– volume: 27
  start-page: 4003
  year: 2016
  ident: ref_98
  article-title: Influence of a new phosphoramide urease inhibitor on urea-N transformation in different texture soil
  publication-title: J. Appl. Ecol.
– volume: 66
  start-page: 1827
  year: 2020
  ident: ref_233
  article-title: The scarcity and distribution of rainfall drove the performance (i.e., mitigation of N oxide emissions, crop yield and quality) of calcium ammonium nitrate management in a wheat crop under rainfed semiarid conditions
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2019.1697805
– volume: 58
  start-page: 241
  year: 2021
  ident: ref_132
  article-title: Revisiting plant biological nitrification inhibition efficiency using multiple archaeal and bacterial ammonia-oxidising cultures
  publication-title: Biol Fertil. Soils
– volume: 25
  start-page: 829
  year: 2020
  ident: ref_111
  article-title: The structure-based reaction mechanism of urease, a nickel dependent enzyme: Tale of a long debate
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s00775-020-01808-w
– volume: 67
  start-page: 2127
  year: 2019
  ident: ref_82
  article-title: Insights into urease inhibition by N-(n-Butyl) phosphoric triamide through an integrated structural and kinetic approach
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.8b04791
– ident: ref_85
  doi: 10.3390/su12156018
– volume: 147
  start-page: 126
  year: 1987
  ident: ref_140
  article-title: Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00415273
– volume: 168
  start-page: 329
  year: 2011
  ident: ref_201
  article-title: Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2010.07.024
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_83
  article-title: Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65107-9
– ident: ref_10
– volume: 196
  start-page: 191
  year: 1997
  ident: ref_26
  article-title: Regulation of mineral nitrogen uptake in plants
  publication-title: Plant Soil
  doi: 10.1023/A:1004241722172
– volume: 59
  start-page: 3718
  year: 1993
  ident: ref_134
  article-title: Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: Thioethers are oxidized to sulfoxides by ammonia monooxygenase
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.59.11.3718-3727.1993
– ident: ref_23
  doi: 10.1007/b97397
– volume: 5
  start-page: 442
  year: 2008
  ident: ref_102
  article-title: Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (sorghum bicolor)
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02576.x
– volume: 75
  start-page: 449
  year: 1995
  ident: ref_197
  article-title: Effects of placement of urea with a urease inhibitor on seedling emergence, N uptake and dry matter yield of wheat
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps95-075
– volume: 19
  start-page: 5
  year: 2014
  ident: ref_40
  article-title: A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2013.08.008
– volume: 55
  start-page: 485
  year: 2001
  ident: ref_88
  article-title: Ammonia-oxidizing bacteria: A model for molecular microbial ecology
  publication-title: Annu. Rev Microbiol.
  doi: 10.1146/annurev.micro.55.1.485
– volume: 388
  start-page: 114947
  year: 2021
  ident: ref_215
  article-title: Nitrification inhibitors reduce nitrogen losses and improve soil health in a subtropical pastureland
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.114947
– volume: 6
  start-page: 300
  year: 2001
  ident: ref_221
  article-title: Structure-based computational study of the catalytic and inhibition mechanisms of urease
  publication-title: J. Biol. Inorg. Chem.
  doi: 10.1007/s007750000204
– volume: 54
  start-page: 523
  year: 2016
  ident: ref_185
  article-title: Influence of enhanced efficiency fertilisation techniques on nitrous oxide emissions and productivity response from urea in a temperate Australian ryegrass pasture
  publication-title: Soil Res.
  doi: 10.1071/SR15317
– volume: 185
  start-page: 7266
  year: 2003
  ident: ref_31
  article-title: Legume symbiotic nitrogen fixation by β-Proteobacteria is widespread in nature
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.24.7266-7272.2003
– volume: 44
  start-page: 874
  year: 2020
  ident: ref_104
  article-title: Biological nitrification inhibition in the rhizosphere: Determining interactions and impact on microbially mediated processes and potential applications
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuaa037
– volume: 232
  start-page: 283
  year: 2016
  ident: ref_190
  article-title: Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.08.019
– volume: 411
  start-page: 948
  year: 2001
  ident: ref_32
  article-title: Nodulation of legumes by members of the β-subclass of Proteobacteria
  publication-title: Nature
  doi: 10.1038/35082070
– ident: ref_92
– volume: 771
  start-page: 145483
  year: 2021
  ident: ref_114
  article-title: Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145483
– volume: 375
  start-page: 1
  year: 2014
  ident: ref_62
  article-title: Organic N molecules in the soil solution: What is known, what is unknown and the path forwards
  publication-title: Soil Biol. Biochem.
– volume: 76
  start-page: 327
  year: 2016
  ident: ref_178
  article-title: Greenhouse gas emissions from soils A review
  publication-title: Chem. Erde-Geochem.
  doi: 10.1016/j.chemer.2016.04.002
– volume: 29
  start-page: 1
  year: 1999
  ident: ref_123
  article-title: Modes of action of nitrification inhibitors
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740050518
– volume: 119
  start-page: 80
  year: 2017
  ident: ref_172
  article-title: Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2017.05.034
– ident: ref_81
– volume: 54
  start-page: 33
  year: 2008
  ident: ref_86
  article-title: Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2007.00195.x
– volume: 47
  start-page: 139
  year: 2011
  ident: ref_96
  article-title: Urea hydrolysis and lateral and vertical movement in the soil: Effects of urease inhibitor and irrigation
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-010-0515-3
– volume: 155
  start-page: 240
  year: 2017
  ident: ref_217
  article-title: Brief history of agricultural systems modeling
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2016.05.014
– volume: 12
  start-page: 561
  year: 2006
  ident: ref_60
  article-title: Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2006.01100.x
– volume: 79
  start-page: 491
  year: 1999
  ident: ref_195
  article-title: Effect of seed-placed urea fertilizer and N-(n-butyl) thiophosphoric triamide (NBPT) on emergence and grain yield of barley
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/P98-121
– volume: 624
  start-page: 1202
  year: 2018
  ident: ref_154
  article-title: Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2017.12.250
– volume: 3
  start-page: 17074
  year: 2017
  ident: ref_5
  article-title: Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition
  publication-title: Nat. Plants.
  doi: 10.1038/nplants.2017.74
– volume: 478
  start-page: 337
  year: 2011
  ident: ref_6
  article-title: Solutions for a cultivated planet
  publication-title: Nature
  doi: 10.1038/nature10452
– volume: 3
  start-page: 222
  year: 2023
  ident: ref_125
  article-title: Assessing the efficacy, acute toxicity, and binding modes of the agricultural nitrification inhibitors 3, 4-Dimethyl-1 H-pyrazole (DMP) and Dicyandiamide (DCD) with Nitrosomonas europaea
  publication-title: ACS J. Agric. Sci.
  doi: 10.1021/acsagscitech.2c00303
– volume: 106
  start-page: 732
  year: 2014
  ident: ref_152
  article-title: Nitrous oxide emissions from a clay soil receiving granular urea formulations and dairy manure
  publication-title: Agron. J.
  doi: 10.2134/agronj2013.0096
– volume: 5
  start-page: 15842
  year: 2015
  ident: ref_19
  article-title: Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China
  publication-title: Sci. Rep.
  doi: 10.1038/srep15842
– volume: 528
  start-page: 555
  year: 2015
  ident: ref_90
  article-title: Complete nitrification by a single microorganism
  publication-title: Nature
  doi: 10.1038/nature16459
– volume: 96
  start-page: 2300
  year: 2015
  ident: ref_69
  article-title: Plant traits related to nitrogen uptake influence plant-microbe competition
  publication-title: Ecology
  doi: 10.1890/14-1761.1
– volume: 49
  start-page: 315
  year: 2011
  ident: ref_113
  article-title: Influence of temperature and soil type on inhibition of urea hydrolysis by N-(n-butyl) thiophosphoric triamide in wheat and pasture soils in south-eastern Australia
  publication-title: Soil Res.
  doi: 10.1071/SR10243
– volume: 339
  start-page: 321
  year: 2021
  ident: ref_151
  article-title: Controlled release fertilizer: A review on developments, applications and potential in agriculture
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2021.10.003
– volume: 6
  start-page: 33293
  year: 2021
  ident: ref_219
  article-title: Impact of artificial intelligence on compound discovery, design, and synthesis
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c05512
– ident: ref_64
  doi: 10.3390/molecules26082256
– volume: 183
  start-page: 99
  year: 2019
  ident: ref_188
  article-title: Effect of urease and nitrification inhibitors on ammonia volatilization and abundance of N-cycling genes in an agricultural soil
  publication-title: J. Plant Nutr. Soil Sci. USA
– volume: 10
  start-page: 16061
  year: 2020
  ident: ref_118
  article-title: Identification of novel bacterial urease inhibitors through molecular shape and structure based virtual screening approaches
  publication-title: RSC Adv.
  doi: 10.1039/D0RA02363A
– volume: 3
  start-page: 10
  year: 2010
  ident: ref_1
  article-title: The nitrogen cycle: Processes
  publication-title: Play. Hum.
– volume: 131
  start-page: 872
  year: 2003
  ident: ref_33
  article-title: Legumes: Importance and constraints to greater use
  publication-title: Plant Phys.
  doi: 10.1104/pp.017004
– volume: 290
  start-page: 106763
  year: 2020
  ident: ref_157
  article-title: Effect of N stabilizers on fertilizer-N fate in the soil-crop system: A meta-analysis
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2019.106763
– volume: 13
  start-page: 101
  year: 2018
  ident: ref_115
  article-title: Recent advances in design of new urease inhibitors: A review
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2018.01.007
– volume: 154
  start-page: 246
  year: 2013
  ident: ref_209
  article-title: Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2013.08.014
– volume: 373
  start-page: 813
  year: 2013
  ident: ref_200
  article-title: Inhibition of endogenous urease activity by NBPT application reveals differential N metabolism responses to ammonium or nitrate nutrition in pea plants: A physiological study
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1830-x
– volume: 86
  start-page: e02388-19
  year: 2020
  ident: ref_131
  article-title: Inhibition of ammonia monooxygenase from ammonia-oxidizing archaea by linear and aromatic alkynes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02388-19
– volume: 96
  start-page: 788
  year: 2015
  ident: ref_74
  article-title: Using plant traits to explain plant–microbe relationships involved in nitrogen acquisition
  publication-title: Ecology
  doi: 10.1890/13-2107.1
– volume: 52
  start-page: 82
  year: 2012
  ident: ref_191
  article-title: Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.04.019
– volume: 24
  start-page: 245
  year: 2012
  ident: ref_47
  article-title: The Arabidopsis nitrate transporter NRT24 plays a double role in roots and shoots of nitrogen-starved plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.092221
– volume: 5
  start-page: 44507
  year: 2015
  ident: ref_117
  article-title: Design, syntheses and evaluation of benzoylthioureas as urease inhibitors of agricultural interest
  publication-title: RSC Adv.
  doi: 10.1039/C5RA07886E
– volume: 55
  start-page: 603
  year: 2019
  ident: ref_158
  article-title: Effects of the nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on gross N transformation rates and N2O emissions
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-019-01375-6
– volume: 121
  start-page: 201
  year: 2011
  ident: ref_196
  article-title: Nitrogen fertilizer and urease inhibitor effects on canola seed quality in a one-pass seeding and fertilizing system
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2010.10.012
– volume: 13
  start-page: 29
  year: 2018
  ident: ref_116
  article-title: A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2018.04.001
– volume: 87
  start-page: 85
  year: 2005
  ident: ref_13
  article-title: Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(05)87003-8
– volume: 34
  start-page: 109
  year: 2001
  ident: ref_216
  article-title: Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740100386
– volume: 279
  start-page: 28182
  year: 2004
  ident: ref_37
  article-title: Nitrate reductase activity is required for nitrate uptake into fungal but not plant cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M403974200
– ident: ref_56
  doi: 10.3390/plants10040681
– ident: ref_193
  doi: 10.3390/agronomy11081674
– volume: 21
  start-page: 935
  year: 1989
  ident: ref_160
  article-title: Temperature effects on soil urease activity
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(89)90083-7
– volume: 5
  start-page: 315
  year: 1979
  ident: ref_138
  article-title: The fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus(Bath)
  publication-title: FEMS Microbiol Lett.
  doi: 10.1111/j.1574-6968.1979.tb03329.x
– volume: 46
  start-page: 939
  year: 2017
  ident: ref_194
  article-title: combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2017.03.0106
– volume: 68
  start-page: 2501
  year: 2017
  ident: ref_35
  article-title: Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants
  publication-title: J. Exp. Bot.
– ident: ref_57
  doi: 10.3390/plants9080967
– volume: 2012
  start-page: 928901
  year: 2012
  ident: ref_119
  article-title: Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1,3,4-oxadiazole derivatives
  publication-title: ISRN Pharmacol.
  doi: 10.5402/2012/928901
– volume: 95
  start-page: 365
  year: 1974
  ident: ref_135
  article-title: The oxidation of carbon monoxide by methane-oxidizing bacteria
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF02451778
– volume: 109
  start-page: 378
  year: 2017
  ident: ref_189
  article-title: Ammonia volatilization from urea treated with NBPT and two nitrification inhibitors
  publication-title: Agron. J.
  doi: 10.2134/agronj2016.08.0464
– volume: 54
  start-page: 675
  year: 2016
  ident: ref_153
  article-title: Nitrification (DMPP) and urease (NBPT) inhibitors had no effect on pasture yield, nitrous oxide emissions, or nitrate leaching under irrigation in a hot-dry climate
  publication-title: Soil Res.
  doi: 10.1071/SR15330
– volume: 731
  start-page: 139113
  year: 2020
  ident: ref_212
  article-title: Development of fertilizers for enhanced nitrogen use efficiency—Trends and perspectives
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139113
– ident: ref_218
– volume: 63
  start-page: 73
  year: 2011
  ident: ref_199
  article-title: Effect of N-(n-butyl) thiophosphorictriamide on urea metabolism and the assimilation of ammonium by Triticum aestivum L
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-010-9513-6
– volume: 752
  start-page: 141885
  year: 2021
  ident: ref_146
  article-title: Mechanism of action of nitrification inhibitors based on dimethylpyrazole: A matter of chelation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141885
– volume: 45
  start-page: 5455
  year: 2016
  ident: ref_120
  article-title: Inactivation of urease by 1, 4-benzoquinone: Chemistry at the protein surface
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT00652C
– volume: 368
  start-page: 20130164
  year: 2013
  ident: ref_15
  article-title: The global nitrogen cycle in the twenty-first century
  publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci.
  doi: 10.1098/rstb.2013.0164
– volume: 14
  start-page: 395
  year: 2004
  ident: ref_180
  article-title: Dicyandiamide sorption-desorption behaviour on soils and peat humus
  publication-title: Pedosphere
– volume: 158
  start-page: 97
  year: 1946
  ident: ref_124
  article-title: Effect of Copper-Enzyme Poisons on Soil Nitrification
  publication-title: Nature
  doi: 10.1038/158097a0
– ident: ref_227
  doi: 10.1007/978-3-642-70722-3
– volume: 142
  start-page: 1304
  year: 2006
  ident: ref_44
  article-title: Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis Physiology and protein-protein interaction
  publication-title: Plant Phys.
  doi: 10.1104/pp.106.085209
– volume: 262
  start-page: 165
  year: 2017
  ident: ref_105
  article-title: Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2017.05.004
– volume: 217
  start-page: 35
  year: 2018
  ident: ref_38
  article-title: Source and sink mechanisms of nitrogen transport and use
  publication-title: New Phytol.
  doi: 10.1111/nph.14876
– volume: 140
  start-page: 909
  year: 2006
  ident: ref_45
  article-title: Acentral role for the nitrate transporter NRT21 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis
  publication-title: Plant Phys.
  doi: 10.1104/pp.105.075721
– volume: 184
  start-page: 33
  year: 1996
  ident: ref_203
  article-title: Short-term effects of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide on perennial ryegrass
  publication-title: Plant Soil
  doi: 10.1007/BF00029272
– volume: 39
  start-page: 971
  year: 1967
  ident: ref_222
  article-title: Phenol-hypochlorite reaction for determination of ammonia
  publication-title: Anal. Chem
  doi: 10.1021/ac60252a045
– volume: 105
  start-page: 4524
  year: 2008
  ident: ref_50
  article-title: Plants can use protein as a nitrogen source without assistance from other organisms
  publication-title: Prod. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0712078105
– volume: 16
  start-page: 2064
  year: 2006
  ident: ref_91
  article-title: Denitrification across landscapes and waterscapes: A synthesis
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2
– volume: 143
  start-page: 425
  year: 2007
  ident: ref_46
  article-title: Dissection of the AtNRT21: AtNRT22 inducible high-affinity nitrate transporter gene cluster
  publication-title: Plant Phys.
  doi: 10.1104/pp.106.091223
– volume: 186
  start-page: 201
  year: 2014
  ident: ref_162
  article-title: Effect of temperature on dicyandiamide (DCD) longevity in pastoral soils under field conditions
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.01.026
– volume: 189
  start-page: 136
  year: 2014
  ident: ref_210
  article-title: Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.03.036
– volume: 133
  start-page: 283
  year: 1987
  ident: ref_139
  article-title: Methanol and formaldehyde oxidation by an autotrophic nitrifying bacterium
  publication-title: Microbiol.
  doi: 10.1099/00221287-133-2-283
– volume: 37
  start-page: 1337
  year: 2008
  ident: ref_229
  article-title: Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2007.0268
– volume: 41
  start-page: 1177
  year: 2003
  ident: ref_163
  article-title: Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR02144
– ident: ref_228
  doi: 10.1007/978-94-009-2817-6
– volume: 18
  start-page: 378
  year: 2008
  ident: ref_182
  article-title: Effectiveness of 3, 4-dimethylpyrazole phosphate as nitrification inhibitor in soil as influenced by inhibitor content, application form, and soil matric potential
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(08)60028-4
– volume: 30
  start-page: 87
  year: 2020
  ident: ref_171
  article-title: Evidence for niche differentiation of nitrifying communities in grassland soils after 44 years of different field fertilization scenarios
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(19)60803-9
– volume: 413
  start-page: 275
  year: 2017
  ident: ref_129
  article-title: A colourimetric microplate assay for simple, high throughput assessment of synthetic and biological nitrification inhibitors
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3100-1
– volume: 9
  start-page: 4276
  year: 2018
  ident: ref_126
  article-title: Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06681-5
– volume: 137
  start-page: 155
  year: 1984
  ident: ref_137
  article-title: Ethylene oxidation by Nitrosomonas europaea
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00414458
– volume: 462
  start-page: 7
  year: 2021
  ident: ref_68
  article-title: Soil organic nitrogen: An overlooked but potentially significant contribution to crop nutrition
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-04860-w
SSID ssj0000913807
Score 2.3147242
SecondaryResourceType review_article
Snippet Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1603
SubjectTerms 20th century
Agricultural practices
agronomy
Amino acids
Ammonia
Ammonium
Availability
Bacteria
clay
Clay minerals
Corn
Crop fields
Crop production
Crop yield
Crops
Denitrification
Ecosystems
Emissions
Fertilizer industry
Fertilizers
hydrolysis
Inhibitors
Interlayers
Leaching
Legumes
Metabolism
Microorganisms
Minerals
Nitrates
Nitrification
nitrification inhibitors
nitrites
Nitrogen
nitrogen cycling
Nitrogen dioxide
Nitrosomonas
Nitrous oxide
Outdoor air quality
Plant growth
plant nitrogen uptake
Proteins
Reviews
runoff
smart agriculture
soil
Soil bacteria
Soil microorganisms
Soils
Sustainable agriculture
Sustainable production
Synchronism
temperature
Urea
Urease
Vaporization
Volatilization
wind
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQ-qRuk6BCofRgdm3JspXbJm0Ihe6h7UJuRo_R1pDYYdcL7S3_If-wv6QzsrNkC20vPRn0MNY8pBlr5hvG3gQTlLVKpSq305TiCFOtc5MGNG0raZUxEdTn01ydLeTH8-L8Tqkvigkb4IEHwk2kDd5LmUNV4MMrY0thZVF4Nw1VpaJphGfeHWcq7sE6IyT14V5SoF8_MctVzBLAPVtRaeWdcyjC9f9pU44nzekj9nA0Efls-LTH7B60T9iD2XI1wmTAU3b5HlxzFVP3lhxNOB5_7A05CmvetLHtc9f1P69vvnTNBZ_D982an5jNGjy3P_iCYtGBm9bzedOvKF4osghf9K2xDZXgOeIzPtwcPGOL0w9fT87SsXBC6mSp-9QrMAqCEjlkUAUwWTDSCwjWZbYsbUCjKQhtC-clsspb7YzSIERWVM5kTjxne23XwgvGbaGB3LRsKoJ0QtgKTQ6VV6BsFionEza5JWPtRlRxKm5xUaN3QYSvfyd8wt5tZ1wNiBp_GXtMnNmOIyzs2IASUo8SUv9LQhL2lvhak8bipzkzJh7gAgn7qp6V6COX6DnqhO3vjERNc7vdt5JRj5q-rukmWmlZFkXCXm-7aSZFr7XQbWgM4f5JPFZe_o8FvWL3qej9ELC2z_b61QYO0DTq7WHUgl_3QRA4
  priority: 102
  providerName: Directory of Open Access Journals
Title Deciphering the Interactions in the Root–Soil Nexus Caused by Urease and Nitrification Inhibitors: A Review
URI https://www.proquest.com/docview/2829694755
https://www.proquest.com/docview/2887634111
https://doaj.org/article/4bfdd442e85d44d6ab73b455dc0f886a
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA46-6IP4hWr6xJBEB_KTJtLU19kdt1lERxkdWDfSq6zhbUd2w7om__Bf-gvMSfNjIzgPhXSk9DmJCfnlu8g9MpJx5XiPOW5mqWQR5iWZS5T51VbQRWXMoD6fFzw8yX9cMkuo8Otj2mVW5kYBLVpNfjIpxDx4yUtGHu3_pZC1SiIrsYSGrfRgRfBQkzQwfHp4tPFzssCqJdiVozxSeLt-6lcdeG2gJfdHEos751HAbb_f8I5nDhn99G9qCri-cjbB-iWbR6iu_NVF-Ey7CP09b3V9Tpc4Vthr8rh4OAb7yr0uG5C20XbDr9__vrc1td4Yb9venwiN701WP3AS8hJt1g2Bi_qoYO8ocAqP9BVrWooxfMWz_EYQXiMlmenX07O01hAIdW0KIfUcCu5dZzkNrPCWZk5SQ2xTulMFYVyXnlypFRMG-pZZlSpJS8tIRkTWmaaPEGTpm3sU4QVKy2Ya9mMOKoJUcKrHjwXlqvMCU0TNN1OY6UjujgUubiuvJUBE1_9O_EJerPrsR6RNW6gPQbO7OgAEzs0tN2qilusosoZQ2luBfMPw6UqiKKMGT1zQnCZoNfA1wp2rv80LeMFBP-DgIFVzQtvKxfegiwTdLhH6Xec3n-9XRlV3PF99Xd9Jujl7jX0hCy2xrYboAH8P-qPl2c3D_Ec3YGy9mNK2iGaDN3GvvDKz6CO4go_Cs6DP04uCU8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9Gh0D8AD4ioCA4wEQjxETWLHSZAQ6m7q2FahsUp7C76WSCMpbSrYG__Af_BRfAk-SVpUJPa2p0j2sRXb52qfC8ALKyyXknOfRzLw0Y_Qz7JI-NaptimTXIgmqc_xiA_H7P1ZfLYBv5axMOhWueSJDaPWlcI78j6--PGMJXH8bvrVx6pR-Lq6LKHRosWhufjmTLb524Ndd74vo2h_73Rn6HdVBXzFkqz2NTeCG8tpZEKTWiNCK5imxkoVyiSR1mkUlmYyVpq5dWiZKcEzQ2kYp0qEirp5r8EmozyIerC5vTf6cLK61cEsm2mQtO-hlGZBX0xmTXSCkxUcSzqvyb-mTMD_hEEj4fZvw61ONSWDFpfuwIYp78LNwWTWpecw9-DLrlHFtAkZnBCnOpLmQrGNjZiTomzaTqqq_v3j58eqOCcj830xJztiMTeayAsyRh94Q0SpyaioZ-in1KCGm-hzIQss_fOGDEj7YnEfxleytQ-gV1aleQhExplB8zAMqGWKUpk6VYdHqeEytKliHvSX25irLps5FtU4z51Vgxuf_7vxHrxejZi2mTwugd3Gk1nBYQ7upqGaTfKOpHMmrdaMRSaN3UdzIRMqWRxrFdg05cKDV3iuOXIK92tKdAEPboGYcysfJM42T5zFmnmwtQbpKFytdy8xI-84zDz_Sw8ePF9140j0mitNtUAYzDfInDh7dPkUz-D68PT4KD86GB0-hhuRU-Rad7gt6NWzhXniFK9aPu2wncCnqyawP74KSNM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRA9FC3IPogXnG16giK-BA2yUwmiSCy7XZprS6lutC3ONc1UJM1u4v2zX_wb_wcv8Q5uaysYN_6FJgbmTPnOnMuAM-ssFxKzj0eSt9DP0IvTUPhWafaJkxyIeqkPu8n_GDK3p5Gp1vwq4uFQbfKjifWjFqXCu_IB_jix1MWR9HAtm4Rx6Pxm_lXDytI4UtrV06jQZEjc_7NmW-L14cjd9bPw3C8_3HvwGsrDHiKxenS09wIbiynoQlMYo0IrGCaGitVIONYWqddWJrKSGnm9qRlqgRPDaVBlCgRKOrWvQLbMVpFPdje3Z8cn6xveDDjZuLHzdsopak_ELOqjlRwcoNjeecNWViXDPifYKil3fgm3GjVVDJs8OoWbJniNlwfzqo2VYe5A19GRuXzOnxwRpwaSerLxSZOYkHyom47Kcvl7x8_P5T5GZmY76sF2ROrhdFEnpMp-sMbIgpNJvmyQp-lGk3cQp9zmWMZoFdkSJrXi7swvRTQ3oNeURbmPhAZpQZNxcCnlilKZeLUHh4mhsvAJor1YdCBMVNtZnMssHGWOQsHAZ_9C_g-vFzPmDdZPS4Yu4snsx6H-bjrhrKaZS15Z0xarRkLTRK5j-ZCxlSyKNLKt0nCRR9e4LlmyDXcrynRBj-4DWL-rWwYOzs9dtZr2oedjZGO2tVmd4cZWcttFtlf2ujD03U3zkQPusKUKxyDuQeZE20PLl7iCVx1hJW9O5wcPYRrodPpGs-4Hegtq5V55HSwpXzcIjuBT5dNX38Akx9NCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+the+Interactions+in+the+Root%E2%80%93Soil+Nexus+Caused+by+Urease+and+Nitrification+Inhibitors%3A+A+Review&rft.jtitle=Agronomy+%28Basel%29&rft.au=Gupta%2C+Sneha&rft.au=Yildirim%2C+Sibel&rft.au=Andrikopoulos%2C+Benjamin&rft.au=Wille%2C+Uta&rft.date=2023-06-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=13&rft.issue=6&rft.spage=1603&rft_id=info:doi/10.3390%2Fagronomy13061603&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy13061603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon