Deciphering the Interactions in the Root–Soil Nexus Caused by Urease and Nitrification Inhibitors: A Review
Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops is challenging due to the various pathways through which N can be lost, such as ammonia (NH3) volatilization, nitrous oxide emissions, denitr...
Saved in:
Published in | Agronomy (Basel) Vol. 13; no. 6; p. 1603 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops is challenging due to the various pathways through which N can be lost, such as ammonia (NH3) volatilization, nitrous oxide emissions, denitrification, nitrate (NO3−) leaching, and runoff. Additionally, N can become immobilized by soil minerals when ammonium (NH4+) gets trapped in the interlayers of clay minerals. Although synchronizing N availability with plant uptake could potentially reduce N loss, this approach is hindered by the fact that N loss from crop fields is typically influenced by a combination of management practices (which can be controlled) and weather dynamics, particularly precipitation, temperature fluctuations, and wind (which are beyond our control). In recent years, the use of urease and nitrification inhibitors has emerged as a strategy to temporarily delay the microbiological transformations of N-based fertilizers, thereby synchronizing N availability with plant uptake and mitigating N loss. Urease inhibitors slow down the hydrolysis of urea to NH4+ and reduce nitrogen loss through NH3 volatilization. Nitrification inhibitors temporarily inhibit soil bacteria (Nitrosomonas spp.) that convert NH4+ to nitrite (NO2−), thereby slowing down the first and rate-determining step of the nitrification process and reducing nitrogen loss as NO3− or through denitrification. This review aims to provide a comprehensive understanding of urease and nitrification inhibitor technologies and their profound implications for plants and root nitrogen uptake. It underscores the critical need to develop design principles for inhibitors with enhanced efficiency, highlighting their potential to revolutionize agricultural practices. Furthermore, this review offers valuable insights into future directions for inhibitor usage and emphasizes the essential traits that superior inhibitors should possess, thereby paving the way for innovative advancements in optimizing nitrogen management and ensuring sustainable crop production. |
---|---|
AbstractList | Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops is challenging due to the various pathways through which N can be lost, such as ammonia (NH3) volatilization, nitrous oxide emissions, denitrification, nitrate (NO3−) leaching, and runoff. Additionally, N can become immobilized by soil minerals when ammonium (NH4+) gets trapped in the interlayers of clay minerals. Although synchronizing N availability with plant uptake could potentially reduce N loss, this approach is hindered by the fact that N loss from crop fields is typically influenced by a combination of management practices (which can be controlled) and weather dynamics, particularly precipitation, temperature fluctuations, and wind (which are beyond our control). In recent years, the use of urease and nitrification inhibitors has emerged as a strategy to temporarily delay the microbiological transformations of N-based fertilizers, thereby synchronizing N availability with plant uptake and mitigating N loss. Urease inhibitors slow down the hydrolysis of urea to NH4+ and reduce nitrogen loss through NH3 volatilization. Nitrification inhibitors temporarily inhibit soil bacteria (Nitrosomonas spp.) that convert NH4+ to nitrite (NO2−), thereby slowing down the first and rate-determining step of the nitrification process and reducing nitrogen loss as NO3− or through denitrification. This review aims to provide a comprehensive understanding of urease and nitrification inhibitor technologies and their profound implications for plants and root nitrogen uptake. It underscores the critical need to develop design principles for inhibitors with enhanced efficiency, highlighting their potential to revolutionize agricultural practices. Furthermore, this review offers valuable insights into future directions for inhibitor usage and emphasizes the essential traits that superior inhibitors should possess, thereby paving the way for innovative advancements in optimizing nitrogen management and ensuring sustainable crop production. Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops is challenging due to the various pathways through which N can be lost, such as ammonia (NH₃) volatilization, nitrous oxide emissions, denitrification, nitrate (NO₃⁻) leaching, and runoff. Additionally, N can become immobilized by soil minerals when ammonium (NH₄⁺) gets trapped in the interlayers of clay minerals. Although synchronizing N availability with plant uptake could potentially reduce N loss, this approach is hindered by the fact that N loss from crop fields is typically influenced by a combination of management practices (which can be controlled) and weather dynamics, particularly precipitation, temperature fluctuations, and wind (which are beyond our control). In recent years, the use of urease and nitrification inhibitors has emerged as a strategy to temporarily delay the microbiological transformations of N-based fertilizers, thereby synchronizing N availability with plant uptake and mitigating N loss. Urease inhibitors slow down the hydrolysis of urea to NH₄⁺ and reduce nitrogen loss through NH₃ volatilization. Nitrification inhibitors temporarily inhibit soil bacteria (Nitrosomonas spp.) that convert NH₄⁺ to nitrite (NO₂⁻), thereby slowing down the first and rate-determining step of the nitrification process and reducing nitrogen loss as NO₃⁻ or through denitrification. This review aims to provide a comprehensive understanding of urease and nitrification inhibitor technologies and their profound implications for plants and root nitrogen uptake. It underscores the critical need to develop design principles for inhibitors with enhanced efficiency, highlighting their potential to revolutionize agricultural practices. Furthermore, this review offers valuable insights into future directions for inhibitor usage and emphasizes the essential traits that superior inhibitors should possess, thereby paving the way for innovative advancements in optimizing nitrogen management and ensuring sustainable crop production. Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops is challenging due to the various pathways through which N can be lost, such as ammonia (NH[sub.3]) volatilization, nitrous oxide emissions, denitrification, nitrate (NO[sub.3] [sup.−]) leaching, and runoff. Additionally, N can become immobilized by soil minerals when ammonium (NH[sub.4] [sup.+]) gets trapped in the interlayers of clay minerals. Although synchronizing N availability with plant uptake could potentially reduce N loss, this approach is hindered by the fact that N loss from crop fields is typically influenced by a combination of management practices (which can be controlled) and weather dynamics, particularly precipitation, temperature fluctuations, and wind (which are beyond our control). In recent years, the use of urease and nitrification inhibitors has emerged as a strategy to temporarily delay the microbiological transformations of N-based fertilizers, thereby synchronizing N availability with plant uptake and mitigating N loss. Urease inhibitors slow down the hydrolysis of urea to NH[sub.4] [sup.+] and reduce nitrogen loss through NH[sub.3] volatilization. Nitrification inhibitors temporarily inhibit soil bacteria (Nitrosomonas spp.) that convert NH[sub.4] [sup.+] to nitrite (NO[sub.2] [sup.−]), thereby slowing down the first and rate-determining step of the nitrification process and reducing nitrogen loss as NO[sub.3] [sup.−] or through denitrification. This review aims to provide a comprehensive understanding of urease and nitrification inhibitor technologies and their profound implications for plants and root nitrogen uptake. It underscores the critical need to develop design principles for inhibitors with enhanced efficiency, highlighting their potential to revolutionize agricultural practices. Furthermore, this review offers valuable insights into future directions for inhibitor usage and emphasizes the essential traits that superior inhibitors should possess, thereby paving the way for innovative advancements in optimizing nitrogen management and ensuring sustainable crop production. |
Audience | Academic |
Author | Gupta, Sneha Yildirim, Sibel Andrikopoulos, Benjamin Wille, Uta Roessner, Ute |
Author_xml | – sequence: 1 givenname: Sneha surname: Gupta fullname: Gupta, Sneha – sequence: 2 givenname: Sibel surname: Yildirim fullname: Yildirim, Sibel – sequence: 3 givenname: Benjamin surname: Andrikopoulos fullname: Andrikopoulos, Benjamin – sequence: 4 givenname: Uta orcidid: 0000-0003-1756-5449 surname: Wille fullname: Wille, Uta – sequence: 5 givenname: Ute orcidid: 0000-0002-6482-2615 surname: Roessner fullname: Roessner, Ute |
BookMark | eNp1kk1vEzEQhleoSJTSO0dLXLikrNdee80tCl-RqiIVerb8MU4cbexgO4Xc-A_8Q34JTgICIrAPY43e5x15Zh43ZyEGaJqnuL0iRLQv1CLFENc7TFqGWUseNOddy8mEEtGf_fF-1FzmvGrrEZgMLT9v1q_A-M0Skg8LVJaA5qFAUqb4GDLy4ZC7jbF8__rtQ_QjuoEv24xmapvBIr1DdwlUBqSCRTe-JO-8UXu4Gi299iWm_BJN0S3ce_j8pHno1Jjh8me8aO7evP44eze5fv92PpteTwzlokwsA8XAMdIBhsGBwk5RS8BpgzXn2vUMOyJ0byx1TFstjGICCMH9YBQ25KKZH31tVCu5SX6t0k5G5eUhEdNCqlS8GUFS7ayltIOhr8EypTnRtO-tad0wMFW9nh-9Nil-2kIucu2zgXFUAeI2y24YOCMUY1ylz06kq7hNof60qjrBBOV9_1u1ULW-Dy6W2vC9qZzyngreDVxU1dU_VPVaWHtTx-98zf8FsCNgUsw5gZPGl8MoKuhHiVu53xV5uisVbE_AXw37L_IDKAXHDg |
CitedBy_id | crossref_primary_10_1021_acsomega_4c01451 crossref_primary_10_3390_agriculture14020274 crossref_primary_10_1016_j_aej_2025_02_039 crossref_primary_10_1016_j_chemosphere_2023_139611 crossref_primary_10_3390_agronomy13112715 crossref_primary_10_3389_fmicb_2024_1433816 crossref_primary_10_3390_agronomy15010049 crossref_primary_10_3389_fpls_2024_1370593 |
Cites_doi | 10.1007/s003740050335 10.1078/0176-1617-0774 10.1016/j.scitotenv.2016.04.120 10.2136/sssaj2001.6541314x 10.1016/j.eja.2016.07.001 10.1038/srep22075 10.1080/07352689.2014.897897 10.1016/j.tim.2016.05.004 10.1016/B978-0-12-394275-3.00001-8 10.1016/j.agrformet.2020.108110 10.1016/j.soilbio.2012.02.014 10.1007/s00344-020-10295-x 10.1016/j.jare.2018.05.008 10.1007/s10533-005-3070-5 10.1186/s13007-022-00875-1 10.1038/ncomms4858 10.1111/tpj.12626 10.1007/s11104-020-04719-6 10.1111/nph.13828 10.1021/jf072901y 10.1128/mr.53.1.68-84.1989 10.1186/s13717-021-00290-9 10.1016/j.atmosenv.2013.04.079 10.1023/A:1021471531188 10.1016/j.apsoil.2017.06.040 10.1093/jxb/ers036 10.1038/nature08465 10.2134/agronj2013.0081 10.1038/nrmicro3109 10.1016/j.envpol.2018.10.135 10.1579/0044-7447-31.2.132 10.1016/0038-0717(93)90159-9 10.1016/j.soilbio.2012.06.006 10.1016/S1002-0160(20)60076-5 10.1016/0038-0717(90)90132-J 10.1111/nph.15662 10.1038/ngeo325 10.1016/j.soilbio.2017.08.030 10.1016/j.ecoenv.2021.112338 10.1016/S0014-5793(01)02096-8 10.1139/cjss-2020-0044 10.1111/nph.12235 10.1890/0012-9658(1999)080[2408:SAAUAS]2.0.CO;2 10.1016/j.soilbio.2015.11.017 10.1016/j.scitotenv.2018.07.092 10.3389/fpls.2015.01007 10.1007/BF01049492 10.1002/jsfa.2740310714 10.1016/j.scitotenv.2018.11.316 10.1016/j.scitotenv.2018.05.356 10.2136/sssaj2012.0380 10.1128/jb.175.7.1971-1980.1993 10.1073/pnas.0903694106 10.1039/C6RA27872H 10.1016/0038-0717(94)90138-4 10.1016/j.soilbio.2004.08.008 10.1128/jb.120.1.556-558.1974 10.1104/pp.127.1.262 10.3390/plants9010097 10.1042/bj2120031 10.1007/BF00411254 10.1007/s10705-014-9660-7 10.1016/j.cosust.2011.08.012 10.1007/s004420100693 10.4161/psb.5.6.11211 10.1890/06-2057.1 10.3389/fpls.2016.01391 10.1002/prot.24535 10.1038/nature03311 10.1073/pnas.0810193105 10.1104/pp.110.165076 10.1073/pnas.0504219102 10.1007/s00374-016-1131-7 10.1093/aob/mcs230 10.1111/gcb.14877 10.1016/j.scitotenv.2010.04.017 10.1038/nature25978 10.1579/0044-7447-31.2.64 10.1016/j.tplants.2012.04.001 10.1016/j.febslet.2007.04.013 10.1038/srep43853 10.1071/SR16340 10.1111/gcb.13827 10.1016/j.jinorgbio.2008.01.032 10.1016/j.agee.2017.05.017 10.1016/S0021-9258(18)45979-0 10.1093/femsec/fiw036 10.1111/aab.12014 10.1007/s00253-014-6026-7 10.1111/nph.13832 10.1021/acs.jafc.0c07093 10.1007/s003740100380 10.1128/jb.172.9.5368-5373.1990 10.1016/S1001-0742(07)60140-5 10.1038/nature04983 10.1371/journal.pone.0019220 10.1016/j.tim.2012.08.001 10.1007/BF02323055 10.1111/j.1469-8137.2008.02751.x 10.1007/s11104-006-9094-3 10.1016/S0065-2113(08)60901-3 10.1890/06-0946.1 10.1073/pnas.86.4.1110 10.1098/rstb.2013.0116 10.4141/CJSS06007 10.1016/j.scitotenv.2017.12.241 10.1104/pp.103.4.1249 10.1038/nature02403 10.1038/ismej.2011.168 10.1016/j.soilbio.2009.12.014 10.1016/j.soilbio.2015.11.016 10.2136/sssaj2015.05.0169 10.1016/j.fcr.2016.11.009 10.1007/s11356-018-2873-6 10.1007/s10725-011-9567-0 10.1080/03650340.2019.1697805 10.1007/s00775-020-01808-w 10.1021/acs.jafc.8b04791 10.3390/su12156018 10.1007/BF00415273 10.1016/j.jplph.2010.07.024 10.1038/s41598-020-65107-9 10.1023/A:1004241722172 10.1128/aem.59.11.3718-3727.1993 10.1007/b97397 10.1111/j.1469-8137.2008.02576.x 10.4141/cjps95-075 10.1016/j.tplants.2013.08.008 10.1146/annurev.micro.55.1.485 10.1016/j.geoderma.2021.114947 10.1007/s007750000204 10.1071/SR15317 10.1128/JB.185.24.7266-7272.2003 10.1093/femsre/fuaa037 10.1016/j.agee.2016.08.019 10.1038/35082070 10.1016/j.scitotenv.2021.145483 10.1016/j.chemer.2016.04.002 10.1007/s003740050518 10.1016/j.apsoil.2017.05.034 10.1111/j.1747-0765.2007.00195.x 10.1007/s00374-010-0515-3 10.1016/j.agsy.2016.05.014 10.1111/j.1365-2486.2006.01100.x 10.4141/P98-121 10.1016/j.scitotenv.2017.12.250 10.1038/nplants.2017.74 10.1038/nature10452 10.1021/acsagscitech.2c00303 10.2134/agronj2013.0096 10.1038/srep15842 10.1038/nature16459 10.1890/14-1761.1 10.1071/SR10243 10.1016/j.jconrel.2021.10.003 10.1021/acsomega.1c05512 10.3390/molecules26082256 10.1039/D0RA02363A 10.1104/pp.017004 10.1016/j.agee.2019.106763 10.1016/j.jare.2018.01.007 10.1016/j.fcr.2013.08.014 10.1007/s11104-013-1830-x 10.1128/AEM.02388-19 10.1890/13-2107.1 10.1016/j.soilbio.2012.04.019 10.1105/tpc.111.092221 10.1039/C5RA07886E 10.1007/s00374-019-01375-6 10.1016/j.fcr.2010.10.012 10.1016/j.jare.2018.04.001 10.1016/S0065-2113(05)87003-8 10.1007/s003740100386 10.1074/jbc.M403974200 10.3390/plants10040681 10.3390/agronomy11081674 10.1016/0038-0717(89)90083-7 10.1111/j.1574-6968.1979.tb03329.x 10.2134/jeq2017.03.0106 10.3390/plants9080967 10.5402/2012/928901 10.1007/BF02451778 10.2134/agronj2016.08.0464 10.1071/SR15330 10.1016/j.scitotenv.2020.139113 10.1007/s10725-010-9513-6 10.1016/j.scitotenv.2020.141885 10.1039/C6DT00652C 10.1098/rstb.2013.0164 10.1038/158097a0 10.1007/978-3-642-70722-3 10.1104/pp.106.085209 10.1016/j.plantsci.2017.05.004 10.1111/nph.14876 10.1104/pp.105.075721 10.1007/BF00029272 10.1021/ac60252a045 10.1073/pnas.0712078105 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 10.1104/pp.106.091223 10.1016/j.agee.2014.01.026 10.1016/j.agee.2014.03.036 10.1099/00221287-133-2-283 10.2134/jeq2007.0268 10.1071/SR02144 10.1007/978-94-009-2817-6 10.1016/S1002-0160(08)60028-4 10.1016/S1002-0160(19)60803-9 10.1007/s11104-016-3100-1 10.1038/s41467-018-06681-5 10.1007/BF00414458 10.1007/s11104-021-04860-w |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy13061603 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_4bfdd442e85d44d6ab73b455dc0f886a A754972879 10_3390_agronomy13061603 |
GeographicLocations | Australia Serbia |
GeographicLocations_xml | – name: Serbia – name: Australia |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PHGZM PHGZT PIMPY PROAC PYCSY PMFND 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c479t-d6ea6ef632e1e8fea1fa4d3efbc1b77bf561f39b5cd4f6bdb9ca69e33158ca1c3 |
IEDL.DBID | BENPR |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:29:05 EDT 2025 Fri Jul 11 02:04:44 EDT 2025 Mon Jun 30 11:31:27 EDT 2025 Tue Jun 17 21:34:19 EDT 2025 Tue Jun 10 20:27:49 EDT 2025 Thu Apr 24 23:11:03 EDT 2025 Tue Jul 01 03:21:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c479t-d6ea6ef632e1e8fea1fa4d3efbc1b77bf561f39b5cd4f6bdb9ca69e33158ca1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6482-2615 0000-0003-1756-5449 |
OpenAccessLink | https://www.proquest.com/docview/2829694755?pq-origsite=%requestingapplication% |
PQID | 2829694755 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4bfdd442e85d44d6ab73b455dc0f886a proquest_miscellaneous_2887634111 proquest_journals_2829694755 gale_infotracmisc_A754972879 gale_infotracacademiconefile_A754972879 crossref_citationtrail_10_3390_agronomy13061603 crossref_primary_10_3390_agronomy13061603 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 Duncan (ref_129) 2017; 413 Slangen (ref_224) 1984; 5 ref_92 Nardi (ref_104) 2020; 44 Recio (ref_213) 2020; 292 Schulten (ref_54) 1998; 26 Zhang (ref_176) 2012; 6 Irigoyen (ref_163) 2003; 41 Fan (ref_186) 2018; 642 Whittaker (ref_144) 2000; 1459 Unkles (ref_37) 2004; 279 Miller (ref_29) 2007; 88 Imran (ref_118) 2020; 10 Soares (ref_191) 2012; 52 Zakir (ref_102) 2008; 5 Gong (ref_18) 2013; 77 Varala (ref_40) 2014; 19 Werneck (ref_214) 2022; 56 Lin (ref_21) 2011; 64 Subbarao (ref_107) 2013; 112 Suzuki (ref_128) 1974; 120 Guardia (ref_154) 2018; 624 Dawar (ref_207) 2022; 41 Bardgett (ref_72) 2016; 210 Linquist (ref_209) 2013; 154 Lonhienne (ref_50) 2008; 105 Hubley (ref_135) 1974; 95 Ensign (ref_147) 1993; 175 Sha (ref_156) 2019; 655 Grant (ref_196) 2011; 121 Li (ref_46) 2007; 143 Engel (ref_166) 2013; 77 ref_81 Berendsen (ref_70) 2012; 17 Kelliher (ref_162) 2014; 186 Meng (ref_215) 2021; 388 Erisman (ref_2) 2013; 368 Frame (ref_189) 2017; 109 Zhu (ref_158) 2019; 55 ref_85 Lieberman (ref_127) 2005; 434 Svane (ref_83) 2020; 10 Raab (ref_53) 1999; 80 Roumet (ref_75) 2016; 210 Lezhneva (ref_48) 2014; 80 Asgedom (ref_152) 2014; 106 Orsel (ref_44) 2006; 142 Recio (ref_149) 2019; 245 Jones (ref_217) 2017; 155 Larsen (ref_61) 2016; 92 Voysey (ref_139) 1987; 133 Stirling (ref_138) 1979; 5 Chen (ref_31) 2003; 185 ref_218 Britto (ref_27) 2002; 159 Grant (ref_195) 1999; 79 Dougherty (ref_153) 2016; 54 Halvorson (ref_229) 2008; 37 Cantarel (ref_74) 2015; 96 Galloway (ref_3) 2002; 31 Lasisi (ref_112) 2021; 101 Abalos (ref_210) 2014; 189 Hanif (ref_119) 2012; 2012 Wang (ref_19) 2015; 5 ref_204 Ward (ref_140) 1987; 147 McCarty (ref_123) 1999; 29 Hyman (ref_136) 1983; 212 Modolo (ref_116) 2018; 13 Tao (ref_168) 2006; 25 Warren (ref_62) 2014; 375 Subbarao (ref_100) 2006; 288 Remans (ref_45) 2006; 140 Halvorson (ref_78) 2014; 106 Rentsch (ref_55) 2007; 581 Zerulla (ref_99) 2001; 34 Fowler (ref_15) 2013; 368 Hyman (ref_137) 1984; 137 Suwanchaikasem (ref_225) 2022; 18 Rai (ref_7) 2019; 63 Estavillo (ref_148) 2016; 80 Mazzei (ref_82) 2019; 67 Coskun (ref_5) 2017; 3 Courty (ref_24) 2015; 34 ref_110 Gao (ref_150) 2021; 69 Hyman (ref_223) 1992; 267 Li (ref_80) 2017; 7 Wright (ref_76) 2004; 428 Bodirsky (ref_9) 2014; 5 Harty (ref_77) 2016; 563 Cruchaga (ref_200) 2013; 373 Kowalchuk (ref_88) 2001; 55 Schlesinger (ref_16) 2009; 106 Warren (ref_63) 2017; 115 Segler (ref_220) 2018; 555 ref_227 ref_228 Suter (ref_113) 2011; 49 Lan (ref_155) 2018; 25 Foley (ref_6) 2011; 478 Greenfield (ref_58) 2020; 456 Krogmeier (ref_202) 1989; 86 Fisher (ref_126) 2018; 9 Jia (ref_171) 2020; 30 Speth (ref_90) 2015; 528 Sha (ref_157) 2020; 290 Rasche (ref_142) 1990; 172 Knowles (ref_133) 1989; 53 Filleur (ref_42) 2001; 489 Wardak (ref_132) 2021; 58 Cassman (ref_12) 2002; 31 Zhang (ref_232) 2021; 10 Chen (ref_84) 2015; 101 Glanville (ref_67) 2016; 94 Dimkpa (ref_212) 2020; 731 Chen (ref_174) 2015; 99 Chen (ref_183) 2010; 42 Daims (ref_89) 2016; 24 ref_10 Vallejo (ref_188) 2019; 183 Lam (ref_187) 2018; 644 Carmona (ref_159) 1990; 22 Gazzarrini (ref_26) 1997; 196 Makino (ref_20) 2011; 155 Roberts (ref_66) 2012; 49 Marsden (ref_165) 2017; 246 Phillips (ref_60) 2006; 12 Kallio (ref_206) 1980; 31 Burton (ref_231) 2008; 88 Glibert (ref_11) 2006; 77 Philippot (ref_71) 2013; 11 Font (ref_97) 2008; 56 Kafarski (ref_115) 2018; 13 Wright (ref_131) 2020; 86 ref_23 Mazzei (ref_120) 2016; 45 Farzadfar (ref_68) 2021; 462 Zhou (ref_98) 2016; 27 Christianson (ref_179) 1993; 25 Subbarao (ref_105) 2017; 262 Yang (ref_211) 2016; 6 Brito (ref_117) 2015; 5 Behera (ref_17) 2010; 408 Di (ref_93) 2002; 64 Watson (ref_203) 1996; 184 Guardia (ref_233) 2020; 66 Kiba (ref_47) 2012; 24 Bernhard (ref_1) 2010; 3 Cameron (ref_79) 2013; 162 Hayatsu (ref_86) 2008; 54 Estrin (ref_143) 2008; 102 Kielland (ref_51) 2009; 182 Subbarao (ref_101) 2009; 106 Bajorath (ref_219) 2021; 6 Wang (ref_108) 2021; 220 Yildirim (ref_125) 2023; 3 He (ref_170) 2012; 3 Christianson (ref_122) 1994; 26 Kuzyakov (ref_30) 2013; 198 Ladha (ref_13) 2005; 87 Prasad (ref_109) 1995; 54 Musiani (ref_221) 2001; 6 Lees (ref_124) 1946; 158 Zanin (ref_198) 2015; 6 Rodrigues (ref_205) 2018; 624 Abalos (ref_73) 2018; 24 Oertel (ref_178) 2016; 76 Juliette (ref_134) 1993; 59 Mazzei (ref_111) 2020; 25 Singh (ref_95) 1984; 81 Barth (ref_182) 2008; 18 Artola (ref_199) 2011; 63 Pan (ref_190) 2016; 232 Drury (ref_194) 2017; 46 LeBauer (ref_4) 2008; 89 Lawton (ref_145) 2014; 82 Shi (ref_177) 2016; 52 ref_57 ref_56 Erisman (ref_14) 2011; 3 He (ref_169) 2012; 55 Subbarao (ref_106) 2012; 114 Dawar (ref_208) 2021; 31 Trevisan (ref_65) 2010; 5 Moreau (ref_69) 2015; 96 Babu (ref_121) 2017; 7 Seitzinger (ref_91) 2006; 16 Leininger (ref_130) 2006; 442 Lea (ref_59) 2018; 42 Engel (ref_167) 2015; 79 Wu (ref_181) 2007; 19 ref_64 Weiske (ref_216) 2001; 34 Moyo (ref_160) 1989; 21 Cruchaga (ref_201) 2011; 168 Hyman (ref_141) 1985; 143 Moulin (ref_32) 2001; 411 Sasse (ref_226) 2019; 222 Suter (ref_185) 2016; 54 Liu (ref_172) 2017; 119 Prosser (ref_87) 2012; 20 Lipson (ref_52) 2001; 128 Cerezo (ref_41) 2001; 127 Luo (ref_22) 2012; 63 ref_34 Little (ref_43) 2005; 102 Wang (ref_36) 1993; 103 Zhang (ref_180) 2004; 14 Zhao (ref_103) 2017; 119 Vejan (ref_151) 2021; 339 Noguero (ref_39) 2016; 7 Rozas (ref_230) 2001; 65 Erisman (ref_8) 2008; 1 Graham (ref_33) 2003; 131 Cui (ref_28) 2017; 201 Cantarella (ref_192) 2018; 13 Prosser (ref_173) 2020; 26 Dawar (ref_96) 2011; 47 Xiaobin (ref_197) 1995; 75 ref_184 Klimczyk (ref_114) 2021; 771 McGeough (ref_161) 2016; 94 Mario (ref_146) 2021; 752 ref_49 ref_193 Tegeder (ref_38) 2018; 217 Weatherburn (ref_222) 1967; 39 Jones (ref_25) 2005; 37 Berube (ref_175) 2009; 461 Hachiya (ref_35) 2017; 68 Mahmood (ref_164) 2017; 55 |
References_xml | – volume: 26 start-page: 1 year: 1998 ident: ref_54 article-title: The chemistry of soil organic nitrogen: A review publication-title: Biol. Fertil. Soils doi: 10.1007/s003740050335 – volume: 159 start-page: 567 year: 2002 ident: ref_27 article-title: NH4+ toxicity in higher plants: A critical review publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-0774 – volume: 563 start-page: 576 year: 2016 ident: ref_77 article-title: Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.04.120 – volume: 65 start-page: 1314 year: 2001 ident: ref_230 article-title: Denitrification in maize under no–tillage: Effect of nitrogen rate and application time publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.6541314x – volume: 80 start-page: 78 year: 2016 ident: ref_148 article-title: The new nitrification inhibitor 3, 4-dimethylpyrazole succinic (DMPSA) as an alternative to DMPP for reducing N2O emissions from wheat crops under humid Mediterranean conditions publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2016.07.001 – volume: 6 start-page: 22075 year: 2016 ident: ref_211 article-title: Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: A meta-analysis publication-title: Sci. Rep. doi: 10.1038/srep22075 – volume: 34 start-page: 4 year: 2015 ident: ref_24 article-title: Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2014.897897 – volume: 24 start-page: 699 year: 2016 ident: ref_89 article-title: A new perspective on microbes formerly known as nitrite-oxidizing bacteria publication-title: Trends Microbiol. doi: 10.1016/j.tim.2016.05.004 – ident: ref_184 – ident: ref_94 – volume: 63 start-page: 79 year: 2019 ident: ref_7 article-title: Agricultural nitrogen management for sustainable development and global food security publication-title: J. Sci. Res. – volume: 114 start-page: 249 year: 2012 ident: ref_106 article-title: Biological nitrification inhibition: A novel strategy to regulate nitrification in agricultural systems publication-title: Adv. Agron. doi: 10.1016/B978-0-12-394275-3.00001-8 – volume: 292 start-page: 108110 year: 2020 ident: ref_213 article-title: Inhibitor-coated enhanced-efficiency N fertilizers for mitigating NOX and N2O emissions in a high-temperature irrigated agroecosystem publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2020.108110 – volume: 49 start-page: 139 year: 2012 ident: ref_66 article-title: Microbial and plant uptake of free amino sugars in grassland soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.02.014 – volume: 41 start-page: 216 year: 2022 ident: ref_207 article-title: Nitrification inhibitor and plant growth regulators improve wheat yield and nitrogen use efficiency publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-020-10295-x – volume: 13 start-page: 19 year: 2018 ident: ref_192 article-title: Agronomic efficiency of NBPT as a urease inhibitor: A review publication-title: J. Adv. Res. doi: 10.1016/j.jare.2018.05.008 – volume: 77 start-page: 441 year: 2006 ident: ref_11 article-title: Escalating worldwide use of urea—A global change contributing to coastal eutrophication publication-title: Biogeochemistry doi: 10.1007/s10533-005-3070-5 – volume: 18 start-page: 46 year: 2022 ident: ref_225 article-title: Root-TRAPR: A modular plant growth device to visualize root development and monitor growth parameters, as applied to an elicitor response of Cannabis sativa publication-title: Plant Methods doi: 10.1186/s13007-022-00875-1 – volume: 5 start-page: 3858 year: 2014 ident: ref_9 article-title: Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution publication-title: Nat. Comm. doi: 10.1038/ncomms4858 – volume: 80 start-page: 230 year: 2014 ident: ref_48 article-title: The Arabidopsis nitrate transporter NRT25 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants publication-title: Plant J. doi: 10.1111/tpj.12626 – volume: 456 start-page: 355 year: 2020 ident: ref_58 article-title: Do plants use root-derived proteases to promote the uptake of soil organic nitrogen? publication-title: Plant Soil doi: 10.1007/s11104-020-04719-6 – volume: 210 start-page: 815 year: 2016 ident: ref_75 article-title: Root structure–function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy publication-title: New Phytol. doi: 10.1111/nph.13828 – volume: 56 start-page: 3721 year: 2008 ident: ref_97 article-title: Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors publication-title: J. Agric. Food Chem. doi: 10.1021/jf072901y – volume: 53 start-page: 68 year: 1989 ident: ref_133 article-title: Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers publication-title: Microbiol. Rev. doi: 10.1128/mr.53.1.68-84.1989 – volume: 10 start-page: 1 year: 2021 ident: ref_232 article-title: Split nitrogen fertilizer application improved grain yield in winter wheat (Triticum aestivum L.) via modulating antioxidant capacity and 13C photosynthate mobilization under water-saving irrigation conditions publication-title: Ecol. Process. doi: 10.1186/s13717-021-00290-9 – volume: 77 start-page: 893 year: 2013 ident: ref_18 article-title: Role of atmospheric ammonia in particulate matter formation in Houston during summertime publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.04.079 – volume: 64 start-page: 237 year: 2002 ident: ref_93 article-title: Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1021471531188 – volume: 119 start-page: 260 year: 2017 ident: ref_103 article-title: Intercropping affects genetic potential for inorganic nitrogen cycling by root-associated microorganisms in Medicago sativa and Dactylis glomerata publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.06.040 – volume: 63 start-page: 3127 year: 2012 ident: ref_22 article-title: Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants publication-title: J. Exp Bot. doi: 10.1093/jxb/ers036 – volume: 461 start-page: 976 year: 2009 ident: ref_175 article-title: Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria publication-title: Nature doi: 10.1038/nature08465 – volume: 106 start-page: 715 year: 2014 ident: ref_78 article-title: Enhanced-efficiency nitrogen fertilizers: Potential role in nitrous oxide emission mitigation publication-title: J. Agron. doi: 10.2134/agronj2013.0081 – volume: 11 start-page: 789 year: 2013 ident: ref_71 article-title: Going back to the roots: The microbial ecology of the rhizosphere publication-title: Nat Rev. Microbiol. doi: 10.1038/nrmicro3109 – volume: 245 start-page: 199 year: 2019 ident: ref_149 article-title: Nitrification inhibitor DMPSA mitigated N2O emission and promoted NO sink in rainfed wheat publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.10.135 – volume: 31 start-page: 132 year: 2002 ident: ref_12 article-title: Agroecosystems, nitrogen-use efficiency, and nitrogen management publication-title: AMBIO doi: 10.1579/0044-7447-31.2.132 – volume: 25 start-page: 1107 year: 1993 ident: ref_179 article-title: Microsite reactions of urea-nBTPT fertilizer on the soil surface publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(93)90159-9 – volume: 55 start-page: 146 year: 2012 ident: ref_169 article-title: Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.06.006 – volume: 31 start-page: 323 year: 2021 ident: ref_208 article-title: Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emission in maize fields under hot climatic conditions publication-title: Pedosphere doi: 10.1016/S1002-0160(20)60076-5 – volume: 22 start-page: 933 year: 1990 ident: ref_159 article-title: Temperature and low concentration effects of the urease inhibitor N-(n-butyl) thiophosphoric triamide (n-BTPT) on ammonia volatilization from urea publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(90)90132-J – volume: 222 start-page: 1149 year: 2019 ident: ref_226 article-title: Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass publication-title: New Phytol. doi: 10.1111/nph.15662 – volume: 1 start-page: 636 year: 2008 ident: ref_8 article-title: How a century of ammonia synthesis changed the world publication-title: Nat. Geosci. doi: 10.1038/ngeo325 – volume: 115 start-page: 197 year: 2017 ident: ref_63 article-title: Variation in small organic N compounds and amino acid enantiomers along an altitudinal gradient publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.08.030 – volume: 220 start-page: 112338 year: 2021 ident: ref_108 article-title: Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.112338 – volume: 489 start-page: 220 year: 2001 ident: ref_42 article-title: An Arabidopsis T-DNA mutant affected in NRT2 genes is impaired in nitrate uptake publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02096-8 – volume: 101 start-page: 192 year: 2021 ident: ref_112 article-title: Kinetics and thermodynamics of urea hydrolysis in the presence of urease and nitrification inhibitors publication-title: Can. J. Soil Sci. doi: 10.1139/cjss-2020-0044 – volume: 198 start-page: 656 year: 2013 ident: ref_30 article-title: Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance publication-title: New Phytol. doi: 10.1111/nph.12235 – volume: 80 start-page: 2408 year: 1999 ident: ref_53 article-title: Soil amino acid utilization among species of the cyperaceae: Plant and soil processes publication-title: Ecology doi: 10.1890/0012-9658(1999)080[2408:SAAUAS]2.0.CO;2 – volume: 94 start-page: 222 year: 2016 ident: ref_161 article-title: Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.11.017 – volume: 644 start-page: 1531 year: 2018 ident: ref_187 article-title: Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.092 – volume: 6 start-page: 1007 year: 2015 ident: ref_198 article-title: The urease inhibitor NBPT negatively affects DUR3-mediated uptake and assimilation of urea in maize roots publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.01007 – volume: 5 start-page: 1 year: 1984 ident: ref_224 article-title: Nitrification inhibitors in agriculture and horticulture: A literature review publication-title: J. Fert. Res. doi: 10.1007/BF01049492 – volume: 31 start-page: 701 year: 1980 ident: ref_206 article-title: Effect of nitrapyrin on nitrapyrin residues and nitrate content in red beet roots fertilised with urea publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.2740310714 – volume: 655 start-page: 1387 year: 2019 ident: ref_156 article-title: Response of ammonia volatilization to biochar addition: A meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.316 – volume: 642 start-page: 155 year: 2018 ident: ref_186 article-title: The contrasting effects of N-(n-butyl) thiophosphoric triamide (NBPT) on N2O emissions in arable soils differing in pH are underlain by complex microbial mechanisms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.356 – volume: 77 start-page: 1424 year: 2013 ident: ref_166 article-title: Apparent persistence of N-(n-butyl) thiophosphoric triamide is greater in alkaline soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0380 – volume: 175 start-page: 1971 year: 1993 ident: ref_147 article-title: In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper publication-title: J. Bacteriol. doi: 10.1128/jb.175.7.1971-1980.1993 – volume: 106 start-page: 17302 year: 2009 ident: ref_101 article-title: Evidence for biological nitrification inhibition in Brachiaria pastures publication-title: Prod. Natl. Acad. Sci. USA doi: 10.1073/pnas.0903694106 – volume: 7 start-page: 18277 year: 2017 ident: ref_121 article-title: Molecular docking, molecular dynamics simulation, biological evaluation and 2D QSAR analysis of flavonoids from Syzygium alternifolium as potent anti-Helicobacter pylori agents publication-title: RSC Adv. doi: 10.1039/C6RA27872H – volume: 26 start-page: 1161 year: 1994 ident: ref_122 article-title: Use of soil thin-layer chromatography to assess the mobility of the phosphoric triamide urease inhibitors and urea in soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(94)90138-4 – volume: 37 start-page: 413 year: 2005 ident: ref_25 article-title: Dissolved organic nitrogen uptake by plants—An important N uptake pathway? publication-title: Soil. Biol. Biochem. doi: 10.1016/j.soilbio.2004.08.008 – volume: 120 start-page: 556 year: 1974 ident: ref_128 article-title: Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts publication-title: J. Bacteriol. doi: 10.1128/jb.120.1.556-558.1974 – volume: 127 start-page: 262 year: 2001 ident: ref_41 article-title: Major alterations of the regulationof root NO3 uptake are associated with the mutation of NRT21 and NRT22 genes in Arabidopsis publication-title: Plant Phys. doi: 10.1104/pp.127.1.262 – volume: 3 start-page: 296 year: 2012 ident: ref_170 article-title: A review of ammonia-oxidizing bacteria and archaea in Chinese soils publication-title: Front. Microbiol. – volume: 1459 start-page: 346 year: 2000 ident: ref_144 article-title: Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea publication-title: Biochem. Biophys. Acta. – ident: ref_34 doi: 10.3390/plants9010097 – volume: 212 start-page: 31 year: 1983 ident: ref_136 article-title: Methane oxidation by Nitrosomonas europaea publication-title: J. Biochem. doi: 10.1042/bj2120031 – volume: 56 start-page: 01449 year: 2022 ident: ref_214 article-title: Ammonia volatilization and agronomical efficiency of a mixture of urea with natural zeolite for rose fertilization publication-title: Pesqui. Agropecu. Bras. – volume: 143 start-page: 302 year: 1985 ident: ref_141 article-title: A kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas europaea and evidence for the further oxidation of phenol to hydroquinone publication-title: Arch. Microbiol. doi: 10.1007/BF00411254 – volume: 101 start-page: 139 year: 2015 ident: ref_84 article-title: Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China publication-title: Nutr. Cycl. Agroecosys. doi: 10.1007/s10705-014-9660-7 – volume: 3 start-page: 281 year: 2011 ident: ref_14 article-title: Reactive nitrogen in the environment and its effect on climate change publication-title: Curr. Opin Environ. Sustain. doi: 10.1016/j.cosust.2011.08.012 – volume: 128 start-page: 305 year: 2001 ident: ref_52 article-title: The unexpected versatility of plants: Organic nitrogen use and availability in terrestrial ecosystems publication-title: Oecologia doi: 10.1007/s004420100693 – volume: 5 start-page: 635 year: 2010 ident: ref_65 article-title: Humic substances biological activity at the plant-soil interface: From environmental aspects to molecular factors publication-title: Plant Signal. Behav. doi: 10.4161/psb.5.6.11211 – volume: 89 start-page: 371 year: 2008 ident: ref_4 article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed publication-title: Ecology doi: 10.1890/06-2057.1 – volume: 7 start-page: 1391 year: 2016 ident: ref_39 article-title: Transporters involved in root nitrate uptake and sensing by Arabidopsis publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2016.01391 – volume: 82 start-page: 2263 year: 2014 ident: ref_145 article-title: Structural conservation of the B subunit in the ammonia monooxygenase/particulate methane monooxygenase superfamily publication-title: Proteins doi: 10.1002/prot.24535 – volume: 434 start-page: 177 year: 2005 ident: ref_127 article-title: Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane publication-title: Nature doi: 10.1038/nature03311 – volume: 106 start-page: 203 year: 2009 ident: ref_16 article-title: On the fate of anthropogenic nitrogen publication-title: Prod. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810193105 – volume: 155 start-page: 125 year: 2011 ident: ref_20 article-title: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat publication-title: Plant Physiol. doi: 10.1104/pp.110.165076 – ident: ref_110 – volume: 102 start-page: 13693 year: 2005 ident: ref_43 article-title: The putative high-affinity nitrate transporter NRT21 represses lateral root initiation in response to nutritional cues publication-title: Prod. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504219102 – volume: 52 start-page: 927 year: 2016 ident: ref_177 article-title: Effects of 3, 4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-016-1131-7 – volume: 112 start-page: 297 year: 2013 ident: ref_107 article-title: A paradigm shift towards low-nitrifying production systems: The role of biological nitrification inhibition (BNI) publication-title: Ann. Bot. doi: 10.1093/aob/mcs230 – volume: 26 start-page: 103 year: 2020 ident: ref_173 article-title: Nitrous Oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14877 – volume: 408 start-page: 3569 year: 2010 ident: ref_17 article-title: Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment Science publication-title: Total Environ. doi: 10.1016/j.scitotenv.2010.04.017 – volume: 555 start-page: 604 year: 2018 ident: ref_220 article-title: Planning chemical syntheses with deep neural networks and symbolic AI publication-title: Nature doi: 10.1038/nature25978 – volume: 31 start-page: 64 year: 2002 ident: ref_3 article-title: Reactive nitrogen and the world: 200 years of change publication-title: AMBIO doi: 10.1579/0044-7447-31.2.64 – volume: 17 start-page: 478 year: 2012 ident: ref_70 article-title: The rhizosphere microbiome and plant health publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.04.001 – volume: 581 start-page: 2281 year: 2007 ident: ref_55 article-title: Transporters for uptake and allocation of organic nitrogen compounds in plants publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.04.013 – volume: 7 start-page: 43853 year: 2017 ident: ref_80 article-title: A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain publication-title: Sci. Rep. doi: 10.1038/srep43853 – volume: 55 start-page: 715 year: 2017 ident: ref_164 article-title: 4-Amino-1, 2, 4-triazole can be more effective than commercial nitrification inhibitors at high soil temperatures publication-title: Soil Res. doi: 10.1071/SR16340 – volume: 24 start-page: e248 year: 2018 ident: ref_73 article-title: What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands? publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13827 – volume: 102 start-page: 1523 year: 2008 ident: ref_143 article-title: Theoretical insight into the hydroxylamine oxidoreductase mechanism publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2008.01.032 – volume: 246 start-page: 1 year: 2017 ident: ref_165 article-title: DMPP is ineffective at mitigating N2O emissions from sheep urine patches in a UK grassland under summer conditions publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.05.017 – volume: 267 start-page: 1534 year: 1992 ident: ref_223 article-title: 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)45979-0 – volume: 92 start-page: fiw036 year: 2016 ident: ref_61 article-title: Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants publication-title: FEMS Microbiol Ecol. doi: 10.1093/femsec/fiw036 – volume: 162 start-page: 145 year: 2013 ident: ref_79 article-title: Nitrogen losses from the soil/plant system: A review publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12014 – volume: 99 start-page: 477 year: 2015 ident: ref_174 article-title: Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-6026-7 – volume: 210 start-page: 861 year: 2016 ident: ref_72 article-title: Plant community controls on short-term ecosystem nitrogen retention publication-title: New Phytol. doi: 10.1111/nph.13832 – volume: 69 start-page: 307 year: 2021 ident: ref_150 article-title: Synthesis of a novel polymer nitrification inhibitor with acrylic acid and 3,4-Dimethylpyrazole publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c07093 – volume: 34 start-page: 79 year: 2001 ident: ref_99 article-title: 3,4-Dimethylpyrazole phosphate (DMPP)–A new nitrification inhibitor for agriculture and horticulture publication-title: Biol. Fertil. Soils doi: 10.1007/s003740100380 – volume: 172 start-page: 5368 year: 1990 ident: ref_142 article-title: Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea publication-title: J. Bacteriol. doi: 10.1128/jb.172.9.5368-5373.1990 – volume: 19 start-page: 841 year: 2007 ident: ref_181 article-title: Effects of a new nitrification inhibitor 3, 4–dimethylpyrazole phosphate (DMPP) on nitrate and potassium leaching in two soils publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(07)60140-5 – volume: 442 start-page: 806 year: 2006 ident: ref_130 article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils publication-title: Nature doi: 10.1038/nature04983 – ident: ref_49 doi: 10.1371/journal.pone.0019220 – volume: 42 start-page: 1 year: 2018 ident: ref_59 article-title: Nitrogen assimilation and its relevance to crop improvement publication-title: Annu. Plant Rev. Online – volume: 20 start-page: 523 year: 2012 ident: ref_87 article-title: Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation publication-title: Trends Microbiol. doi: 10.1016/j.tim.2012.08.001 – volume: 81 start-page: 411 year: 1984 ident: ref_95 article-title: Leaching and transformation of urea in dry and wet soils as affected by irrigation water publication-title: Plant Soil doi: 10.1007/BF02323055 – ident: ref_204 – volume: 182 start-page: 31 year: 2009 ident: ref_51 article-title: Uptake of organic nitrogen by plants publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02751.x – volume: 288 start-page: 101 year: 2006 ident: ref_100 article-title: A bioluminescence assay to detect nitrification inhibitors released from plant roots: A case study with Brachiaria Humidicola publication-title: Plant Soil doi: 10.1007/s11104-006-9094-3 – volume: 54 start-page: 233 year: 1995 ident: ref_109 article-title: Nitrification inhibitors for agriculture, health, and the environment publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)60901-3 – volume: 25 start-page: 1082 year: 2006 ident: ref_168 article-title: Degradation and its affecting factors of NBPT in soil publication-title: Chin. J. Ecol. – volume: 88 start-page: 1832 year: 2007 ident: ref_29 article-title: Plant uptake of inorganic and organic nitrogen: Neighbor identity matters publication-title: Ecology doi: 10.1890/06-0946.1 – volume: 86 start-page: 1110 year: 1989 ident: ref_202 article-title: Potential phytotoxicity associated with the use of soil urease inhibitors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.86.4.1110 – volume: 368 start-page: 20130116 year: 2013 ident: ref_2 article-title: Consequences of human modification of the global nitrogen cycle publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci. doi: 10.1098/rstb.2013.0116 – volume: 88 start-page: 229 year: 2008 ident: ref_231 article-title: Effect of split application of fertilizer nitrogen on N2O emissions from potatoes publication-title: Can. J. Soil Sci. doi: 10.4141/CJSS06007 – volume: 624 start-page: 1180 year: 2018 ident: ref_205 article-title: 3,4-Dimethylpyrazole phosphate and 2-(N-3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture nitrification inhibitors: Quantification in plant tissues and toxicity assays publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.241 – volume: 103 start-page: 1249 year: 1993 ident: ref_36 article-title: Ammonium uptake by rice roots. (I. Fluxes and subcellular distribution of 13NH4+) publication-title: Plant Physiol. doi: 10.1104/pp.103.4.1249 – volume: 428 start-page: 821 year: 2004 ident: ref_76 article-title: The worldwide leaf economics spectrum publication-title: Nature doi: 10.1038/nature02403 – volume: 6 start-page: 1032 year: 2012 ident: ref_176 article-title: Ammonia-Oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils publication-title: ISME J. doi: 10.1038/ismej.2011.168 – volume: 42 start-page: 660 year: 2010 ident: ref_183 article-title: Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.12.014 – volume: 94 start-page: 154 year: 2016 ident: ref_67 article-title: Combined use of empirical data and mathematical modelling to better estimate the microbial turnover of isotopically labelled carbon substrates in soil publication-title: Soil Biol.Biochem. doi: 10.1016/j.soilbio.2015.11.016 – volume: 79 start-page: 1674 year: 2015 ident: ref_167 article-title: Degradation of the urease inhibitor NBPT as affected by soil pH publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.05.0169 – volume: 201 start-page: 192 year: 2017 ident: ref_28 article-title: Plant preference for NH4+ versus NO3− at different growth stages in an alpine agroecosystem publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.11.009 – volume: 25 start-page: 28344 year: 2018 ident: ref_155 article-title: Effects of nitrification inhibitors on gross N nitrification rate, ammonia oxidizers, and N2O production under different temperatures in two pasture soils publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-2873-6 – volume: 64 start-page: 263 year: 2011 ident: ref_21 article-title: Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings publication-title: Plant Growth Regul. doi: 10.1007/s10725-011-9567-0 – volume: 27 start-page: 4003 year: 2016 ident: ref_98 article-title: Influence of a new phosphoramide urease inhibitor on urea-N transformation in different texture soil publication-title: J. Appl. Ecol. – volume: 66 start-page: 1827 year: 2020 ident: ref_233 article-title: The scarcity and distribution of rainfall drove the performance (i.e., mitigation of N oxide emissions, crop yield and quality) of calcium ammonium nitrate management in a wheat crop under rainfed semiarid conditions publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2019.1697805 – volume: 58 start-page: 241 year: 2021 ident: ref_132 article-title: Revisiting plant biological nitrification inhibition efficiency using multiple archaeal and bacterial ammonia-oxidising cultures publication-title: Biol Fertil. Soils – volume: 25 start-page: 829 year: 2020 ident: ref_111 article-title: The structure-based reaction mechanism of urease, a nickel dependent enzyme: Tale of a long debate publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-020-01808-w – volume: 67 start-page: 2127 year: 2019 ident: ref_82 article-title: Insights into urease inhibition by N-(n-Butyl) phosphoric triamide through an integrated structural and kinetic approach publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b04791 – ident: ref_85 doi: 10.3390/su12156018 – volume: 147 start-page: 126 year: 1987 ident: ref_140 article-title: Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus publication-title: Arch. Microbiol. doi: 10.1007/BF00415273 – volume: 168 start-page: 329 year: 2011 ident: ref_201 article-title: Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2010.07.024 – volume: 10 start-page: 1 year: 2020 ident: ref_83 article-title: Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-65107-9 – ident: ref_10 – volume: 196 start-page: 191 year: 1997 ident: ref_26 article-title: Regulation of mineral nitrogen uptake in plants publication-title: Plant Soil doi: 10.1023/A:1004241722172 – volume: 59 start-page: 3718 year: 1993 ident: ref_134 article-title: Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: Thioethers are oxidized to sulfoxides by ammonia monooxygenase publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.59.11.3718-3727.1993 – ident: ref_23 doi: 10.1007/b97397 – volume: 5 start-page: 442 year: 2008 ident: ref_102 article-title: Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (sorghum bicolor) publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02576.x – volume: 75 start-page: 449 year: 1995 ident: ref_197 article-title: Effects of placement of urea with a urease inhibitor on seedling emergence, N uptake and dry matter yield of wheat publication-title: Can. J. Plant Sci. doi: 10.4141/cjps95-075 – volume: 19 start-page: 5 year: 2014 ident: ref_40 article-title: A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.08.008 – volume: 55 start-page: 485 year: 2001 ident: ref_88 article-title: Ammonia-oxidizing bacteria: A model for molecular microbial ecology publication-title: Annu. Rev Microbiol. doi: 10.1146/annurev.micro.55.1.485 – volume: 388 start-page: 114947 year: 2021 ident: ref_215 article-title: Nitrification inhibitors reduce nitrogen losses and improve soil health in a subtropical pastureland publication-title: Geoderma doi: 10.1016/j.geoderma.2021.114947 – volume: 6 start-page: 300 year: 2001 ident: ref_221 article-title: Structure-based computational study of the catalytic and inhibition mechanisms of urease publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s007750000204 – volume: 54 start-page: 523 year: 2016 ident: ref_185 article-title: Influence of enhanced efficiency fertilisation techniques on nitrous oxide emissions and productivity response from urea in a temperate Australian ryegrass pasture publication-title: Soil Res. doi: 10.1071/SR15317 – volume: 185 start-page: 7266 year: 2003 ident: ref_31 article-title: Legume symbiotic nitrogen fixation by β-Proteobacteria is widespread in nature publication-title: J. Bacteriol. doi: 10.1128/JB.185.24.7266-7272.2003 – volume: 44 start-page: 874 year: 2020 ident: ref_104 article-title: Biological nitrification inhibition in the rhizosphere: Determining interactions and impact on microbially mediated processes and potential applications publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuaa037 – volume: 232 start-page: 283 year: 2016 ident: ref_190 article-title: Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.08.019 – volume: 411 start-page: 948 year: 2001 ident: ref_32 article-title: Nodulation of legumes by members of the β-subclass of Proteobacteria publication-title: Nature doi: 10.1038/35082070 – ident: ref_92 – volume: 771 start-page: 145483 year: 2021 ident: ref_114 article-title: Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145483 – volume: 375 start-page: 1 year: 2014 ident: ref_62 article-title: Organic N molecules in the soil solution: What is known, what is unknown and the path forwards publication-title: Soil Biol. Biochem. – volume: 76 start-page: 327 year: 2016 ident: ref_178 article-title: Greenhouse gas emissions from soils A review publication-title: Chem. Erde-Geochem. doi: 10.1016/j.chemer.2016.04.002 – volume: 29 start-page: 1 year: 1999 ident: ref_123 article-title: Modes of action of nitrification inhibitors publication-title: Biol. Fertil. Soils doi: 10.1007/s003740050518 – volume: 119 start-page: 80 year: 2017 ident: ref_172 article-title: Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.05.034 – ident: ref_81 – volume: 54 start-page: 33 year: 2008 ident: ref_86 article-title: Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification publication-title: J. Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2007.00195.x – volume: 47 start-page: 139 year: 2011 ident: ref_96 article-title: Urea hydrolysis and lateral and vertical movement in the soil: Effects of urease inhibitor and irrigation publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-010-0515-3 – volume: 155 start-page: 240 year: 2017 ident: ref_217 article-title: Brief history of agricultural systems modeling publication-title: Agric. Syst. doi: 10.1016/j.agsy.2016.05.014 – volume: 12 start-page: 561 year: 2006 ident: ref_60 article-title: Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2006.01100.x – volume: 79 start-page: 491 year: 1999 ident: ref_195 article-title: Effect of seed-placed urea fertilizer and N-(n-butyl) thiophosphoric triamide (NBPT) on emergence and grain yield of barley publication-title: Can. J. Plant Sci. doi: 10.4141/P98-121 – volume: 624 start-page: 1202 year: 2018 ident: ref_154 article-title: Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2017.12.250 – volume: 3 start-page: 17074 year: 2017 ident: ref_5 article-title: Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition publication-title: Nat. Plants. doi: 10.1038/nplants.2017.74 – volume: 478 start-page: 337 year: 2011 ident: ref_6 article-title: Solutions for a cultivated planet publication-title: Nature doi: 10.1038/nature10452 – volume: 3 start-page: 222 year: 2023 ident: ref_125 article-title: Assessing the efficacy, acute toxicity, and binding modes of the agricultural nitrification inhibitors 3, 4-Dimethyl-1 H-pyrazole (DMP) and Dicyandiamide (DCD) with Nitrosomonas europaea publication-title: ACS J. Agric. Sci. doi: 10.1021/acsagscitech.2c00303 – volume: 106 start-page: 732 year: 2014 ident: ref_152 article-title: Nitrous oxide emissions from a clay soil receiving granular urea formulations and dairy manure publication-title: Agron. J. doi: 10.2134/agronj2013.0096 – volume: 5 start-page: 15842 year: 2015 ident: ref_19 article-title: Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China publication-title: Sci. Rep. doi: 10.1038/srep15842 – volume: 528 start-page: 555 year: 2015 ident: ref_90 article-title: Complete nitrification by a single microorganism publication-title: Nature doi: 10.1038/nature16459 – volume: 96 start-page: 2300 year: 2015 ident: ref_69 article-title: Plant traits related to nitrogen uptake influence plant-microbe competition publication-title: Ecology doi: 10.1890/14-1761.1 – volume: 49 start-page: 315 year: 2011 ident: ref_113 article-title: Influence of temperature and soil type on inhibition of urea hydrolysis by N-(n-butyl) thiophosphoric triamide in wheat and pasture soils in south-eastern Australia publication-title: Soil Res. doi: 10.1071/SR10243 – volume: 339 start-page: 321 year: 2021 ident: ref_151 article-title: Controlled release fertilizer: A review on developments, applications and potential in agriculture publication-title: J. Control. Release doi: 10.1016/j.jconrel.2021.10.003 – volume: 6 start-page: 33293 year: 2021 ident: ref_219 article-title: Impact of artificial intelligence on compound discovery, design, and synthesis publication-title: ACS Omega doi: 10.1021/acsomega.1c05512 – ident: ref_64 doi: 10.3390/molecules26082256 – volume: 183 start-page: 99 year: 2019 ident: ref_188 article-title: Effect of urease and nitrification inhibitors on ammonia volatilization and abundance of N-cycling genes in an agricultural soil publication-title: J. Plant Nutr. Soil Sci. USA – volume: 10 start-page: 16061 year: 2020 ident: ref_118 article-title: Identification of novel bacterial urease inhibitors through molecular shape and structure based virtual screening approaches publication-title: RSC Adv. doi: 10.1039/D0RA02363A – volume: 3 start-page: 10 year: 2010 ident: ref_1 article-title: The nitrogen cycle: Processes publication-title: Play. Hum. – volume: 131 start-page: 872 year: 2003 ident: ref_33 article-title: Legumes: Importance and constraints to greater use publication-title: Plant Phys. doi: 10.1104/pp.017004 – volume: 290 start-page: 106763 year: 2020 ident: ref_157 article-title: Effect of N stabilizers on fertilizer-N fate in the soil-crop system: A meta-analysis publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2019.106763 – volume: 13 start-page: 101 year: 2018 ident: ref_115 article-title: Recent advances in design of new urease inhibitors: A review publication-title: J. Adv. Res. doi: 10.1016/j.jare.2018.01.007 – volume: 154 start-page: 246 year: 2013 ident: ref_209 article-title: Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake publication-title: Field Crops Res. doi: 10.1016/j.fcr.2013.08.014 – volume: 373 start-page: 813 year: 2013 ident: ref_200 article-title: Inhibition of endogenous urease activity by NBPT application reveals differential N metabolism responses to ammonium or nitrate nutrition in pea plants: A physiological study publication-title: Plant Soil doi: 10.1007/s11104-013-1830-x – volume: 86 start-page: e02388-19 year: 2020 ident: ref_131 article-title: Inhibition of ammonia monooxygenase from ammonia-oxidizing archaea by linear and aromatic alkynes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02388-19 – volume: 96 start-page: 788 year: 2015 ident: ref_74 article-title: Using plant traits to explain plant–microbe relationships involved in nitrogen acquisition publication-title: Ecology doi: 10.1890/13-2107.1 – volume: 52 start-page: 82 year: 2012 ident: ref_191 article-title: Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.04.019 – volume: 24 start-page: 245 year: 2012 ident: ref_47 article-title: The Arabidopsis nitrate transporter NRT24 plays a double role in roots and shoots of nitrogen-starved plants publication-title: Plant Cell doi: 10.1105/tpc.111.092221 – volume: 5 start-page: 44507 year: 2015 ident: ref_117 article-title: Design, syntheses and evaluation of benzoylthioureas as urease inhibitors of agricultural interest publication-title: RSC Adv. doi: 10.1039/C5RA07886E – volume: 55 start-page: 603 year: 2019 ident: ref_158 article-title: Effects of the nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on gross N transformation rates and N2O emissions publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-019-01375-6 – volume: 121 start-page: 201 year: 2011 ident: ref_196 article-title: Nitrogen fertilizer and urease inhibitor effects on canola seed quality in a one-pass seeding and fertilizing system publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2010.10.012 – volume: 13 start-page: 29 year: 2018 ident: ref_116 article-title: A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s publication-title: J. Adv. Res. doi: 10.1016/j.jare.2018.04.001 – volume: 87 start-page: 85 year: 2005 ident: ref_13 article-title: Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects publication-title: Adv. Agron. doi: 10.1016/S0065-2113(05)87003-8 – volume: 34 start-page: 109 year: 2001 ident: ref_216 article-title: Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments publication-title: Biol. Fertil. Soils doi: 10.1007/s003740100386 – volume: 279 start-page: 28182 year: 2004 ident: ref_37 article-title: Nitrate reductase activity is required for nitrate uptake into fungal but not plant cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M403974200 – ident: ref_56 doi: 10.3390/plants10040681 – ident: ref_193 doi: 10.3390/agronomy11081674 – volume: 21 start-page: 935 year: 1989 ident: ref_160 article-title: Temperature effects on soil urease activity publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(89)90083-7 – volume: 5 start-page: 315 year: 1979 ident: ref_138 article-title: The fortuitous oxidation and cometabolism of various carbon compounds by whole-cell suspensions of Methylococcus capsulatus(Bath) publication-title: FEMS Microbiol Lett. doi: 10.1111/j.1574-6968.1979.tb03329.x – volume: 46 start-page: 939 year: 2017 ident: ref_194 article-title: combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields publication-title: J. Environ. Qual. doi: 10.2134/jeq2017.03.0106 – volume: 68 start-page: 2501 year: 2017 ident: ref_35 article-title: Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants publication-title: J. Exp. Bot. – ident: ref_57 doi: 10.3390/plants9080967 – volume: 2012 start-page: 928901 year: 2012 ident: ref_119 article-title: Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1,3,4-oxadiazole derivatives publication-title: ISRN Pharmacol. doi: 10.5402/2012/928901 – volume: 95 start-page: 365 year: 1974 ident: ref_135 article-title: The oxidation of carbon monoxide by methane-oxidizing bacteria publication-title: Arch. Microbiol. doi: 10.1007/BF02451778 – volume: 109 start-page: 378 year: 2017 ident: ref_189 article-title: Ammonia volatilization from urea treated with NBPT and two nitrification inhibitors publication-title: Agron. J. doi: 10.2134/agronj2016.08.0464 – volume: 54 start-page: 675 year: 2016 ident: ref_153 article-title: Nitrification (DMPP) and urease (NBPT) inhibitors had no effect on pasture yield, nitrous oxide emissions, or nitrate leaching under irrigation in a hot-dry climate publication-title: Soil Res. doi: 10.1071/SR15330 – volume: 731 start-page: 139113 year: 2020 ident: ref_212 article-title: Development of fertilizers for enhanced nitrogen use efficiency—Trends and perspectives publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139113 – ident: ref_218 – volume: 63 start-page: 73 year: 2011 ident: ref_199 article-title: Effect of N-(n-butyl) thiophosphorictriamide on urea metabolism and the assimilation of ammonium by Triticum aestivum L publication-title: Plant Growth Regul. doi: 10.1007/s10725-010-9513-6 – volume: 752 start-page: 141885 year: 2021 ident: ref_146 article-title: Mechanism of action of nitrification inhibitors based on dimethylpyrazole: A matter of chelation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141885 – volume: 45 start-page: 5455 year: 2016 ident: ref_120 article-title: Inactivation of urease by 1, 4-benzoquinone: Chemistry at the protein surface publication-title: Dalton Trans. doi: 10.1039/C6DT00652C – volume: 368 start-page: 20130164 year: 2013 ident: ref_15 article-title: The global nitrogen cycle in the twenty-first century publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci. doi: 10.1098/rstb.2013.0164 – volume: 14 start-page: 395 year: 2004 ident: ref_180 article-title: Dicyandiamide sorption-desorption behaviour on soils and peat humus publication-title: Pedosphere – volume: 158 start-page: 97 year: 1946 ident: ref_124 article-title: Effect of Copper-Enzyme Poisons on Soil Nitrification publication-title: Nature doi: 10.1038/158097a0 – ident: ref_227 doi: 10.1007/978-3-642-70722-3 – volume: 142 start-page: 1304 year: 2006 ident: ref_44 article-title: Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis Physiology and protein-protein interaction publication-title: Plant Phys. doi: 10.1104/pp.106.085209 – volume: 262 start-page: 165 year: 2017 ident: ref_105 article-title: Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.05.004 – volume: 217 start-page: 35 year: 2018 ident: ref_38 article-title: Source and sink mechanisms of nitrogen transport and use publication-title: New Phytol. doi: 10.1111/nph.14876 – volume: 140 start-page: 909 year: 2006 ident: ref_45 article-title: Acentral role for the nitrate transporter NRT21 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis publication-title: Plant Phys. doi: 10.1104/pp.105.075721 – volume: 184 start-page: 33 year: 1996 ident: ref_203 article-title: Short-term effects of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide on perennial ryegrass publication-title: Plant Soil doi: 10.1007/BF00029272 – volume: 39 start-page: 971 year: 1967 ident: ref_222 article-title: Phenol-hypochlorite reaction for determination of ammonia publication-title: Anal. Chem doi: 10.1021/ac60252a045 – volume: 105 start-page: 4524 year: 2008 ident: ref_50 article-title: Plants can use protein as a nitrogen source without assistance from other organisms publication-title: Prod. Natl. Acad. Sci. USA doi: 10.1073/pnas.0712078105 – volume: 16 start-page: 2064 year: 2006 ident: ref_91 article-title: Denitrification across landscapes and waterscapes: A synthesis publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 – volume: 143 start-page: 425 year: 2007 ident: ref_46 article-title: Dissection of the AtNRT21: AtNRT22 inducible high-affinity nitrate transporter gene cluster publication-title: Plant Phys. doi: 10.1104/pp.106.091223 – volume: 186 start-page: 201 year: 2014 ident: ref_162 article-title: Effect of temperature on dicyandiamide (DCD) longevity in pastoral soils under field conditions publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.01.026 – volume: 189 start-page: 136 year: 2014 ident: ref_210 article-title: Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.03.036 – volume: 133 start-page: 283 year: 1987 ident: ref_139 article-title: Methanol and formaldehyde oxidation by an autotrophic nitrifying bacterium publication-title: Microbiol. doi: 10.1099/00221287-133-2-283 – volume: 37 start-page: 1337 year: 2008 ident: ref_229 article-title: Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems publication-title: J. Environ. Qual. doi: 10.2134/jeq2007.0268 – volume: 41 start-page: 1177 year: 2003 ident: ref_163 article-title: Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures publication-title: Aust. J. Soil Res. doi: 10.1071/SR02144 – ident: ref_228 doi: 10.1007/978-94-009-2817-6 – volume: 18 start-page: 378 year: 2008 ident: ref_182 article-title: Effectiveness of 3, 4-dimethylpyrazole phosphate as nitrification inhibitor in soil as influenced by inhibitor content, application form, and soil matric potential publication-title: Pedosphere doi: 10.1016/S1002-0160(08)60028-4 – volume: 30 start-page: 87 year: 2020 ident: ref_171 article-title: Evidence for niche differentiation of nitrifying communities in grassland soils after 44 years of different field fertilization scenarios publication-title: Pedosphere doi: 10.1016/S1002-0160(19)60803-9 – volume: 413 start-page: 275 year: 2017 ident: ref_129 article-title: A colourimetric microplate assay for simple, high throughput assessment of synthetic and biological nitrification inhibitors publication-title: Plant Soil doi: 10.1007/s11104-016-3100-1 – volume: 9 start-page: 4276 year: 2018 ident: ref_126 article-title: Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria publication-title: Nat. Commun. doi: 10.1038/s41467-018-06681-5 – volume: 137 start-page: 155 year: 1984 ident: ref_137 article-title: Ethylene oxidation by Nitrosomonas europaea publication-title: Arch. Microbiol. doi: 10.1007/BF00414458 – volume: 462 start-page: 7 year: 2021 ident: ref_68 article-title: Soil organic nitrogen: An overlooked but potentially significant contribution to crop nutrition publication-title: Plant Soil doi: 10.1007/s11104-021-04860-w |
SSID | ssj0000913807 |
Score | 2.3147242 |
SecondaryResourceType | review_article |
Snippet | Optimizing nitrogen (N) availability to plants is crucial for achieving maximum crop yield and quality. However, ensuring the appropriate supply of N to crops... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1603 |
SubjectTerms | 20th century Agricultural practices agronomy Amino acids Ammonia Ammonium Availability Bacteria clay Clay minerals Corn Crop fields Crop production Crop yield Crops Denitrification Ecosystems Emissions Fertilizer industry Fertilizers hydrolysis Inhibitors Interlayers Leaching Legumes Metabolism Microorganisms Minerals Nitrates Nitrification nitrification inhibitors nitrites Nitrogen nitrogen cycling Nitrogen dioxide Nitrosomonas Nitrous oxide Outdoor air quality Plant growth plant nitrogen uptake Proteins Reviews runoff smart agriculture soil Soil bacteria Soil microorganisms Soils Sustainable agriculture Sustainable production Synchronism temperature Urea Urease Vaporization Volatilization wind |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQ-qRuk6BCofRgdm3JspXbJm0Ihe6h7UJuRo_R1pDYYdcL7S3_If-wv6QzsrNkC20vPRn0MNY8pBlr5hvG3gQTlLVKpSq305TiCFOtc5MGNG0raZUxEdTn01ydLeTH8-L8Tqkvigkb4IEHwk2kDd5LmUNV4MMrY0thZVF4Nw1VpaJphGfeHWcq7sE6IyT14V5SoF8_MctVzBLAPVtRaeWdcyjC9f9pU44nzekj9nA0Efls-LTH7B60T9iD2XI1wmTAU3b5HlxzFVP3lhxNOB5_7A05CmvetLHtc9f1P69vvnTNBZ_D982an5jNGjy3P_iCYtGBm9bzedOvKF4osghf9K2xDZXgOeIzPtwcPGOL0w9fT87SsXBC6mSp-9QrMAqCEjlkUAUwWTDSCwjWZbYsbUCjKQhtC-clsspb7YzSIERWVM5kTjxne23XwgvGbaGB3LRsKoJ0QtgKTQ6VV6BsFionEza5JWPtRlRxKm5xUaN3QYSvfyd8wt5tZ1wNiBp_GXtMnNmOIyzs2IASUo8SUv9LQhL2lvhak8bipzkzJh7gAgn7qp6V6COX6DnqhO3vjERNc7vdt5JRj5q-rukmWmlZFkXCXm-7aSZFr7XQbWgM4f5JPFZe_o8FvWL3qej9ELC2z_b61QYO0DTq7WHUgl_3QRA4 priority: 102 providerName: Directory of Open Access Journals |
Title | Deciphering the Interactions in the Root–Soil Nexus Caused by Urease and Nitrification Inhibitors: A Review |
URI | https://www.proquest.com/docview/2829694755 https://www.proquest.com/docview/2887634111 https://doaj.org/article/4bfdd442e85d44d6ab73b455dc0f886a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA46-6IP4hWr6xJBEB_KTJtLU19kdt1lERxkdWDfSq6zhbUd2w7om__Bf-gvMSfNjIzgPhXSk9DmJCfnlu8g9MpJx5XiPOW5mqWQR5iWZS5T51VbQRWXMoD6fFzw8yX9cMkuo8Otj2mVW5kYBLVpNfjIpxDx4yUtGHu3_pZC1SiIrsYSGrfRgRfBQkzQwfHp4tPFzssCqJdiVozxSeLt-6lcdeG2gJfdHEos751HAbb_f8I5nDhn99G9qCri-cjbB-iWbR6iu_NVF-Ey7CP09b3V9Tpc4Vthr8rh4OAb7yr0uG5C20XbDr9__vrc1td4Yb9venwiN701WP3AS8hJt1g2Bi_qoYO8ocAqP9BVrWooxfMWz_EYQXiMlmenX07O01hAIdW0KIfUcCu5dZzkNrPCWZk5SQ2xTulMFYVyXnlypFRMG-pZZlSpJS8tIRkTWmaaPEGTpm3sU4QVKy2Ya9mMOKoJUcKrHjwXlqvMCU0TNN1OY6UjujgUubiuvJUBE1_9O_EJerPrsR6RNW6gPQbO7OgAEzs0tN2qilusosoZQ2luBfMPw6UqiKKMGT1zQnCZoNfA1wp2rv80LeMFBP-DgIFVzQtvKxfegiwTdLhH6Xec3n-9XRlV3PF99Xd9Jujl7jX0hCy2xrYboAH8P-qPl2c3D_Ec3YGy9mNK2iGaDN3GvvDKz6CO4go_Cs6DP04uCU8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9Gh0D8AD4ioCA4wEQjxETWLHSZAQ6m7q2FahsUp7C76WSCMpbSrYG__Af_BRfAk-SVpUJPa2p0j2sRXb52qfC8ALKyyXknOfRzLw0Y_Qz7JI-NaptimTXIgmqc_xiA_H7P1ZfLYBv5axMOhWueSJDaPWlcI78j6--PGMJXH8bvrVx6pR-Lq6LKHRosWhufjmTLb524Ndd74vo2h_73Rn6HdVBXzFkqz2NTeCG8tpZEKTWiNCK5imxkoVyiSR1mkUlmYyVpq5dWiZKcEzQ2kYp0qEirp5r8EmozyIerC5vTf6cLK61cEsm2mQtO-hlGZBX0xmTXSCkxUcSzqvyb-mTMD_hEEj4fZvw61ONSWDFpfuwIYp78LNwWTWpecw9-DLrlHFtAkZnBCnOpLmQrGNjZiTomzaTqqq_v3j58eqOCcj830xJztiMTeayAsyRh94Q0SpyaioZ-in1KCGm-hzIQss_fOGDEj7YnEfxleytQ-gV1aleQhExplB8zAMqGWKUpk6VYdHqeEytKliHvSX25irLps5FtU4z51Vgxuf_7vxHrxejZi2mTwugd3Gk1nBYQ7upqGaTfKOpHMmrdaMRSaN3UdzIRMqWRxrFdg05cKDV3iuOXIK92tKdAEPboGYcysfJM42T5zFmnmwtQbpKFytdy8xI-84zDz_Sw8ePF9140j0mitNtUAYzDfInDh7dPkUz-D68PT4KD86GB0-hhuRU-Rad7gt6NWzhXniFK9aPu2wncCnqyawP74KSNM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRA9FC3IPogXnG16giK-BA2yUwmiSCy7XZprS6lutC3ONc1UJM1u4v2zX_wb_wcv8Q5uaysYN_6FJgbmTPnOnMuAM-ssFxKzj0eSt9DP0IvTUPhWafaJkxyIeqkPu8n_GDK3p5Gp1vwq4uFQbfKjifWjFqXCu_IB_jix1MWR9HAtm4Rx6Pxm_lXDytI4UtrV06jQZEjc_7NmW-L14cjd9bPw3C8_3HvwGsrDHiKxenS09wIbiynoQlMYo0IrGCaGitVIONYWqddWJrKSGnm9qRlqgRPDaVBlCgRKOrWvQLbMVpFPdje3Z8cn6xveDDjZuLHzdsopak_ELOqjlRwcoNjeecNWViXDPifYKil3fgm3GjVVDJs8OoWbJniNlwfzqo2VYe5A19GRuXzOnxwRpwaSerLxSZOYkHyom47Kcvl7x8_P5T5GZmY76sF2ROrhdFEnpMp-sMbIgpNJvmyQp-lGk3cQp9zmWMZoFdkSJrXi7swvRTQ3oNeURbmPhAZpQZNxcCnlilKZeLUHh4mhsvAJor1YdCBMVNtZnMssHGWOQsHAZ_9C_g-vFzPmDdZPS4Yu4snsx6H-bjrhrKaZS15Z0xarRkLTRK5j-ZCxlSyKNLKt0nCRR9e4LlmyDXcrynRBj-4DWL-rWwYOzs9dtZr2oedjZGO2tVmd4cZWcttFtlf2ujD03U3zkQPusKUKxyDuQeZE20PLl7iCVx1hJW9O5wcPYRrodPpGs-4Hegtq5V55HSwpXzcIjuBT5dNX38Akx9NCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+the+Interactions+in+the+Root%E2%80%93Soil+Nexus+Caused+by+Urease+and+Nitrification+Inhibitors%3A+A+Review&rft.jtitle=Agronomy+%28Basel%29&rft.au=Gupta%2C+Sneha&rft.au=Yildirim%2C+Sibel&rft.au=Andrikopoulos%2C+Benjamin&rft.au=Wille%2C+Uta&rft.date=2023-06-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=13&rft.issue=6&rft.spage=1603&rft_id=info:doi/10.3390%2Fagronomy13061603&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy13061603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |